
Multi-Resource Real-Time Reader/Writer Locks for
Multiprocessors ∗

Bryan C. Ward and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
A fine-grained locking protocol permits multiple locks to
be held simultaneously. In the case of real-time multipro-
cessor systems, prior work on such protocols has consid-
ered only mutex constraints. This unacceptably limits con-
currency in systems in which some resource accesses are
read-only. To remedy this situation, a variant of a recently-
proposed fine-grained protocol called the real-time nested
locking protocol (RNLP) is presented that enables concur-
rent reads. Like the original RNLP, this reader/writer ver-
sion is a “pluggable” protocol that has different variants
for different schedulers and analysis assumptions. Some of
these variants are asymptotically optimal with respect to
priority-inversion blocking. This paper is the first to address
the algorithmic and analytical intricacies that arise when
attempting to support read-only resource accesses under
fine-grained locking in multiprocessor real-time systems.

1 Introduction
To exploit the performance benefits of multicore machines,
which are becoming ever more ubiquitous, applications
must be efficiently parallelized. This requires (among other
things) efficient techniques for synchronizing accesses to
shared resources by different tasks. For such techniques
to be deemed “efficient,” they should permit synchroniz-
ing tasks to execute concurrently where possible, as tasks
executing sequentially do not benefit from the availability
of multiple processors. Moreover, concurrent accesses of
multiple resources by the same task should be supported,
as such functionality is widely employed in practice.

When locks are used to support resource sharing, two
principal approaches exist: coarse-grained and fine-grained
locking. Under coarse-grained locking, all resources that
may be accessed concurrently via operations that conflict
are grouped into a single lockable entity, and a single-
resource locking protocol is used. This approach, also
known as group locking [3], is clearly detrimental to con-
currency. In contrast, under fine-grained locking, different
resources are locked individually. This enables concurrent
accesses of separate resources, but issues such as deadlock
become problematic.

∗Work supported by NSF grants CNS 1016954, CNS 1115284, and
CNS 1239135; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-
09-1-0549; and AFRL grant FA8750-11-1-0033. The first author was sup-
ported by an NSF graduate research fellowship.

Perhaps because of such issues, the first fine-grained
locking protocol for multiprocessor real-time systems was
proposed only recently, in the form of the real-time nested
locking protocol (RNLP) of Ward and Anderson [19]. The
RNLP is actually a “pluggable” protocol that has differ-
ent variants for different schedulers and analysis assump-
tions. Most of these variants are asymptotically optimal
with respect to worst-case priority-inversion blocking, or
pi-blocking (see Sec. 2). Unfortunately, from the perspec-
tive of enabling concurrency, the RNLP has a serious short-
coming: it treats all resources as mutex resources that can
be accessed by only one task at a time. This unacceptably
limits concurrency if some accesses are read-only.

Contributions. To address this shortcoming, we present a
reader/writer variant of the RNLP (the R/W RNLP for short)
that allows read-only accesses to execute concurrently. The
design of the R/W RNLP breaks new ground in several
ways. For example, it is the first fine-grained multiproces-
sor real-time locking protocol that allows tasks to hold read
locks and write locks simultaneously on different resources,
and the first to allow read locks to be upgraded to write
locks. As in the work on the original RNLP, we judge
the efficacy of a locking protocol in terms worst-case pi-
blocking and present protocol variants for various imple-
mentation and analysis assumptions. Some of these vari-
ants are asymptotically optimal in terms of worst-case pi-
blocking. To make the R/W RNLP easier to understand, we
initially assume that tasks block by spinning (busy waiting).
We subsequently discuss variants in which blocked tasks
instead suspend by considering how the original protocol
must be changed if spinning is replaced by suspending.

Further motivation. In conducting this work, we were par-
tially motivated by the desire to provide a foundation for
supporting lock-based transactional memory (TM) in real-
time multiprocessor systems. TM provides infrastructure
that lifts the burden of dealing with synchronization issues
from programmers in the case of memory-resident shared
objects. When TM is used, code that accesses shared objects
is specified as a sequential transaction. The underlying TM
framework is responsible for properly synchronizing con-
flicting transactions that access common objects. The use of
TM in real-time applications could greatly ease certification
difficulties, provided the employed TM was designed with
real-time predictability in mind.

While TM can be supported in hardware [13, 16], our

1



interest is in software TM (STM) [18], as it can be ap-
plied to systems without hardware support. In prior work on
STM, both throughput-oriented systems (the literature here
is quite vast—please see [10] and the references therein) and
real-time systems [1, 11, 12, 14, 15] have been considered.

In all work (known to us) on STM for real-time systems,
the focus has been on non-blocking approaches. In a non-
blocking approach, transactions may execute concurrently,
at the expense of potentially needing to abort and retry con-
flicting transactions. In a real-time system, transactions re-
tries must be analytically bounded for schedulability anal-
ysis. While reasonable bounds are attainable on uniproces-
sors [2], such bounds are difficult to obtain on multipro-
cessors. Moreover, making transactions abortable (so that
they can be retried) usually entails making copies of all or
part of an object’s state. In the worst case (which is of rele-
vance to real-time systems), this copying overhead can be
expensive. Because of these issues, non-blocking mecha-
nisms have fared poorly in comparison to lock-based ones
in prior experimental studies that focus on multiprocessor
schedulability [9]. Based on this evidence, we believe that
STM for real-time systems should be lock-based.

To be practically viable, STM must properly support
read-only object accesses (this is an issue that has been
extensively investigated in the literature on STM [18]). In
the case of lock-based real-time STM, this means that fine-
grained locking techniques that can properly deal with read-
only accesses are crucial. Such techniques are presented in
this paper in the form of the R/W RNLP. Despite our in-
terest in STM, the R/W RNLP is not limited to controlling
memory-resident shared objects. For this reason, we use the
more general term “resource” instead of “shared object” in
describing our results.
Scope. Given the numerous algorithmic, systems, and lan-
guage challenges that must be addressed, the development
of a complete real-time lock-based STM framework is an
undertaking beyond the scope of any single paper. The focus
of this work is to establish the algorithmic foundation that
is required to implement the core of STM: the transaction
manager that predictably and efficiently coordinates concur-
rent read and write accesses. In a lock-based STM, this in-
herently requires a fined-grained R/W locking protocol—to
this end, this paper presents the design and analysis of the
R/W RNLP, which will serve as the foundation for future
empirical and systems-oriented work.
Organization. In the rest of the paper, we present needed
background (Sec. 2), present the R/W RNLP, its blocking
analysis, and ways to add additional functionality (Sec. 3),
and conclude (Sec. 4).

2 Background
We consider a system with m processors and n sporadic
tasks T1, . . . , Tn. Each task Ti releases a sequence of jobs.
We denote an arbitrary job of Ti as Ji. Jobs of Ti are re-
leased with a minimum separation of pi time units. Each
such job executes for an execution requirement of at most
ei time units and should complete before a specified relative

deadline di time units after its release. We consider time to
be continuous. A job is said to be pending after being re-
leased until it completes execution.

Resource model. We consider a system with q shared re-
sources (excluding processors), `1, . . . , `q , such as shared
memory objects. When a job requires access to one or more
resources, it issues a request to a locking protocol. (Note
that multiple resources may be included in one request.) We
denote Ji’s kth resource request as Ri,k. A request is said
to be satisfied when access is granted to all requested re-
sources and completed when the job releases all requested
resources. A satisfied request is said to hold its requested re-
sources. The time between a request being issued and being
satisfied is acquisition delay. The time between the satisfac-
tion of a request and its completion is a critical section. If a
job must wait for a resource, it can do so by either spinning
or suspending. A pending job that is not suspended is ready.

Each resource indicated in a request is requested for
either reading or writing. We say that a resource is read
(write) locked if it is held by a request that reads (writes)
it. We assume that each resource `a is subject to a
reader/writer sharing constraint: writes of `a are mutually
exclusive, but arbitrarily many reads of `a can be executed
concurrently. Such a read is not allowed to modify `a. Two
requests conflict if they include a common resource that is
written by at least one of them.

Scheduling. Without loss of generality, we consider
clustered-scheduled systems, in which the m processors are
grouped into m/c clusters, each of size c. Tasks are stati-
cally assigned to clusters, and within each cluster, jobs are
scheduled from a single ready queue. Therefore, a task can
migrate among the processors within its cluster. Note that
partitioned and global scheduling are special cases of clus-
tered scheduling, in which c = 1 and c = m, respectively.

We assume a job-level fixed priority scheduling algo-
rithm, in which each job has a constant base priority, but
different jobs of the same task may have differing base
priorities. In the locking protocols we develop, resource-
holding jobs may have their base priority elevated to a
higher effective priority, which the scheduling algorithm
uses to schedule the job. Elevating the effective priority of
a job is often necessary to ensure resource-holding jobs are
scheduled. This can be accomplished through one of a num-
ber of mechanisms, such as non-preemptivity or priority do-
nation [6], as will be discussed in more detail later.

Blocking. We evaluate the blocking of the presented lock-
ing protocols on the basis of their worst-case priority-
inversion blocking (pi-blocking) [5]. We give here defini-
tions concerning blocking for the case in which waiting is
realized by spinning; alternate definitions for suspension-
based waiting will be given later.

Def. 1. A job Ji incurs pi-blocking at time t if Ji is ready
but not scheduled and fewer than c higher-priority jobs are
ready in Ti’s cluster.

For example, if a high-priority job Jh is released, but a
low-priority job executing non-preemptively is preventing

2



Jh from being scheduled, then Jh is pi-blocked. A job may
also be blocked while waiting for a resource:
Def. 2. A job Ji incurs s-blocking at time t if Ji is spinning
(and thus scheduled) waiting for a resource.

For example, if Ji is spinning while waiting for `a, which
is held by Jk, then Ji is s-blocked.
Analysis assumptions. We employ analysis assumptions
similar to [4, 5, 6, 19] with respect to all claims of opti-
mality. Specifically, for asymptotic analysis, we assume the
number of processors, m, and the number of tasks, n, to
be variables, and all other parameters to be constants. Ex-
amples of such constants include critical section lengths as
well as the number of critical sections per job. Additionally,
we assume that locking protocol invocations take zero time
and all other overheads are negligible (such overheads are
orthogonal to the algorithmic issue at hand and can be fac-
tored into the final analysis [4, Chaps. 3,7]).

3 R/W RNLP
The aim of this paper is to extend the original mutex
RNLP [19] to enable fine-grained access to resources sub-
ject to a reader/writer (R/W) sharing constraint. Specifi-
cally, our goal is to enable non-conflicting requests to be
satisfied concurrently, to the extent possible. We also desire
the following additional properties.
• R/W mixing. A job may read some resources while

writing others in a single critical section. This allows
for increased concurrency for those resources that are
only read.

• R-to-W upgrading. A job that has acquired a resource
for reading may upgrade its read to a write. For ex-
ample, a job may read a resource, and based upon the
value read, decide that it needs to write that resource.

• Incremental locking. The resources accessed by a job
within a single critical section may be requested via a
sequence of requests. For example, a job may request
`a, read its value, and then execute some conditional
code that requests `b.

We call the protocol we obtain the R/W RNLP . In de-
scribing the R/W RNLP, we initially assume for simplicity
that the properties above are not supported, that is:

Assumption 1. All resources accessed within a single crit-
ical section are requested via a single request, these re-
sources are either all read or all written, and no read request
may be upgraded.

We later explain how to support R/W mixing in Sec. 3.5,
R-to-W upgrading in Sec. 3.6, and incremental locking in
Sec. 3.7. Until we get to these later subsections (i.e., while
Assumption 1 is in place), we use the following notation.
We denote the set of resources that are needed in Ri,k’s
critical section as Ni,k. By Assumption 1, each request can
be categorized as either a read request or a write request,
and each critical section as either a read critical section or
a write critical section. For notational clarity, we often an-
notate read (write) requests as Rwi,k (Rri,k). We denote the

longest read (write) critical section length as Lrmax (Lwmax),
and we let Lmax = max(Lrmax, L

w
max).

In recent work, Brandenburg and Anderson [6, 7] devel-
oped phase-fair R/W locks, which are asymptotically opti-
mal for a single resource (or coarse-grained locking). Intu-
itively, phase-fair locks function by alternating read phases,
in which all issued read requests are satisfied, and write
phases, in which a single write request is satisfied. In this
sense, reads concede to writes, and writes concede to reads.
This results in worst-case reader blocking of O(1) and
worst-case writer blocking ofO(m). In extending the mutex
RNLP to enable fine-grained R/W sharing and the proper-
ties listed above, we utilize this phasing concept.

Devising such an extension presents several challenges.
Perhaps the biggest challenge is the problem of inconsistent
phases. If both a read and a write request are waiting for two
resources, one of which is read locked and the other write
locked, which request should be satisfied next? As we desire
optimality, any solution to this problem should ensure O(1)
blocking for read requests.

Having motivated some of the properties we desire of
our protocol and challenges we face, we now describe the
spin-based variant of the R/W RNLP, given Assumption 1.
3.1 R/W RNLP Architecture

Like the original mutex RNLP, the R/W RNLP is com-
posed of two components, a request satisfaction mechanism
(RSM) and a progress mechanism. The RSM orders the sat-
isfaction of resource requests. To ensure a bounded duration
of blocking, the progress mechanism may elevate the effec-
tive priority of a resource-holding job to ensure it is sched-
uled. The choice of progress mechanism is dependent upon
how waiting is realized (spinning or suspending). When the
RSM is paired with an appropriate progress mechanism, the
resulting locking protocol optimally supports fine-grained
resource sharing under many different analysis and imple-
mentation assumptions.

Before describing the RSM, we abstractly characterize
the progress mechanism by stating two needed properties.

P1 A resource-holding job is always scheduled.

P2 At mostm jobs may have incomplete resource requests
at any time, at most c from each cluster.

Non-preemptive spinning fulfills these requirements:

S1 A job with an incomplete request executes non-
preemptively (both while spinning and within its criti-
cal section).

From this rule we have the following lemma.

Lemma 1. Rule S1 implies Properties P1 and P2.
For ease of exposition, we assume this simple progress

mechanism for now. Later, we specify appropriate progress
mechanisms for non-spin-based implementations.

3.2 RSM

In the RSM, two queues are used per resource `a, a queue
for readers, RQ(`a), and a queue for writers, WQ(`a). This

3



RQ(`1) WQ(`1)

`1

Rr
i,k Rw

x,y

RQ(`q) WQ(`q)

`q

Rw
x,y

R/W RSM

Rw
j,l

Figure 1: Illustration of the queue structure in the R/W RSM. For
each resource `a ∈ {`1, . . . , `q}, there is a read queue RQ(`a)

and a write queue WQ(`a).

is depicted in Fig. 1. We assume that each read (write) re-
quest is enqueued atomically in the read (write) queue of
each resource it requests. The timestamp of the issuance of
each request is recorded and denoted ts(Ri,k). All writer
queues are order by these timestamps, resulting in FIFO
queueing. We denote the earliest timestamped incomplete
write request for `a (i.e., the head of the WQ(`a)) as
E(WQ(`a)). Similar to phase-fair locks [7], the queue from
which requests are satisfied (RQ(`a) or WQ(`a)) alter-
nates. The techniques that govern such alternation, however,
are quite different from traditional phase-fair locks because
we must avoid the problem of inconsistent phases.
Example. As we explain the rules of the RSM, we will
reference relevant parts of the example schedule in Fig. 2,
which will later be explained in its entirety. In this run-
ning example, there are five tasks and a processor for each
task, such that all pending jobs are scheduled. Addition-
ally, these tasks share three resources, `a, `b and `b. At
time t = 2, when Rw2,1 is issued, ts(Rw2,1) = 2 is es-
tablished. Also, since Rw2,1 requires all three resources and
since it is the only write request waiting for any resource,
E(WQ(`a)) = E(WQ(`b)) = E(WQ(`c)) = Rw2,1.

Before describing the techniques that govern when re-
quests should be satisfied, we define relevant notation. We
say that two resources `a and `b are read shared, denoted
`a ∼ `b,1 if both `a and `b could be requested together as
part of a single read request (i.e., for someRri,k, {`a, `b} ⊆
Ni,k). We call the set of all resources that are read shared
with `a the read set of `a, denoted S(`a) = {`b| `b ∼ `a}.
Example (cont’d) In Fig. 2, Rr5,1, N5,1 = {`a, `b}. Thus,
`a ∼ `b (and `b ∼ `a). Since Rr5,1 is the only request for
multiple resources, S(`a) = {`a, `b} and S(`c) = {`c}.

To avoid inconsistent phases, a write request may be
forced to request additional resources besides those needed
in its critical section. To reflect this, we let Di,k denote the
actual set of resources that Ri,k pertains to. For a read re-
quest Rri,k, Di,k is simply Ni,k. However, for a write re-
quest Rwi,k, we define Di,k =

⋃
`a∈Ni,k

S(`a). While forc-
ing write requests to acquire more resources than actually
needed reduces concurrency, it does not affect asymptotic
optimality. As we shall see, this expansion of write requests
enables us to avoid inconsistent phases. Additionally, we

1Read sharing is reflexive and symmetric.

T4

T3

T2

T1

T5

0 5 10

`a read locked

Entitled Waiting`b write locked

read

write
`b

`a

Non-entitled Waiting

Non-critical Section

`a, `b

`c

Rw
1,1

Rw
2,1

Rr
3,1

Rr
4,1

read

read

write

write

`a, `b

`a, `b, `c

`c

read

Rr
5,1

release

deadline

(a) Visual depiction of the schedule in the running example.

time queue states
RQ(`a) WQ(`a) RQ(`b) WQ(`b)

[0, 2) ∅ ∅ ∅ ∅
[2, 7) ∅ {Rw

2,1} ∅ {Rw
2,1}

[7, 8) ∅ {Rw
2,1} {Rr

5,1} {Rw
2,1}

[8, 10) ∅ ∅ {Rr
5,1} ∅

[10, 12] ∅ ∅ ∅ ∅
(b) Queue states over time corresponding to the schedule in (a).

Figure 2: Illustration of the running example.

shall show later that this expansion of write requests can
be relaxed to enable additional concurrency on average.
Example (cont’d). Suppose Rw2,1 in Fig. 2 only needs
N2,1 = {`a, `c} in its critical section. However, because
`a ∼ `b and `a ∈ N2,1,Rw2,1 requests D2,1 = {`a, `b, `c}.
General rules. The first few rules of the RSM are common
to both readers and writers and describe the necessary ac-
tions that must be taken when a job either issues a request
or completes a critical section.

G1 When Ji issues Ri,k at time t, the timestamp of the
request is recorded: ts(Ri,k) := t.

G2 When Ri,k is satisfied, it is dequeued from either
RQ(`a) (if it is a read request) or WQ(`a) (if it is a
write request) for each `a ∈ Di,k.

G3 WhenRi,k completes, it unlocks all resources in Di,k.

G4 Each request issuance or completion occurs atomi-
cally. Therefore, there is a total order on timestamps,
and a request cannot be issued at the same time that a
critical section completes.

Example (cont’d). At time t = 8, when Rr3,1 completes
its critical section, D3,1 = {`c} is unlocked. This allows
Rw2,1 to be satisfied (as explained later), and therefore Rw2,1
is dequeued from WQ(`a), WQ(`b), and WQ(`c).

The remaining read- and write-specific rules rely on the
concept of entitlement. Intuitively, a request becomes enti-
tled once it is the next request to be satisfied (w.r.t. the re-
sources for which it is waiting), and remains entitled until
it is satisfied. While a request is entitled, it blocks all con-
flicting requests. Entitlement is differently defined for read

4



and write requests, which is key to obtaining phase-fairness.
We begin with read requests, which are entitled if they are
blocked only by satisfied (and not entitled) write requests.
Def. 3. An unsatisfied read request Rri,k becomes entitled
when there exists `a ∈ Di,k that is write locked, and for
each resource `a ∈ Di,k, E(WQ(`a)) is not entitled (see
Def. 4). (Note that E(WQ(`a)) = ∅ could hold. In this
case, we consider E(WQ(`a)) to be a “null” request that is
not entitled.)Rri,k remains entitled until it is satisfied.

Of course, if a newly issued read request does not con-
flict with satisfied or entitled incomplete requests, then it is
satisfied immediately (see Rule R1 below) and Def. 3 does
not apply (only unsatisfied requests can be entitled).
Example (cont’d). At time t = 8,Rr5,1 is blocked byRw2,1,
which holds `a, `b, and `c. By Def. 3,Rr5,1 becomes entitled
at time t = 8 because `a is write locked and E(WQ(`a)) =
E(WQ(`b)) = ∅.

Next we consider the writer case. Intuitively, an entitled
write is the head of all relevant write queues and not blocked
by any entitled (i.e., only blocked by satisfied) reads.
Def. 4. An unsatisfied write request Rwi,k becomes entitled
when for each `a ∈ Di,k, Rwi,k = E(WQ(`a)), no read
request in RQ(`a) is entitled (see Def. 3), and `a is not write
locked.Rwi,k remains entitled until it is satisfied.

Observe that an entitled write request Rwi,k is only
blocked by satisfied, but incomplete read requests since ac-
cording to Def. 4 no resource in Di,k is write locked.
Example (cont’d). At time t = 5, Rr3,1 holds `c, and
blocks Rw2,1, which is waiting for `a, `b, and `c. Because
Rw2,1 is the earliest timestamped writer waiting any of the
resources, and none is write locked,Rw2,1 becomes entitled.
Note that, although Rw2,1 is entitled, it is still blocked. Prior
to t = 5, Rw3,1 was not be entitled because `a and `b were
write locked byRw1,1.

An entitled request (read or write) may be blocked by
multiple requests, each holding different resources. We let
B(Ri,k, t) be the set of satisfied requests that conflict with
an entitled requestRi,k at time t (i.e., the set of requests that
block Ri,k at time t). Note that since read requests do not
conflict with each other, B(Rri,k, t) only contains write re-
quests. Analogously, as pointed out above, an entitled writer
is only blocked by read requests, and thus B(Rwi,k, t) only
consists of read requests. This matches the intuition that
reads concede to writes, and writes concede to reads.
Example (cont’d). At any time t ∈ [6, 8), Rw2,1 is blocked
by Rr3,1, thus B(Rw2,1, t) = {Rr3,1}. Earlier, at any time
t ∈ [5, 6), Rw2,1 is blocked by both Rr3,1 and Rr4,1, thus
B(Rw2,1, t) = {Rr3,1,Rr4,1}.
Reader rules. We next define reader-specific rules, which
utilize the previously given definition of entitlement. These
rules define the behavior of the RSM, when a read request
is issued and satisfied, respectively.

R1 When Rri,k is issued, for each `a ∈ Di,k, Rri,k is en-
queued in RQ(`a). If Rri,k does not conflict with any
entitled or satisfied write requests, then it is satisfied

immediately.

R2 An entitled read request Rri,k is satisfied at the first
time instant t such that B(Rri,k, t) = ∅.

Example (cont’d). At time t = 3, Rr3,1 is issued and it is
satisfied immediately by Rule R1. Rr3,1 is allowed to “cut
ahead” ofRw2,1 in this case becauseRw2,1 is not entitled, and
`c is unlocked. Further, at time t = 10, Rr5,1 is satisfied by
Rule R2. This is because Rr5,1 is entitled, and Rw2,1 com-
pleted it critical section, which unlocked `a and `b.

Writer rules. The writer rules parallel the reader rules.

W1 When Rwi,k is issued, for each `a ∈ Di,k, Rwi,k is en-
queued in timestamp order in the write queue WQ(`a).
If Rwi,k does not conflict with any entitled or satisfied
requests (read or write), then it is satisfied immediately.

W2 An entitled write request Rwi,k is satisfied at the first
time instant t such that B(Rwi,k, t) = ∅.

Full example. At time t = 1, a write requestRw1,1 is issued
for `a and `b, which is immediately satisfied (by Rule W1).
At time t = 2, another write request, Rw2,1 is issued for `a,
`b, and `c, which is enqueued in WQ(`a), WQ(`b), and
WQ(`c) (by Rule W1). Rr3,1 is issued and satisfied imme-
diately at time t = 3 by Rule R1, as previously described.
Similarly, at time t = 4, Rr4,1 is issued and satisfied imme-
diately (by Rule R1). Note that at time t = 4, both Rr3,1
and Rr4,1 have read locked `b, demonstrating reader paral-
lelism. Further, at time t = 4, `a and `b are write locked
while `c is read locked, a level of concurrency only possi-
ble with fine-grained locking. WhenRw1,1 completes at time
t = 5,Rw2,1 becomes entitled. At time t = 7,R5,1 is issued
for `b and `c, but it is not satisfied because Rw2,1 is entitled
to both resources. AfterRr3,1 completes at time t = 8,Rw2,1
is satisfied (by Rule W2). Finally, after Rw2,1 completes at
time t = 10,Rr5,1 is satisfied (by Rule R2).

This concludes the definition and introduction of the
R/W RNLP. To summarize, the R/W RNLP implements
phase-fairness, where reads concede to writes and writes
concede to reads. To avoid the problem of inconsistent
phases (which could otherwise arise due to interleaved reads
and writes), we have introduced the concept of entitled
blocking. Intuitively, an entitled request is “next in line”
with regard to the requested resources and only blocked by
satisfied, but incomplete requests of the opposite kind.

3.3 Analysis

In this subsection, we present blocking analysis for the R/W
RNLP. We begin by establishing several properties pertain-
ing to entitlement and request satisfaction (Lemmas 2-4),
which follow from the previous rules and definitions, and
are needed to establish Cors. 1 and 2 These corollaries are
central to our blocking analysis.

Let I be an invocation of the locking protocol (read or
write issuance or read or write completion) at time tI , and
let t−I = limε→0 tI−ε be the time instant immediately prior
to that invocation. We say that I entitles (satisfies) a request

5



Ri,k ifRi,k becomes entitled (satisfied) as a result of I (i.e.,
Ri,k is entitled (satisfied) after I but not before I).

Lemma 2. The following properties of satisfaction and en-
titlement hold.

E1 If I satisfies Rri,k, then I is either a read issuance or a
write completion.

E2 If I satisfies Rwi,k, then I is either a write issuance, a
read completion, or a write completion.

E3 If I satisfies Rri,k and I is the issuance of read request
Rrx,y , thenRri,k = Rrx,y .

E4 If I satisfiesRwi,k and I is the issuance of write request
Rwx,y , thenRwi,k = Rwx,y .

E5 If I satisfiesRwi,k and I is the completion of a conflict-
ing read requestRrx,y , then at time t−I ,Rwi,k is entitled,
and B(Rwi,k, t−I ) = {Rrx,y}.

E6 If I satisfiesRri,k and I is the completion of a conflict-
ing write requestRwx,y , then at time t−I ,Rri,k is entitled,
and B(Rri,k, t−I ) = {Rwx,y}.

E7 If I satisfies Rwi,k and I is the completion of a con-
flicting write request Rwx,y , then at time t−I , for each
`a ∈ Dwi,k,Rwi,k = E(WQ(`a)) and no read request in
RQ(`a) is entitled, and for each resource `a ∈ Di,k,
`a is either locked byRwx,y , or unlocked.

E8 If I entitles Rri,k, then I is a read issuance or a read
completion.

E9 If I entitles Rwi,k, then I is a write issuance or a write
completion.

E10 If Rwi,k and Rrx,y conflict, then they are not simultane-
ously entitled.

Proof. We prove the stated properties in succession.
Prop. E1. If I is a write issuance, then it releases no re-
sources for which Rri,k is waiting, and hence cannot cause
Rri,k to become satisfied. On the other hand, if I is a read
completion and Rri,k is not entitled prior to I , then by
Rule R2, I cannot cause Rri,k to become satisfied. If I is
a read completion and Rri,k is entitled (and hence blocked)
prior to I , then B(Rri,k, t−I ) contains at least one write re-
quest; I cannot cause this write request to complete, thus
following I ,Rri,k remains entitled (and hence blocked).
Prop. E2. Like the first case considered above, I cannot
causeRwi,k to be become satisfied if it is a read issuance.
Prop. E3. If I is the issuance of read request Rri,k, then it
does not unlock any resources, and hence cannot cause any
previously issued request to become satisfied. However, by
Rule R1, I may causeRri,k itself to become satisfied.
Prop. E4. Follows similarly to Prop. E3.
Prop. E5. By Rule W2, if I satisfies Rwi,k, then prior to I ,
Rwi,k must have been entitled, and Rrx,y must have been the
only request that blockedRwi,k.
Prop. E6. Follows similarly to Prop. E5 (using Rule R2).

Prop. E7. By Rule W2, if I satisfies Rwi,k, then it must be
entitled. However, because Rwx,y is satisfied at time t−I and
conflicts with Rwi,k, then Rwi,k is not entitled at time t−I by
Def. 4. For Rwi,k to be satisfied at time tI , by Rule W2, it
must become entitled at time tI . By Def. 4 forRwi,k to be en-
titled at time tI , afterRwx,y unlocks all resources inDx,y , for
each `a ∈ Di,k, Rwi,k = E(WQ(`a)), and no read request
in RQ(`a) is entitled, and `a is not write locked. Further-
more, sinceRwi,k is satisfied at time tI , then all resources in
Di,k are unlocked afterRwx,y completes. The claim follows.

Prop. E8. By Def. 3, if Rri,k is unsatisfied and not entitled
prior to I , i.e., at time t−I , then it is blocked at t−I by an
entitled write request, Rwx,y . Thus, by Def. 4, the following
hold at time t−I : Rwx,y is at the head of each write queue in
which it is enqueued; no resource for which Rwx,y is wait-
ing is write locked; and Rwx,y is not blocked by any entitled
read request. Recall that entitled requests are, by definition,
unsatisfied. Thus,Rwx,y must be blocked by at least one sat-
isfied read request at t−I . Now, if I is a write issuance, then
Rwx,y clearly remains entitled at tI , and hence Rri,k is not
entitled at tI . On the other hand, if I is a write completion,
then it may cause certain entitled reads to become satisfied;
however, it will not cause the satisfied read that blocksRwx,y
to complete. Thus, as before, Rwx,y remains entitled at tI ,
and henceRri,k is not entitled at tI .

Prop. E9. Follows similarly to Prop. E8.

Prop. E10. Defs. 3 and 4 preclude conflicting read and
write requests from both becoming entitled due to separate
invocations of the locking protocol. Props. E8 and E9 pre-
clude such requests from both becoming entitled due to the
same invocation of the locking protocol.

Next we show that once a write request Rwi,k is entitled,
no conflicting requestRx,y can be satisfied before it, which
implicitly bounds how long it remains entitled.

Lemma 3. If a write requestRwi,k is entitled before and af-
ter I andRx,y ∈ B(Rwi,k, tI), thenRx,y ∈ B(Rwi,k, t−I ).

Proof. Suppose not. Then the mentioned request Rx,y
(read or write) is satisfied by I , and by the definition of
B(Rwi,k, tI),Rx,y conflicts withRwi,k.

Assume that Rrx,y is a read request. Then, by Prop. E1,
I is a read issuance or a write completion. If I is a read
issuance, then by Prop. E3,Rrx,y is issued at tI ; however, by
Rule R1, I cannot then satisfyRrx,y becauseRwi,k is entitled.
If I is a write completion, then by Prop. E6,Rrx,y is entitled
at t−I ; however, by Prop. E10, this implies that Rwi,k is not
entitled at t−I , contradicting the lemma statement.

Now assume that Rwx,y is a write request. Then, by
Prop. E2, I is a write issuance, read completion, or write
completion. If I is a write issuance or read completion, then
we can derive a contradiction via reasoning similar to that
above (but using Prop. E4, Rule W1, and Prop. E5 together
with Prop. E10). So, suppose that I is a write completion.
By the statement of the lemma, it follows thatRwi,k andRwi,k
conflict and share some resource `c. Moreover, by Prop. E7,

6



Rwx,y = E(WQ(`c)) holds at t−I . However, by Def. 4, this
contradicts the assumption thatRwi,k is entitled at t−I .

Corollary 1. Suppose that the request Rwi,k becomes enti-
tled at time te and satisfied at time ts. Then, no new requests
may be added to B(Rwi,k, t) at any time time t ∈ [te, ts).

Similar to Lemma 3, we next show that once a read re-
quest Rri,k becomes entitled, no conflicting request can be
satisfied before it.

Lemma 4. If a read requestRri,k is entitled before and after
I andRwx,y ∈ B(Rwi,k, tI), thenRwx,y ∈ B(Rwi,k, t−I ).
Proof. Suppose not. Then, the mentioned write requestRwx,y
is satisfied by I , and by the definition of B(Rwi,k, tI), Rwx,y
conflicts withRwi,k. Thus, by Prop. E2, I is either a write is-
suance, read completion, or write completion. If I is a write
issuance, then by Prop. E4, I is the issuance of Rwx,y itself;
however, by Rule W1, I cannot satisfy Rwx,y , because Rri,k
is entitled prior to I . If I is a read (resp., write) completion,
then by Prop. E5 (resp., Prop. E7), Rwx,y is entitled at t−I ;
however, by Prop. E10, this contradicts the assumption that
Rri,k is entitled at t−I .

Corollary 2. Suppose that the request Rri,k becomes enti-
tled at time te and satisfied at time ts. Then, no new requests
may be added to B(Rri,k, t) at any time t ∈ [te, ts).

Below, we show that worst-case acquisition delay is
O(1) for readers and O(m) for writers. The following lem-
mas are used in establishing these results.

Lemma 5. A write requestRwi,k experiences acquisition de-
lay of at most Lrmax time units after becoming entitled.
Proof. Suppose that Rwi,k becomes entitled at time te and
satisfied at ts. By Cor. 1, new requests are not added to
B(Rwi,k, t) at any t ∈ [te, ts). Moreover, by Def. 4, each
request in B(Rwi,k, t) is a read. By Prop. P1, every request
in B(Rwi,k, te) is scheduled, and therefore will complete in
at most Lrmax time units. Thus, by time te + Lrmax, Rwi,k
will not be blocked, and by Rule W2, will be satisfied.

Lemma 6. IfRwi,k is the earliest timestamped write request
among all incomplete write requests, thenRwi,k is either sat-
isfied or entitled.
Proof. Suppose not. Then, by Def. 4, either (i) for some re-
source `a ∈ Di,k, Rwi,k 6= E(WQ(`a)), (ii) some request
Rrx,y ∈ RQ(`a) is entitled, or (iii) `a is write locked. By
Rule W1, (i) and (iii) are not possible since the write queues
are timestamp ordered, andRwi,k is the earliest timestamped
incomplete write request.

For (ii), assume Rrx,y is entitled and `a ∈ Di,k ∩ Dx,y .
Then, by Def. 3,Rrx,y is blocked by a satisfied write request
Rwh,l. Recall thatRwh,l must request all resources in the read
sets of all resources in Nh,l. Further, `a must be in at least
one of these read sets. Thus, `a ∈ Dh,l∩Di,k, andRwh,l and
Rwi,k conflict. Therefore, since ts(Rwi,k) < ts(Rwh,l), Rwh,l
cannot be satisfied.

Theorem 1. The worst-case acquisition delay of a read re-

questRri,k is at most Lwmax + Lrmax time units.

Proof. We first show that if Rri,k is issued at time ti, then
it must become entitled or satisfied by time ti + Lrmax.
Suppose not. Then, throughout the interval [ti, ti + Lrmax),
Rri,k is blocked by a non-empty set W of conflicting enti-
tled write requests, for otherwise, Rri,k would become enti-
tled (by Def. 3) or satisfied (by Rule R1). By Prop. P1 and
Lemma 5, each write requestRwx,y ∈W will be satisfied by
time ti + Lrmax. Once all such write requests are satisfied,
by Def. 3, Rri,k will become entitled or satisfied, a contra-
diction.

IfRri,k becomes satisfied by time ti +Lrmax, then its ac-
quisition delay is at mostLrmax time units. Consider now the
other possibility, i.e., that Rri,k becomes entitled by some
time te ≤ ti +Lrmax. In this case, we show thatRri,k is sat-
isfied by time te + Lwmax, from which an acquisition delay
of at most Lrmax + Lwmax time units follows. By Cor. 2, the
number of resource-holding write requests blocking Rri,k
monotonically decreases untilRri,k is satisfied. By Prop. P1,
each such blocking request completes in at most Lwmax time
units. Thus,Rri,k is satisfied by time te + Lwmax.

Theorem 2. The worst-case acquisition delay of a write re-
questRwi,k is at most (m− 1)(Lrmax + Lwmax) time units.

Proof. Suppose that the write request Rwi,k is issued at time
ti and not satisfied immediately. LetRwx,y be the incomplete
write request with the earliest timestamp at ti (Rwx,y could
be Rwi,k). By Lemma 6, Rwx,y is either entitled or satisfied
at ti. Suppose the latter is true, i.e., Rwx,y is satisfied at ti.
Then, by Prop. P1, Rwx,y completes its critical section by
time ti + Lwmax. By Prop. P2, there are at most m − 1 in-
complete write requests with timestamps earlier than that
of Rwi,k at ti. Thus, by time ti + Lwmax, there are at most
m− 2 such requests. By Lemmas 5 and 6, the one with the
earliest timestamp is satisfied by time ti + Lwmax + Lrmax,
and thus, by Prop. P1, completes its critical section by time
ti + Lwmax + Lrmax + Lwmax. Continuing inductively, all
earlier-timestamped write requests complete their critical
sections by time ti + Lwmax + (m − 2)(Lrmax + Lwmax).
At that time, Rwi,k has the earliest timestamp. Hence, by
Lemma 5, it is satisfied by time ti+Lwmax+(m−2)(Lwmax+
Lrmax) + Lrmax, i.e., Rwi,k’s acquisition delay is at most
(m− 1)(Lrmax + Lwmax) time units.

The remaining possibility to consider is that Rwx,y is en-
titled at ti. In this case, by Def. 4, Rwx,y is blocked by some
read requestRrh,l. Thus, by Prop. P2, there are at mostm−2
incomplete write requests with timestamps earlier than that
of Rwi,k at ti. Reasoning as above, it follows that Rwi,k’s ac-
quisition delay is at most (m− 2)(Lrmax + Lwmax) + Lrmax
time units. (Note that the blocking of Rwx,y due to Rrh,l is
accounted for in this reasoning by Lemma 5.)

For the case when waiting is realized by spinning
(Rule S1), the worst-case acquisition delay for either reads
or writes is the worst-case s-blocking (recall Def. 2).
However, the non-preemptive spinning can cause other
jobs, even non-resource-using jobs, to be pi-blocked (re-
call Def. 1) upon release. For example, if a high-priority

7



job Jh is released that has sufficient priority to be sched-
uled, but a low-priority job Jl is spinning non-preemptively,
then Jh is pi-blocked. The worst-case pi-blocking can eas-
ily be shown to be m ·max(Lwmax, L

r
max) through analysis

similar to single-resource spin-based mutex or reader-writer
locks [4, 7]. In Sec. 4, we briefly describe techniques to re-
duce this O(m) pi-blocking to O(1).

In the remainder of this section, we describe additional
features that can be incorporated into the R/W RNLP to im-
prove performance in many cases. We present these features
independently for ease of exposition, but note that they can
be combined in a real implementation.

3.4 Requesting Fewer Resources

To solve the problem of inconsistent phases, we previously
required writes to request a potentially expended set of re-
sources. This property was necessary to ensure that the ear-
liest timestamped write request was not blocked by a write
request with a later timestamp (seen in Lemma 6). However,
the additional resources requested do not need to be actually
locked to ensure the proper satisfaction ordering.

Instead of forcing a request Rwi,k to request additional
non-needed resources, we propose to enqueue a place-
holder request Rpi,k in the queues of all non-needed re-
sources that would have previously been requested,Mi,k =⋃
`a∈Ni,k

S(`a) \ Ni,k. Thus, Di,k = Ni,k. In this case, the
RSM functions as previously described with the following
exceptions. A placeholder request is never entitled or satis-
fied. Instead, each placeholder requestRpi,k is removed from
the write queue in which it is enqueued whenRwi,k becomes
entitled or satisfied. Therefore, untilRwi,k becomes entitled,
its associated placeholder requests prevent later-issued write
requests from becoming entitled or satisfied, thereby ensur-
ing that Lemma 6 is not violated.
Example (cont’d). Continuing from the example in Fig. 2,
consider that Rw1,1 only needed N1,1 = {`b} and Rw2,1 only
needed N2,1 = {`a, `c}. When Rw1,1 is issued, it would en-
queue a placeholder in WQ(`a), but since it is satisfied im-
mediately, the placeholder is removed. WhenRw2,1 is issued,
it enqueues in WQ(`a) and WQ(`c), and enqueues a place-
holder in WQ(`b). However, since Rw2,1 is not blocked by
any conflicting requests, since Rw1,1 only holds the lock on
`b, then Rw2,1 can be satisfied immediately at time t = 2,
thereby improving concurrency.

Note that using placeholder requests, as compared to re-
questing non-needed resources, allows for additional con-
currency. However, this parallelism is not reflected in the
worst-case blocking bounds under our analysis assump-
tions. In future work, it may be possible to reflect the im-
proved concurrency via more fine-grained blocking analy-
sis, similar to that presented in [4, Chaps. 5-6].

3.5 R/W Mixing

In this subsection, we show that we can also improve con-
currency by relaxing Assumption 1 to allow jobs to request
read access to some resources and write access to others.

First, we extend our notation. We denote the set of re-

sources thatRi,k needs read (write) access to asN r
i,k (Nw

i,k)
and we let Ni,k = N r

i,k ∪ Nw
i,k. If Nw

i,k = ∅, then we say
Rri,k is a read request, otherwise we say thatRwi,k is a write
request. With this notation, a mixed request is a write re-
quest Rwi,k with N r

i,k 6= ∅ and Nw
i,k 6= ∅. We also adapt

our definition of the read shared relation, ∼. Given two re-
sources `a and `b, we say that `b is read shared with `a, if
for some potential requestRi,k, `a ∈ Ni,k, and `b ∈ N r

i,k.2
Next we describe how the rules of the RSM support

such behavior with only a minor modification. Intuitively, a
mixed request is treated almost exactly like an exclusively-
write request, though there are three key differences. First,
a mixed request can be satisfied if it is waiting for read ac-
cess to a resource that is read locked. Second, when a mixed
request is satisfied, resources for which read-only access is
needed are read locked, not write locked, which allows read
requests to be satisfied concurrently. Third, with respect to
writer entitlement (Def. 4), blocked write requests treat a re-
source that is read-locked by a mixed request as if it were
write locked.

To this end, when Rwi,k is issued, it is enqueued in the
write queue for each resource `a ∈ Ni,k. As described in the
previous subsection, a placeholder requestRpi,k is enqueued
in each WQ(`a) for `a ∈Mi,k. The definition of write enti-
tlement (Def. 4) remains largely unchanged, with the minor
exception that a write request does not become entitled if a
resource that it requires is read-locked by a mixed request.
We note, however, that for Rwi,k to be entitled, it must be
the head of each write queue in which it is enqueued, even
for resources for which it does not require write access. The
rest of the RSM remains unchanged, as the rules for satis-
faction (Rules R1, R2, W1, W2) were originally specified
in terms of conflicting requests. We next demonstrate such
functionality via an example.
Example (cont’d). Consider the schedule depicted in
Fig. 2, without the placeholder optimization described pre-
viously. Assume that Rw2,1 was actually a mixed request
Rw2,1 that required read access to Dr2,1 = {`a, `b} and write
access to Dw2,1 = {`c}. Then when Rr5,1 is issued at time
t = 7, because it does not conflict with Rw2,1 (both requests
only require read access to `a and `b), thenRr5,1 can be sat-
isfied immediately by Rule R1.

3.6 R-to-W Upgrading
As mentioned previously, another desirable feature for R/W
locking protocols and STM is the ability to upgrade a read
request to a write request. In this subsection, we show how
to support such functionality in the R/W RNLP.

We call a read request that can be upgraded to a write re-
quest an upgradeable request, and we denote such a request
as Rui,k. Intuitively, we treat an upgradeable request as a
write request that can optimistically execute read-only code
while the needed resources are read-locked to determine if
write access is necessary. Since the blocking bounds of a
write request assume that it will be blocked by other read
requests, the optimistic execution of the read-only section

2The read sharing relation may not be symmetric with mixed requests.

8



essentially executes for free. Thus, an upgradeable request
has the same worst-case blocking bounds as a write request,
but may offer additional concurrency if the write segment
of the critical section is not required.

To support this behavior in the RSM, we treatRui,k as two
separate requests, a read request,3 Rur

i,k and a write request
Ruw

i,k , which can cancel each other if necessary.4 WhenRui,k
is issued,Rur

i,k is enqueued as a read request andRuw

i,k is en-
queued as a write request. If Ruw

i,k is satisfied before Rur

i,k,
then Rur

i,k is canceled and removed from all read queues.
If Rur

i,k is satisfied first, it executes its critical section, and
upon completion or realization that upgrading is not neces-
sary,Ruw

i,k is canceled and removed from all write queues in
which it is enqueued. If Rui,k must be upgraded, then when
the read-only segment of its critical section completes, all
resources are unlocked. Later, whenRuw

i,k is satisfied, the job
can execute the write segment of its critical section. Note
that the state of any read objects may change between Rur

i,k

completing, and Ruw

i,k being satisfied. Thus, Ruw

i,k may need
to re-read some data. If this behavior is unacceptable for a
given application, it should instead issue a write request for
all resources that could potentially be written.
3.7 Incremental locking
In this subsection, we show how the RSM can be adapted
to allow jobs to incrementally request resources they use
within their critical section, as described earlier. We assume
that it is known a priori the set of all all resources that could
possibly be requested in this incremental fashion. While this
assumption may seem limiting, such information is neces-
sary for many real-time locking protocols, such as the well-
known priority ceiling protocol (PCP) [17].

To support this functionality, we initially treat Ri,k as if
it were a request for all of the resources for which it could
potentially lock incrementally. From Cors. 1 and 2, after
Ri,k becomes entitled, no conflicting request can be satis-
fied beforeRi,k. Thus, ifRi,k only initially requires access
to some subset s ⊆ Di,k, it can be granted access as soon
as it is entitled and each resource `a ∈ s is not locked by a
conflicting request. If Ri,k later needs some additional re-
source(s) s′ ⊆ Di,k \ s, then it waits until each `a ∈ s′ is
not locked by a conflicting request. However, because Ri,k
is entitled to all resources in Di,k, the total duration of ac-
quisition delay across all incremental requests is at most the
worst-case acquisition delay previously proven.

We note that entitlement serves a similar purpose as the
priority ceiling in the PCP [17], in that it prevents later-
issued requests from acquiring resources that may be incre-
mentally requested.

3.8 Suspension-based R/W RNLP
Before presenting the suspension-based variant of the R/W
RNLP, we begin by explaining how we analyze the pi-
blocking caused by suspension-based locking protocols. In

3We assume the worst-case execution time of the read-only segment of
the upgradeable request finishes in Lr

max time
4With respect to Prop. P2, an upgradeable request is only one request.

T3

T2

T1

0 5 10

release

deadline

scheduled on CPU 0

scheduled on CPU 1

executing critical section

suspended waiting

both s-oblivious and 
s-aware pi-blocking

only s-aware pi-blocking

Figure 3: Illustration adapted from [5] of the difference be-
tween s-oblivious and s-aware analysis. In this example,
three EDF-scheduled jobs share a single resource `a on two
processors. During [2, 4), J3 is blocked, but there arem jobs
with higher priority, thus J3 is not s-oblivious pi-blocked.
However, because J1 is also suspended, J3 is s-aware pi-
blocked.

recent work, Brandenburg and Anderson [5] gave two al-
ternate definitions of pi-blocking for suspension-based sys-
tems, suspension aware (s-aware) and suspension oblivious
(s-oblivious).
Def. 5. Under s-aware (s-oblivious) schedulability analy-
sis, a job Ji incurs s-aware (s-oblivious) pi-blocking at time
t if Ji is pending but not scheduled and fewer than c higher-
priority jobs are ready (pending) in Ti’s cluster.

The difference between s-oblivious and s-aware pi-
blocking is demonstrated in Fig. 3. S-oblivious pi-blocking
analysis is motivated by the fact that most multiprocessor
schedulability tests do explicitly account for task suspen-
sions. Instead, the suspensions of the highest priority jobs
are analytically considered computation. This is modeled
by adding the worst-case blocking term bi to ei. While this
assumption is safe (it will not cause the task system to be
incorrectly deemed schedulable), it can be pessimistic.

For systems for which there exist schedulability tests that
explicitly incorporate suspension, (i.e., s-aware schedulabil-
ity tests), locking protocols can be analyzed under s-aware
pi-blocking analysis. However, the vast majority of existing
schedulability tests are not s-aware, as suspensions are no-
toriously difficult to analyze. Furthermore, there are many
open problems concerning locking protocols that are opti-
mal under s-aware analysis. Most relevant to this work is
that no known R/W locking protocol is optimal under s-
aware analysis, even for single-resource requests. However,
recent experimental work has shown optimal s-oblivious
locking protocols to be competitive with s-aware ones, even
on systems for which there exists s-aware schedulability
analysis. For these reasons, we assume s-oblivious analysis
for all of our suspension-based results.
Progress mechanism for the suspension-based RSM. For
suspension-based locks, we use priority donation [6], as the
progress mechanism, instead of Rule S1. Below, we show
that priority donation implies Properties P1 and P2, and can
therefore be used with the RSM.

Intuitively, priority donation works by forcing high-

9



priority jobs, upon release, to donate their priority to low-
priority jobs with incomplete resource requests. Unlike pri-
ority inheritance, donation forms a static donation relation-
ship that persists until the donee completes its critical sec-
tion, or until an even higher priority job donates its priority
to the donee instead. Priority donation therefore ensures that
all resource-holding jobs are scheduled, and that the acqui-
sition delay is bounded. With this understanding of dona-
tion, we prove that donation satisfies Prop. P1 and P2 via
reference to the formal definition of donation [6].

Lemma 7. Priority donation implies Properties P1 and P2.
Proof. Prop. P1 exactly matches Prop. P1 of [6]. Prop. P2
follows directly from Lemma 3 in [6].

From Prop. P2 of [6], the worst-case duration of s-
oblivious pi-blocking caused by priority donation, which
effects all tasks in the system, is the worst-case acquisition
delay plus the maximum critical section length. Therefore,
from Theorems 1 and 2, the worst-case duration of priority
donation is Lwmax + (m − 1)(Lrmax + Lwmax) = O(m). In
Sec. 4, we briefly describe how this can be reduced toO(1).

4 Conclusions
We have presented the R/W RNLP, which is the first fine-
grained locking protocol for real-time multiprocessor sys-
tems that supports reader/writer sharing. The need to sup-
port two different kinds of operations on resources—reads
and writes—introduces considerable difficulty in designing
an asymptotically optimal locking protocol. As our design
of the R/W RNLP evolved, we devised numerous mecha-
nisms that at first seemed promising for enabling efficient
reading (writing) only to later discover that optimality for
writing (reading) had been compromised. Most of these
mechanisms proved problematic because they did not ad-
equately resolve the problem of inconsistent phases (noted
earlier) in all cases.

One unfortunate side effect of the progress mechanisms
considered in this paper is that they induceO(m) per-job pi-
blocking, even on jobs that do not share resources (though
the same criticism applies to all known optimal R/W locks).
However, in recent work, Brandenburg developed a new
progress mechanism called migratory priority inheritance
(MPI), which can be combined with priority donation to re-
duce per-job pi-blocking to O(1) [8]. The main idea is to
use priority donation for read requests and MPI for write
requests. Due to space constraints, we were unable to incor-
porate this idea into the version of the R/W RNLP presented
in this paper.

We also did not have sufficient space to present experi-
mental results. In future work, we intend to implement the
R/W RNLP and compare it to other sharing alternatives on
the basis of real-time schedulability with measured over-
heads considered. Among such alternatives, we are espe-
cially interested in comparing against non-blocking tech-
niques as used in non-blocking STM. As alluded to in the in-
troduction, we intend to evolve the design of the R/W RNLP
and use it as the basis for building a lock-based STM frame-
work. From an analysis point of view, our main focus in this

paper has been worst-case pi-blocking. In worst-case shar-
ing scenarios, the only potential parallelism is among read-
ers, and this is reflected in our blocking bounds. More infor-
mation about sharing patterns is required to derive bounds
that reflect parallelism among writers. We leave the deriva-
tion of such bounds as future work as well.
Acknowledgment: We thank Björn Brandenburg for insightful
discussions about phase-fair locks and MPI, which helped in the
design of the R/W RNLP.

References
[1] J. Anderson, R. Jain, and S. Ramamurthy. Implementing hard

real-time transactions on multiprocessors. In RTDB ’97.
[2] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time com-

puting with lock-free shared objects. In RTSS ’95.
[3] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A

flexible real-time locking protocol for multiprocessors. In
RTCSA ’07, 2007.

[4] B. Brandenburg. Scheduling and Locking in Multiproces-
sor Real-Time Operating Systems. PhD thesis, University of
North Carolina, Chapel Hill, NC, 2011.

[5] B. Brandenburg and J. Anderson. Optimality results for mul-
tiprocessor real-time locking. In RTSS ’10.

[6] B. Brandenburg and J. Anderson. Real-time resource-sharing
under clustered scheduling: Mutex, reader-writer, and k-
exclusion locks. In EMSOFT ’11.

[7] B. Brandenburg and J. Anderson. Spin-based reader-writer
synchronization for multiprocessor real-time systems. Real-
Time Systems Journal, 46:25–87, Sept. 2010.

[8] B. Brandenburg and A. Bastoni. The case for migratory
priority inheritance in linux: Bounded priority inversions on
multiprocessors. In RTLWS ’12.

[9] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and
J. Anderson. Real-time synchronization on multiprocessors:
To block or not to block, to suspend or spin? In RTAS ’08.

[10] A. Dragojević and T. Harris. STM in the small: Trading gen-
erality for performance in software transactional memory. In
EuroSys ’12.

[11] M. El-Shambakey and Binoy Ravindran. STM concurrency
control for embedded real-time software with tighter time
bounds. In DAC ’12.

[12] S. Fahmy, B. Ravindran, and E. Jensen. Response time anal-
ysis of software transactional memory-based distributed real-
time systems. In SAC ’09.

[13] M. Herlihy and J. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In ISCA ’93.

[14] F. Meawad, K Iyer, M. Schoeberl, and J. Vitek. Real-time
wait-free queues using micro-transactions. In JTRES ’12.

[15] T. Sarni, A. Queudet, and P. Valduriez. Real-time support for
software transactional memory. In RTCSA ’09.

[16] M. Schoeberl, F. Brandner, and Jan Vitek. RTTM: Real-time
transactional memory. In SAC ’10.

[17] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance
protocols: an approach to real-time synchronization. IEEE
Trans. on Computers, 39(9):1175–1185, Sep. 1990.

[18] N. Shavit and D. Touitou. Software transactional memory. In
PODC ’95.

[19] B. Ward and J. Anderson. Supporting nested locking in mul-
tiprocessor real-time systems. In ECRTS ’12.

10


