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Abstract Patrolling involves generating patrol paths for mobile robots such that
every point on the paths is repeatedly covered. This paper focuses on patrolling in
closed areas, where every point in the area is to be visited repeatedly by one or more
robots. Previous work has often examined paths that allow for repeated coverage,
but ignored the frequency in which points in the area are visited. In contrast, we first
present formal frequency-based optimization criteria used for evaluation of patrol
algorithms. Then, we present a patrol algorithm that guarantees maximal uniform
frequency, i.e., each point in the target area is covered at the same optimal frequency.
This solution is based on finding a circular path that visits all points in the area,
while taking into account terrain directionality and velocity constraints. Robots are
positioned uniformly along this path in minimal time, using a second algorithm.
Moreover, the solution is guaranteed to be robust in the sense that uniform frequency
of the patrol is achieved as long as at least one robot works properly. We then present
a set of algorithms for handling events along the patrol path. The algorithms differ
in the way they handle the event, as a function of the time constraints for handling
them. However, all the algorithms handle events while maintaining the patrol path,
and minimizing the disturbance to the system.

N. Agmon (B) · G. A. Kaminka
The MAVERICK Group, Computer Science Department, Bar Ilan University,
Ramat Gan, 52900, Israel
e-mail: segaln@cs.biu.ac.il, noasag@gmail.com

G. A. Kaminka
e-mail: galk@cs.biu.ac.il

Y. Elmaliach
Computer Science Department, College of Management Academic Studies,
Rishon LeZion, 75490, Israel
e-mail: elmaley@gmail.com



294 Y. Elmaliach et al.

Keywords Multi-Robotics · Multi-robot path planning · Team planning

Mathematics Subject Classifications (2010) 93C85 Robotics · 93C85 Automated
systems

1 Introduction

Robots can save human lives and costs by replacing humans in mundane, or dan-
gerous tasks. For instance, robots may be used for cleaning [12], and hazardous
waste removal [25]. Some specific applications of interest involve surveillance and
patrolling along polylines (open-ended fences) [16], perimeters [4, 34], or sensitive
areas [8].

This paper discusses the problem of patrolling within a target work area, enclosed
within a closed polygon. Patrolling is defined as “The act of walking or traveling
around an area, at regular intervals, in order to protect or supervise it” [1]. If the
entire terrain cannot be monitored at all times, each location in the target area
is monitored once every t time cycles. The frequency is, then, f = 1/t. Increased
availability of multiple robots raises new opportunities for patrol missions. First and
foremost, patrolling can be made more time-efficient in the sense that the frequency
is potentially higher, i.e., t is smaller. In addition, robustness can be attained in the
sense that if at least one robot is active, the patrol mission can still be accomplished.

Previous work has offered several approaches to patrolling of areas [6, 7, 9, 19, 28].
However, key challenges in surveillance have been left open. First, patrolling has
mostly been done in ad-hoc fashion, without a formal analysis of the quality of the
task in light of its principal goal. Second, the opportunity for increased robustness in
the sense of overcoming robot failure has not been investigated theoretically. Third,
handling non-uniform terrains in terms of velocity and directional constraints was
not addressed.

Hence, this paper deals with constructing patrol paths for a group of mobile robots
that are provably optimal (in terms of point-visit frequency) and robust (to robot
death). We base our work on recent multi-robot coverage algorithms [2, 3, 23, 24],
which cover all points in an area once. We extend those to patrolling of a non-uniform
continuous target area (divided into a grid). The solution we present guarantees that
every point will be visited with the same frequency by creating one cyclic patrol path
visiting all points in the target area (a Hamiltonian cycle in the grid), and instructing
all robots to move along this cycle while maintaining equidistant relative positions.
Note that a Hamiltonian cycle necessarily exists in the terrains we consider (see
Section 3.2).

Robots have velocity limitations, which depends on both the terrain in a given
location, and direction in which they travel. For example, climbing up a hill is typically
be done in a lower velocity compared to climbing down the same hill. Therefore a
cost should be associated with each point (and direction) of the terrain, making the
terrain grid directionally non-uniform.

We therefore consider directionally non-uniform terrains. We first provide an
algorithm that finds the minimal cost cyclic path (minimal cost Hamiltonian cycle)
given the terrain. We then find points along the path from which the patrol will start,
and find an optimal assignment of robots to those locations in the sense that they
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will arrive at their starting points in minimal time. Finally, we evaluate our derived
patrol algorithm using the frequency optimization criteria described in Section 3.1.
By basing our solution on the choice of minimal cost Hamiltonian cycle, we guarantee
maximal frequency and uniform frequency in the cycle, as traveling in a minimal cost
path will guarantee minimal time duration between every two visits to each point.
Moreover, guaranteeing uniform distance between the robots along the execution
guarantees uniform frequency. Similar to the robustness of the multi-robot coverage
described in [23], our solution is robust, and guarantees maximal uniform frequency
for one or more non-faulty robots.

This paper also deals with the case in which while patrolling along the area, the
robots are required to handle events. An event is a transient addition to the area in
a specific location, such that it requires special attention by the robots as they pass
through it for a limited period of time. We assume that each event has an associated
urgency of handling it. This is expressed by a limit on the time during which this
event should be handled. For example, in security applications an event could be a
detection of an unauthorized personnel inside the area, and in cleaning missions it
could correlate to cleaning a broken glass in addition to the regular cleaning mission.

We provide a set of algorithms that deal with a single event. The difference
between the algorithms lies in the urgency of handling the event. If there is enough
time to handle the event jointly by all robots, then it will be divided between the
team of robots uniformly. This division can guarantee that the event will be handled
along with minimizing the interference with the patrol path to other cells in the
area. Specifically, we are interested in minimizing the time it takes the robots to
regain their uniform distribution along the cyclic path. In addition, we would like
to minimize the frequency disturbance to other cells during the period of time the
event is handled. We show that the algorithms we provide guarantee these properties
whenever possible.

This paper is organized as follows. The next section provides an overview
of related work, and motivates our formulation of the area patrolling problem.
Section 3 formulates the area patrol problem from the point of view of point-visit
frequency optimization. It presents the spanning-tree patrolling (STP) algorithm, and
the initialization algorithm required to show optimal patrolling. Section 4 extends
the original STP algorithm to account for events which cause delays in patrolling.
Section 5 concludes.

2 Background

The patrolling task, sometimes referred to as repetitive sweeping or repetitive cover-
age, is relatively a recent challenge area for multi-agent and multi-robot researchers.
In general, three approaches can be found in the literature:

Cyclic paths A principled approach to patrolling, in which the algorithms plan
cyclic paths through the work area. By nature, points on the cyclic path are visited
repeatedly as long as the robots continue to move along the path.

Randomized movement A different approach to patrolling relies on continuously
executing randomized movement in the work area. The nature of the randomization
results in uniform (given sufficient time) distribution of visits to each point in the
work area.
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Hierarchical area division (partitioning) Not strictly a patrolling approach, but one
used often in connection with multi-robot patrolling. In this approach, the work area
is (recursively) partitioned into sub-areas. Each sub-area is allocated, using some
task-allocation mechanism, to different robots. Each robot then patrols the sub-
area using a single-robot patrol algorithm (Randomized Movement or Cyclic Path).
Robots may switch or take over areas as needed.

Mechado et al. in [28] describe the problem in terms of movement in a general
graph, argue for its novelty in terms of existing works at the time, and introduce
a measure of patrolling quality, called idleness. Idleness (of a graph) measures the
average number of time steps between visits to all vertices. They then utilize idleness
in a number of heuristic patrolling algorithms for multiple robots, based on local
or global path-planning, which they compare empirically in simulations. These are
intended to balance average and worst-case idleness over time. In this work, we
provide a formal treatment of patrolling and idleness, which we translate to point-
visit frequency. We introduce three different optimization criteria that build on
idleness (average frequency, uniformity of frequency, and worst-case frequency) and
analytically show that these criteria can all converge to optimal in the case of area
patrolling, using the algorithms we develop.

A survey by Almeida et al. [7] brings a discussion of different patrolling ap-
proaches, with respect to the idleness criteria. They compare between patrol paths
created by the following different methods. (a) Machine learning methods. (b) Patrol
paths generated by agents using negotiation mechanisms. (c) A heuristic patrol
algorithms based on greedy local idleness (see above) criteria. (d) An approach based
using an approximation to the Traveling Salesman Problem (TSP), i.e., finding a
minimal cost cyclic path that visits the entire graph, where all agents visit all vertices
in the graph (as opposed to the previous methods that divide the graph between
the different agents). They empirically demonstrate significant advantages to the
TSP-based approach in the idleness criteria. Our work addresses patrolling formally
and analytically, in contrast to this work. We focus on a cyclic-path approach, and
analytically show its optimality. However, rather than examining general graphs, we
focus on patrolling in two-dimensional work-areas, in which we use approximate
cellular decomposition.

Chevaleyre [9] and Chevaleyre et al. [10] offer a theoretical analysis of the patrol
problem. They discuss two approaches to multi-robot patrolling in general graphs:
One in which the problem is treated as finding a cyclic path through all nodes (i.e.,
the Traveling Salesman Problem TSP); and another in which the general graph
is partitioned into k sub-graphs (where there are k robots), and each partition is
patrolled independently. They examine the conditions under-which a cyclic approach
would be preferable to a partition-based approach, in terms of the worst idleness
criteria. While we examine the optimality of other criteria as well (e.g., uniformity
of point-visit frequency), we specialize our techniques to specific graphs, grids that
form approximate cell decompositions of two-dimensional work areas. However, we
also provide guarantees on robustness and efficiency of multi-robot solutions.

Empirical investigations of patrolling have often utilized a partitioning approach,
but often disregarded point-visit frequency, in favor of coordination and robustness
concerns. For instance, Guo et al. divide the patrolling area between robots [21, 22].
This study focused on the robots’ localization and sensorial capabilities. This paper’s
goals are complementary, in the sense that we assume perfect sensors and localiza-
tion, but provide guaranteed frequency optimization.
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Ahmadi and Stone [6] describe a negotiation-based approach for dividing the area
between the robots, dealing with events such as addition and removal of robots from
the system. We instead provide analytical treatment of robot removal and addition,
and provide algorithms that guarantee optimal patrolling frequency, as well as a
procedure to minimize the time for adjusting the patrolling to the removal or addition
of robots.

Jung and Sukhatme describe in [26] a region based approach for tracking targets
in a system with multiple robots and stationary sensors. They explicitly discuss
patrolling frequency. We do not utilize stationary sensors in this work, and show
that there are several different frequency criteria possible.

It is also possible, in principle, to carry out patrolling by repeated movements
within the work area. Many swarm or ant-based coverage algorithms, when executed
indefinitely, may in practice result in uniform distribution of point visits, though
the frequency of their visits might not be easily guaranteed. One work that stands
out among these is work by Yanovski et al. [35] who have shown that an ant-like
exploration in a general graph, by multiple agents using simulated markings in the
vertices, can result in point visit frequency which is uniform up to a factor of two
(i.e., the number of visits to the most visited edge is no more than twice the number
of visits to the least visited edge).

In this, Yanovski et al. build on earlier work on ant-robot coverage [31–33].
Indeed, the patrol problem is closely related to the area coverage problem, in the
sense that both require the robot or group of robots to visit all points in the given
terrain. However, while coverage seeks to minimize the number of visits to each point
(ideally, visiting it only once), patrolling seeks to maximize it (while still visiting all
points). Therefore solutions that are used for the coverage problem might be used as
basis for patrolling.

Our own approach builds on earlier work in coverage; specifically, on Spanning
Tree Coverage (STC), first introduced by Gabriely and Rimon [17] for single robots,
and then extended to the multi-robot case by Hazon and Kaminka [23, 24] and by
Agmon et al. [2, 3]. The key idea in this family of algorithms is to approximate a
two-dimensional work area using a grid, such that a Hamiltonian cycle is guaranteed
to exist through the grid, which can be found by generating a spanning tree in the
grid graph. This Hamiltonian cyclic path is used as the basis for patrolling, as the
next section shows. Although we build on MSTC, our work here differs from it in
three important ways. First, we allow modeling non-uniform terrains, in the sense
of velocity and direction constraints imposed on different locations within the area.
Second, we provide an algorithm for placing the robots such that their patrolling can
commence as quickly as possible, a stage only worthwhile in patrolling. Finally, we
address here also events that cause delay in patrolling, where previous work ignored
such events.

There are additional related investigations. First, the discussion above (and this
paper) focused on patrolling areas, as a special instance of patrolling in general
graphs. Recently, Elmaliach et al. have also tackled frequency-based patrolling in
open polylines [16], which is a distinct acyclic special instance of the problem. While
the optimization criteria we introduce here remain the same, it is possible to show
that in polyline patrolling, it is impossible to achieve uniform visit frequency, in
contrast to the case in patrolling areas.

Second, a key difference between our work and all works discussed above is
that we address the allocation of patrolling robots to handle events. This allocation
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is an instance of the general task allocation problem for multiple robots. There
are many approaches used for solving this problem in various domains; however,
recently, market-based approaches seem to be of particular interest: Smith created
a system called Contract Net, a distributed problem solving in which the nodes in
the system negotiate and send their bid to the manager which allocates the task for
the lowest coast bid [30]. Dias et al. [14, 15] first use the concept of market based
for multiple robots that cooperate for achieving a common goal. Golfarelli et al. [20]
proposed a negotiation protocol in environment that the only possible contract could
be swapping the task between the agents.

In contrast to these general techniques, we take advantage of the cooperative
nature of the patrolling task (as described in this paper), and specialize the task
allocation mechanism such that the load of handling events is divided between the
robots equally. Each event is handled by all robots using no negotiation, or other
tools for determining which robot will handle which part of the event. Our solution
is, therefore, easy to solve and is determined quickly.

We emphasize that patrolling, as studied in this paper, is investigated from the
point of view of optimizing point visit frequency. There are alternative optimization
criteria for patrolling. For instance, Paruchuri et al. [29] and Agmon et al. [4, 5] study
patrolling in adversarial environments, in which the robots’ goal is to maximize their
rewards. These rewards are received if the robots manage to observe the adversary,
which tries to evade the patrolling robots.

3 Frequency-based area patrolling

We now turn to introducing our approach for patrolling of a two-dimensional
work area. Section 3.1 introduces the area patrol problem, and the criteria used
to assess patrolling quality. Section 3.2 then introduces the basic ideas underlying
spanning-tree patrolling, the key idea in the algorithms we present. It also shows
how to account for velocity and directionality constraints in generating the patrolling
paths, to guarantee optimal patrolling frequency. Section 3.3 addresses the boot-
strapping stage in which robots find their initial positions along the patrolling path.
Section 3.4 ties the generation of the patrol paths, and the assignment of initial
positions to robots, to discuss the optimality and robustness guarantees on the
algorithm.

3.1 The area patrol problem

We are given a polygon enclosing a continuous work area. We are given k robots,
that are required to repeatedly visit every point within the area. The work area is
decomposed into cells, where each cell is of the size of the robots’ cover tool. The area
may contain obstacles, through-which robots cannot move. We denote the number
of cells in the grid that do not contain obstacles by N. If k ≥ N, then all points can be
visited at all times by the team simply by assigning a robot to each point. Formally,
the time interval between visits is 0, since each point is visited with every passing
time unit, by at least one robot. However, in the more common case, k � N. In this
case, necessarily, at least some of the cells have a non-zero time interval between
visits.
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Thus the frequency in which points are visited are the focal point for the area
patrol problem. There are several possible point visit frequency criteria according to
which patrol algorithms can be evaluated:

Uniform frequency The goal is to decrease the variance between the frequencies
in which each point is visited, i.e., all targets should ideally be visited with uniform
frequency f .

Average frequency The goal is to increase the average frequency f in which targets
are visited. Note that this is independent of achieving uniform frequency.

Under-bounded frequency The goal is to increase the minimal frequency in which
any target is visited, such that every target is visited with frequency of at least f . In
other words, all points should be visited at least once every 1/ f cycles.

Given the goals above, the area patrol problem is to generate trajectories (velocity
along paths) for each of the k robots, such that these achieve one or more of the goals
above (or maximize some given trade-off between them). As in work on multi-robot
coverage, different variations exist [11]: Of f line (map of area and obstacles given
a priori) or online (work area unknown), using approximate cell coverage (when
using approximate cell decomposition methods, partial cells may be excluded from
the coverage path), or exact (all points in the area visited). Patrolling may take into
account directionality and velocity constraints (e.g., the velocity in one direction may
be different than in another), priorities in patrolling, etc.

3.2 Spanning-tree patrolling

This paper addresses the area patrol problem as defined above, focusing on offline
trajectory planning and approximate cell decomposition (utilizing a grid). We also
take into account directional movement constraints, allowing the algorithms to
model different robot velocity constraints in different directions. The algorithms
achieve all three goals stated above: Uniformity of patrolling frequency, maximal
average patrolling frequency, and maximal minimum frequency. We do this by
generating a cyclic path visiting all target areas (a Hamiltonian cycle) and then place
the robots uniformly along the cyclic path. If all robots move at the same direction
then clearly each cell is visited at the same frequency (uniform frequency). Moreover,
in uniform terrains each cell is visited at least once every

⌈ cycle length
num robots

⌉
number of

cycles, where cycle length is simply the number of nodes plus one.
We base our work on Multirobot Spanning Tree Coverage (MSTC) [3, 23]. A

single robot is assumed to be equipped with a square-shaped tool of size D: Any
point within the tool’s area is taken to be visited. The robot moves by sliding the
tool over the area in any of the four basic directions (North, South, East, West).
The work area is approximately divided into a grid with cells of size D. The grid is
then made coarse, such that each new cell is of size 2D × 2D. The center-points of
all such cells are connected to those of their neighbors in the four basic directions
(North,South,East,West), to form a graph. A spanning tree is then induced from
the graph. The robots follow the tree around in a clockwise or counterclockwise
direction, creating a Hamiltonian cycle visiting all cells of the original grid (see
example in Fig. 1).
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Fig. 1 An example of
spanning tree based coverage.
Coarse grid is in bold, and the
spanning tree connects all
coarse grid cells. The
Hamiltonian cycle over the
fine grid is the dotted line
along the spanning tree

tree
Hamiltonian cycle

2D

D

spanning

The key idea in Spanning-Tree Patrolling (STP) is to utilize the cyclic path for re-
peated patrolling. By placing robots in equidistant positions along the cycle induced
by the spanning tree, synchronized movement by the robots will provide uniform,
maximal frequency of visits to all points along the path. However, in non-uniform
terrains, movement in the four different directions can occur in different velocities.
Moreover, terrain directionality constraints may mean that clockwise movement in
any given location may have different velocity than in the counterclockwise direction.

We assign a cost—signifying velocity—to a movement between any two adjacent
cells in the fine grid. Different costs may be assigned to two edges connecting the
vertices in opposite directions. Formally, we denote the grid as a directed graph G =
(V, E), with a cost function C(e),∀e ∈ E. We define the minimal Hamiltonian cycle
as follows.

Definition A Minimal Hamiltonian cycle (HC) of a graph G = (V, E), is a
Hamiltonian cycle that visits all vertices v ∈ V and the sum of all edges in the HC
is minimal.

Our objective is now to convert the directed edges of the fine grid to undirected
edges in the coarse grid while preserving the properties of the edges such that a
minimal spanning tree on the coarse grid will yield a minimal Hamiltonian cycle on
the fine grid. Then, placing the robots in equidistant spatio-temporal positions along
the cycle will guarantee uniform maximal frequency.

Since the patrol tour can be conducted in either clockwise (CW) or counterclock-
wise (CCW) directions along the spanning tree path, we divide our world to CW and
CCW. In general, there are four directed edges entering and four leaving each cell
in the fine grid. Since we follow some spanning tree path, the options decrease and
each cell have up to two incoming and two outgoing edges in each world (CW and
CCW), as described in Fig. 2. We find a minimal spanning tree in each of the worlds
separately, and choose the minimal between both as base for the patrol path.
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Fig. 2 Division of the area
to clockwise (a) and
counterclockwise (b)
directions. The graphs are
built such that the movement
is suitable for traveling along a
spanning tree. Union of the
two graphs provide all possible
movement options from each
cell: up, down, right and left

b.a.

Note that Fig. 2 clearly illustrates that the CW and CCW worlds are comple-
mentary in the following sense. First, the intersection between the worlds is empty,
i.e., ∀e ∈ E (where E is the set of G’s edges), e ∈ CW(G) or e ∈ CCW(G). Second,
together they provide all connections between adjacent edges in four possible
directions: North, South, East, and West.

In the following, we describe a principled assignment of weights (Assignment
Assign_Opt) to the undirected edges of the coarse grid based on the weights of the
directed edges of the fine grid. We then argue that using this assignment, finding a
minimal spanning tree on the coarse grid representation guarantees determining a
minimal Hamiltonian cycle on the fine grid. In order to do that, we first prove that in
our scenario, a Hamiltonian cycle is created by each spanning tree and vice versa, i.e.,
each Hamiltonian cycle in the fine grid is translated to a spanning tree in the coarse
grid. Based on that, we then prove, in Lemma 2, that Assignment Assign_Opt yields
the minimality property we seek.1

Assignment Assign_Opt The cost assigned to the undirected edge (u, v) in the
coarse grid (see Fig. 3) is the sum of the directed edges in the fine grid, parallel
to (u, v) from its two sides minus the sum of the directed edges perpendicular to
(u, v) and intersecting it, or: (a + b) − (c + d). Note that this can generate edges with
negative cost. In this case we shift the cost of all edges by the minimal negative value,
and use Kruskal’s algorithm [13] for finding an MST. Note that Kruskal’s algorithm
finds the minimal spanning tree for a graph by adding the minimal weight edges to the
spanning tree gradually, while assuring that the graph remains connected yet without
cycles, hence it is appropriate also for graphs with negative weights.

Lemma 1 Every spanning tree on the coarse grid can be translated to a Hamiltonian
cycle on the f ine grid and vice versa, i.e., every Hamiltonian cycle on the f ine grid can
be translated to a spanning tree on the coarse grid.

1Gabriely and Rimon discuss edge weights in single-robot STC [18]. In their work, each edge in
the coarse grid was given a different weight in order to favor movement in certain directions, and a
minimal spanning tree (MST) was found. However, they do not discuss the correspondence of these
weights to the fine grid, and minimality of the Hamiltonian cycle was not proven.
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Fig. 3 The assignment of
weights to the undirected
edges of the coarse grid based
on the directed edges of the
fine grid (here in the
CW direction)
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Proof The first part of the lemma is shown in the initial algorithm of Gabriely and
Rimon [17]. According to their algorithm, a Hamiltonian cycle is generated simply
by moving along the spanning tree path in the fine grid.

In order to prove the second direction, we will first show that the existence of
Hamiltonian cycle in the fine grid guarantees that only full edges are picked in the
coarse grid. We choose, without loss of generality, the CW case. Figure 4 illustrates
two adjacent vertices in the coarse grid, u and v, and their corresponding vertices in
the fine grid. Denote the edge (u2, v1) by a, (v3, v4) by b , (u2, u4) by d and (v3, v1) by
c. We must show that choosing edge a guarantees choosing also b and excludes c, d,
and vice versa, i.e., choosing c forces choosing d and excludes a, b . Assume, towards
contradiction, that a Hamiltonian cycle exists in the grid, but it uses only edge a and
not b . Therefore in order to visit vertex u4 d is chosen, contradicting the fact that
they are all part in a Hamiltonian cycle, as u2 cannot have two outgoing edges. The
fact that c and d cannot be chosen along with a and b is proven similarly.

It is left to show that the Hamiltonian cycle on the fine grid creates a spanning tree
on the coarse grid. Assume, towards contradiction, that there exists a Hamiltonian
cycle that does not translate into a spanning tree on the coarse grid. This means that
there exists a vertex in the coarse grid that is not covered by the spanning tree. This
can happen only if not all fine vertices are visited, contradicting the fact that we have
a Hamiltonian cycle. ��

Corollary 2 A Hamiltonian cycle on the f ine grid can include edges from either the
CW world or the CCW world, but not from both.

Figure 5 shows an example illustrating the corollary. A closed path is a
Hamiltonian cycle if it covers all vertices of the graph once, meaning that the in-
degree and out-degree of vertices in this path is 1. In Fig. 5, all edges in the path

Fig. 4 Illustration of Lemma 1
v1 v2

v3 v4b

c

a

d

u1 u2

u3 u4

vu



Multi-robot area patrol under frequency constraints 303

Fig. 5 Illustration of
Corollary 1, demonstrating the
problem of combining edges
from the CW and the
CCW world

v2

v1

are from the CCW world except for edge (v1, v2) (dashed), which is from the CW
world. The resulting path is not a Hamiltonian cycle, as v1 has in-degree 2 and v2 has
out-degree 2.

Lemma 3 Using Assignment Assign_Opt, an MST on the coarse grid representation
yields a minimal Hamiltonian cycle (HC_Min) on the f ine grid.

Proof Assume, towards contradiction, that there exists a Hamiltonian cycle, HC′

with total weight smaller than HC_Min. This can happen in one of two scenarios.

Case 1 The spanning tree ST′ (corresponding to HC′) has lower cost than the MST.
This contradicts the minimality of the MST, hence this case is impossible.

Case 2 The spanning tree ST′ (corresponding to HC′) has higher total weight than
the MST’s weight and still HC′

< HC_Min. Consider the case in which the trees differ
by one edge, e ∈ MST, e /∈ ST′ and e′ ∈ ST′

, e′ /∈ MST. Denote the directed edges
forming e by a, b , c, d and the directed edges forming e′ by a′, b ′, c′, d′ (as described
inAssign_Opt). SinceST′

> MST and based on Lemma 1, it follows that weight(e′) >

weight(e). Therefore, according to Assign_Opt, a′ + b ′ − (c′ + d′) > a + b − (c + d)

⇒ a′ + b ′ − (a + b) > c′ + d′ − (c + d). Since we assume that HC′
< HC_Min and

they differ only by e and e′, if follows by the inclusion of e in HC′ and exclu-
sion in HC_Min that a′ + b ′ + c + d < a + b + c′ + d′ ⇒ a′ + b ′ − (a + b) < c′ + d′−
(c + d), leading to a contradiction.

It can be shown similarly for every spanning tree greater than the MST that this
case is impossible. ��

As a corollary of Lemmas 1 and 3, algorithmGenerate_Cycle (Algorithm 1) finds
the minimal Hamiltonian cycle over the work area. If robots move along this cycle
such that their spatio-temporal positions are equidistant, they will visit all points
along the path with uniform, maximal frequency. The next section examines an
algorithm for moving the robots from their initial positions into such equidistant
positions as quickly as possible. The algorithm relies on a call to Kruskal’s algorithm
for finding a minimal spanning tree [13].

Note that the construction of minimal Hamiltonian cycle for patrolling applies
to the coverage problem as well. The minimal cycle as found here for non-uniform
terrains can be used also for single- or multi- robot coverage, achieving minimal
coverage time with respect to the constraints on the terrain, as long as the robots
move in either CCW or in CW direction (as implied by the output).



304 Y. Elmaliach et al.

Algorithm 1 Generate_Cycle
1: Divide the area into two CW and CCW scenarios.
2: for each scenario (CW and CCW) do
3: Create a graph on the coarse grid by assigning weights according to Assign-

ment Assign_Opt
4: Find a minimal spanning tree in the coarse grid using Kruskal’s algorithm.
5: Calculate the total length of the Hamiltonian cycle generated by the minimal

spanning tree.
6: Report scenario (CW or CCW) and cycle with shorter total length.

3.3 Allocating robots to initial positions

After establishing the minimal cyclic path for the patrol mission by the group of
mobile robots, it is left to determine the position of the robots along the cycle from
which they begin their patrol. Clearly, in order to achieve uniform frequency it is
sufficient to spread the robots uniformly along the cyclic path. The distance between
every two robots along the cyclic path should be the total weight of the cycle divided
by the number of robots, yielding an equal distance between every two consecutive
robots along the patrol path. Since there is more than one possible assignment of the
robots to such positions, we want to find the assignment that requires minimal change
from current positions of the robots. Therefore we describe herein the algorithm
Initialization, which finds the locations from which the robots should start patrolling,
while minimizing the maximal distance a robot should travel in order to arrive at
its location. As the robots move simultaneously from their initial positions to their
positions along the cycle, this corresponds to minimizing the time it takes all robots
to be positioned and ready for the patrol mission.

We define the Minimal Path Matching (Min_Path_Match) problem as follows.
Given a weighted graph G = (V, E, W), a Hamiltonian cycle visiting all vertices
in the graph, and a set of initial positions of k robots on vertices of G. Find an
assignment of each robot to a position in the graph such that the following are
fulfilled.

1. The distance between every two consecutive robots along the Hamiltonian cycle
is equal.

2. The maximal distance traveled by a robot from its initial position to the assigned
location is minimized.

We suggest the initialization algorithm Initialization (Algorithm 2) for solving the
Min_Path_Match problem. The input to the algorithm includes: (1) The fine graph
G; (2) the minimal Hamiltonian cycle HC found by Generate_Cycle; (3) the set of
initial locations of the robots on the graph RI; and (4) BW, the smallest indivisible
unit of velocity by which we measure the length of an edge. Generally, BW equals
1, unless some edges require scaling involving fractions. We define the length of a
Hamiltonian cycle by len(HC).

The algorithm works as follows. First, it generates HC′ by separating the edges
of the cyclic path into sub-edges, each of size BW (see Fig. 6. Each vertex in HC′
represents an optional starting point. It then sets the initial positions of the robots
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Algorithm 2 Initialization(G,HC,RI,BW)
1: L ← ∅ {output optimal match}
2: min ← ∞ {minimal match weight}
3: HC′ ← separation of HC by BW.

4: VL ← k vertices from HC′ with distance of
len

(
HC′)

k between consecutive
vertices along HC′.

5: for all robots r do
6: Compute shortest path from r’s position to all vertices in HC′.

7: for i ← 1 to
len

(
HC′)

k do
8: Let BG be a full bipartite graph of the two sets RI and VL {the weights will

be based on the above shortest path calculation}
9: 〈ML, MatchValue〉 ← PMPM(BG)

10: if MatchValue < min then
11: L ← ML
12: min ← MatchValue
13: VL ← VL ⊕ 1 {update VL, see discussion}
14: return L

along the path such that the distance between them is
len

(
HC′)

k . Then, it finds the
assignment of robots to these locations such that the maximal distance traveled by a
robot from its initial position to the assigned location is minimized. It does that by
using procedure PMPM, and a subsequent check of the minimal maximal distance of
all rotations of the positions along the cycle. It returns the positions yielding minimal
maximal distance. We discuss these steps in detail below.

In step 3, algorithm Initialization creates optional starting points along the span-
ning tree path. In step 4 it arbitrarily selects a set of k starting points, one for each
robot, with equal weights from one to the next. In steps 5 and 6, it computes the
lengths of the shortest paths from each robot’s current location to all other vertices
inHC’. These lengths are used later on to weight the bi-partite graph used to compute
the minimal time for robots to take their place.

In steps 7–13, algorithm Initialization goes through all
len

(
HC′)

k possible
configurations of k starting points that are evenly spaced in HC′. For each
configuration (beginning with the first configuration set in step 4), the algorithm

Fig. 6 On the left: the basic
Hamiltonian cycle. On the
right: the separated
Hamiltonian cycle (in this
example BW = 1)
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Algorithm 3 Procedure PMPM(BG)

1: ML ← ∅
2: Let V be BG vertices
3: Sort the edges in BG
4: Construct BG′ from BG with edge weights start from 1 and by the increased

sorted order multiple by |V|
2 (see Fig. 7).

5: Run the Hungarian Algorithm(BG′, ML)
6: Let m be the largest edge weight from the match ML in the corresponding BG

edges.
7: Return 〈ML, m〉

creates a bipartite graph with k nodes on one partition (signifying the current
locations of the robots in RI, and the k possible target points in VL in the other.
The edges connecting the two partitions are weighted based on the lengths of the
shortest paths computed in steps 5 and 6. The algorithm calls algorithm PMPM
(Algorithm 3), which receives the weighted bipartite graph BG. Procedure PMPM
returns a tuple: A set ML of optimal possible match considering BG, and the value
the match, MatchValue. An optimal match is one in which the maximal weight of
an edge in the bipartite graph is minimal, over all possible permutations of maximal
edges. MatchValue is the weight of this maximal edge. The result is checked to see
if it improves the current best match (steps 10–12). Then the next configuration of k
points is selected in step 13. The notation ⊕ + 1 is used here to denote the operation
of updating the set VL such that each original vertex v in VL is replaced by the new
vertex u, where the edge (v, u) exists in HC′. Note that becauseHC’ is a circle, exactly
one such edge must necessarily exist.

Procedure PMPM (Algorithm 3) uses the Hungarian algorithm [27] which finds
a match in bipartite graphs with minimal sum of edges. As illustrated in Fig. 7, the
Hungarian algorithm finds a match between r1 and d1 and between r2 and d2 since
this is the minimal match sum. But in our application we would like to find the
minimal largest edge from all the possible permutations. In this example, we want
to match r1 to d2 and r2 to d1. In this match the maximal edge weight is 9 while in the
previous it is 10. Step 4 in the PMPM algorithm construct BG′ from BG. The BG′
graph, by construction, causes the Hungarian algorithm call (in step 5) to prefer the
permutation in which the maximal edge is minimal.

Lemma 4 The construction of BG′ in step 3 of PMPM assures that the Hungarian
algorithm returns a match with minimal maximal edge in BG.

Fig. 7 Basic bipartite graph,
and bipartite graph after
conversion
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Proof First, we prove that the construction assures the selection of a match with
minimal maximal edge in BG′. For that, assume, towards contradiction, that the
Hungarian algorithm returns a minimal match with sum of edges M and maximal
edge m but there exists another match with sum of edges M′ that has a maximal edge
m′ such that m > m′. By the construction of BG′ in step 3 of PMPM it follows that
any edge in BG′ is greater than the sum of all edges smaller than it. Specifically,
by our assumption that m > m′ it follows that m > M′ ⇒ M > M′ contradicting the
minimality of M returned by the Hungarian algorithm.

It is left to show that the match found on BG′ yields a match on BG with minimal
maximal edge as well. This follows directly from the fact that the order of edges
remains through construction, hence minimal maximal edge in BG transforms to the
minimal maximal edge in BG′, and back. ��

The time complexity of Procedure PMPM is as the Hungarian algorithm [27] k3

and Algorithm Initialization runs it |V|
k times. It also run shortest path algorithm

(such as Dijkstra) k times. Thus the overall run-time complexity of Initialization is
O(KV(K + log V)).

3.4 Performance of STP

In this section we evaluate the performance of the patrol algorithm that is based
on procedures Generate_Cycle (Algorithm 1) and Initialization (Algorithm 2). We
first examine their combined performance according to the frequency optimization
criteria described in Section 3.1, and then discuss their robustness to robot death
failures.

3.4.1 Point-visit frequency

We prove that the combination of Procedures Generate_Cycle and Initialization
guarantees optimality in all three point-visit frequency criteria.

Theorem 5 The patrol algorithm which is derived by the combination of Procedures
Generate_Cycle and Initialization guarantees: (a) Perfectly uniform frequency (b)
Maximal average frequency (c) Optimal under-bounded frequency.

Proof

(a) The first part of the Min_Path_Match problem requires the robots to be
placed initially, i.e., before they begin their patrol, in uniform distance
along the cyclic path. This requirement is clearly fulfilled by step 4 in
Procedure Initialization, where the only positions considered are the
ones where all robots are equidistant along the cyclic path. Since the
robots are homogeneous and all target areas are covered by the cyclic
path, their movement along the cyclic path yields a uniform frequency
of 1

len
(
HC

)
/k

, where k is the number of robots and len(HC) is the total

length of the minimal HC found by Generate_Cycle. Since all points
are visited in this same frequency, the standard deviation is 0, and the
point-visit frequency is perfectly uniform.
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(b) and (c) The cyclic path found by Generate_Cycle was proven by Lemma 2 to
be minimal. Therefore one robot traveling along this cycle has maximal
frequency of 1

len
(
HC

) , hence the maximal possible frequency by k

robots is k × 1

len
(
HC

) , which is exactly the frequency guaranteed by our

algorithm. All targets are monitored, then, exactly once every
len

(
HC

)

k
cycles, and by that optimal under-bounded frequency is guaranteed.
Since we have proven uniform and under-bounded frequency, maximal
average frequency is straightforward. ��

3.4.2 Guaranteeing robustness

We use the circular path not only for assuring uniform frequency while patrolling, but
for robustness as well. Specifically, we refer to robustness in the sense that as long as
at least one robot remains intact, the patrol mission is guaranteed to be performed
successfully (with all three optimality criteria maintained). This notion of robustness,
and the basis for its existence in circular paths, has been discussed also in multi-robot
coverage work [23].

Robustness is clearly guaranteed: If one robot fails the other robots simply
divide the circular path again between them by re-running Procedure Initialization.
Theorem 5 is, then, guaranteed for the new number of robots. In this statement we
have a hidden assumption that the system is stable in the sense that the uniform,
maximal-average, optimal under-bounded frequency is guaranteed as long as the
system performs properly, and if a failure occurs it again guarantees the above
properties after a short reorganization time. This reorganization time is the period
of time necessary for the robots to execute the algorithm and arrive at their new
initial positions. If all robots are to move along the cyclic path following the current

direction, then this period of time will not exceed
len

(
HC

)

6 (see Lemma 6 for the
proof). If the system is unstable, i.e., robots fail one after the other, then Theorem 5
is guaranteed for the final number of robots after stabilization.

Lemma 6 The reorganization time required when decreasing the number of robots

from k to k − 1 is at worst the time required to travel the distance
len

(
HC

)

6 if robots
follow the circular path on their way towards their new initial positions.

Proof Consider the case in which there are three robots, and one fails. The length of
the HC is divided by the three robots prior to the failure, and is divided by two after
the failure. Therefore, if only one robot travels along the path, it has to travel from
len

(
HC

)
/3 to len

(
HC

)
/2, which is exactly len

(
HC

)
/6. For any other k, the distance

traveled is smaller:
len

(
HC

)

k−1 − len
(
HC

)

k <
len

(
HC

)

2 − len
(
HC

)

3 for any k > 2. Clearly,
for k = 2 the remaining robot has no reorganization phase, as it simply patrols along
the circular path alone. ��
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4 Handling events

In environments in which a team of robots is required to continuously visit target
locations for various missions, it is likely that the team will need to handle events.
We define an event as a change in the environment that requires special treatment
by the robots for a limited period of time. For example, if the robots patrol in an area
in order to clean it, then such an event could be cleaning a broken glass (in addition
to the regular cleaning duties). These events are transient additions to the cost of
traveling through one or more cells in the grid. Because of their transient nature,
it is highly important that they will not effect the system in the following sense. (i),
the frequency criteria should be maintained as much as possible for the entire area
during the time the event is handled, (ii), the recovery time, i.e., the time it takes to
stabilize the system to the situation in which the robots are dispersed with equivalent
distance (in time) around the HC should be minimal.

Definition An event is a tuple < li, ti, Ti >, where li is the location in which the event
occurs, ti is the time that a robot needs to attend and handle the event (duration of
handling), and Ti is the overall time to finish handling the event (the deadline for
handling the event). We assume that event can occur only in one cell, otherwise it is
handled separately for each cell.

The key idea in the algorithm is to divide the time it takes to handle event ei (ti)
uniformly between all the robots. Therefore the total time invested by each robot in
handling the event is ti

k . However, if each robot will spend ti
k the first time it reaches

li, then it will starve the other cells along the cycle HC. Therefore, handling the event
could be done along a number of rounds, depending on the overall time allocated for
handling the event (Ti).

When an event occurs, the first step is to check if the system can handle it. Let
Feasible(ei) be a Boolean variable that represents the possibility of the system to
handle event ei, and let dmin be the shortest distance (in time) between any robot
from the team to the event’s location (li). Therefore,

Feasible(ei) =
{

True if dmin + ti ≤ Ti

False otherwise
(1)

In other words, if the minimal time it takes the robot closest to li to arrive to the
event plus the time it takes to handle the event is greater than the time restriction on
this event, then the system will fail to handle it.

As mentioned above, the main goal of our algorithm is to keep handling the
frequency criteria of other points in the area by dividing the event between all
the robots, and adding some extra cost to the cost of traveling along the HC in
that location. However, there are cases in which the structure of the robots that
travel along the HC is broken, i.e., one of the robots has to leave its course and
travel directly to li. Denote the minimal distance (in time) between the location
of the event (li) and the robot next to arrive at li on its path along the HC by
dNmin. Note that always dmin ≤ dNmin. Therefore we define the Boolean variable
NoBreak that represents the possibility of handling the event while maintaining the
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movement of all robots along the original patrol path (theHC).NoBreak is defined as
follows.

NoBreak(ei) =
{

True if dNmin + ti ≤ Ti

False otherwise
(2)

The algorithm CooperateEvent (Algorithm 4) deals with an event ei in case
NoBreak(ei) = True. The algorithm IsolatedEvent (Algorithm 6) deals with cases in
which NoBreak(ei) = False, yet Feasible(ei) = True.

We define the success criteria for handling an event ei as follows (priority in
descending order):

a. ti time units were invested in handling the event jointly by the team members
within Ti time units, i.e., the event is handled on time.

b. Recovery time is minimized.
c. Frequency criteria is maintained throughout the patrolled area.

4.1 Handling events along the patrol path

In this section, we describe Procedures CooperateEvent and SingleRoundEvent that
handles the simplest events from the robot team’s perspective. These events do
not require any of the robots to divert from their patrol path, and can be handled
cooperatively between the robots (all of them or only part of them). This is possible
for all events ei where Ti is large enough (the event should not be handled urgently),
i.e., if NoBreak(ei) = True.

We divide this case into two sub-cases. In the first, Ti is large enough to allow ti
to be divided between the k robots. Here, Procedures CooperateEvent is executed.
If this is not the case, then Procedure SingleRoundEvent is called. We first describe
Procedure CooperateEvent and prove how it achieves the successful event handling
criteria, and then turn to discuss ProcedureSingleRoundEvent and its characteristics.

4.1.1 Procedure CooperateEvent

The key idea in algorithm CooperateEvent (Algorithm 4) is to divide the handling
time of an event ei (ti) between all robots. First, the procedure will calculate the
number of cycles along the HC that the robots will patrol while handling ei, denoted
by ri. Then, it will find the amount of time each robot should attend the event during
each cycle, denoted by xi. Denote the case in which the event cannot be divided
between all the robots by the Boolean variable NoDivision. The following formula
describes the condition in which this case exists.

NoDivision(ei) =
{

True if HC(1 − 1
k ) + dNmin + ti > Ti

False otherwise
(3)

NoDivision(ei) is true in case ei cannot be divided between all the robots, and
there is less than a single round to handle the event. In this case procedure
SingleRoundEvent will be called.

For a given event ei, if NoDivision(ei) is false, then ProcedureCooperateEvent will
divide the handling time of the event (ti) between all the robots. The procedure gives
all the robots the same amount of time xi to handle the event for each round along
all ri rounds.
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Since ri represents the number of rounds, it should be an integer. Therefore if the
optimal solution requires a fraction of a round, then the number is rounded to the
first integer below, and the number of time units invested by each robot during the
cycles increases. This is done in order to maintain a fair division of ti between the
robots, which also leads to a recovery time of zero from handling ei.

In case xi > HC
k , i.e., the time that each robot should invest in handling the event is

greater than the distance between consecutive robots along the cycle, then a neighbor
robot will arrive to the event location that currently handled by a robot. In this case,

the period of time the robots will handle the event per round will be HC
k and not as

calculated at the beginning of the procedure. The number of rounds will also change
(see procedure CooperateEvent).

Algorithm 4 CooperateEvent(ei < li, ti, Ti >, k, HC)

1: ri ← ⌊ Ti−ti
HC

⌋

2: xi ← ti
rik

3: if xi ≤ HC
k then

4: for j ← 1 to ri, for each robot Ri do
5: Move along HC until arrive at location li.
6: Handle event for xi time units.
7: else
8: visitCounter = rixi

9: while visitCounter > 0, for each robot Ri do
10: Move along HC until arriving at location li.

11: handle ← min
(
HC

k ,visitCounter
)

12: Handle event for handle time frame.
13: visitCounter ← visitCounter − handle

Procedure CooperateEvent first finds the value of ri and xi. Then (in line 6) it
checks whether xi is less (or equal) than the time it takes to neighbor robot (along
theHC) to arrive the event location. If so, then the robot handles the event for xi time
units and proceeds its area patrol along theHC. This happens iteratively for ri rounds.
When the time xi of handling event is greater than the time it takes a neighbor robot
to arrive the event location, then at each round a robot will handle the event without
interfering it neighbor robot, i.e., HCk time units (the distance in time between two
robots along the HC path). Now, the number of rounds will change to ri = ti

HCk
.

Lemma 7 For an event ei, if NoDivision(ei) = False, then CooperateEvent
(Algorithm 4) guarantees that ei will be handled within Ti time units, i.e., on time.

Proof Since NoDivision(ei) is false, then the robots can share the event and handle it
during at least one round. If xi ≤ HC

k (the distance between two consecutive robots
along the patrol path), then according the assignment to xi by CooperateEvent , the

robots will finish handling the event on time. If xi > HC
k the algorithm changes xi

value to be exactly HC
k . Now, a robot handles the event for a duration of HCk per
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round, and the time that the event is handled per round (by all the robots) is HC:
A robot handles the event, then its neighbor replaces it, and handles the event and
so on. That means that the event is always being handled, for a total duration of
ti + dNmin. Where dNmin is the time it took to the closest robot (along the HC path)
to arrive the event location and ti is the time that should invest the event. Since
NoDivision(ei) is false, we can be sure that ti + dNmin ≤ Ti which says that the robot
will finish handling the event on time. ��

Recall that we defined the recovery time from handling an event ei as the time
it takes to stabilize the system to the situation in which the robots are dispersed
with equivalent distance (in time) around the HC after handling ei. The following
Lemma 8 ensures that using procedure CooperateEvent, the recovery time of the
system will be zero.

Lemma 8 The recovery time from handling event ei using ProcedureCooperateEvent
is zero.

Proof Since ti is divided equally between all the robots, each robot invests the same
period of time on handling ei. Moreover, each robot handles the event for exactly
the same amount of time during each round. This ensures that all robots will finish
handling the event during the same round. Thus the robots will be again with the
same distance (in time) between them after the last robot finishes handling the event.

��

Lemma 9 Procedure CooperateEvent guarantees minimal interference to the fre-
quency of visits to other cells other than li, under the restriction that the recovery time
is zero.

Proof Assume, towards contradiction, that there exists a Procedure B different than
CooperateEvent that handles the event on time and with recovery time zero, yet
the robots visit a cell c �= li with higher frequency during the handling time of ei.
Denote by xB

i the number of time units B instructs the robots to invest in handling
the event, in each round. If xB

i > xi, then necessarily the frequency of visiting c
decreases. Therefore xB

i ≤ xi. Denote the number of rounds during which ei is
handled according to B by rB

i . If xB
i < xi, then necessarily rB

i > ri. However, ri ←⌊ Ti−ti
HC

⌋
, which gives the maximal number of rounds possible to complete handling ei

within Ti time units if we assume all robots handles ei uniformly. Hence if xB
i < xi,

then handling ei by B exceeds Ti, contradicting the assumption that B handles ei on
time. If B instructs some robots to work more than the others (for example in the last
round), then the recovery time is not zero, again leading to a contradiction. Therefore
xi = xB

i , i.e., B = CooperateEvent, leading again to a contradiction. ��

By combining Lemmas 7, 8 and 9, it follows that Procedure CooperateEvent
handles event ei successfully. Therefore we turn to consider cases in which Procedure
CooperateEvent cannot be used, i.e., if Ti is too small to allow cooperation between
the robots.
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4.1.2 Procedure SingleRoundEvent

The best possible case for the team of robots is if Ti is large enough to permit the divi-
sion of ti uniformly between the robots. However, this is not always possible. There-
fore if NoBreak(ei) = True yet Feasible = True, then procedure SingleRoundEvent
will be activated. Since NoBreak(ei) = True, at least one robot that patrols along
the HC can handle the event. If NoDivision(ei) is true, then not all robots can share
the event as describes in CooperateEvent procedure. Procedure SingleRoundEvent
handles this situation.

In order to achieve the good frequency performance, procedure
SingleRoundEvent (Algorithm 5) needs to share the event handling by maximal
number of robots. Let ni be the number of neighbor robots that will help the closest
robot to the event location along the HC path to handle the event, and let dNmin

be the time it takes the first robot (the closet one along the HC) to arrive the
event location—while traveling along the cycle. Since NoBreak(ei) is true, then also
dNmin ≤ Ti − ti, where Ti − ti is the slack time available, allowing the event to be
abandoned from the moment it occurs until its deadline.

dNmin + HC
k ni ≤ Ti − ti (4)

⇒ maximal ni = �k(Ti − ti − dNmin)

HC
�

We would like to find the maximal number of neighbor robots ni that can assist
the event handling. This is formulated in Eq. 4. Now, the number of robots that will
share the event will be ni + 1 (the closest robot plus the ni neighbors). The amount
of time that each of the ni + 1 robots will devote to the event will be ti

ni+1 . If this

calculated time is greater than HC
k then it will be adjusted to be exactly HC

k and the
number of robot that will handle the event will grow to be tik

HC as shown in procedure
SingleRoundEvent

Algorithm 5 SingleRoundEvent(ei < li, ti, Ti >, k, HC)

1: ni ← � k(Ti−ti−dNmin)

HC �
2: ri ← ni + 1
3: xi ← ti

ri

4: if xi > HC
k then

5: xi ← HC
k

6: ri ← tik
HC

7: for all ri closest robots along HC (on the selected direction) do
8: patrol along HC until arriving at location li.
9: handle event for the duration of xi.

Algorithm SingleRoundEvent ensures that the robots will not bump into each
other, since the robots that handle the event will do so only in their path along the
HC. They will not bump into their neighbor since the distance (in time) between

neighbor is HC
k which is also the limit time to handle an event for a robot. The

procedure also ensures that each point in the area will be patrolled optimally as
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before the event occurred, but with maximal delay of HCk from the time they finish
handling the event, as proven in the following lemma.

Lemma 10 The maximal recovery time from event ei using Procedure SingleRound-

Event is HCk .

Proof Let xi be the time that a robot handles an event ei using procedure
SingleRoundEvent. The robots that share the event are in distance (in time) xi from
the place they should be if the event did not occur. In order to recover from the event
(when it is finished) all the robots that share the event should move xi while the other
robots should stop their movement before they could patrol again. In procedure

SingleRoundEvent the maximal time that robot can handle event is HC
k thus the

maximal recovery time is HCk . ��

4.2 Handling events outside of the patrol path

Procedures SingleRoundEvent and CooperateEvent will be executed when the
robots can attend the event while still patrolling along theHC path. In case where this
situation is not possible, i.e., NoBreak = False, yet Feasible = True, then a robot can
handle the event by breaking out of theHC path. In this case algorithm IsolatedEvent
(Algorithm 6) is executed.

Algorithm IsolatedEvent finds the preferred robot to send to handle the event.
This robot will move to event location, handle it and proceed the patrol when its
neighbor along the HC will arrive. The neighbor will now handle the event until its
neighbor arrives and so on. This procedure finishes when the event was handled for
ti time units, i.e., finished completely.
IsolatedEvent finds the preferred robot that should handle the event by calculating

the minimal time it takes for robot to arrive the event location by crossing the HC.
If there is more than one robot with the same minimal time to arrive at the event’s
location, the chosen robot will be the one with the longest shortest-path along the
HC to the event’s location.

Algorithm 6 Procedure IsolatedEvent(ei < li, ti, Ti >, k, HC)

1: S ← ∅
2: for all robots r do
3: d ← the shortest path from the current robot location to event location li

4: S ← S ∪ {〈d, r〉} {add the distance and associated robot to S}
5: D ← mind(S) {all tuples with minimum distance}
6: if | D |= 1 then
7: The corresponding robot r will move on its (calculated) shorted path to li

8: else
9: Choose from D the corresponding robot that has the longest path to move on

its HC path.
10: This robot will move to li

11: repeat
12: The robot in li handles the event until replaced or ti reached.
13: until event was handled ti
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The procedure IsolatedEvent ensures that the robots will not bump into each
other when they are attending to the event. Where they are moving along the HC
they cannot meet since they are in different locations. The only way that two robots
can meet is when one of the robots crosses the HC to the event’s location, but as
shown in Lemma 11, this situation is impossible.

Lemma 11 The robots will not bump into each other when the selected robot crosses
the HC path to attend an event ei using Procedure IsolatedEvent

Proof Procedure IsolatedEvent computes for each robot the shortest path to the
event location. Let Ra be the robot chosen to first handle the event by Procedure
IsolatedEvent. We first assume that Ra has the minimal path to li (and shares this
minimal value with no other robot). Assume, towards contradiction, that there is a
robot Rb that will bump into Ra on its way to li, i.e., Ra and Rb lie at the same
location along the HC at the same time. Therefore at that time the distance between
Ra and li is equal to the distance between Rb and li, which leads to a contradiction
(since Ra has minimal distance to li).

Assume now that there are several robots Ra, Rb , . . . ∈ D with the same shortest
path length to li. If we choose arbitrarily some Ra ∈ D, then it could indeed possibly
bump into some other member of D on its way to li. Thus, procedure IsolatedEvent
selects the robot whose shortest path (with respect to the other robots in D) is mostly
a subset of its regular path along the HC. This ensures that this robot will never bump
any robot while it crossing the HC. ��

Lemma 11 and algorithm IsolatedEvent deal with the robot that is sent to handle
the event. However, a question remains as to what the robots do once the event is
handled, to stabilize the system.

Algorithm IsolatedRecovery (Algorithm 7) describes the recovery stage, executed
once the event handling procedure IsolatedEvent is triggered. Note that once a robot

moves outside of the HC then necessarily, a segment of length HC
k is left without

Algorithm 7 Procedure IsolatedRecovery(ei < li, ti, Ti >, k, HC)

1: Let r0 be the robot at the event location.
2: Let r1 be r0’s nearest neighbour along the path HC.
3: Set d to be the distance between r0 and r1.
4: if d > HC

k then

5: move r0 a distance of d − HC
k .

6: else
7: Let R be the set of robots along the HC, starting with r0, such that the distance

between them is equal or smaller than HC
k .

8: for all r ∈ R do
9: if r = r0 then

10: move r a distance of d.
11: else
12: move r a distance of HCk .
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Fig. 8 The robots patrol along
the HC. An event occurred,
and one robot (D) crosses the
HC and handles the event

an associated robot (Fig. 8). We call this segment the empty segment. The recovery
procedure moves some of the robots along the HC to re-fill this empty segment such
that again one robot is assigned to each of the k segments.

The algorithm works as follows. First, it computes the distance d between the
event location (and the robot currently handling it, r0), to its nearest neighbour r1

along the path HC. If this distance d is greater than HC
k , then the empty segment is

between r0 and r1. In this case, r0 needs to move until it is exactly at a distance of
HC

k from r1; it needs to move d − HC
k . However, if d is smaller than or equal to HC

k ,
the this means that there are more robots between r0 and the empty segment. All of

these robots (except for r0 should move exactly one segment (i.e., HCk ), and then r0

should move a distance of d forward along HC, to reposition itself. Then the recovery
is complete.

Lemma 12 The maximal recovery time from procedure IsolatedEvent is HCk .

The algorithm’s operation is illustrated in Figs. 8, 9 and 10. Figure 8 shows the state
of the system after a robot D crosses the HC path and handles the event, a decision

Fig. 9 The robots’ location

after HCk time units. In order
to recover from this event,
only robots A, D, B and C will
need to move, while the
others wait
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Fig. 10 The robots’ location
after three additional cycles,

each of duration HC
k . The

empty segment follows the
robot that handles the event.
In order to recover from the
event, robot E will only move
to the empty space

made by IsolatedEvent. Suppose, first, some time passes, the robots move clockwise,
and now handling the event is taken over by A, which completes handling the
event, i.e., now recovery can commence (Fig. 9). Since the distance d here (between

A and D) is smaller than HC
k , A, D, B, C are in the set R (line 7). Robots D, B, and

C should move ahead a distance of HCk , while robot A should move the distance of d
ending up where D used to be. Then the system is stabilized and can patrol as usual.

Now suppose that A did not finish handling the event. In this case, the empty
segment continues to shift around HC, until we reach the situation in Fig. 10. If E
completes handling the event, then the distance d (between E and F) will be greater

than HC
k , which means that only E needs to move forward, a distance of d − HC

k , to
stabilize the system.

Given an event handled by algorithms IsolatedEvent and IsolatedRecovery, we
can bound the recovery times for the system, following the decision to handle an
event.

Algorithm 8 PatrolEvent(ei < li, ti, Ti >, k, HC)

1: D ← ∅
2: for all robots do
3: Compute Dijkstra’s shortest path where the source is the current robot loca-

tion and the destination is the event location li

4: Add the distance to D
5: if min(D) + ti > Ti then
6: return "cannot handle event"
7: else if dNmin + ti > Ti then
8: execute IsolatedEvent(ei < li, ti, Ti >, k, HC)

9: else if HC(1 − 1
k ) + dNmin + ti > Ti then

10: execute SingleRoundEvent(ei < li, ti, Ti >, k, HC)

11: else
12: execute CooperateEvent(ei < li, ti, Ti >, k, HC)
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Proof When robot attend event and cross the HC there could maximum one empty
segment (as shown above). The robot that attend event is far from its neighbor (along

the HC) maximal HCk or the empty segment is the neighbor. If the empty segment is

the neighbor it take maximal HCk to arrive the relative location of the other robots
in the other segments as shown above. If there is neighbor robot in the next segment,

the maximal distance is HC
k . Since the robot that behind the robot that handle the

event location should keep the same HC
k distance from the robot located in the

neighbor segment. Which insure that the maximal distance for recovery is HCk . ��

Summary Algorithm PatrolEvent (Algorithm 8) ties all the different conditions
together, to fully address a new event and stabilize the system following its handling.
The algorithm checks the values of Feasible(ei) and NoDivision(ei), and decides
which procedure to execute for a new event. Be aware that after running procedures
IsolatedEvent and SingleRoundEvent the robots needed to be ordered again along
the HC, before patrolling can be resumed completely.

5 Conclusions

In this work we have formalized the area patrol problem and its frequency opti-
mization goals. We have discussed point-visit frequency criteria according to which
a patrol mission can be evaluated. We then described an spanning-tree patrolling
(STP) approach for area patrolling. STP is based on finding a minimal Hamiltonian
cyclic path in a non-uniform, directional, terrain. Based on this cyclic path, we have
analytically demonstrated that an algorithm that assigns locations to the robots along
the path such that the time necessary to arrive to those locations is minimal, and
patrolling from those locations create a uniform maximal-frequency patrol. Last, we
have shown that this algorithm is robust in the sense that it guarantees patrol at
uniform frequency as long as at least one robot works properly.

We then turn to discuss the problem of allocation robots to handling events along
the patrol path. Given the projected duration of handling an event, and the deadline
by which handling the event must complete, we investigated different conditions and
different methods for allocating robots to events. We described a set of algorithms
for dividing the time it takes to handle the event between the robots, depending on
the time constraint for finishing handling the event.

There are still several areas we plan to pursue in future work. First, we would
like to take into consideration at the cycle generation phase also other aspects,
for example minimizing number of turns. Second, we would like to examine the
case in which the robots are heterogeneous. In addition, we would like to consider
task allocation during patrol missions where the time constraint is not known, and
a probability distribution is provided. Last, we wish to consider also non-uniform
terrains having also prioritized requirements.
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