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Abstract— We study multi-robot caravanning, which is loosely
defined as the problem of a heterogeneous team of robots
visiting specific areas of an environment (waypoints) as a
group. After formally defining this problem, we propose a novel
solution that requires minimal communication and scales with
the number of waypoints and robots. Our approach restricts
explicit communication and coordination to occur only when
robots reach waypoints, and relies on implicit coordination
when moving between a given pair of waypoints. At the heart
of our algorithm is the use of leader election to efficiently
exploit the unique environmental knowledge available to each
robot in order to plan paths for the group, which makes it
general enough to work with robots that have heterogeneous
representations of the environment.

We implement our approach both in simulation and on a
physical platform, and characterize the performance of the
approach under various scenarios. We demonstrate that our
approach can successfully be used to combine the planning
capabilities of different agents.

I. I NTRODUCTION

Multi-robot coordination, especially among heterogeneous
robots, is becoming commonplace in robotics applications
including swarming, flocking, task cooperation, and more.
In scenarios such as collaborative surveillance [16], robot
soccer [25], and search and rescue [21], heterogeneity
presents an advantage because it allows robots with different
capabilities to cooperate in manners that homogeneous robot
groups cannot. However, communication, coordination [26],
and robust task execution [7] among such groups present
challenges such as determining what information needs to
be combined and how to do so. In this paper, we explore
these benefits and challenges in the context ofmulti-robot
caravanning, the problem of directing a team of robots to
cooperatively visit a sequence of areas of interest (waypoints)
in an environment and in a manner that ensures that the
robots stay together at all times.

The problem of multi-robot caravanning is inspired by
the historical role of caravans – collections of travellers
journeying together across potentially hostile territory– in
human commerce and societal development. For humans,
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travelling in groups offers benefits such as the distribution
of payload among individuals, the sharing of resources such
as food and water, and more efficient management of work
such as cooking or herding. In addition, it offers safety in
numbers against adversarial threats, and allows individuals to
better cope with harsh climates or rough terrain. We explore
the benefits of caravanning in a robotics context, considering
what a team of robots can gain by travelling together as a
caravan to complete shared tasks.

Caravanning arises in scenarios where robots must move
from task to task together, cooperating as a unit in order to
complete each task. For instance, in a collaborative object
transport task [13], a group of robots must cooperate to
move a large object, such as a disaster victim [13], from one
location to another. The combined effort of multiple identical
robots is required to complete the task, i.e., a single robot
is insufficient. In other scenarios, groups of heterogeneous
robots cooperate by combining capabilities to complete tasks
that could not be completed by multiple instances of just
one type of robot. An example of this is demonstrated in
a highway maintenance task [12], where a group of simple
robots serves as safety markers, while a more sophisticated
leader with global knowledge is responsible for guiding the
other robots to their positions.

After we formally define the problem, we propose a
novel approach to the multi-robot caravanning problem that
efficiently exploits the individual knowledge of the robotsto
benefit the group. The cornerstone of our approach is the
use of leader election in conjunction with leader following.
The former exploits the differing environmental information
of the robots to decide which robot should become the
leader, and the latter specifies how robots should follow a
leader in order to move from one waypoint to the next.
Our solution requires limited communication and sensing
ability, and works in scenarios where robots have different
representations of the environment.

We make the following contributions:

• A formal definition of and a scalable solution to the
multi-robot caravanning problem that requires minimal
explicit communication and sensing ability.

• A novel application of leader election to exploit hetero-
geneity in representation, which is applicable to robots
whose representations are incomplete and/or generated
in a distributed manner.

• An implementation of the proposed approach both in
simulation and on physical robots, and an empirical
characterization of its performance.
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II. RELATED WORK

A. Motion Planning

Motion planning is the problem of finding a valid path
through an environment from a start location to a goal
location. Many methods have been proposed to solve this
problem [15], [17]. More recently, sampling-based motion
planning has shown great success. Probabilistic roadmaps
(PRMs) [15] are one class of sampling-based motion plan-
ners. In these methods, an approximation of the space is
constructed using a graph (the roadmap) whose nodes are
randomly sampled configurations of the planning space,
and whose edges represent valid simple pathways between
the various points. After the map is constructed, it can
be queried for paths. Numerous variations on the basic
technique address improving sample quality with heuristics
(such as generating nodes close to obstacles [2] or in regions
of high clearance [29]), quality [14], handling non-holonomic
constraints [17], accounting for uncertainty [1] and so on.

A robot’s representationof the environment is anap-
proximationof its configuration space that incorporates the
observations and information available to it and determines
the actions it can take. We say two robots arerepresentation
heterogeneousif their representations constitute different ap-
proximations of the environment. An important consequence
of random sampling in the construction of Probabilistic
roadmap (PRM) representations is that two roadmaps rep-
resenting the same environment are usually topologically
different and return homotopically different paths. The use of
different sampling methods, local planners, and construction
strategies [19], [27] introduces even more variability. The
heterogeneity that naturally arises in constructing PRMs
makes them an excellent focus for considering representa-
tional heterogeneity in this work.

B. Coordination of Multiple Agents

Probabilistic roadmap methods have been extended to de-
fine a collection of robots as a single configuration [24]. This
generalizes the planning space to include all robots. Although
powerful if agents share global information, this technique
is not robust to failure because any change in the available
set of robots causes a change in the dimensionality of the
planning space, necessitating the complete reconstruction of
the roadmap. It also suffers from the curse of dimensionality
— as the number of robots increases, the planning space
becomes infeasibly large.

The problem of sensing-heterogeneous robots inspecting
every point of a cluttered environment’s boundary is con-
sidered in [28]. A graph is used to represent regions in the
environment, where a node represents a visibility region of
an obstacle and an edge represents the overlap between two
visibility regions. The regions themselves are determinedby
the robots’ sensing capabilities. In contrast to our scenario,
this graph representation is shared and complete. Moreover,
agents are not required to stay together; rather, the only
requirement is that all points on the boundary must be visited.

One important class of approaches to multi-agent move-
ment is flocking [22]. In most flocking models, there is an

attractive force to the center of the group (cohesion) com-
bined with a separation force (avoiding inter-agent collisions)
and an alignment force to allow the group to show cohesive,
coordinated movement. This method has been successfully
applied to roadmaps in a centralized manner for simulation
[4] and in a centralized robotic setup for heuristic approaches
to pursuit-evasion techniques [23].

C. Leader Following

A leader-follower behavior [7], [8] is a case of coordinated
movement in which an agent leads a group of agents, and
one or more followers attempt to follow the leader agent.
This technique has applications in formation control [9],
multi-robot planning [3], and cooperative task execution [12].
Generally, a follower’s goal is to stay within a given distance
of the leader and adjust its relative angle such that the leader
remains within the follower’s field of view. We utilize this
technique as a coordination mechanism in the caravanning
problem.

The current state of the art in cooperative movement [7],
[12] assumes that all robots have global knowledge or that
robots with global knowledge are designated as leaders
beforehand. For instance, in [12], the leader is assumed to
have global knowledge and precision positioning, e.g., using
GPS, while followers use only simple sensors and perform
simple computation to follow the leader. In this approach, it
is impossible to recover from a failure of the leader.

In contrast, our approach requires none of the robots to
have global knowledge, and any robot could be elected the
leader (provided it has sufficient environmental information
to find a path between a given pair of waypoints). Thus,
our approach advances the state of the art by generalizing to
scenarios in whichall robots have incomplete or overlapping
information. Moreover, while prior approaches typically ad-
dress the problem ofhow to follow the leader effectively, we
focus onwhoshould become the leader based on the robots’
representations.

D. Leader Election

Leader election is the task of selecting a coordinator from
a group of entities. Such a task is often seen in the distributed
computing community, however it has many applications
in distributed robotics as well. In our example, at each
waypoint a leader should be selected to lead the group to
the next waypoint. Although many algorithms have been
proposed to perform election, we use a variation of theBully
Algorithm[10] for its simplicity, limited communication, and
asynchronous nature.

Leader election is applied to flocking in [6]. The approach
combines a distributed leader election algorithm with a
flocking behavior in which followers move according to the
leader’s actions. The focus of the paper is achieving leader
election with no explicit communication. In contrast, we
assume communication is still allowed, and the purpose of
leader election using path metrics is to serve as a cheap
substitute to fully broadcasting paths or representations.
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Moreover, prior approaches that employ leader election
typically use randomization or relative positioning to elect a
leader. For instance, in [6], the robot with the smallest angle
to its two closest neighbors becomes the leader. In contrast,
we elect a leader based on a path metric. In this case, the
robot with the best path to the next waypoint is elected the
leader. Paths can be ranked by shortest distance, smoothness,
or highest clearance, etc. This is the mechanism by which
robots exploit redundancy in information in a manner that
is efficient and which allows them to use the best available
information.

III. T HE CARAVANNING PROBLEM AND ALGORITHM

A. Problem Definition

In this section, we define the multi-robot caravanning
problem, as well as related concepts such as the environ-
mental representation and path.

Definition 1. A path is a sequence of valid configurations
connecting a given start and goal configuration.

Definition 2. A representation is a data structure, or collec-
tion of data structures, that an individual robot can query to
obtain a path from a start position to a goal position such
that if the robot follows the path it will be guaranteed to
arrive at the goal within a finite expected time.

The representation is assumed to include a source of
observations that the robot can use to verify that it has arrived
at its goal and has not collided with an obstacle.

Definition 3. A representation is incomplete if there exists
a start and goal in the environment for which it is unable to
return a valid path for the robot to transition from the start
to the goal, even though such a path exists.

Definition 4. Two robots are representation heterogeneous
if there exists a start and goal pair for which their respective
representations return different paths.

Note that by this definition, two robots are also represen-
tation heterogeneous if one representation returns a path but
the other fails.

Definition 5. A waypoint is a coordinate in the robot’s
configuration space.

A group of robots may share a set of waypoints that rep-
resent, for instance, task locations or locations that mustbe
inspected. We assume each waypoint is reachable, i.e., there
exists a path to it from every portion of the environment.
However, the robot’s environmental representation may be
incomplete for some or all of the waypoints.

Definition 6. A caravan is a group of robots that operate
while meeting a visibility or cohesion constraint that applies
to the group.

The constraints may require, for example, that all robots
in the group stay within a predefined distance of one another
or to the group’s centroid. In our implementation, each robot
must be able to see at least one other robot, and the graph

of visibility between robots must not be disjoint. Robots that
have failed are not considered part of the group.

We are now ready to define the multi-robot caravanning
problem:

Definition 7. Given a group ofn representation heteroge-
neous robotsr = 〈r1, r2, . . . , rn〉, and a set of waypoints
W = 〈w1, w2, . . . , wm〉, the multi-robot caravanning (MRC)
problem is to generate a valid path for eachri to visit all
the waypoints inW such that the robots visit each waypoint
as a caravan.

Informally, the MRC problem is the problem of planning
for a group of agents to visit a sequence of locations
(waypoints) in the environment as a group.

B. Approach

We propose a novel solution to the MRC problem. Our
solution divides the MRC problem into stages. At each stage,
a leader is elected and a leader following approach is used
to move robots from one waypoint to the next. The novelty
of our approach lies in the application of leader election to
decide which robot should become the leader. For every pair
of waypoints in the sequence, the robot with the “best” path
according to some metric (for instance, lowest path length or
highest path clearance) becomes the leader. The other robots
follow the leader until the next waypoint, where the process
is repeated.

Prior approaches that perform leader following tend to
differentiate between leaders and followers offline, basedon
heterogeneity in capabilities [7]. For instance, followers have
just enough sensing and communication ability to localize
themselves with respect to the leader so that they can
follow it, while the leaders have more sophisticated global
knowledge [12]. Moreover, prior approaches that perform
leader election either elect a random robot as the leader, or
rely on robot IDs (e.g., selecting the robot with the lowest
or highest ID) or relative positions [6].

In contrast, we perform leader election both dynamically
and in a problem-specific manner. Doing so has several
benefits:

• The use of a path metric in performing leader election
allows us to handle scenarios in which robots have
different, even incomplete, representations of the en-
vironment. This scenario arises frequently in problems
that involve generating or storing the representation in
a distributed manner.

• Limited communication is required since robots com-
municate solely at waypoints and never communicate
their representations or paths to one another; only the
path metric is communicated.

• Our solution can exploit overlap between representa-
tions. If a robot with the best path has already failed
or been lost, the one with the next best path will be
elected.

3



C. Algorithm

Algorithm 1 Agent Algorithm Overview

Input: WaypointsW = 〈w1, w2, . . . , wm〉, Roadmap R
1: for all wk ∈ W do
2: p = R.F indPath(wk, wk+1)
3: result = ElectLeader(p)
4: if result == “leader” then
5: SwitchLeader()
6: Traversep while localizing
7: Call for leader election
8: else
9: repeat

10: FollowLeader()
11: until Leader election call
12: end if
13: end for

The overall algorithm is shown in Algorithm 1 (failure
conditions omitted). Each stage can be explained in terms
of three steps: leader election, leader switching, and leader
following.

In the Leader Election step, one robot that knows a path
between the current and next waypoint is chosen as the
leader and will be responsible for traversing its path. In the
Leader Switching step, the newly elected leader travels to a
designated position near the current waypoint, from which it
will begin to traverse its path. In the Leader Following step,
all other robots follow the leader by maintaining a constant
position and orientation relative to it. We now explain these
steps in detail.

D. Leader Election

Algorithm 2 ElectLeader
1: Broadcast ID and path metric
2: ReceiveM as a map of IDs to path metrics
3: bestID = arg maxid∈M M [id]
4: if bestID ≡ myID then
5: Broadcast end of leader election
6: return leader
7: else
8: return follower
9: end if

In the first step, one robot is selected (the leader) that
will be assigned the responsibility for executing a plan
from waypoint wk to waypoint wk+1. This is achieved
using a slightly modified version (Algorithm 2) of the Bully
algorithm [10] for leader election. First, each robot queries its
environmental representation for a path between waypoints
wk andwk+1. It then broadcasts apath metricbased on the
result of its query to the other robots, together with its ID.
If no robot finds a valid path (i.e., all robots broadcast an
invalid metric), the algorithm terminates and returns failure.
If exactly one robot finds a path, it is elected the leader by

default. If two or more robots find a path, the one with the
better path metric is elected leader. In case of a tie, the robot
with the lower ID is chosen. The path metric is any scalar
value that summarizes the quality of the candidate path. In
this work, we choose to use path length as the metric; the
shortest path is the most desirable. Other possible metrics
include path clearance, path smoothness, etc.

E. Leader Switching

If an agent decides that it has been selected to be the
leader, it will need to move to a designated leader position.In
our implementation, it creates a Rapidly-exploring Random
Tree (RRT) [18] from its current position to a position along
the path between the current waypointwk and the next. Next,
the robot traverses the path provided by the RRT and turns
to face the waypoint. As explained in Section III-F, this step
is necessary to update the formation that the robots assume
in the leader following step.

The leader switching process is outlined in Algorithm 3.
All other robots remain stationary until the leader has suc-
cessfully reached its designated position or notified them of
failure. The leader initially creates the RRT plan without tak-
ing into account any of the other robots’ positions. However,
as each robot is seen for the first time, the leader updates
its list of obstacles to include the new agent. The leader re-
evaluates its RRT before it continues to move along it; if
any point is in collision because of a change to the list of
obstacles, a new RRT is created from the leader’s current
position. At the end of the leader switch, the robots that
were added to the obstacle list are removed. If the leader is
unable to find a path, it notifies the other robots that it has
failed and the algorithm terminates with failure.

Algorithm 3 SwitchLeader
Input: Waypointw

1: repeat
2: g = CreateGoal(w)
3: s = GetCurrentPosition()
4: P = GetRRTPath(s, g)
5: for all p ∈ P do
6: V = GetNewlyV isibleRobots()
7: for all v ∈ V do
8: O = O ∪ AddTempObstacle(v)
9: end for

10: if IsInCollision(p, O) then
11: break
12: else
13: MoveToPoint(p)
14: end if
15: end for
16: until AtGoal(g)
17: RemoveTempObstacles(O)

F. Leader Following

In the leader following step, the leader executes the plan by
following its queried path. All other robots move relative to
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the leader while attempting to maintain visibility to it or one
another. At the start of this step, we maintain the invariant
that thevisibility graph of active robots (i.e., all robots that
have not failed) is connected and at least one robot is at or
near the current waypoint. The nodes of the visibility graph
are robots, and there is an edge between every pair of robots
that can observe one another.

A number of different flocking or formation techniques
could be employed at this stage. We employ a simple leader-
following approach in which robots form a chain that is
headed by the leader. Each robot tracks the one in front of it
(its target) and attempts to visit each position its target does.
This approach has several advantages over other flocking
techniques. Firstly, each robot attempts to follow a path along
the leader’s roadmap, which is known to be valid at least for
the leader. This also means robots need not employ any kind
of obstacle sensor. Moreover, this technique is scalable toa
large number of robots since each robot’s movements depend
only on its observations of the robot in front of it (and are
therefore independent of the number of robots in the chain).
This step ends when the next waypoint is reached.

IV. I MPLEMENTATION

A. Robot Platform

The robot platform we use is an Asus Eee PC netbook
equipped with an on-board webcam and wireless networking
capability, mounted on an iRobot Create (Figure 1) that we
control through the Player robot interface [11].

The camera has a maximum resolution of 640x480 pixels.
The Creates are two-wheel differential drive unicycle robots
with a maximum speed of about0.5m/s and a minimum
speed of about0.1m/s, below which their motion is highly
unreliable. Internal robot odometry information is highly
inaccurate, especially when rotating, and at particular speeds.
To compensate for this, we require accurate observations of
environmental features.

Fig. 1. iRobot Create with mounted Eee PC netbook for webcam
use. Markers placed around the robot are used by neighboringrobots to
determine relative position and orientation

B. Localization and Robot Detection

We rely on frequent localization using visual markers. For
robust marker creation and detection, we utilize the ArUco
marker detection library from the University of Córdoba [20].
Markers are placed along the walls in the environment at
roughly regular intervals. Each marker has a known unique
ID, and known absolute position and orientation in the

environment. Robots localize themselves by calculating their
relative pose to the markers and transforming it into global
coordinates based on the markers’ known positions and
orientations. Markers are also used by robots to detect other
robots’ poses. For this purpose, each Create’s perimeter is
covered with markers whose relative positions to its centroid
are known.

The movement of each robot’s camera relative to both
wall markers and markers on other robots introduces camera
blur, leading to intermittent failures in observations. To
mitigate this, every movement of the robot is accompanied
by a brief period in which the robot is stopped, but still
making observations. Typically, each robot will stop for 0.1s
after every 0.15m of movement. This temporarily minimizes
camera blur, allowing the robot to make observations of both
wall markers and other stopped robots.

C. State Estimation

An Extended Kalman Filter (EKF) is used to estimate the
robot’s state, accounting for uncertainty in both movement
and sensor observations. Motion uncertainty is caused by
uneven tiles on the floor of the environment, slippage of
the wheels, and variations in the length of time controls
are applied. Observation uncertainty results from variations
in the intrinsic parameters of the netbook cameras, latency
between the movement of the robot and the detection of the
next image, and intermittent failures in observation due to
motion blur of the camera.

The intermittent failures in observation described in IV-B
lead to an increase in the covariance of the state estimate
maintained by the EKF. To correct for this, when the co-
variance is sufficiently high, an information gathering phase
is executed. The leader stops, rotates until it can detect a
marker a wall marker, and updates its state estimate using
the EKF until the error covariance is acceptably low before
continuing towards its previous goal.

D. Communication

A number of steps in our proposed algorithm involve
communication, such as the broadcast of path metrics during
leader election. Our algorithm involves a distributed commu-
nication model, i.e., each robot can communicate with any
other robot independently. However, at present the messages
are routed through a central server to which any robot can
connect or disconnect. For simplicity, we do not consider
communication failures in this work.

E. Simulation

In addition to physical robots, we have implemented our
proposed approach in simulation. The particular challenges
we faced with the physical robots informed the design
constraints of our simulation. Significant elements of our
approach such as the leader election method and the flocking
technique were chosen partly because they were compatible
with the idiosyncrasies and limitations of the hardware and
environment available to us. This made our simulation much
better at predicting how changes to our algorithm would
affect the behavior of the physical robots.
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V. EXPERIMENTS

In this section, we describe the experiments we use to
assess the feasibility of our approach. We run a variety ex-
periments, some in simulation and some on physical robots,
to study different aspects of our solution.

A. Experimental Setup

The environment used for testing is the fourth floor of
the Bright (HRBB) Building of Texas A&M’s campus in
College Station, TX. A floorplan can be seen in Figure 2.
The floor spans 40m of hallways 2m wide on average. In the
simulation experiments, a 2D model of this environment is
used. In all experiments, robots are required to visit a set of
waypoints in a prescribed order (all robots start at or near
a waypoint). In order to visit a waypoint, a robot must be
able to query its roadmap for a path to the waypoint from
the previous waypoint. The experiments test the ability of
the robots to cooperate using the caravanning approach in
order to visit every waypoint. A robot is successful if it can
visit all the waypoints and does not collide with obstacles.
The waypoints are known beforehand and common to all the
robots, but do not influence the construction of each robot’s
roadmap.

Fig. 2. HRBB Fourth Floor Floorplan with hallways highlighted blue

B. Success rate metric

The success rate is a measure of the percentage of way-
points a chain of robots manages to successfully visit. There
are numerous possibilities for failure during the course of
the experiment:

• A given Leader Following robot may lose track of its
target.

• A robot may collide with other robots or obstacles in
the environment during the Leader Following stage due
to deviations caused by uncertainty. Both the leader and
the followers are vulnerable to this.

• A newly elected leader may collide with other robots
during the Leader Switching step.

• A newly elected leader may fail to find a path to the
head of the chain.

• All robots may fail to find a valid path during the Leader
Election.

• A robot may stall indefinitely because its target (the
robot it is trying to follow) has failed. This may be in
part due to the prior failure of a robot that knows a valid
path.

It is apparent that these failures are not independent of
one another. During the Leader Following step, the occur-
rence of one failure of a particular robot in the chain may
have consequences for robots behind it. During the Leader
Election step, the prior failure of a robot with a valid path
may have consequences for the whole group. To account
for these nuances, we define success rate as thenumber of
waypoints visitednormalized by themaximum total number
of waypoints that can be visited. Under these terms, in a
fully successful experiment (success rate of 1), the number
of waypoints visited isn × m, wheren is the number of
robots andm is the number of waypoints.

C. Region Decomposition Scenario

In this experiment, which we perform in simulation, we
demonstrate the motivation for considering representation
heterogeneity in multi-agent coordination, as well as qual-
itatively characterizing the behavior of robots while cara-
vanning. ForR robots, we decompose the environment into
M regions and run our caravanning algorithm. Each agent is
assigned to one region, and the roadmap it constructs must
fall entirely within that region.

The decompositions are made such that no robot’s
roadmap can successfully return a path betweeneverypair
of waypoints in the sequence, i.e., there is at least one pair
of waypoints between which a given agent’s roadmap will
fail to return a path. We impose this restriction to force the
robots to cooperate by caravanning. However, we allow some
overlap between regions such that every consecutive pair of
waypoints falls completely within at least one region, i.e.,
for every pair of waypoints, at least one roadmap could be
constructed in a finite time that can be queried for a valid
path between them.

We run a scenario with 12 robots, with the environment
decomposed into 4 overlapping regions. Each region is
assigned to 3 robots. There are 7 waypoints to visit. We
are interested in the rate of success when the robots are
caravanning, i.e., the average proportion of waypoints the
robots successfully visit. We run this scenario for different
roadmap sizes (ranging from 10 to 90 nodes) with different
seeds, taking the average of the success rates.

The results are shown in Figure 3 (with error bars rep-
resenting standard deviation). They show that agents can
caravan effectively as long as each agent has a roadmap
with sufficiently good quality as given by the number of
nodes. The stabilization of the success rate indicates that
other factors limit the success rate once the size of the
roadmap is large enough.

D. Competing Roadmap Scenario

In this experiment, which we perform in simulation, we
consider a scenario in which robots have different roadmaps
of the same environment. We investigate how the properties
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Fig. 3. Effect of roadmap size (number of nodes) on success rate. Error
bars represent standard deviation.

of each agent’s roadmap affect the success rate (the average
percentage of waypoints the agents successfully visit).

We consider 5 scenarios. In the first 4, all agents generate
roadmaps using the same sampling method (MAPRM [29],
Uniform [15], OBPRM [2], and then Gaussian [5]). In the
last scenario, the group of agents uses a mixture of roadmaps:
each sampling method is used by 3 agents. In all cases, each
robot is assigned a unique seed so that no two robots generate
the same roadmap. For each scenario, we take the average
of 10 runs. We compare the success rates of the scenarios in
Figure 4.

Fig. 4. Success rates for roadmaps generated using different sampling
methods. Error bars represent standard deviation.

Our results demonstrate firstly that the success rate de-
pends significantly on the type of roadmap used. Particularly,
using MAPRM sampling leads to by far the highest suc-
cess rate. MAPRM sampling yields roadmaps with higher
clearance, which reduces both the chance of collision and
sharpness of turns that might lead to missed observations
of targets. Secondly, there is a significant benefit to using a
variety of roadmaps. The “Mix” scenario has a higher success
rate than any of the other scenarios except MAPRM. Some
of this benefit probably arises from the ability of a robot
using MAPRM to share its paths with other robots.

E. Physical Robots

We validate our simulation results with experiments on
physical robots. The particular scenario we consider is to
visit 5 waypoints along an L-shaped subsection of the HRBB
environment using 3 robots. We conduct 10 runs with the
physical robots, noting the number of waypoints reached by
each robot, as well as its cause of failure (if any).

Our results are displayed in Table I. Of the 10 runs, 5 were
complete successes, with the whole group reaching the final
waypoint (runs 3, 6-9). In addition, in two of the runs (1, 10),
at least one robot reached the final waypoint. The majority
of failures were due to one of two causes. The first was
a follower losing sight of its target while moving between
waypoints. These were generally due to sharp changes in
the path traversed by the target. The second cause of failure
was collision among the robots during the leader switching
stage, particularly in runs 4 and 5. One reason for this is that
due to observation uncertainty, the robot that is performing
the leader switch obtains wrong estimates of other robots’
positions. Hence the resulting RRT produces a path that is
too close to another robot, leading to collision.

F. Discussion

Our experiments suggest that utilizing data heterogeneity
in cooperative systems such as caravanning yields solutions
to a larger breadth of problems. By decomposing the environ-
ment into nearly-disjoint regions, we can allow for efficient
distributed mapping and exploration of the environment.
By generating different roadmaps of varying topology in
the same region to capture distinct map properties, we can
improve overall path quality and robustness.

Even robot platforms with only an internal representation
of the environment, ability to localize, and simplistic method
of detecting other agents are able to caravan successfully.

VI. CONCLUSION

In this paper, we present themulti-robot caravanning
problemin which a group of agents cooperate to traverse an
ordered sequence of points in an environment as a group. We
propose a solution that requires minimal communication and
works even with robots that have different and/or incomplete
knowledge about their environment. Our approach relies on
a novel use of leader election that allows us to handle
failures in individual robots. We demonstrate our solution
both in simulation and on a physical platform. The results
show that the approach can compensate for incompleteness
in representations and exploit redundancy.

In the future, we plan to study the scalability of our
solution with a larger number of robots, as well as examine
how the ordering of robots affects our ability to exploit
redundancy in environmental representations.
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