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Abstract

This paper examines the tradeoffs between different
classes of sensing strategy and motion control strat-
eqy in the context of terrain mapping with multiple
robots. We consider a larger group of robots that can
mutually estimate one another’s position (in 2D or
3D) and uncertainty using a sample-based (particle
filter) model of uncertainty. Our prior work has dealt
with a pair of robots that estimate one another’s po-
sition using visual tracking and coordinated motion.
Here we extend these results and consider a richer
set of sensing and motion options. In particular, we
focus on issues related to confidence estimation for
groups of more than two robots .

1 Introduction

In this paper we discuss the benefits different sens-
ing modalities for cooperative localization by a team
of mobile robots. The term cooperative localization
describes the technique whereby the members of a
team of robots estimate one another’s positions [13].
This time of multi-robot exploration strategy is able
to compensate for deficiencies in odometry and/or a
pose sensor by combining measurements. Herewith
we look at how the expressive power of the sensor
relates to the quality of the final pose estimates pro-
duced by collaborative exploration. A key aspect
of collaborative exploration is the use of a sensor
(robot tracker) to estimate the pose of a moving robot
relative to one or more stationary ones (see section
1.1). Furthermore, we consider the effects of different
robot tracker sensors on the accuracy of localization
for a moving robot using only the information from
the rest of the robots (as opposed to observations of
the environment). This approach results in an open
loop estimate (with respect to the entire team) of the
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moving robot’s pose without dependence on informa-
tion from the environment. The experimental results
allow us to examine the effectiveness of cooperative
localization and estimate upper bounds on the error
accumulation for different sensing modalities. To the
extent that limited space permits, we also discuss the
advantage of using randomized formation control to
move the robots.

Figure 1: Two robots, one equipped with laser range
finder (right) and the other with a target (left), em-
ploying cooperative localization.

1.1 Cooperative Localization

Several different sensors have been employed for the
estimation of the pose of one robot with respect to
another robot. We restrict our attention to “robot
tracker” sensors which return information in the
frame of reference of the observing robot (i.e they
estimate pose parameters of one robot relative to an-
other robot making the observation). Consequently,
for “two-dimensional robots” in a two dimensional
environment, or for robots whose pose can be ap-
proximated as a combination of 2D position and an
orientation, we can express the pose using three mea-
surements; for ease of reference we represent these
measurements by the triplet T = [p ¢ 6], where p
is the distance between the two robots, ¢ is the an-
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Figure 2: Pose Estimation via Robot Tracker: Ob-
servation of the Moving Robot by the Stationary
Robot. Note that the “camera” indicates the robot
with the Robot Tracker; and éw,dgw are angles in
world coordinates.

gle at which the observing robot sees the observed
robot relative to the heading of the observing robot,
and 6 is the heading of the observed robot as mea-
sured by the observing robot relative to the heading
of the observing robot (Figure 1b). If the station-
ary robot is equipped with the Robot Tracker, where
X = [Zm, Ym, Om]T is the pose of the moving robot
and X, = [zs,¥s,05)7 is the pose of the stationary
robot then Equation 1 returns the sensor output 7"

p v/ dz? + dy?
0| = atan2(dy, dx) — 04 (1)
) atan2(—dy, —dz) — 0.,

where dr = x,, — x5 and dy = Y, — Ys-

In pose estimation problems such as uncertainty
management can be challenging. In order to esti-
mate the probability distribution function (pdf) of
the pose of the moving robot i at time ¢ (P(X!)) we
employ a particle filter (Monte Carlo simulation ap-
proach: see [7, 3, 11]). The weights of the particles
(W}) at time ¢ are updated using a Gaussian distri-
bution (see Equation 2 where [p;,0;, #;]7 has been
calculated as in Equation 1 but using the pose of a
single particle “i” (X,,,) instead of the moving robot
pose (X;,))-
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The rest of the paper is structured as follows. The
next Section 2 presents some background work. Sec-
tion 3 contains an analysis and experimental study of

the primary different classes of sensory information
that can be naturally used in cooperative localiza-
tion.  Finally, Section 5 presents our conclusions
and a brief discussion of future work.

2 Previous Work

Prior work on multiple robots has considered collab-
orative strategies when the lack of landmarks made
localization impossible otherwise ([4]). A number
of authors have considered pragmatic multi-robot
map-making. Several existing approaches operate
in the sonar domain, where it is relatively straight-
forward to transform observations from a given po-
sition to the frame of reference of the other ob-
servers thereby exploiting structural relationships in
the data ([10, 5, 1]).  One approach to the fusion
of such data is through the use of Kalman Filtering
and its extensions ([15, 14]).

In other work, Rekleitis, Dudek and Milios have
demonstrated the utility of introducing a second
robot to aid in the tracking of the exploratory robot’s
position ([12]) and introduced the concept of coop-
erative localization.

Recently, several authors have considered using a
team of mobile robots in order to localize using each
other. A variety of alternative sensors has been con-
sidered. For example, [8] use robots equipped with
omnidirectional vision cameras in order to identify
and localize each other. In contrast, [2] use a pair
of robots, one equipped with an active stereo vision
and one with active lighting to localize. The vari-
ous methods employed for localization use different
sensors with different levels of accuracy; some are
able to estimate accurately the distance between the
robots, others the orientation (azimuth) of the ob-
served robot relative to the observing robot and some
are able to estimate even the orientation of the ob-
served robot.

3 Sensing Modalities

As noted above, several simple sensing configurations
for a robot tracker are available. For example, simple
schemes using a camera allow one robot to observe
the other and provide different kinds of positional
constraints such as the distance between two robots
and the relative orientations.

In this section we consider the effect the group size
has on the accuracy of the localization for different
classes of sensors. The experimental arrangement
of the robots is simulated and is consistent across
all the sensing configurations. The robots start in
a single line and they move abreast one at a time,
first in ascending order and then in descending order
for a set number of exchanges. The selected robot
moves for 5 steps and after each step cooperative



localization is employed and the pose of the moving
robot is estimated. Each step is a forward translation
by 100cm. Figure 3 presents a group of three robots,
after the first robot has finished the five steps and
the second robot performs the fifth step.
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Figure 3: Estimation of the pose of robot R2 using
only the distance from robot R1 (d1) and from robot
R3 (d3).

One simple sensing method is to return the relative
distance between the robots. Such a method has
been employed by [6] in the millibots project where
an ultra-sound wave was used in order to recover the
relative distance. In order to recover the position of
one moving robot in the frame of reference of an-
other, at least two stationary robots (that are not
collinear with the moving one) are needed thus the
minimum size of the group using this scheme is three
robots.
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Figure 4: Average error in position estimation us-
ing the distance between the robots only (3,4 and 10
robots; bars indicate standard deviation).

The distance between two robots can be easily and
robustly estimated. In experimental simulations,
the distance between every pair of robots was es-
timated and Gaussian, zero mean, noise was added
with o, = 2cm regardless the distance between the
two robots. Figure 4 presents the mean error per
unit distance traveled for all robots, averaged over

20 trials. As can be seen in Figure 4 with five
robots, the positional accuracy is acceptable with an
error of 20cm after 40m traveled; for ten robots the
accuracy of the localization is very good.

3.2 Azimuth (Angle) Only
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Figure 5: Average error in position estimation us-
ing the orientation of the mowving robot is seen by the
stationary ones.

Several robotic systems employ an omnidirectional
vision sensor that reports the angle at which another
robot is seen. This is also consistent with informa-
tion available from several types of observing systems
based on pan-tilt units. In such cases the orientation
at which the moving robot is seen can be recovered
with high accuracy. We performed a series of trials
using only the angle at which one robot is observed,
with groups of robots of different sizes. As can be
seen in Figure 5 the accuracy of the localization does
not improve as the group size increases. This is not
surprising because small errors in the estimated ori-
entation of the stationary robots scale non-linearly
with the distance. Thus after a few exchanges the
error in the pose estimation is dominated by the er-
ror in the orientation of the stationary robots.

To illustrate the implementation of the particle fil-
ter, we present here the probability distribution func-
tion (pdf) of the pose of the moving robot after one
step (see Figure 6). The robot group size is three
and it is the middle robot R2 that moves. The pre-
dicted pdf after a forward step can be seen in the first
sub-figure (6a) using odometry information only; the
next two sub-figures (6b,6¢) present the pdf updated
using the orientation at which the moving robot is
seen by a stationary one (first by robot R1 then by
robot R3); finally, the sub-figure 6d presents the final
pdf which combines the information from odometry
and the observations from the two stationary robots.
Clearly the uncertainty of the robot’s position is re-
duced with additional observations.

3.3 Position Only
Another common approach is to use the position

of one robot computed in the frame of reference of
another (relative position). This scheme has been



Figure 6: The pdf of the moving robot (R2) at different phases of its estimation: (a) prediction using odometry
only; (b) using the orientation from stationary robot R1; (c) using the orientation from stationary robot R3;

(d) final pdf.
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Figure 7: Average error in position estimation using both the distance between the robots and the orientation
the moving robot is seen by the stationary ones. (a) Average error in positioning of the team of robots one
trial (8,5 and 10 robots). (b) Average error in position estimation over twenty trials (3,5,10 and 40 robots).



employed with two robots (see [1]) in order to re-
duce the uncertainty. The range and azimuth infor-
mation ([p, 6]) is combined in order to improve the
pose estimation. As can be seen in Figure 7a even
with three robots the error in pose estimation is rel-
atively small (average error 30cm for 40m distance
traveled per robot, or 0.75%). In our experiments
the distance between the two robots was estimated
and, as above, zero-mean Gaussian noise was added
both to distance and to orientation with o, = 2cm
and gg = 0.5° respectively. The experiment was re-
peated twenty times and the average error in posi-
tion is shown in Figure 7b for groups of robots of size
3,5,10 and 40.

3.4 Full Pose

Mean Error in Position Estimation (Full Pose)
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Figure 8: Average error in position estimation us-
ing full pose [p,0,d].

Some robot tracker sensors provide accurate informa-
tion for all three parameters [p, 0, ¢] and they can be
used to accurately estimate the full pose of the mov-
ing robots (see [9, 13]). In the experimental setup
the robot tracker sensor was characterized by Gaus-
sian, zero mean, noise with ¢ = [2¢m,0.5°,1°]. By
using the full Equation 2 we weighted the pdf of the
pose of the moving robot and performed a series of
experiments for 3, 5 and 10 robots. As can be seen in
Figure 8 the positional accuracy is consistently lower
than in the case of range only, orientation only and
position only measurements.

In addition, experiments were conducted for larger
group sizes and for longer distances traveled. Figure
9 presents the mean error over thirty experiments
for 3,5,10,15,20 and 30 robots. The mean positional
error was calculated as a function of the group size
in order to examine the contribution of each addi-
tional robot to localization. Two different functions
were used in order to model the error with respect
to the group size (N) (a) E,(N) = aN? + v and (b)
E(N) = aePN + 4. Using cross-validation 2 &,(N)

2The two functions were fitted for robot group sizes of 3-
10,15,20 and 30 (11 group sizes in total), each time omitting
one group size and then calculating the difference between the
observed error value and the function response.

Error in Positioning for different number of robots
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Figure 9: Average error in position estimation us-
ing full pose [p,0, @] for different number of robots.

was selected because it had smaller mean squared
error. For a fixed distance traveled (50m) the er-
ror function is given in Equation 3. As expected
the incremental benefit of each additional robot is a
function decreasing asymptotically to zero.

E4(N) = 126.866 N 0948 (3)

4 Trajectory variation

In this section we outline results regarding the effects
of formation control on the accuracy of collaborative
exploration — that is, the way the motion pattern of
the robots relates to pose errors. In prior work we
have considered the geometric optimization of the
trajectory of a pair of robots to minimize the effort
in covering space, and then estimated the net pose
error that accrues.

An alternative viewpoint is to consider the optimiza-
tion of the robot formation (that is the combination
of robot positions) to minimize the accrued pose er-
ror. This can be achieved by describing the motion
control problem as a variation problem. Unfortu-
nately, an analytical treatment of this problem is
both outside the scope of this paper and of limited
utility. Instead, we present here a dichotomy be-
tween two different classes of formation: the fixed
deterministic robot formation described earlier, and
a randomized variant of the fixed formation where
each robot moves forward according to a stochas-
tic schedule and each robot steps forward by a ran-
dom step (steprang) following a Gaussian distribu-
tion with mean equal to the individual steps of
the deterministic algorithm (stepger) and standard
deviation equal to 10% to the distance traveled:
steprand = N(Stepdetv 0‘18t6pdet)~

In 14 simulated trials with 6 robots we have observed
mean errors in pose were substantially reduced with
randomized formations where the variance of the in-
dividual steps was 1/3 the average step size. These
results are illustrated in Figure 10. We believe that
this improvement in performance results from the
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Figure 10: Average error in position estimation us-
ing full pose [p,0,¢] over 16 trials. Two different
motion strategies of 6 robots. Dashed line: robots
move in ascending order. Solid line: robots move in
random order.

more varies arrangements of the robots when pose
estimates are taken. Pose estimation is subject to
several geometric degeneracies that can lead to error
and by using a randomized motion strategy is appear
that these degeneracies are efficiently avoided.

5 Conclusions

In this work we examined the effect of the size of the
team of robots and the sensing paradigm on cooper-
ative localization (see Table 1 for a synopsis). Also,
preliminary results from experiments with varying
odometry error have shown that cooperative local-
ization is robust even with 10-20% odometry errors.
The cost-benefit tradeoff seems to be maximized for
small teams of robots. While these results are not
definitive, being based on several domain-specific as-
sumptions, they seem to illustrate a general relation-
ship.

In addition, it appears that a randomized motion
strategy can outperform a deterministic one. For
small teams of robot it seems likely that there are
even better purely deterministic strategies, although
computing these may become complicated as the
team-size grows. While this bears further exami-
nation it seems likely that for teams of more than
two or three robots randomized formation control
may provide an appealing alternative to determin-
istic methods. In future work we hope to further

| Number of Robots | 3 ‘ 5 ‘ 10 ‘
Range (p) 38.80 | 21.63 | 8.13
Azimuth (6) 27.06 | 32.20 | 33.72
Position (p, 6) 34.25 | 21.79 | 7.50
Full Pose (p, 6, ¢) 28.73 | 16.71 | 6.05

Table 1: The mean error in position estimation af-
ter 40m travel over 20 trials.

extend the uncertainty study for different group con-
figurations and motion strategies. An interesting ex-

tension would be for the robots to autonomously de-
velop a collaborative strategy to improve the accu-
racy of localization. Given a large group of robots,
an estimate of the effects of team size on error ac-
cumulation would allow the group of be effectively
partitioned to accomplish sub-tasks while retaining

a desired level of accuracy in positioning.
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