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Abstract

Safety in terms of collision avoidance for multi-robot systems is a difficult challenge
under uncertainty, non-determinism and lack of complete information. This paper
aims to propose a collision avoidance method that accounts for both measurement
uncertainty and motion uncertainty. In particular, we propose Probabilistic Safety
Barrier Certificates (PrSBC) using Control Barrier Functions to define the space
of admissible control actions that are probabilistically safe with formally provable
theoretical guarantee. By formulating the chance constrained safety set into deter-
ministic control constraints with PrSBC, the method entails minimally modifying
an existing controller to determine an alternative safe controller via quadratic pro-
gramming constrained to PrSBC constraints. The key advantage of the approach
is that no assumptions about the form of uncertainty are required other than finite
support, also enabling worst-case guarantees. We demonstrate effectiveness of the
approach through experiments on realistic simulation environments.

1 Introduction

Safe control is one of the most important task that needs to be addressed in the realm of large-scale
multi-robot systems. For example, consider the problem of building an automatic collision avoidance
system (ACAS) for aerial robots that would scale up as the autonomous aerial traffic increases. Such
a system needs to be computationally efficient for execution in real-time and robust to various real-
world factors that include uncertainty, non-determinism and approximations made in the formulation
of the system. Measurement uncertainty in the system arises from various estimation or prediction
procedures in real-world that rely on sensory information ( e.g. LIDARS, on-board GPS) being
collected in real-time to get robots state information. On the other hand, non-determinism often arises
from our in-ability to model various exogenous variables that are part of our operating environment,
e.g. phenomena such as wind gusts. Ability to pro-actively deal with such measurement and motion
uncertainty is fundamental in the safety considerations.

In this work, we consider the problem of real-time safe control in terms of reactive collision avoidance
for crowded multi-robot team operating in a realistic environment with their existing task-related
controllers or control policies. Akin to real-world we consider scenarios with both measurement
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uncertainty (e.g. noisy sensing and localization) and motion uncertainty (e.g. disturbances from envi-
ronments and inaccurately modelled dynamics). Many safe control methods that attempt to address
the measurement uncertainty often make restrictive assumptions, such as Gaussian representation
of the uncertainties [9, 19, 26, 34, 35]. Approaches that consider bounded localization or control
disturbance using conservative bounding volumes [8, 10, 13, 17] often overestimate the probability
of collisions.

This paper proposes a novel approach that provides chance-constrained collision-free guarantees for
multi-robot system under measurement and motion uncertainty. At the heart of the method is the
idea of probabilistic safety barrier certificates (PrSBC) that enforces the chance constrained collision
avoidance with deterministic constraints over an existing controller. With PrSBC constraints, the
safety controller can be achieved by minimally modifying the existing controllers in real-time as
done by other control barrier function approaches [4, 28]. This hence formally satisfies the collision-
avoidance chance-constraints while staying as close to the original robot behaviors as possible. Our
work is most closely related to the work on safety barrier certificates (SBC) for multi-robot collision
avoidance [28] using permissive control barrier functions (CBF) [3, 4]. While the prior work focused
on deterministic settings, our goal here is to provide a safety envelope around an existing controller
that accounts for uncertainties and non-determinism in a probabilistic setting. There are several
advantages of the proposed PrSBC. First, in contrast of other probabilistic collision avoidance
approaches that directly constrain the inter-robot distance [30, 34, 35], the proposed method produces
a more permissive set for the controllers with a tighter bound. Second, the PrSBC naturally inherits
the forward invariance from CBF, e.g. robots staying in the collision-free set at all time, and thus
enabling us to prove guarantees throughout the continuous time scale. Finally, it is natural to apply
the chance constrained collision avoidance with PrSBC under both centralized and decentralized
settings to bridge learning based methodologies and model based safety-critical control with provable
safety guarantee. For example, one may use learning techniques such as Gaussian Processes to
learn one or more partially unknown dynamical systems with noisy uncertainties and use our PrSBC
approach to compute certified probablistically safe policies to collect more data for further improving
models. We believe integrating dynamical system learning with our PrSBC framework to guarantee
safe learning to control is an important future direction.

The key underlying assumption in our method is that the uncertainties arising due to sensor measure-
ments, incomplete dynamics and other exogenous variables have finite support. This is a reasonable
assumption for many of the multi-robot scenarios. For example, we can safely assume that true
positions of robots, or the amount of wind gusts etc. are bounded within certain sensor specifica-
tions or physical parameters respectively (e.g. [11]). We use the task similar to automatic collision
avoidance system for aerial robots as a motivating application. Our experiments explore the proposed
computation of PrSBC controller in both centralized and decentralized settings, which can handle
both the uncertainties as well as environmental disturbances while continuously guaranteeing safety.
In summary, the core contributions of this paper are as follows:

1. A novel chance-constrained collision avoidance method with Probabilistic Safety Barrier
Certificates (PrSBC) ensuring provable forward invariance under uncertainties with bounded
support.

2. Formal proof of existence of PrSBC in a closed form.

3. Experimental results on the task similar to automatic collision avoidance for aerial robots
that demonstrate efficiency, scalability and distributed computation.

2 Related Work

Collision avoidance for multi-robot system operating in dynamic environments have been studied for
safety consideration over the years. Reactive methods such as reciprocal velocity obstacles (RVO)
[1, 2, 23, 25], safety barrier certificates (SBC) [6, 27, 28], and buffered Voronoi cells [33] have
been presented to compute on-line multi-robot collision-free motions in a distributed manner. To
account for uncertainties associated to the robot state information and motion model, the deterministic
collision avoidance methods have been extended to probabilistic representations [9, 12] with chance
constraints formulation [30, 34, 35] assuming Gaussian representation of uncertainties in order
to derive close form solution. The concept of velocity obstacles is adopted to develop enlarged
conservative bounding volumes around the robot [8, 10, 13, 17]. It remains challenging when prior
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knowledge of the uncertainty model is not available or it is not necessarily Gaussian, e.g. readings
from an on-board GPS sensor that only have an expected value with an finite support as accuracy.

Another family of reactive collision avoidance approaches is the recent optimization-based safety
control using control barrier function [3, 4, 16, 27, 28, 31]. The safety controller is able to minimally
revise the nominal controller in the context of quadratic programming and ensures the robots remain
in the safety set at all time, leading to a minimally invasive safe control behavior. In [28], the control
barrier function is employed to develop the Safety Barrier Certificates (SBC) for multi-robot systems,
depicting a non-conservative safety envelope for the multi-robot controller from which the robots
stay collision-free at all time. Extensions to higher order nonlinear system dynamics using SBC and
Exponential Control Barrier Function (ECBF) have been introduced in [16, 27, 29]. Very recently,
safe learning using CBF and ECBF for safety consideration are presented in [14, 20, 22, 29] that
learns the motion disturbance or partially known dynamics with perfect localization information. In
this paper, we propose the probabilistic safety barrier certificates (PrSBC) for multi-robot systems
which extends the deterministic SBC [28] to a probabilistic setting to account for both localization
and motion uncertainties of the ego robot and other robots/obstacles. No assumptions about the
uncertainty model are required other than finite support. We discuss in Section 5 that the PrSBC
could handle other uncertainty models as well, and hence is useful for uncertainty-aware safe learning
applications in the future work.

3 Problem Statement

3.1 Robot and obstacle model

Consider a team of N robots moving in a shared d-dimensional workspace. Each robot i ∈ I =
{1, . . . , N} is centered at the position xi ∈ Xi ⊂ R

d and enclosed with a uniform safety radius
Ri ∈ R. The stochastic dynamical system ẋi in control affine form with noise and the noisy
observation x̂i ∈ R

d of each robot i are described as follows.

ẋi = fi(xi,ui) +wi = Fi(xi) +Gi(xi)ui +wi , wi ∼ U(−∆wi,∆wi)

x̂i = xi + vi , vi ∼ U(−∆vi,∆vi)
(1)

where ui ∈ Ui ⊆ R
m denotes the control input. Fi and Gi are locally Lipschitz continuous. The

deterministic system dynamics fi(xi,ui) = Fi(xi) + Gi(xi)ui in control affine form is general
and could describe a large family of nonlinear systems, e.g. 3-dof differential drive vehicles with
unicycle dynamics ([18, 28]), 12-dof quadrotors with underactuated system ([29, 32]), bipedal robots,
automotive vehicle, and Segway robots [4, 22]. wi,vi ∈ R

d are the uniformly distributed process
noise and the measurement noise respectively and considered as continuous independent random
variables with finite support. A uniform distribution is a natural choice for these noise processes,
however, most of our analysis does not require the exact form except that the support is finite. This
finite support can vary at each time-point and come from a perception module, a state estimator or
other physical parameters of the system.

Obstacle Model: Similar to the robots, other static or moving obstacles k ∈ O = {1, . . . ,K} are

also modeled as a rigid sphere located at xk ∈ R
d with the safety radius Rk ∈ R. The measurement

of obstacle location via robot sensor is modeled as x̂k = xk + vk ∈ R
d with bounded uniformly

distributed noise vk ∼ U(−∆vk,∆vk). As commonly assumed in other collision avoidance work
([9, 20, 35]), we consider the piece-wise constant obstacle’ velocity to be detected by the robots as
ûk with a bounded noise, rendering the obstacle dynamics as ẋk = uk = ûk +wk ∈ R

d, wk ∼
U(−∆wk,∆wk). The finite supports of vk,wk are also assumed to be known by the robots.

Denote the joint robot states as x = {x1, . . . ,xN} ∈ X ⊂ R
d×N and the joint obstacle states

as xo = {x1, . . . ,xK} ∈ Xo ∈ R
d×K . For any pair-wise inter-robot or robot-obstacle collision

avoidance between robots i, j ∈ I and obstacles k ∈ O, the safety of x is defined as follows.

hs
i,j(x) = ‖xi − xj‖

2 − (Ri +Rj)
2 , ∀i > j , hs

i,k(x,xo) = ‖xi − xk‖
2 − (Ri +Rk)

2 , ∀i, k (2)

Hs
i,j = {x ∈ R

d×N : hs
i,j(x) ≥ 0} , ∀i > j , Hs

i,k = {x ∈ R
d×N : hs

i,k(x,xo) ≥ 0} , ∀i, k (3)

3.2 Chance-constrained collision avoidance for safety

As the robots only have access to the noisy measurements on the states of the robots and obstacles,
the positions of the robots and obstacles are modeled as random variables with a finite support.
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The collision avoidance constraints can then be considered in a chance-constrained setting for each
pairwise robots i, j and robot-obstacle i, k. Formally, given the minimum admissible probability of
safety σ, σo ∈ [0, 1] predefined by the user, it is required that:

Pr(xi,xj ∈ Hs
i,j) ≥ σ , ∀i > j , Pr(xi,xk ∈ Hs

i,k) ≥ σo , ∀i, k (4)

Pr(·) indicates the probability of an event. Note that when σ, σo are set to 1, the conditions naturally
lead to the worst-case collision avoidance with enlarged bounded volume as discussed in section 5.
Such worst-case guarantees can lead to a conservative behavior, thus often there are advantages in
maintaining a probabilistic safety.

Assume that each robot has a task-related controller u∗

i ∈ R
m. We consider the chance-constrained

collision avoidance as a one-step optimization problem that minimally modifies u∗

i for each robot i,
while satisfying the desired probabilistic safety in (4). Formally we solve the following Quadratic
Program (QP) under the safety constraints:

min
u∈RmN

N∑

i=1

‖ui − u
∗

i ‖
2

subject to (4) and ‖ui‖ ≤ αi, ∀i ∈ {1, . . . , N} (5)

where u ∈ U ⊂ R
mN is the bounded joint control input of all the robots with bounded magnitude

αi, ∀i. Next, we briefly describe the background of Safety Barrier Certificates (SBC) [28]. Section 5
then presents our method of Probabilistic Safety Barrier Certificates (PrSBC) that utilizes control
barrier functions [4] to remap the probabilistic safety set constraints (4) from the state space X ⊂
R

d×N to the control space U ⊂ R
mN .

4 Background: Safety Barrier Certificates (SBC)

In this section we review the formulation of the deterministic safety control constraints. Without loss
of generality, we represent a desired safety set Hs using function hs(x) as:

Hs = {x ∈ R
d×N | hs(x) ≥ 0} (6)

We summarize the conditions on controllers u ∈ U ⊆ R
mN based on Zeroing Control Barrier

Functions (ZCBF) ([3]) and the Safety Barrier Certificates (SBC) ([28]) to guarantee forward
invariance of safety. Formally, a safety condition is forward-invariant if x(t = 0) ∈ Hs implies
x(t) ∈ Hs for all t > 0 with the designed satisfying controller at each time step. The Theorem of
ZCBF and forward invariance from [3, 28] is summarized as the following Lemma.

Lemma 1. Given the dynamical system in equ. (1) without uncertainties, i.e. wi = 0, ∀i ∈ I and
the set Hs defined by equ. (6) for the continuously differentiable function hs : Rd×N → R. The
function hs is a ZCBF and the admissible control space S(x) for each time step can be defined as

S(x) = {u ∈ U | ḣs(x,u) + κ(hs(x)) ≥ 0}, x ∈ X , (7)

where κ is an extended class-K function. Then any Lipschitz continuous controller satisfying
u ∈ S(x) at each time step for the system (1) renders the set Hs forward invariant, i.e. robots stay
collision-free at all times.

As described in ([28]), the extended class-K function κ such as κ(r) = rP with any positive odd
integer P leads to different behaviors of the state of the system approaching the boundary of safety
set Hs in (6). Similar to ([28]), in this paper we use the particular choice of κ(hs(x)) = γhs(x) with
γ > 0. In order to render a larger admissible control space S(x), a very large value of γ >> 0 will
be adopted. Thus the admissible control space in (7) induces the following pairwise constraints over
the controllers, referred as SBC ([28]):

Bs(x) = {u ∈ R
mN : ḣs

i,j(x,u) + γhs
i,j(x) ≥ 0, ∀i > j}

Bo(x,xo) = {u ∈ R
mN : ḣs

i,k(x,xo,u,u
o) + γhs

i,k(x,xo) ≥ 0, ∀i, k}
(8)

where u
o ∈ R

dK is the joint control input of all the obstacles not controllable by the robots.
Here Bs(x),Bo(x,xo) define the SBC for the inter-robot and robot-obstacle collision avoidance
respectively, rendering the safety set Hs forward invariant: the robots will always stay safe, i.e.
satisfying (3) at all times if they are initially collision free and the robots’ joint control input u lies in
the set Bs(x) ∩ Bo(x,xo). One of the useful properties of (8) is that they induce linear constraints
over both the pair-wise control inputs ui and uj (inter-robot) and control input ui (robot-obstacle).
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5 Probabilistic Safety Barrier Certificates

5.1 Probabilistic Safety Barrier Certificates (PrSBC)

We seek a probabilistic version of Lemma 1 that implies the SBC in (8) as a sufficient condition for
the forward invariance of Hs in (6). Given the assumption that each pairwise robots are initially
collision-free, i.e. xi,xj ∈ Hs

i,j at t = 0 and the sufficiency condition in Lemma 1, we have ui,uj ∈
Bs
i,j(x) =⇒ xi,xj ∈ Hs

i,j and ui,uj /∈ Bs
i,j(x) 6=⇒ xi,xj /∈ Hs

i,j . Hence it is straightforward

to show that Pr(ui,uj ∈ Bs
i,j(x)) ≤ Pr(xi,xj ∈ Hs

i,j) and Pr(ui,uk ∈ Bo
i,k(x,xo)) ≤ Pr(xi,xk ∈

Hs
i,k). Consequently, we can derive the following inter-robot and robot-obstacle probabilistic collision

free sufficiency conditions corresponding to equ. (4):

Pr(ui,uj ∈ Bs
i,j(x)) ≥ σ =⇒ Pr(xi,xj ∈ Hs

i,j) ≥ σ, ∀i > j

Pr(ui,uk ∈ Bo
i,k(x,xo)) ≥ σo =⇒ Pr(xi,xk ∈ Hs

i,k) ≥ σo, ∀i, k
(9)

Given these reformulated collision-free chance constraints over controllers, we now formally define
the Probabilistic Safety Barrier Certificates (PrSBC):

Definition 2. Probabilistic Safety Barrier Certificates (PrSBC): Given a confidence level σ ∈ [0, 1],
PrSBC determines the admissible control space Sσ

u at each time-step guaranteeing the chance-
constrained safety condition in equ. (4) and are defined as the intersection of n different half-spaces
where n is the total number of pairwise deterministic inter-robot constraints.

Sσ
u = {u ∈ R

mN | Aσ
iju ≤ bσij , ∀i > j, Aσ ∈ R

n×mN , bσ ∈ R
n} (10)

Here we first introduce the definition and form of PrSBC. The computation of Aσ ∈ R
n×mN , bσ ∈

R
n determined by σ will be given in the latter part of equ. (13) and (14) for inter-robot and robot-

obstacle collision avoidance. The PrSBC hence characterizes the admissible safe control space for
the multi-robot team with probabilistic safety guarantee.

Theorem 3. Existence of PrSBC: Assuming all pairwise robots are initially collision-free at t = 0,
i.e. equ. (2) holds true for all possible value of random state variables xi ∈ [x̂i−∆vi, x̂i+∆vi], ∀i ∈
I , then the PrSBC defined in equ. (10) is guaranteed to exist for any given confidence level σ ∈ [0, 1].

Proof. The detailed proof is provided in the Appendix. The basic idea is to start by proving the
existence of PrSBC between each pairwise robots i and j under any user-defined confidence level

σ ∈ [0, 1]. Consider ḣs
i,j(x,u) =

∂hs
i,j

∂x
(x)(∆Fi,j(x) + Gi,j(x)ui,j + ∆wi,j) with ∆Fi,j(x) =

Fi(xi)− Fj(xj), Gi,j(x)ui,j = Gi(xi)ui −Gj(xj)uj , and ∆wi,j = wi −wj . We can re-write
the sufficiency condition Pr(ui,uj ∈ Bs

i,j(x)) ≥ σ in (9) using (8) as follows:

Pr(ui,uj ∈ Bs
i,j(x)) ≥ σ :

⇐⇒ Pr

(

∂hs
i,j

∂x
(x)Gi,j(x)ui,j ≥ −γhs

i,j(x)−
∂hs

i,j

∂x
(x)

(

∆Fi,j(x) + ∆wi,j

)

)

≥ σ (11)

This is a chance constraint over pairwise controller ui,uj . Note that x = x̂− v ∈ R
d×N is random

variable with finite support and x̂,v ∈ R
d×N are the joint observation and joint measurement

noise respectively. Since it is assumed all pairwise robots are initially collision-free at current
time step t = 0 and the robot locations are noisy but bounded with finite support, via Bayesian
decomposition we are able to prove there always exists a solution of pairwise ui,uj rendering
Pr(ui,uj ∈ Bs

i,j(x)) = σ in (11) and the non-empty admissible control space about ui,uj for

Pr(ui,uj ∈ Bs
i,j(x)) ≥ σ. It is then straightforward to extend to all pairwise inter-robot collision

avoidance constraints and thus concludes the proof.

Computation of PrSBC: Lets consider inter-robot collision avoidance first. Given any confidence
level σ ∈ [0, 1], the equivalent chance constraint of Pr(ui,uj ∈ Bs

i,j(x)) ≥ σ in (11) can be
transformed into a deterministic linear constraint over pairwise controllers ui,uj in the form of
(10). We obtain an approximate solution by considering the condition on each individual dimension

∀l = 1, . . . , d. To simplify the discussion, we assume σ > 0.5 and denote el,1i,j = Φ−1(σ) and

el,2i,j = Φ−1(1− σ) with Φ−1(·) as the inverse cumulative distribution function (CDF) of the random
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variable ∆x
l
i,j = x

l
i − x

l
j in the lth dimension. We have σ > 0.5 =⇒ el,1i,j > el,2i,j . Thus,

the sufficient condition for (11) formally becomes the following deterministic constraint (detailed
deduction is provided in the Appendix):

∃l = 1, . . . , d : −2el
i,j(Giui −Gjuj)l/γ ≤ (el

i,j)
2 −R2

ij +Bl
ij + 2el

i,j∆F l
i,j/γ (12)

where Rij = Ri + Rj and Bl
ij is a constant determined by finite support of wi,wj ,∆xi,j at

the lth dimension. To simplify the discussion we assume piece-wise Gi, Gj ∈ R
d×m, Fi, Fj ∈

R
d×1 in (1) are known and deterministic. (Giui − Gjuj)l,∆F l

i,j ∈ R denote the lth element

of (Giui − Gjuj) ∈ R
d×1 and ∆Fi,j = Fi − Fj ∈ R

d×1 respectively. Also, we have e
l
i,j =

el,2i,j if el,2i,j > 0, or el,1i,j if el,1i,j < 0, or 0 if el,2i,j ≤ 0 and el,1i,j ≥ 0. Note that eli,j = 0 implies the two

robots i and j overlap along the lth dimension, e.g. two drones flying to the same 2D locations but
with different altitudes. As it is assumed any pairwise robots are initially collision free and from the
forward invariance property discussed above, eli,j = 0 only happens along at most d− 1 dimensions.
To that end, we can formally construct the PrSBC in (10) with the following linear deterministic
constraints in closed form.

Sσ
u = {u ∈ R

mN | − 2eT
i,j(Giui −Gjuj)/γ ≤ ||ei,j ||

2 − d ·R2

ij +Bij + 2eT
i,j∆Fi,j/γ, ∀i > j} (13)

where ei,j = [e1i,j , . . . , e
d
i,j ]

T ∈ R
d×1 and Bij = Σd

l=1
Bl

ij . This invokes a set of pairwise linear
constraints over the robot controllers such that the inter-robot probabilistic collision avoidance in (4)
holds true at all times. Note the PrSBC constraint in (13) is a conservative approximation of (12) and
therefore guarantee Pr(ui,uj ∈ Bs

i,j(x)) ≥ σ. Please see the detailed discussion in the Appendix.

Remark 1. For other forms of distribution than uniform but with finite support for the noise models,

the only change is the computation of inverse CDF to specify different el,1i,j , e
l,2
i,j and the rest of the

derivations of PrSBC still holds and ensure chance-constrained safety. For Gaussian distribution
with infinite support, we can still compute a finite support based on the corresponding inverse CDF
from σ for ∆xi,j at each dimension.

Proposition 4. PrSBC for Robot-Obstacle Collision Avoidance: Consider the dynamic obstacle
model described in Section. 3.1 and PrSBC for pairwise robots in (13), the PrSBC for robot-obstacle
collision avoidance with a given confidence level σo ∈ [0, 1] can be defined as follows.

Sσo
u = {u ∈ R

mN | − 2e′T
i,kGiui/γ ≤ −2e′T

i,kûk/γ + ||e′

i,k||
2 − d ·R2

ik +Bik + 2e′T
i,kFi/γ, ∀i, k} (14)

where the intermediate variables of e′i,k, Bik are computed the same way as for inter-robot case (13).

Proposition 5. PrSBC in (13) can be considered as a generalized SBC when the dynamics model in
(1) is deterministic and without any uncertainty, i.e. w,v = 0. In this case, we have ei,j = ∆xi,j =
∆x̂i,j = x̂i − x̂j and Bij = 0 in (13), and then it degenerates to the constraint in (8) same as SBC
([28]).

Proposition 6. Worst-case Collision Avoidance: when confidence level is set to be σ = 1, the
PrSBC in (13) hence leads to the worst-case driven collision avoidance with ei,j specified by the
boundary of finite support of ∆xi,j , yielding most conservative motions of u for all of the robots.

5.2 Optimization-based Controllers with Probabilistic Safety Barrier Certificates

The constrained control space specified by PrSBC in (13) and (14) ensures the forward invariance of
probabilistic safety in (9). Hence, we can reformulate the original QP problem in (5) with the PrSBC
constraints as follows to obtain the probabilistic safety controller.

u = argmin
u∈RmN

N
∑

i=1

‖ui − u
∗

i ‖
2

subject to u ∈ Sσ
u

⋂

Sσo
u
, ‖ui‖ ≤ αi, ∀i = 1, . . . , N (15)

Note that PrSBC constraints invoke a set of linear constraints over controllers and hence the proba-
bilistic safety controller (15) can be solved in real-time with guaranteed probability of safety. The
resulting safe controller per time step ensures for all t ∈ [0, τ ], u ∈ Sσ

u

⋂

Sσo
u

, then our approach
guarantees chance constrained safety along the entire time horizon [0, τ ].

Remark 2. (Probability of collision for the full trajectory) Denoting nt as the total number of
time steps during execution, the probability of collision avoidance between robot i, j for the whole
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trajectory is lower bounded as Pr
(

nt
⋂

t=1

(xt
i,x

t
j ∈ Hs

i,j(t))
)

=
∏nt

t=1
Pr(xt

i,x
t
j ∈ Hs

i,j(t)) ≥ σnt .

Here we assume the probability of collision avoidance at each time step is independent for practical

purposes as done in [24, 35]. In theory, by selecting σ = exp( lnσall

nt
) one could achieve a lower

bounded joint collision free threshold of σall for the full trajectory. However, it could be over-
conservative in the long run, and hence we use step-wise threshold to construct local collision
constraints. An alternative is to impose discounting factor β < 1 so that the penalty of future
violation probabilities is relaxed, i.e. step-wise threshold σ renders the same bounded joint threshold
for the whole trajectory

∑nt

t=1
(β)tPr(xt

i,x
t
j ∈ Hs

i,j(t)) ≥ σ if given discounting factor β > 0.5 (see
[35]).

5.3 Decentralized Probabilistic Safety Controller

While the controller (15) is centralized, we can also derive a decentralized version of the PrSBC and
the controllers. The mechanism is similar to [28] which was originally applied to deterministic SBC.

Consider the PrSBC in equ. (13) and denote bσij = ||ei,j ||
2 − d ·R2

ij +Bij + 2eTi,j∆Fi,j/γ. We can
separate the linear pairwise PrSBC constraint between robot i and j in the following two inequalities:

−2eT
i,jGi/γ · ui ≤ pij/(pij + pji) · b

σ
ij , 2eT

i,jGj/γ · uj ≤ pji/(pij + pji) · b
σ
ij . (16)

Here pij , pji ∈ [0, 1] represents the responsibility that each of the two robot takes regarding satisfying
this pairwise probabilistic safety constraint. The knowledge of pij , pji can be either predefined and
assumed known by all robots, in which case each robot does not need to communicate and simply
avoid collision in a reciprocal manner, or can be communicated locally between pairwise robots in a
more cooperative manner. Note that equ. (16) is a sufficient condition of equ. (13) and hence still
guarantees the required probabilistic safety.

With such decentralized constraints, we have the decentralized probabilistic safety controller:

ui = argmin
ui∈Rm

‖ui − u
∗

i ‖
2

subject to ui ∈ Sσ
ui

⋂
Sσo
ui

, ‖ui‖ ≤ αi (17)

with Sσ
ui

= {ui ∈ R
m| − 2eTi,jGi/γ · ui ≤ pij/(pij + pji) · b

σ
ij , ∀j ∈ Ni} and Sσo

ui
= {ui ∈

R
m| − 2e′Ti,kGiui/γ ≤ −2e′Ti,kûk/γ + ||e′i,k||

2 −R2

ik +Bik +2e′Ti,kFi/γ, ∀k ∈ K}. Ni denotes the

set of neighboring robots around robot i.

This decentralized PrSBC controller does not require centralized optimization process as for (15),
but may thus lead to more conservative motion of robots or infeasible solution in extreme cases. In
this case the robots will simply decelerate to zero velocities to ensure safety, which may cause the
deadlock preventing the robots from achieving the goals. Some deconfliction policies for deterministic
SBC can thereby be employed as in [7]. Readers are referred to [7] for detailed solutions.

6 Experimental Evaluation and Results

Simulation Example: Fig. 1 demonstrates the first set of simulations performed on a team of
N = 6 mobile robots with unicycle dynamics using our PrSBC from (15) and the comparing
deterministic SBC from [28], with both in centralized setting. We employ nonlinear inversion
method ([18]) to map the desired velocity to the unicycle dynamics of mobile robots without
compromising the safety guarantee. In this example, all of the robots use the gradient based controller
u
∗

i = −Kp(xi − xi,goal) as the nominal control input to swap their positions with the robot on the
opposite side, e.g. robot 1 with 2, 3 with 4, and 5 with 6 shown in Fig. 1a. Locations indexed in red
are the goal positions for the corresponding robots. The robot safety radius is set to be Ri = 0.2m
and has bounded uniformly distributed localization error denoted by the red error box accounting
for the safety radius. At each time step, every robot only has access to the noisy measurement
marked by dashed black circle covering each robot. Maximum velocity limit is 0.1m/sec for the
robots and robots motion is disturbed by randomly generated bounded noise with magnitude up to
0.07m/sec. The inter-robot collision-free confidence level σ set to be 0.9. Code is available online at
https://github.com/wenhaol/PrSBC.

As SBC [28] is designed for a deterministic system, here it takes the noisy measurement of the robots
directly as the robot states to compose the SBC for collision avoidance controller. We observe from
Fig. 1f that collisions occur (robot 1 and 5) due to uncertainty in measured robot states as well as the
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(a) Time Step = 234
(PrSBC)

(b) Time Step = 675
(PrSBC)

(c) Time Step = 2037
(PrSBC)

(d) Minimum true inter-
robot distance

(e) Time Step = 234
(SBC)

(f) Time Step = 669
(SBC)

(g) Time Step = 2015
(SBC)

(h) Minimum inter-robot
probabilistic safety

Figure 1: Simulation example of 6 robots swapping positions with collision-free confidence level σ = 0.9.

(a) Time Step = 169 (b) Final Configurations (c) Minimum inter-robot
distance

(d) Minimum probabilistic
safety

Figure 2: Decentralized PrSBC with 7 robots. Robots 6 and 7 marked in black serve as passive moving obstacles
without interaction to other robots.

motion disturbances. While with our PrSBC controller in (15), robots safely navigate through the
work space (Fig. 1d) (but not too conservatively as it still allows interaction between bounding error
box shown in Fig. 1b for probabilistic safety). In particular, results in Fig. 1h indicates our PrSBC
method successfully ensures the satisfying probabilistic safety (σ = 0.9). This is computed by the
minimum ratio between non-overlapping area and the area within robot’s red bounding error box.

Scenario with Dynamic Obstacles: To account for dynamic obstacles, we add robot 7 to the
previous scenario and make robot 6 and 7 serve as the non-cooperating passive moving obstacles.
Fig. 2 highlights our observations from this experiment. We assume robots can identify them as
obstacles instead of cooperating robots. With the same set-up except for the two obstacles, we
demonstrate the performance of our controller based on decentralized PrSBC in (17) and set the
inter-robot, robot-obstacle collision-free confidence σ = σo = 0.8 to encourage more flexible
motion. In the decentralized settings, robots are set to assume equal responsibility in collision
avoidance, i.e. pij = pji = 0.5 in (16) for each robot, and thus no communication is needed between
robots. Results in Fig. 2c and 2d indicate the inter-robots and robot-obstacle are collision free
and with a satisfying probabilistic safety close to σ = 0.8 (thus not overly conservative). From
Fig. 2b it is noted that robot 5 with light blue trajectory took a large detour before reaching the
goal position. This is caused by the non-cooperating obstacle robot 6 and 7 in the way, where the
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(a) Drones forming "M" (b) Minimum inter-robot distance (c) Average Computation Time

Figure 4: AirSim [21] experiment snapshot with 11 drones using our PrSBC for collision avoidance.

PrSBC for obstacles (14) forces the robot 5 to obey the more restrictive constraints to adapt to
the momentum in order to guarantee the satisfying probabilistic collision avoidance performance.

(a) Minimum inter-robot distance(b) Minimum probabilistic safety

Figure 3: Quantitative results summary of PrSBC from 50 random
trials.

Quantitative Results: We performed
50 random trials with different num-
ber of robots under a required confi-
dence σ = 0.9 to validate the effec-
tiveness of our decentralized PrSBC
controller in presence of random mea-
surement and motion noise. Fig. 3a
and 3b shows that the robots are al-
ways safe and satisfy the probabilistic
safety guarantee using PrSBC.

Experimental Results: Finally, as
shown in Fig. 4, we carried out ex-
periments with 11 simulated drones
in AirSim [21], an open-source near-
realistic simulation environment. The dynamics model of a quadrotor is a 12 dimensional under-
actuated system [19, 29] and given its differential flatness property, vector-field based controller
[32] could be employed to map the input velocity command to the quadrotor dynamics without
compromising safety guarantee. The primary task for the drones is to sequentially form the letters of
M-S-F-T while avoiding collisions with each other with the minimum probability of 0.9. Each of
the drones has the pre-defined target position in the letter formation and they execute the gradient
based controller to move towards it. The safety radius between pairwise drones is 1m and the state
estimation noise is between [−0.2m, 0.2m]. We then employ our PrSBC controller to compute the
linear velocity for each drone and feed it to the vector-based drone controller in the simulator. During
the task, no collisions are observed as shown in Fig. 4b. The simulations are on personal laptop with
Intel Core i7-8750H CPU of 2.20 GHz. The average computation time per robot is below 2ms as
reported in Fig. 4c, demonstrating the efficiency of our PrSBC in real-time computation. Readers are
encouraged to look to details of the experiments in the Video attachments.

7 Conclusions and Future Work

We presented a probabilistic approach to address chance constrained collision avoidance for a system
of multiple robots in real-world settings. We address the complexities that arise due to uncertainty
in perception and incompleteness in modeling the underlying dynamics of the system. The key
idea is to induce probabilistic constraints via safety barriers, which are then used to minimally
modify an existing controller via a constrained quadratic program. We formally define Probabilisitc
Safety Barrier Certificates that guarantee forward-invariance in time continuously and also can be
decomposed so as to enable de-centralized computation of the safe controllers. Future work entails
extensions to model-free controllers trained via Reinforcement Learning and implementation to solve
real-world tasks, such as Automatic Collision Avoidance System for manned and unmanned aircraft.
We plan to employ variants of CBF such as ECBF [16] to explicitly handle higher order dynamics.
On the other hand, extending the expressivity of the PrSBC formulation with different forms of the
safe set hs(x) to address other uncertainty-aware safety consideration beyond collision avoidance is
also an important future direction, e.g. limiting the number of drones within a volume, and adapting
to temporal safety tasks using signal temporal logic (STL) formulations [15].
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Broader Impact

The objective of this work is to provide an explicit safety design for multi-robot systems in terms
of collision avoidance that could guarantee probabilistic safety in real-world applications under
uncertainty. This is a critical component towards AI and robotics safety [5] when we envision a
future with significant increase on AI and multi-robot deployments to our society. As pointed out
in [5], while we have seen successful efforts in the aircraft collision avoidance system, the same
verification tools are often unable to be directly applied to modern autonomous system powered by
AI and machine learning under uncertainty, e.g. autonomous drone fleets. And yet this technique is
in high demands considering its wide applications that are rapidly growing at scale. The ultimate
goal of this work is to develop such a model-based, formally provable automatic collision avoidance
system (ACAS) for autonomous aerial robots that work with various uncertainty models developed
by perception modules, AI and machine learning technologies, and to enable runtime verification
and mitigation so that the executed control policies are safe at all times. An intuitive example is
to consider the transfer of a control policy trained in a simulator to the real-world deployment. In
this case, it is desired to have an unbiased barrier wrapped around the policy so that the safety is
always ensured in the first place, which is the exact purpose of our proposed probabilistic safety
barrier certificates (PrSBC) constraints. We believe our work will lead to fruitful results on safety
improvements for both civil applications and academic research. On the other hand, as critical as the
safety itself, the consequence of failure of such safety system could also be catastrophic in nature.
For example, very inaccurate robot dynamics model and super inferior sensing information from the
environments could cast immense threats to the safety design. We strive to minimize these factors
by always accounting for uncertainty, properly leveraging conservativeness and absolute safety, and
including worst-case analysis to increase the robustness of our design.
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