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Abstract

We present a constrained optimization method for multi-robot formation control in dynamic environments, where the

robots adjust the parameters of the formation, such as size and three-dimensional orientation, to avoid collisions with

static and moving obstacles, and to make progress towards their goal. We describe two variants of the algorithm, one for

local motion planning and one for global path planning. The local planner first computes a large obstacle-free convex

region in a neighborhood of the robots, embedded in position-time space. Then, the parameters of the formation are

optimized therein by solving a constrained optimization, via sequential convex programming. The robots navigate towards

the optimized formation with individual controllers that account for their dynamics. The idea is extended to global path

planning by sampling convex regions in free position space and connecting them if a transition in formation is possible

- computed via the constrained optimization. The path of lowest cost to the goal is then found via graph search. The

method applies to ground and aerial vehicles navigating in two- and three-dimensional environments among static and

dynamic obstacles, allows for reconfiguration, and is efficient and scalable with the number of robots. In particular, we

consider two applications, a team of aerial vehicles navigating in formation, and a small team of mobile manipulators

that collaboratively carry an object. The approach is verified in experiments with a team of three mobile manipulators and

in simulations with a team of up to sixteen Micro Air Vehicles (quadrotors).

Keywords

Multi-robot systems, motion planning, formation control, constrained optimization, sequential convex programming, team

of aerial vehicles, micro air vehicles, collaborative mobile manipulators, collaborative object transport

1. Introduction

Multi-robot teams can be employed for various tasks, such

as surveillance, inspection, and automated factories. In

these scenarios, robots may be required to navigate in for-

mation, for example, to maintain a communication network,

to collaboratively manipulate an object, or to survey an area.

In this work we consider two motivating applications: for-

mation flight for teams of unmanned aerial vehicles (UAVs)

in tight spaces with static and moving obstacles, and collab-

orative transport of large objects by multiple mobile manip-

ulators in automated factories and working side by side with

humans and other robots.

Within the field of multi-robot navigation, formation

control and reconfiguration in three-dimensional dynamic

environments with moving obstacles remains challeng-

ing. In this work, we leverage efficient optimization tech-

niques, namely quadratic programming, semi-definite pro-

gramming, and (nonlinear) sequential quadratic program-

ming to address this issue. Each one is employed at dif-

ferent stages of the proposed method for formation control

among static and dynamic obstacles. These techniques pro-

vide good computational efficiency, local guarantees, and

generality. Leveraging these tools, we introduce two cen-

tralized algorithms - a local motion planner and a global

path planner - that enable a team of robots to navigate

in formation in two-dimensional and three-dimensional

environments with static and dynamic obstacles.

Given a set of target formation shapes, which serve as

abstractions, our method optimizes the parameters (such as

position, orientation, and size) of the multi-robot formation

to avoid moving obstacles and make progress towards the

goal. For local motion planning, an obstacle-free region,
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Fig. 1. Two mobile manipulators collaboratively carry a rigid

object. A projection of the obstacle-free convex region is super-

imposed in green.

embedded in position-time space, is first grown in a neigh-

borhood of the robots, and then the parameters of the forma-

tion are optimized, via a constrained optimization, to remain

within this region. The formation optimization method

guarantees that the team of robots remains collision-free

and makes progress towards the goal. To make global

progress towards a goal configuration, we also present a

global path planner which builds a graph of feasible forma-

tions in the environment. The graph is created by a random

sampling of convex regions in free space, which are kept

if a valid formation exists within. A human may also pro-

vide the global path for the robots, or a desired velocity for

the formation, and the robots will adapt their configuration

automatically. An example of the method for mobile manip-

ulators is shown in Figure 1. A video illustrating the results

of this paper is available at https://youtu.be/sDNqdEPA7pE.

1.1. Contribution

The main contribution of this paper is a scalable and effi-

cient method for navigation of a team of robots while recon-

figuring their formation to avoid collisions with static and

dynamic obstacles. The method applies to robots navigating

in 2D and 3D workspaces and contributes the following.

1. Locally optimal formation control. The parameters of

the group formation are optimized online within the

neighborhood of the robots via a centralized sequen-

tial convex optimization with avoidance constraints in

dynamic environments.

2. A global path planner for navigating in formation. A

sampling based graph-search algorithm where convex

regions in free space are sampled and connected if

the intersections are traversable in formation. Sampling

and nonlinear optimization are combined to find a safe

global path.

This work provides a working solution to a difficult prob-

lem that has not been treated at this scale before. The

main strength is its ability to handle dynamic obstacles in

three-dimensional environments via constrained optimiza-

tion, which automatically computes the parameters of the

Fig. 2. A triangular formation with sixteen aerial robots can be

abstracted by a triangle defined by three vertices. The formation

can also be defined in three-dimensional space.

formation to avoid collisions. Furthermore, the formation

control method scales well with the number of robots, since

its complexity is independent from the number of robots in

the team (see Figure 2 for an example of the abstraction of

the formation by its outer vertices). Finally, we validate the

approach in simulations with teams of aerial vehicles and

in extensive experimental demonstrations with three mobile

manipulators carrying a rigid object.

In an earlier conference version of this work (Alonso–

Mora et al., 2015a), the local motion planner was intro-

duced. In this paper, we describe the approach in detail, we

extend it for global path planning, and we present additional

experiments with a team of three mobile manipulators

collaboratively carrying an object.

The geometrical and optimization ideas of the central-

ized method of this paper can be combined with consensus

for distributed formation control. Recently, we presented an

extension (Alonso–Mora et al., 2016) to the case where the

robots have a reduced communication and visibility range

and share information with their neighbors.

1.2. Related works

In the following we provide an overview of the related

literature. In particular, we distinguish between methods

for global path planning, which are typically off-line, and

online methods for local motion planning and control.

1.2.1. Global path planning. Deadlock-free navigation in

complex, yet static, environments can be achieved by com-

puting a global path from the initial configuration to the

goal configuration and a set of intermediate collision-

free configurations for the team of robots. For example,

Kushleyev et al. (2012) coined the problem as a mixedin-

teger quadratic optimization and Saha et al. (2014) relied

on discretized linear temporal logic. Both methods pro-

vide global guarantees, but scale poorly with the number of

robots and do not consider arbitrary formation definitions,

instead they rely on squared formations.

An alternative is to randomly sample configurations in

state-space to compute a set of safe configurations defining
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the path for the team of robots. Barfoot and Clark (2004)

computed a global path for the formation via Probabilis-

tic Roadmaps (PRM) by considering a circle enclosing the

formation and a leader. Krontiris et al. (2012) later com-

puted a PRM directly for the formation, considering its

real shape and a set of templates. Our global path plan-

ner is also sampling-based, yet it differs from PRM, or pure

sampling-based strategies, in that we compute both feasible

formations and traversable areas in free space, which we

then use to focus the sampling in unexplored regions of the

workspace.

The idea of computing convex regions in free space

presents similarities with early work on cell decomposition

(Latombe, 1991; LaValle, 2006). One way to decompose

the workspace into cells is to triangulate the free space.

Conner et al. (2003) and Kallem et al. (2011) used such

a triangulation to synthesize controllers for single robot

navigation in planar environments, Ayanian et al. (2011)

combined a triangulation of the environment with naviga-

tion functions to achieve multi-robot control, and Derenick

and Spletzer (2007) combined a triangulation of the pla-

nar environment with second order cone programming to

compute a feasible path for a circular formation. Yet, these

methods are limited to planar environments.

We do not compute a typical cell decomposition of the

environment, but instead rely on intersections of large con-

vex regions to guarantee collision-free navigation in forma-

tion and reconfiguration for the team of robots. Our method

builds on the work by Deits and Tedrake (2015), where con-

vex polytopes were used to compute trajectories for single

quadrotors. Our approach for global path planning com-

bines sampling-based and constrained optimization tech-

niques to explore the large configuration space. In partic-

ular, we sample overlapping convex regions in free position

space and rely on a nonlinear constrained optimization to

compute the configuration of the robots that can occupy

those spaces.

To handle moving obstacles online, we require a local

motion planner which utilizes the global path for guidance

and incorporates local modifications. In our local motion

planner, like the global planner, we employ large convex

regions, embedded in position-time space and computed in

the neighborhood of the robots. The local planner computes

safe motions for the team of robots in three-dimensional

dynamic environments within this convex region, and is the

main contribution of this work.

1.2.2. Local motion planning. A large part of formation

control literature is devoted to the problem of maintaining

a formation while respecting the kinematic and dynamic

constraints of the robots. Examples of typical approaches

for formation control include Lyapunov functions (Ogren

et al., 2001), model predictive control (Dunbar and Murray,

2002), flocking (Dimarogonas and Kyriakopoulos, 2005)

and leader-follower control (Ren and Sorensen, 2008), each

one with its own advantages and disadvantages. For a short

review on this topic we refer the reader to Chen and Wang

(2005). In our work we do not intend to maintain a specific

formation, but instead to adjust its parameters to achieve

collision-free navigation in dynamic environments.

Many methods have been proposed for formation con-

trol in obstacle-free environments. Balch and Arkin (1998)

employed a set of reactive behaviors. Other reactive

approaches include potential fields (Olfati-Saber and Mur-

ray, 2002; Sabattini et al., 2011), and flocking (Dimarogo-

nas and Johansson, 2008; Tanner et al., 2007). Two alterna-

tives to reactive approaches are to use navigation functions

(Michael et al., 2008) and to synthesize controllers (Hsieh

et al., 2008). Other approaches exist, Desai et al. (2001)

combined decentralized feedback laws with graph theory,

Zhou and Schwager (2015) considered rigid formations,

and Cheah et al. (2009) defined a formation via coverage.

Shape stabilization in obstaclefree environments has also

been analyzed by Fredslund and Mataric (2002), Fax and

Murray (2004), and Cortés (2009).

Several of these approaches were also extended to pla-

nar environments with static obstacles. For example, social

potentials were used by Balch and Hybinette (2000), con-

trol of rigid body formations by Egerstedt and Hu (2001),

abstractions to enclosing shape by Belta and Kumar (2004)

and by Michael and Kumar (2008), local planning in for-

mation space by Kloder and Hutchinson (2006), and con-

troller synthesis by Ayanian et al. (2009). Our method is

conceptually similar to Belta and Kumar (2004) in that

we also employ an abstraction of the formation, whose

dimension is independent of the number of robots. Yet,

we do not synthesize controllers, but instead formulate a

constrained optimization to compute the parameters of a

general formation of arbitrary shape. In contrast to these

frameworks, which were limited to planar workspaces, our

method achieves collision-free motion and reconfigura-

tion in planar and three-dimensional dynamic environments

with moving obstacles, and therefore it applies to teams of

aerial vehicles.

We formulate the problem as a constrained optimization,

which can be solved online via tools for Sequential Con-

vex Programming (SCP). Constrained optimization, and

in particular semidefinite programming, was employed by

Derenick et al. (2010) for navigating a team of robots in

environments with circular obstacles, yet limited to robots

moving on the plane. Sequential Convex Programming has

been recently employed by Augugliaro et al. (2012) and

Chen et al. (2015) to compute collision-free trajectories for

multiple UAVs, although they did not consider formation

control. Morgan et al. (2016) combined goal assignment

with sequential convex programming to optimize the tra-

jectory for a team of robots to reach a target formation, but

was limited to obstacle-free environments.

For efficiency, we abstract the robot dynamics when com-

puting the parameters of the formation, but include them

in the individual robot controllers. This abstraction is like

that of our work on pattern formation for animation display
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in obstacle-free environments (Alonso-Mora et al., 2012),

where experiments were performed with 50 robots. Since

the individual controllers do account for the robot kine-

matic and dynamic models, our method does apply to non-

holonomic robots, as we show in simulations with teams of

aerial vehicles.

1.2.3. Cooperative manipulation. Our approach for for-

mation control applies to teams of ground and aerial robots,

and it also extends to teams of cooperative manipulators

collaboratively carrying an object.

One of the first approaches for collaborative object trans-

port in obstacle-free environments was the use of vir-

tual linkages by Khatib et al. (1996). The idea was later

extended to decentralized control laws by Sugar and Kumar

(2002) and by Tang et al. (2004), which enable a team of

robots to accurately maintain a stable grasp in an obstacle-

free environment. Static obstacles can be avoided by intro-

ducing potential functions that repel the robots from them,

as shown by Tanner et al. (2003), but little control is then

retained over the resulting configuration. Static and moving

obstacles can also be avoided via constrained optimization,

as shown by Alonso-Mora et al. (2015b) for the case of

deformable objects. In these approaches, it is common to

rely on force sensing to coordinate the robots.

In this work, we build on these ideas and present a gen-

eral, although centralized, non-convex method to compute

the parameters of the formation automatically and online

via sequential convex programming, which includes both

global path planning and local motion planning to avoid

static and dynamics obstacles. The method applies to gen-

eral scenarios, specific formation types, and an arbitrary

number of robots. Yet, it enforces that the convex hull of

the formation remains collision-free and is therefore best

suited for robots carrying convex, or near-convex, objects.

1.3. Method overview

Motion planning for a formation of robots is an instance

of planning for a high-dimensional system, which can be

solved with sampling-based methods. We expand on this

method with a two-step approach.

1. Computes convex obstacle-free regions in position

space (global planner) or in position-time space (local

planner), embedded in R3 or R4.

2. Executes an optimizer to compute the degrees of free-

dom of the formation, such as its position, size, and

orientation, so that the robots remain within the convex

regions in free space.

This method combines some of the benefits of sampling-

based methods - namely exploring a non-convex workspace

and improving the quality of the solution over time - with

those of local optimization methods - namely efficiently

finding a local optimum in continuous space. We describe

two algorithms and one extension following this idea.

In the local motion planner, we rely on the notion of

position-time space, where the time dimension is added

to the workspace to account for moving obstacles. This is

similar to the concept of configuration-time space intro-

duced by Erdmann and Lozano-Perez (1987), but differs

in that it is embedded in R4 instead of in the potentially

large high-dimensional space - as would be the case for sys-

tems with many degrees of freedom. We make this natural

choice explicit with the idea of planning traversable regions

in position-time space and letting a non-convex optimizer

compute the remaining degrees of freedom of the system to

safely navigate within those traversable regions.

1.3.1. Local motion planning. Given a set of target for-

mation shapes, our method, see Section 3, optimizes the

parameters (such as position, orientation, and size) of the

multi-robot formation. First, a convex obstacle-free region

in position-time space is grown in a neighborhood of the

robots. Second, the parameters of the formation are opti-

mized within the convex region by solving a constrained

optimization. The method guarantees that the team of

robots remains collision-free and makes progress towards

the goal. To make global progress towards a goal configura-

tion, only waypoints for the formation center are required.

A human may also provide the global path for the robots,

or a desired velocity for the formation, and the robots will

adapt their configuration automatically.

When individual robots navigate in formation, each robot

independently progresses towards its assigned position in

the optimal formation via a low-level planner. We employ

the distributed convex optimization in velocity space by

Alonso-Mora et al. (2015c), which avoids collisions and

respects the dynamic constraints of the robot.

In Figure 3(a) we provide an overview of the method. In

Figure 1 and in Figure 3(b) we show two examples of the

method for mobile manipulators collaboratively carrying an

object.

1.3.2. Global path planning. We also describe a method

for global path planning from an initial configuration to a

final configuration. The method, see Section 4, computes

for the team of robots a path, and a set of safe inter-

mediate formations. The robots avoid static obstacles and

reconfigure their formation as required.

Our method presents similarities with sampling-based

methods such as the Rapidly-Exploring Random Trees RRT

approach by LaValle and Kuffner (2001). There, sampling

was performed in configuration space and samples (i.e.

configurations) and transitions were collision-checked with

respect to obstacles. Here we describe an alternative, where

sampling is performed in the low dimensional workspace,

transitions between formations are guaranteed via convex

polytopes, and safe configurations of the formation are

obtained via a constrained optimization. The method intro-

duced in this work explores the non-convex workspace and

improves the quality of the solution over time thanks to
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Fig. 3. (a) Schematic overview of the method. Given a goal location for the team of robots, we first compute a global path from the

start to the goal location, see Section 4. Then, the robots navigate along this path with continuous replanning via a local motion planner,

which is described in Section 3. (b) Example with three mobile manipulators collaboratively carrying an object, see Section 5 for the

extension of the method to cooperative object transport. In this case, the robots can rotate around their grasping point and a projection

of the obstacle-free convex region is shown in blue. (c) Global path to navigate from the formation on the bottom left to the formation

on the top right, see Section 4. Obstacles are shown in gray and the robots’ formation in green. Obstacle-free convex regions (blue)

connect the start with the goal configuration. Two regions are grown from the start and goal positions and the two intermediate regions

are grown from random samples in the workspace (black dots). An optimized formation, in green, was computed for each of the two

intersections between adjacent regions. The resulting path (solid black line) connects the start and the goal configurations and traverses

through the convex regions.

sampling, while remaining efficient due to the constrained

optimization and the use of convex regions, which provide

a dimensionality reduction.

We create a graph of feasible formations, which con-

nects the initial with the goal configuration. Each node in

the graph is a valid configuration, which corresponds to

a feasible formation embedded in free-space. Each edge

between two configurations is associated with an obstacle-

free convex region embedded in the workspace F̄ . The

graph is created by random sampling of positions in the

workspace F̄ from which obstacle-free convex regions are

grown. The parameters of valid formations within intersec-

tions of polytopes are computed via an efficient constrained

optimization.

In Figure 3(c) we show an example of the method where

three mobile manipulators carry an object from a start

configuration (bottom left) to a goal configuration (top

right). We display the first feasible path found by the algo-

rithm, together with the sampled convex regions and the

intermediate formations within the intersections.

1.3.3. Generality. We will first describe, in Sections 3 and

4, the method for a team of mobile robots navigating in a

formation that can change shape via isomorphic transfor-

mations. We will then, in Section 5, describe an alterna-

tive formation definition for mobile manipulators collabo-

ratively carrying objects. The method is general and can be

adapted to other high-dimensional problems or formation

definitions. The core idea is to generate convex, obstacle-

free regions and then optimize the parameters of the for-

mation (i.e. the degrees of freedom of the high-dimensional

configuration) such that the robots are fully contained in the

convex region. The only requirements to adapt the method

are (a) a function V(z) that converts configurations z to the

outer vertices v of the formation, and (b) a way to com-

pute derivatives of the position of those outer vertices with

respect to the configuration z (unless they are computed

numerically).

In this paper, we describe two applications.

1. Formation control: The configuration of the robot team

is given by the 3D position, size, and 3D orientation of

the formation, i.e. z ∈ R3 × R+ × SO(3). Given a tem-

plate formation, such as a square, the outer vertices are

computed via an isomorphic transformation. This is our

running example.

2. Collaborative transportation with mobile manipulators:

The configuration of the robot team is given by the 2D

position and orientation of the object that the robots

carry, the orientation of the n robots around their grasp-

ing points and the length of their arms, i.e. z ∈ R2 ×

SO(2)n+1 ×Rn. The outer vertices of the robots and

object can be computed with their shapes and a set of

rigid body transformations defined by the configura-

tion. This is described as an extension of the method

in Section 5.

An advantage of the method is that planning is decoupled

into: (a) finding convex regions in the lower-dimensional

free position-time space (R4) and (b) efficiently optimizing

the configuration of the team of robots within those con-

vex regions. This comes at the expense of completeness,
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since in our approach we require that the robot team main-

tains a formation that does not intersect with obstacles, i.e.

the robots can not maintain a formation while letting an

obstacle pass through. In the event of dynamic obstacles,

the team may break the formation to let a moving obstacle

pass through, and come back to the original formation as

soon as there is enough free room.

1.3.4. Organization. In Section 2 we introduce the nota-

tion and we describe the formation definition and the

method to compute convex regions. The algorithm for local

motion planning is detailed in Section 3, followed by the

global path planner in Section 4. In Section 5 we introduce

an extension of the method for transportation of an object

by multiple manipulators. Section 6 presents experimen-

tal results with mobile manipulators and simulations with

aerial vehicles. Finally, Section 7 provides a discussion of

the method and Section 8 concludes this paper.

2. Preliminaries

In Table 1 we provide a list of the main symbols and

variables employed in this paper.

2.1. Robots

Consider a team of robots navigating in formation. For each

robot i ∈ I = {1, . . . , n} ⊂ N, its position at time t is

denoted by pi(t) ∈ R3. In the next two sections, we consider

all robots to have the same dynamic model and cylindrical

non-rotating shape of radius r and height 2h in the verti-

cal dimension. Denote the volume occupied by a robot at

position p by A(p) ⊂ R3.

For an alternative description of the robots, where cylin-

drical shape is not required, refer to the extension for

rectangular mobile manipulators in Section 5.

2.2. Obstacles

Consider a set of static obstacles O ⊂ R3 defining the

global map. Denote by Ō the set O dilated by half of the

robot’s volume, formally

Ō = {p ∈ R3 | A(p) ∩ O �= ∅} (1)

Moving obstacles within the field of view of the robots can

be accounted for. Denote by ID = {1, . . . , nd} ⊂ N the list

of moving obstacles. For moving obstacle j ∈ ID and time

t, we denote by Dj(t) ⊂ R3 the volume that it occupies, and

D̄j(t) = {p ∈ R3 |A(p) ∩ Dj(t) �= ∅} (2)

its dilation by half of robot’s volume. For predicted future

positions we employ the constant velocity assumption.

2.3. Obstacle-free workspace

The obstacle-free workspace, accounting only for static

obstacles, is denoted by

F̄ = R3 \ Ō ⊂ R3 (3)

For current time to, and time horizon τ of the motion plan-

ner, denote the union of static and dynamic obstacles seen

by the robots by

Ō
τ (to) = Ō × [0, τ ] ∪

⋃

t∈[0,τ ]
j∈ID

D̄j(to + t) × t ⊂ R4 (4)

where × denotes the Cartesian product of two sets, and with

a slight abuse of notation we denote by variable t ∈ R the

set {t} containing a single point.

The position-time obstacle-free workspace is then

F̄
τ (to) = R3 × [0, τ ] \ Ōτ (to) ⊂ R4 (5)

2.4. Directed obstacle-free convex region

The first building block of the proposed algorithm is to,

given an obstacle map and a starting point, compute an

obstacle-free convex polytope. We employ a fast iterative

method, by Deits and Tedrake (2014), to compute large con-

vex polytopes in free position space, i.e. P(F̄) ⊂ F̄ , or in

free position-time space, i.e. P(F̄ τ (to)) ⊂ F̄ τ (to). With an

abuse of notation, we may refer to this polytope by P , and

recall that for local motion planning (Section 3) we embed

it in position-time space and for global path planning (Sec-

tion 4) we embed it in position space. The method consists

of two recurrent steps: (a) it computes the separating hyper-

planes between an ellipsoid E and the obstacles Ō via a

quadratic optimization; and (b) it computes, via a semi-

definite program, the largest ellipsoid E contained within

the convex polytope P . This polytope P can be described

by the union of hyperplanes, see Figure 4 for an example.

We extend the method by means of the following.

1. Considering a set of points In, potentially {p1, . . . , pn},

to be contained within P . The iterative algorithm breaks

at convergence or when In � P .

2. Growing the region P towards a desired point gdir. This

is achieved by initializing E to be the minimal ellipsoid

such that {In, gdir} ⊂ E. The point gdir is typically set to

the goal position for the robot team g(tf ), and must also

be contained within P . If no solution exists, we evaluate

alternative points via a linear search between gdir and

the centroid of the points in In.

If the polytope is embedded in position space, we denote

by P
gdir
In (F̄) the resulting convex polytope, which contains

the points in In and does not intersect any of the obstacles,

i.e. satisfies In ⊂ P
gdir
In (F̄) ⊂ F̄ and which is grown in the

direction of gdir as described in the previous paragraph.



1006 The International Journal of Robotics Research 36(9)

Table 1. List of symbols employed in the method.

Symbol Definition First appears

n / m Number of robots / template formations Section 2

p Position or point in the workspace (typically in R3) Section 2

A(p) Volume occupied by a robot Section 2

τ Time horizon of the local motion planner Section 2

O / Ō Static obstacles / Dilated Section 2

Dj / D̄j Dynamic obstacle / Dilated Section 2

Oτ (to) / Ōτ (to) Union of static and dynamic obstacles for time [to, to + τ ] / Dilated Equation (4)

F / F̄ Obstacle-free static workspace (workspace minus static obstacles / Dilated) Equation (3)

Fτ (to) / F̄τ (to) Obstacle-free workspace in position-time / Dilated Equation (5)

P Obstacle-free convex polytope (several variants) Section 2.4, 2.3

r
f
j / r

f
0,j Position of robot j in the optimized/template formation f Section 2.5

v
f
j / w

f
j Outer vertex of the optimized/template formation f Section 2.5

t / s / q Position (translation), size and orientation (quaternion) of a formation Section 2.5

z Configuration, i.e. optimization parameters of a formation Section 2.5

V(z, f ) Set of outer vertices of formation f with configuration z Equation (8)

g Goal position for the centroid of the robot team Section 3

s̄ / q̄ Desired size/orientation for the formation Section 3

G = {V , E} Graph containing convex regions and target formations Section 4

Fig. 4. Example of a convex directed polytope P
gdir
In (F̄) (in red)

and its associated ellipsoid (blue) in an environment with two

static obstacles (gray). The polytope contains both the In points

and the target point gdir.

Definition 1 . (Directed polytope). We refer to a polytope

P
gdir
In (F̄) ⊂ R3, embedded in F̄ as a directed polytope,

towards gdir. Analogously for a polytope P
gdir
In (F̄ τ (to)) ⊂

R4, embedded in F̄ τ (to).

2.5. Definition of the formation

For an alternative description of the formation, refer to the

extension for mobile manipulators in Section 5.

We consider a predefined set of m ∈ N template forma-

tions, such as square, line, or T. Each template formation

f ∈ If = {1, . . . , m} is given by a set of robot positions

{r
f

0,1, . . . , r
f

0,n} and a set of outer vertices {w
f

1, . . . , w
f
nf } rel-

ative to the center of rotation (typically the centroid) of

the formation, where nf denotes the number of outer ver-

tices defining formation f . The set of vertices represents the

convex hull of the robot’s positions in the formation, thus

reducing the complexity for formations with many robots.

See Figure 5(a) for an example.

Fig. 5. (a) Example of a template square formation with sixteen

MAVs. The four outer vertexes define the convex hull. (b) The

formation can be transformed with a translation t, a 3D rotation q

and a size s isomorphic transformation.

Further denote by df the minimum distance between any

given pair of robots in the template formation f . Template

formations can be defined by a human designer or automat-

ically computed for optimal representation of a target shape

as shown by Alonso–Mora et al. (2012).

A formation is then defined by an isomorphic transfor-

mation, which includes the size s ∈ R+, a translation

t ∈ R3, and a rotation R(q) described by a unit quaternion

q ∈ SO(3), its conjugate denoted by q̄. With this formation

definition, the configuration for the team of robots is fully

defined by z = [t, s, q] ∈ R3 × R+ × SO(3).

Given the configuration z, and template formation ID

f , the robot positions and outer vertices of the resulting

formation are computed by

r
f
i = t + s R(q) r

f

0,i, ∀i ∈ [1, n]

v
f
j = t + s R(q) w

f
j , ∀j ∈ [1, nf ]

(6)
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where the rotation in SO(3) is given by the quaternion

operation

[

0, R(q) w
f
j

]T

= q ×
[

0, w
f
j

]T

× q̄ (7)

For template formation f and configuration z we denote the

set of outer vertices by

V(z, f ) = [v
f

1, . . . , vf
nf

] (8)

In the exposition of the method we rely on this definition for

the formation, but the method is general and can be applied

to alternative definitions, as shown in Section 5 for the case

of several manipulators transporting a rigid object.

3. Local motion planning

The local motion planner computes the optimal parameters,

i.e. the configuration, of the formation, in a neighborhood of

the robots, via a constrained nonlinear optimization. For a

given template formation f ≤ m, the vector of optimization

variables, i.e. the configuration, is denoted by z = [t, s, q] ∈

R3 × R+ × SO(3).

Denote by g(t) ∈ R3 the goal position for the centroid

of the formation at time t. This goal position, and a target

orientation q̄ and size s̄, can be given by a human oper-

ator or a global planner, as described in the forthcoming

Section 4.

For an alternative formulation of the optimization, see

the extension for mobile manipulators in Section 5.

3.1. Algorithm overview

To make progress towards the goal position while avoiding

obstacles, the local planner computes a target formation and

the required motion of the robots for a given time horizon

τ > 0, which must be longer than the required time to stop.

Denote the current time by to and t1 = to + τ .

Our method consists of the following steps.

1. Compute a large convex polytope P contained in free

position-time space, such that the robots are inside it,

i.e. pi(to) ∈ P ⊂ F̄ τ (to), ∀i ∈ I, and that is directed

towards the goal g(t1). This is described in Section 3.2.

2. Compute the optimal formation f ∗ and configuration

z∗ such that the outer vertices V(z∗, f ∗) are contained

within P and the distance between the formation’s cen-

troid and the goal g(t1) is minimized. The parameters

of the formation are optimized subject to a set of con-

straints via a centralized sequential convex optimization

described in Section 3.3. In this computation, the robot’s

dynamics are abstracted.

3. In a faster loop, described in Section 3.5, the robots

are optimally assigned to target positions in the for-

mation and move towards them employing a low level

local planner that generates collision-free inputs that

Algorithm 1 Local motion planning.

Given: Union of static and dynamic obstacles in

position-time space Ōτ (to) ⊂ R4 at the initial time. The

goal position g(t1) ∈ R3 for the centroid of the for-

mation at time t1 and desired size s̄ and orientation

q̄.

Compute: Target configuration z∗ and formation f ∗.

Collision-free motion for the team of robots for up to

the time horizon τ .

—————————————————————–

———————- Main process ————————–

1: while not converged do

2: Compute large convex polytope P ⊂ F̄ τ (to) in a

neighborhood of the robots.

3: Compute optimal configuration z∗ and formation

f ∗, such that the outer vertices V(z∗, f ∗) are contained

within P .

4: end while

——- Second parallel process, at high frequency ——–

5: while not converged do

6: Assign robots to target positions in the formation.

7: Navigate towards the target formation.

8: end while

respect the robot’s dynamics. In particular, we build on

a distributed convex optimization described by Alonso–

Mora et al. (2015c), extended to account for static

obstacles in a seamless way.

4. If no feasible formation exists in a neighborhood of the

robots, we search for the parameters of a target forma-

tion near the goal position. In this case, the robot team

splits and each robot navigates independently towards

its assigned position in the target formation.

3.2. Obstacle-free convex region

First, the obstacle-free space in position-time R3 × [0, τ ] ⊂

R4 is obtained, accounting for static and dynamic obstacles.

For the given time horizon τ consider the union of

static and dynamic obstacles Ōτ (to) and the associated

position-time obstacle-free workspace F̄ τ (to), as described

in equation (5).

Following Section 2.4, we compute two convex

polytopes.

1. Pfo→g in free position-time space, which contains all

the robots at their current positions and initial time,

i.e. [p1(to) , . . . , pn(to) ] × 0, and which is directed

towards the formation’s goal at the time horizon, i.e.

[g(t1) ×τ ] ∈ R4. Formally

Pfo→g := P
[g(t1)×τ ]

[p1(to),...,pn(to)]×0(F̄ τ (to)) (9)

2. Po→g in free position-time space, which contains the

centroid of the robots’ current positions and initial time,
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Fig. 6. Example of convex regions computed with the method

described in Section 2.4 for a scenario with six yellow disk robots

and two (gray) squared obstacles. The convex regions are: Pfo→g

in blue solid border, Po→g in red dotted border and Pg (defined

in Section 3.4) in green dashed border.

i.e. [
∑

i∈I pi(to) /n] × 0 ∈ R4, and which is directed

towards the goal. Formally

Po→g := P
[g(t1)×τ ]

[
∑

i∈I pi(to)/n]×0
(F̄ τ (to)) (10)

This polytope may not contain all the robots at their

current positions.

A representative example of these regions (projected in

R2) is shown in Figure 6. In general, we consider the convex

polytope

P = Pfo→g ∩ Po→g (11)

which:

• guarantees that the transition to the new formation will

be collision-free, since P ⊂ Pfo→g and all the robots

are within the convex region Pfo→g;

• is likely to make progress in future iterations, since P ⊂

Po→g, which is directed towards the goal.

Once the robots are within this intersection they can

make progress towards the goal within Po→g in a collision-

free manner. If P = ∅, an alternative convex region is

selected as described in the forthcoming Section 3.4.

We rely on a representation of the collision-free convex

polytope P given by its equivalent set of linear constraints

P = {x ∈ R4 | Ax ≤ b, for A ∈ Rnl×4, b ∈ Rnl } (12)

where nl denotes the number of faces of P .

3.3. Nonlinear optimization

We formulate a constrained nonlinear optimization to com-

pute a locally optimal formation f ∗ and the configuration z∗

for the team of robots.

3.3.1. Optimization cost. We minimize a weighted sum of

the deviation with respect to the formation’s goal g(t1), a

desired size s̄ and a desired rotation q̄. The cost term is then

Jf (z) = wt||t−g(t1) ||2+ws||s−s̄||2+wq||q−q̄||2+cf (13)

where wt, ws, wq are design weights and cf is the predefined

cost for formation type f ∈ If .

3.3.2. Constraints. Constraints are introduced to guaran-

tee that all the robots in the formation are within the convex

polytope (C1) and to satisfy a minimum inter-robot distance

(C2) to avoid collisions between the robots in the team.

Recalling Section 2.5 the constraints are then given by

C1 ≡V(z, f ) × t1 ⊂ P ≡
nf
⋃

j=1

{A[[t + s R(q) w
f
j ] × t1]T ≤ b} (14)

C2 ≡

{

s ≥ 2
max( r, h)

df

}

where C1 contains a constraint for each vertex w
f
j of the

convex hull of the template formation f and implies that

the robots do not collide with any obstacle. The constraint

C2 guarantees inter-robot collision avoidance since df is the

minimum inter-robot distance for the template formation,

recall Section 2.5, and the transformation applied to the

formation is isomorphic.1

For planar formations, the additional constraints q ·

[0, 1, 0, 0]T = 0 and q · [0, 0, 1, 0]T =0 may also be imposed

to ensure rotation only occurs around the vertical axis.

3.3.3. Nonlinear program. For a template formation f ∈

If the optimal configuration z∗
f is found by solving the

nonlinear optimization

z∗
f = arg min

z
Jf (z)

s.t. V(z, f ) ×t1 ⊂ P ( C1)
{

s ≥ 2
max(r,h)

df

}

( C2)

(15)

We employ the nonlinear solver SNOPT by Gill et al.

(2002), which internally executes a sparse Sequential

Quadratic Program and converges to a feasible local min-

imum of the cost function.

The derivatives of the cost function (equation (13)) and

constraints (equation (14)) are given by

∂Jf (z) /∂z ≡ 2[wt(t − g(t1)) , ws( s − s̄) , wq(q − q̄) ]. (16)

∂C1/∂z ≡
⋃nf

j=1[A, A R(q) w
f
j , s A ∂R(q) w

f
j /∂q) ]

∂C2/∂s ≡ df

(17)

where ∂R(q) w
f
j /∂q is the Jacobian of equation (7).2

We set the initial point for the optimizer to

zini = [g(t1) , 2 max( r, h) /df , qini] (18)

where the initial quaternion is chosen to be equal to the

quaternion addition of the desired orientation and a small

random quaternion, i.e. qini = q̄ + qrand . The additional

term is included to avoid singularities of the optimizer when

some components of q̄ are zero.

If the constrained optimization of equation (15) is solved

for each template formation, the index f ∗ of the locally

optimal formation is then given by

f ∗ = arg min
f

Jf (z∗
f ) (19)
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This formation definition and its associated nonlinear opti-

mization are given as an example, but the framework is

general and can be applied to other problem instances. In

Section 5 we describe how to apply this method for the

manipulation of rigid objects.

3.4. Iterations if problem is infeasible

The method, as described in the previous subsections,

results in a formation and its configuration for the robots’

team. It may occur though, that the robots make no progress

towards the goal (deadlock) or that the optimization is infea-

sible, for example if the region P defined in equation (11) is

too small and no feasible formation fits inside. In that case,

one may search for a feasible formation using an alternative

region. For a representative example see Figure 6.

First, we would repeat the optimization using the convex

region Pfo→g. If a valid target formation is found in this

step, or in the original optimization with polytope P , the

transition is guaranteed to be collision-free, thanks to the

convexity of the polytope Pfo→g which contains the current

position of all the robots.

If this additional step is also unfeasible, then no forma-

tion may exist such that the robots can continue navigating

in formation towards the goal. In that case the optimiza-

tion can be repeated using the polytope Po→g or directly

the polytope Pg := P[g(t1),τ ](F̄) that contains the forma-

tion’s goal. Note though that these two polytopes do not

contain the current robot positions. If a formation is found,

the robots move individually, i.e. separately, towards their

respective positions in the target formation. In this case,

the formation is likely broken during the transition, but,

this gives further flexibility to the method and the robots to

navigate in formation whenever possible, via splitting and

merging.

3.5. Individual planning towards target

formation

The result of the computation of Section 3.3 is a target

formation f ∗ and configuration z∗. The associated set of tar-

get robot positions rj, for all j ∈ I can be computed with

equation (6).

In this section, we describe the local planner that links

the centralized formation optimization with the physical

robots. At each step of the execution, at higher frequency

than that of computing a new formation, the following steps

are executed.

3.5.1. Goal assignment. Robots are optimally assigned to

the target positions rj with the objective of minimizing the

sum of squared traveled distances. The optimal assignment

σ : I → I is

min
σ

∑

i∈I

||pi − rσ (i)||
2 (20)

Following Alonso–Mora et al. (2012), this assignment can

be centrally computed with the optimal Hungarian algo-

rithm by Kuhn (1955), used in this work, or a suboptimal

auction algorithm by Bertsekas (1988), which scales well

with the number of robots.

3.5.2. Collision avoidance. To control the individual

robots in the team and to avoid collisions between them,

we employ the collision avoidance algorithm introduced

by Alonso–Mora et al. (2015c). We employ the same con-

straints to avoid moving obstacles and to respect the kine-

matic model of the robots. To better handle environments

with static obstacles, we include additional linear con-

straints defined by a convex polytope in free space, com-

puted in a neighborhood of the robot. For details refer to the

Appendix. This method, a convex optimization in velocity

space, is well suited for our application. The formation con-

trol algorithms described in this paper are agnostic to the

low-level controller and a different one could be employed.

4. Global path planning

Given an initial and a target configuration for the robot

team, the global path planner computes a feasible path and

intermediate formations to connect them. This is achieved

by combining a sampling-based approach with constrained

nonlinear optimization, the idea being to sample in a low

dimensional space (workspace) and letting the optimizer

compute the remaining degrees of freedom.

In particular, we create a graph where each node is a fea-

sible formation and which contains the initial and the goal

configuration. An edge between two nodes, or formations,

is a convex region in free space, which contains both forma-

tions. An edge provides the means to transition between two

nodes in the graph. An example was shown in Figure 3(c).

The approach can be applied to a single user-defined

formation (i.e. square) or when multiple formations are

given. In the latter, reconfiguration between formation

shape would be allowed. In an abuse of notation, throughout

this section we drop the subindex f ∈ If , consider a single

formation f and refer to a polytope Pp(F̄) embedded in the

free position space, i.e. P(F̄) ⊂ F̄ , by P . This is in con-

trast to the local planning approach, where we embedded

the convex polytope in the free position-time space. There-

fore, we do not consider moving obstacles in the global path

planning.

4.1. Algorithm

Consider the obstacle-free workspace F̄ defined by equa-

tion (3), the start position s of the formation’s centroid and

its goal position g ∈ R3. In Algorithm 2 we describe the

proposed anytime method to compute a path for the robot

team to navigate in formation from s to g.

A graph G = {V , E} is incrementally created. Each ver-

tex in the vertices list V is given by the configuration z
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of a feasible formation. Each edge in the edge list E con-

nects two nodes, i.e. valid configurations z1, z2 for the team

of robots, if a convex region P exists such that the robots

in both configurations are fully contained in the convex

polytope.

We keep a list of existing polytopes P. And, for each

polytope P ∈ P we keep a list LP of configurations for

which the team of robots is fully contained within the poly-

tope. The node list is initialized with the initial zs and

final zg configurations with centroids s and g. Analogously,

the polytopes list is initialized with the convex regions Ps

and Pg, which contain the initial and final configurations

respectively.

The method proceeds by drawing random samples in the

workspace (R3 for aerial vehicles). Each random sample

p ∈ R3 is rejected if it is inside an obstacle or one of the

polytopes in the list P. If p ∈ F̄ \ ∪
P∈P

P then the following

steps are executed.

1. A large convex polytope Pp(F̄) ⊂ F̄ is grown from p

following the method of Section 2.4.

2. For each polytope P ∈ P that intersects Pp, we compute

a configuration z and formation f for the team of robots

such that the formation’s vertices are fully contained

within the intersection of both polytopes V( z, f ) ⊂ Pp ∩

P and that minimizes the squared distance from its cen-

troid to g. The configuration z and formation f are com-

puted via a nonlinear optimization analogous to that of

Section 3.3. For polytope P we denote this function by

formation(P). If a valid configuration exists, it is added

to the node list.

3. If a valid configuration z is added to the node list, then

(a) an edge {z, zi,Pp} is added for all configurations

zi ∈ LPp and (b) an edge {z, zi,P} is also added for

all configurations zi ∈ LP . Recalling the previous sec-

tion, it is guaranteed that the team of robots can navigate

between both formations through the associated convex

polytope.

A feasible solution is found as soon as a path (or

sequence of connected vertexes in the graph G) is found

which connects the initial position with the goal position of

the formation’s centroid. If we let the algorithm run longer,

for example until most of the free space is covered by con-

vex regions, the best path so far is found via graph search.

This is, by computing the path of lowest cost in the graph

G. For each edge E between two configurations z1 and z2

we define its cost by the distance between the centroids of

z1 and z2.

4.2. Execution in composition with the local

motion planner

To navigate the team of robots from the initial to the goal

configuration a global path consisting of a sequence T =

{zs, . . . , zg} of configurations is first obtained via the global

Algorithm 2 Global path planning.

1: Given: obstacle field O, start configuration zs with cen-

troid s and destination g for the formation’s centroid.

2: Returns: a path T of feasible configurations (forma-

tions) from s to g.

We describe a bidirectional graph search. The method

can be adapted to a tree search.

—————————————————————

3: Initialize empty graph G = {V , E}: V = ∅; E = ∅

4: Initialize empty polytope list P = ∅

5: Add the initial configuration to the node list V ← zs

6: Generate Ps,Pg ⊂ F̄ from s and g

# Add them to the polytope list

7: P ← Ps, P ← Pg

# Compute a valid configuration in the goal region

8: zg = formation(Pg)

9: Add the goal configuration to the node list V ← zg

# Create lists of valid configurations for both polytopes

10: LPs = {zs}, LPg = {zg}

# Check if the start and goal can be connected

11: if ∃z = formation(Ps ∩ Pg) then

12: V ← {z}

13: E ← {zs, z,Ps}

14: E ← {zg, z,Pg}

15: end if

# The following search loop can be executed until the

first feasible path is found, until the whole space F̄ is

explored or up to a maximum time bound.

16: while not end do

17: Generate random sample p ∈ F̄\( ∪i∈PPv)

18: Generate polytope Pp ⊂ F̄ grown from p

# Try to create new node

19: if ∃z = formation(Pp) then

20: LPp = ∅

# Try to create new nodes and edges

21: for P ∈ P do

22: if ∃z1 = formation(P ∩ Pp) then

23: for zi ∈ LP do

24: E ← {z1, zi,P}

25: end for

26: for zi ∈ LPp do

27: E ← {z1, zi,Pp}

28: end for

29: V ← z1

30: LPp ← {z1}; LP ← {z1}

31: end if

32: end for

33: P ← Pp

34: end if

35: return T =shortestPath(G)

36: end while

path planning algorithm of the previous section. Each con-

figuration zw ∈ T in the sequence, provides an intermediate

setpoint for the team of robots. Denote its centroid by w.
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Algorithm 3 Function: z = formation(P)

Input: Convex polytope P ⊂ F̄ .

Output: A valid configuration z such that V( z, f ) ⊂ P ,

or ∅.

1: if P = ∅ then

2: return ∅

3: else

4: return result of a nonlinear optimization analogous

to that of Section 3.3 with convex polytope P and min-

imizing J (z) the deviation to a target configuration at g,

i.e.
z∗ = arg min

z
J (z)

s.t. V(z, f ) ⊂ P
{

s ≥ 2
max(r,h)

df

}

(21)

5: end if

To reach the final goal, the team of robots sequentially

follows the intermediate setpoints in the path and the local

planner minimizes the deviation towards the associated con-

figuration zw at every instance. To make progress towards

the intermediate setpoints, and for improved performance,

we slightly modify Algorithm 1 by selecting the convex

region P ⊂ F̂ τ (to) as follows.

We do not directly use the convex regions stored in the

global path, since the robots need to account for dynamic

obstacles in real-time.

First, a convex region Pfo→w containing all the robots in

the team at their current positions, and directed towards w

is computed. If the setpoint w is also inside the polytope,

i.e. z0, w ∈ Pfo→w, then we use this polytope P := Pfo→w

for navigation.

Otherwise, we compute its intersection with a polytope

generated with only the centroid of z0 and directed towards

the waypoint w, i.e. P := Pfo→w ∩ Po→w. In this case

the robots may reconfigure to make progress towards the

intermediate setpoint. See Section 2.4 for details on the

computation of these polytopes.

5. Extension for mobile manipulators

In this section, we describe an extension where a team of

mobile manipulators collaboratively carry an object in a

dynamic environment. To achieve this, the robot shape, for-

mation definition, and optimization equations are modified,

and the derivations follow the same line of thought of the

previous sections.

5.1. Robot and formation definition

The formation is defined by n mobile manipulators, each

equipped with a robotic arm and grasping a rigid object

at given points, see Figure 5(b) for an example with two

mobile manipulators.

Algorithm 4 Function: T =shortestPath(G)

Input: Graph G.

Output: A sequence of valid configurations T =

{zs, . . . , zg} and convex polytopes {Ps, . . . ,Pg} such

that the robot team can navigate through them from the

start to the goal, or ∅.

1: if zs and zg are not connected in G then

2: return ∅

3: else

4: return result of graph search on G where the cost of

traversing an edge E = {z1, z2,P} is given by d( z1, z2),

the Euclidean distance between the centroids of the two

formations.

5: end if

The position t ∈ R2 and orientation θo ∈ SO(2) of the

object can vary. Each manipulator i = {1, . . . , n} can rotate

around the grasping point gi by an angle θi ∈ [θmin, θmax] ⊂

[−π/2, π/2] ⊂ SO(2) relative to the direction pointing

towards the center of the object. Each manipulator may

change the arm length, denote ai ∈ [amin, amax] ⊂ R
the distance from the center of the robot to the grasping

position.

The vertices of the object relative to its center and

expressed in the object coordinate frame are denoted by

{w0
1, . . . , w0

n0
}. The vertices of manipulator i relative to its

center and expressed in the robot coordinate frame are

denoted by {wi
1, . . . , wi

ni
}. Denote the grasping positions on

the object, relative to its center, by gi
0. Without loss of gen-

erality, in this derivation we assume that the angle between

the robot base and arm is constant (additional degrees of

freedom could added to the set of optimization variables)

and denote by ai
0 the vector from the center of the robot

to the grasping point, of length ai, expressed in the robot

coordinate frame. An example with three robots grasping a

triangular object is shown in Figure 7.

Given the configuration z = [t, θo, a1, . . . , an,

θ1, . . . , θn] ∈ R3+2n of the formation, the vertices of

the manipulator and object, expressed in the world

coordinate frame, are

v0
j = [t, 0]T + Rθ0

w0
j , ∀j ∈ [1, n0]

vi
j = [t, 0]T + Rθ0

(

gi
0 + Rθi

(wi
j − ai

0)
)

, ∀j ∈ [1, ni]

(22)

where Rθ is the rotation matrix [cos( θ ) , − sin( θ ) , 0;

sin( θ ) , cos( θ ) , 0; 0, 0, 1]. We denote by

V(z, i) = [vi
1, . . . , vi

ni
] (23)

the set of ni vertices for the object (i = 0) and each robot

(i > 0) at configuration z.
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Fig. 7. Right: optimization variables for three mobile manipu-

lators grasping a triangular object. Left: vertices of a mobile

manipulator and the grasped object. For this triangular object, the

vertices are equal to the grasping points.

5.2. Obstacle-free convex region

Recalling Section 2.3, the position-time obstacle-free

workspace is given by

Oτ (to) = O × [0, τ ] ∪
⋃

t∈[0,τ ]
j∈ID

Dj(to + t) ×t ⊂ R4

F τ (to) = R3 × [0, τ ] \ Oτ (to) ⊂ R4
(24)

where, now, the static and dynamic obstacles are not dilated.

The collision-free convex polytope containing the robots

at their current state and directed towards the goal is

Pfo→g := P
[g(t1)×τ ]

∪i=0:n[vi
1(to),...,vi

ni
(to)]×0

(F τ (to)) (25)

additional polytopes in free space are computed

analogously.

5.3. Nonlinear optimization

Consider zini = [tini, θ ini
o , aini

1 , . . . , aini
n , θ ini

1 , . . . , θ ini
n ] the ini-

tial configuration of the robots and object at the current

time.

Since the robots are rigidly attached to the object, we

must explicitly impose that the transition between the cur-

rent and the target configuration remains within the con-

vex polytope. Consider K > 0 interpolation steps, and

denote by zλ the linearly interpolated configurations such

that zλ=0 = zini and zλ=K = z. Angles are interpolated

in the direction of minimum change and each interpolated

configuration zλ is expressed as a function of zini and z, e.g.

tλ = λ(t − tini) /K + tini.

Recalling equation (22) and the representation of the

collision-free polytope P by a set of linear constraints, as

in equation (12), the optimization is

z∗ = arg min
z

||t − g(t1) ||2

s.t. V(zλ, i) × t1 ⊂ Pfo→g

θmin ≤ θi ≤ θmax

amin ≤ ai ≤ amax

∀j ∈ {1, . . . , ni}, ∀i ∈ {0, . . . , n}

∀λ ∈ {1, . . . , K}

(26)

The derivatives of the constraints with respect to the

optimization variable z are computed analogously to

equation (17).

6. Results

In this section, we present experiments with a team of

three Kuka Youbot mobile manipulators collaboratively car-

rying an object and simulations with teams of quadrotor

UAVs navigating in 3D environments. A video illustrating

the results accompanies this paper and is also available at

https://youtu.be/sDNqdEPA7pE.

The mobile manipulators are holonomic platforms. For

the UAVs, we employ the nonlinear dynamical model and

LQR controller used by Alonso–Mora et al. (2015c) with

real quadrotors.

We use SNOPT by Gill et al. (2002) to solve the non-

linear program via Sequential Quadratic Programming, a

goal-directed version of IRIS by Deits and Tedrake (2014)

to compute the large convex regions and the Drake toolbox 3

from MIT to handle quaternions.

6.1. Multiple aerial vehicles in formation

To evaluate our approach in 3D environments with aerial

vehicles we present experiments in three simulated scenar-

ios. The first scenario consists of four controlled quadrotors

and four dynamic obstacles. The second scenario consists

of four controlled quadrotors flying in formation and avoid-

ing several static obstacles and one dynamic obstacle. The

last scenario involves sixteen quadrotors flying in formation

through a narrow corridor. In our visualizations, we employ

a cylinder since that is the shape we use for collision avoid-

ance. Internally the quadrotors have an attitude controller

and position controller and change their 3D pose within the

enclosing cylinder, which is always kept vertical.

In all cases a new formation is computed every 2 s. The

individual collision avoidance planners run at 5 Hz. The

quadrotors move at speeds between 0.5 m/s and 1.5 m/s. In

our simulations with four quadrotors a time horizon τ = 4 s

is considered. This is longer than the required time to reach

a full stop. For the experiments with sixteen quadrotors a

time horizon of τ = 10 s is chosen, due to the large size of

the formation and the scenario.

Consider the first scenario. Figure 8 shows the trajecto-

ries of four quadrotors (in green and blue) passing through

two lanes of dynamic obstacles (in yellow). The dynamic

obstacles in the left lane move downwards at 0.4 m/s and

the ones in the right move upwards with the same speed.

Two default formations are considered, square (which is

preferred) and diamond. The goal for the formation follows

a constant velocity trajectory along the middle horizontal

line and the team successfully adapts the parameters of

the formation to remain collision-free and pass in-between

the obstacles. In this case, we imposed that the formation

remains on the horizontal plane for illustrative purposes.
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Fig. 8. Top view. Four robots (green-blue) navigate a 8 x 15 m2

environment with two lanes of dynamic obstacles (orange). The

four robots locally reconfigure the formation and make progress

towards the right side.

In order to evaluate the robustness of the method, we

performed additional experiments for this first scenario for

varying speeds of the dynamic obstacles and the quadro-

tors flying in formation. The results are presented in

Figure 9. We observe that most of the time the target

formation for the robots is within Pfo−>g, thus the for-

mation is kept. But, at high speeds, in order to quickly

progress towards the goal, the robots temporally break it and

select a target one within Po−>g or Pg. Good results, espe-

cially at lower dynamic obstacle speeds are observed. We

believe that the results could be improved with an adaptive

time horizon depending on the speed of both the moving

obstacles and the formation. In scenarios with only static

obstacles, the formation is maintained at all times.

In this scenario, very few collisions arise when the tar-

get speed of the formation is higher or similar to that of the

dynamic obstacles and our framework successfully drives

the robots towards the goal while avoiding collisions. Some

collisions arise when the speed of the dynamic obstacles

is much higher than that of the formation. This is due

to the local planning horizon and the robots being unable

to escape on time due to their lower speed. Again, these

results may be improved with an adaptive time horizon of

the framework.

Next, we present experiments for the second scenario.

Figure 10 shows snapshots and trajectories of four quadro-

tors tracking a circular trajectory while locally avoiding

three static obstacles and a dynamic obstacle. Three default

formations are considered here: square (1st preference),

diamond (2nd preference), and line. The optimal parame-

ters are computed with the nonlinear optimization allowing

rotation in 3D (flat horizontal orientation preferred) and

reconfiguration.

The four quadrotors start from the horizontal square and

slightly tilt it (11 s) to avoid the incoming dynamic obstacle.

To fully clear it while avoiding the obstacle in the lower

corner, they shortly switch to a vertical line, and then back

to the preferred square formation (20 s). To pass through the

next narrow opening they switch back to the line formation

(30 s) and then to the preferred square, tilted to avoid the

dynamic obstacle (37 s). Once the obstacles are cleared they

return to the preferred horizontal square formation (45 s).

Fig. 9. Results for 3D navigation in the scenario of Figure 8 with

four quadrotors and varying speeds of the dynamic obstacles and

the formation. Fixed time horizon of τ = 5 s is used in all

experiments. The figure shows the percentage of time in which

the target formation is within Pfo−>g. This is, the percentage of

time in which the formation is guaranteed to be maintained. If

the optimization becomes unfeasible, due to the higher speed of

the dynamic obstacles and the limited time horizon, the forma-

tion might break (in this case the target formation is found within

Po−>g or Pg, but not in Pfo−>g). Scenarios for which a collision

happened are marked with a red dot. As will be discussed in Sec-

tion 7, collisions may arise mostly due to unforeseen changes of

speed by moving obstacles or the limited time horizon.

Results of the third scenario, where sixteen quadrotors

move along a corridor of three different widths are shown in

Figure 11. Three default formations are considered: 4x4x1

defined by four vertices (preferred), 4x2x2 defined by eight

vertices and 8x2x1 defined by four vertices. At each time

step the method computes the optimal parameters for each

of the three and selects the one of lowest cost. Between

times 75 s and 110 s the method successfully rotates the

formation by 90o for it to be collision free (the default for-

mations were horizontal, which is also preferred in the cost

function).

Thanks to the abstraction of a formation by the vertices

of its convex hull, see Section 2.5, the computation time of

the nonlinear optimization is independent of the number of

robots - as long as the same convex shape is maintained -

and can be executed in real-time. It is worth noting that in

this algorithm the dimension of the space where the robots

move has little influence in the computational cost, which

depends mostly on the number of variables defining the for-

mation. In Table 2 we provide computational times for our

implementation using a 2.6 GHz i7 laptop. The approach

shows close to real time performance, typically below 300

milliseconds
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Fig. 10. Four quadrotors (green-blue cylinders) navigate in a 12 x 12 x 6 m3 scenario with three static obstacles (grey) and a dynamic

obstacle (yellow). The four quadrotors track a circular motion (black dots in top view) and locally reconfigure the formation to avoid

collisions and make progress.

Fig. 11. 16 quadrotors navigate along a 70 x 10 x 10 m corridor, with obstacles shown in gray. The quadrotors locally adapt the

formation to remain collision free. The following formations are observed: 4x4x1 - 4x2x2 - 4x4x1 (vertical) - 8x2x1 (vertical), finally

transitioning towards horizontal 8x2x1.

Table 2. Computational time [ms] for our implementation.

Compute Min Mean Max Std deviation

Convex region 31.8 82.8 221.4 72.1

NL optimization 93.7 226.4 522.7 64.1

6.2. Collaborative transport with two mobile

manipulators

We performed initial experiments with two mobile manip-

ulators carrying a rigid object, as described in Section 5.

In this first experiment the two robots are not allowed to

change their orientation and distance with respect to the

object (θi={1,2} = 0, ai={1,2} = constant). We optimize for

the position and orientation of the object only.

Four snapshots are shown in Figure 12 of an experiment

where the two mobile manipulators successfully carry the

rigid object to the goal position behind the orange boxes

while locally avoiding collisions with the human. In all our

experiments, executed with external tracking, the robots

successfully adapted their formation to avoid collisions.

This assumes that the human cooperates, otherwise, colli-

sions may still occur if the human moves faster than the

robots or traps them against an obstacle.
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Fig. 12. Four consecutive snapshots of an avoidance maneuver where two mobile manipulators collaboratively carry a rigid object and

navigate it to the goal while adjusting their formation to avoid collisions with the orange boxes and the human. Robots and human are

tracked by overhead cameras. This maneuver is performed in 1 minute.

A visualization with convex regions of another experi-

ment is shown In Figure 13. For each snapshot the current

(blue) and target (green) formation given by the optimiza-

tion are displayed. The two robots successfully adapt their

formation, rotating as required, to avoid both the dynamic

obstacle (red) and static (grey) obstacles in this 8 m x 6

m scenario. Slices at to and ff = to + τ of the convex

region computed in position-time space are also shown for

illustrative purposes. A time horizon τ = 2 s was employed.

6.3. Collaborative transport, three mobile

manipulators

We performed additional experiments with three mobile

manipulators carrying an object, as described in Section 5.

All three robots can change their orientation respect to the

object, but their distance remains constant. We optimize for

the position and orientation of the object and the orientation

of all three manipulators. Given a goal for the formation,

we first compute a global path with the algorithm of Sec-

tion 4 considering only the two static obstacles. The local

motion planner then runs at a frequency of approximately 5

Hz, accounts for the dynamic obstacle (person), and updates

the parameters of the formation. A low-level controller is

employed which, via high-frequency interpolation, drives

the robots towards the desired formation.

We tested different configurations of the two boxes in

our experimental space, covering all possible scenarios we

thought of (some examples are shown in Figure 14). In all

our experiments the robots could avoid collisions and reach

the goal - as long as the human moved at a reasonable speed

below that of the robots and did not aggressively push them

against a wall.

Several configurations of the two boxes, with the com-

puted global path, are shown in Figure 14. All of them were

computed in the order of below ten seconds. The initial

configuration is in the lower part of the images and the

goal configuration in the upper part. In each figure, we dis-

play the samples (black dots), the convex regions (blue),

the optimal formations within each intersection (green) and

the path. We stop the construction of the graph as soon

as the first solution is found. We observe that in general,

very few iterations were required to find a feasible solu-

tion, which is also of good quality thanks to the optimizer.

Navigation in all these scenarios was successfully achieved

by the three mobile manipulators.

A representative experiment where the three robots nav-

igate through the boxes and avoid a human is shown in

Figure 15. For reference, in Figure 16 we show twelve dif-

ferent scenarios and the configuration of the three robots

when navigating through the environment.

In these experiments, we employed a triangular object

with foam exterior. The foam provides a small degree of

deformability to compensate for the lack of compliance in

the robot arms and low level controller of the mobile manip-

ulators. Note that successful manipulation of a perfectly

rigid body was shown in the previous experiments with two

mobile manipulators, albeit at lower speeds.

6.4. Global planning in large scenarios

We also tested the approach in several larger scenarios. In

Figure 17 we show two examples of the global planner in

simulated 2D environments. In these two cases the global

planner can run for several iterations, up to a fixed amount

of time. We display all the computed convex regions and

formations. After finding the first feasible path connect-

ing the start with the goal position, we store (and display)

the subsequent shorter paths found by the algorithm. An

advantage of the method is that large areas in free space are

explored by each convex polytope, which reduces the need

for additional samples within.

7. Discussion

The method described in this paper showed good real-

time performance and could successfully compute the opti-

mal parameters for the multi-robot formation, while allow-

ing for reconfiguration. The method provided collision-free

navigation among static and dynamic obstacles in simula-

tions with aerial vehicles and in experiments with mobile

manipulators.

At least in part, the computational efficiency and the

good scalability with respect to the number of robots in

the formation is achieved by (a) not including the agent

dynamics in the formation optimization but handling them

in the individual local planners (this works well for robots

with fast dynamics); and (b) considering the convex hull

of the formation. In fact, the number of variables and
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Fig. 13. Four consecutive snapshots of a 10 s avoidance maneuver where two mobile manipulators collaboratively carry a rigid object

and navigate to two goals (crosses) while avoiding collisions with static (gray) and dynamic (red hexagon) obstacles. The current state

of the two manipulators and the rigid object is displayed in blue and the target one (given by the optimization) in green. Two slices of

the convex polytope are shown, purple for the current time to = t (shown in the figure titles) and light green for time t1 = to + τ (the

intersection is the larger blueish region). The dynamic obstacle is shown at time to and it is moving at constant speed downwards. As

displayed, the red dynamic obstacle may intersect with the light green slice of the convex polytope (at t1), but not with the purple one

(at to). The manipulators successfully navigate the rigid object through the two set points avoiding collisions. The initial, intermediate

and final setpoints are shown with dots, the currently active one in red, the others in black.

Fig. 14. Five examples of the global path planner for different scenarios with two static obstacles. The three mobile manipulators carry

an object and can rotate and translate while grasping. The initial and final formations are displayed in dark green. Light green formations

are additional nodes of the graph. The first feasible path is displayed with a solid black line. All samples (black dots), polytopes (blue)

and optimized formations (green) within the intersections of polytopes are shown. Typically, a feasible path is found with very few

samples.

Fig. 15. Three mobile manipulators collaboratively carry an object and navigate to a goal position in the other side of the room. The

global path planner guides them through the two static obstacles and they locally avoid the walking human. The robots successfully

adapt their formation to pass through the narrow opening and avoid the human.
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Fig. 16. Twelve different experiments where the three mobile manipulators collaboratively carry an object and navigate to a goal

position in the other side of the room. For each one of them, a snapshot while they traverse through the two obstacles is shown. This

experiment shows robustness to the location of the obstacles and that the robot formations vary across different execution runs. If the

obstacles leave enough free space, as is the case in the lower right corner experiment, the team of robots maintain the preferred formation

and do not need to rotate around their grasping points. Otherwise, they successfully adapt the configuration.

Fig. 17. Two examples of the global path planner connecting a start (lower left corner) with a goal (upper right corner) for two large

scenarios with many static obstacles. The three mobile manipulators carry an object and can rotate and translate while grasping. The

algorithm runs for a fixed amount of time. The first feasible path, and the feasible paths found in subsequent iterations that decrease

the cost, are displayed with a solid black line. All samples (black dots), polytopes (blue), and optimized formations (green) within the

intersections of polytopes are shown.

constraints of the formation. In fact, the number of vari-

ables and constraints of the formation control method is

independent from the number of robots. The optimization

problem in Equation (15) has eight variables for 3D motion

and ni · nl + 2 constraints, where ni is the number of

vertices of the convex hull of robot positions in formation

i and nl is the number of sides in the convex polytope. We

recall that the number of vertices of the convex hull depends

on the shape of the formation, e.g. a square formation

has four vertices, independently of the number of robots

therein. For collaborative manipulators, the number of vari-

ables (3+2n), and constraints (2n+m · nl · ( no +ni · n)),

scale linearly with the number of robots. In this case, no and

ni are the number of vertices of the object and each robot,

respectively.

In our experiments, the computation of a large obstacle-

free convex polytope following Section 2.4 showed very

good results, but no guarantees exist that the best volume
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will be obtained. In fact, the method will converge to a

local optimum of the cost function, which is guaranteed

to be fully contained in free space. Searching over several

regions might prove advantageous. One may also consider

employing a faster, albeit suboptimal algorithm to quickly

compute a convex region.

To compute the parameters of the multi-robot formation

our method solves a nonlinear optimization via Sequential

Convex Programming. This method converges to a local

optimum of the non-convex problem. Global optimality can

only be guaranteed if the original optimization problem is

convex, which is typically not the case. For the non-convex

case, the number of iterations required to find a locally opti-

mal, or even feasible, solution is not defined. In practice,

the method performed very well, quickly returning good

parameters for the formation in all cases where a valid

formation could be fitted within the convex polytope.

These observations also apply to the case of the global

planner and no strong guarantees can be given for the gen-

eral non-convex optimization case. Thanks to the sampling

of convex regions, the method will successfully explore

the whole workspace. For speed-up, as described in Algo-

rithm 2, we limit the sampling of regions to points outside

of the union of current convex regions in the graph. In most

scenarios this heuristic works well, but it can potentially

miss narrow openings, since, although the whole space is

covered by convex regions, the intersection might not be

traversable. Two advantages of this method are (a) that

sampling is performed in a low dimension space - the

workspace - instead of in the high-dimensional configura-

tion space and (b) that large areas of the free space are

explored/covered at once when contained within a convex

polytope. This has the potential to speed-up global path

planning for formations of robots.

If the optimizations are feasible and a solution is found,

the motion is guaranteed to be collision-free up to the time

horizon of the local planner, under the assumption that the

moving obstacles maintain a constant speed. This is true

because: (a) the convex region is fully contained in free

position-time space; (b) the robots at their initial position

and at the positions in the target formation are fully con-

tained in the convex region and (c) the motion in between

the two formations as well, if the robots move in a straight

line (the linear combination of two points lies within the

convex polytope). For mobile manipulators collaboratively

carrying an object, this is satisfied up to the interpolation.

Nonetheless, collisions with moving obstacles can still

arise if the assumptions are not met. For instance, if the

moving obstacles change the direction of motion quicker

than the robots can react, if the moving obstacles move too

fast, if the planning horizon is not long enough, or if the

team of robots are trapped in a corner from where they

cannot feasibly escape.

An advantage of the method is that planning is decoupled

into: (a) finding convex regions in the lower dimensional

free position-time space (R4) and (b) efficiently optimizing

the configuration of the team of robots within those convex

regions. This comes at the expense of completeness, since

in our approach we require that the robot team maintains

a formation that does not intersect with obstacles, i.e. the

robots cannot maintain a formation while letting an obsta-

cle pass through. In the event of dynamic obstacles, the

team may break the formation to let a moving obstacle pass

through, and come back to the original formation as soon

as there is enough free room.

Lastly, the method is general and can be adapted to other

high-dimensional problems or formation definitions. The

core idea of the algorithms is to generate convex obstacle-

free regions and then optimize the parameters of the for-

mation (i.e. the degrees of freedom of the high-dimensional

configuration) such that the robots are fully contained in the

convex region. The only requirements to adapt the method

are (a) a function that converts configurations z to the

outer vertices of the formation V(z, f ) or high-dimensional

system, and (b) a way to compute derivatives with

respect to the configuration z (unless they are computed

numerically).

8. Conclusion

In this paper, we showed that navigation of teams of

robots in formation among arbitrary static and dynamic

obstacles can be achieved via a constrained nonlinear opti-

mization. By first computing a large obstacle-free con-

vex polytope and then optimizing the formation parame-

ters, low computational cost is achieved together with good

navigation results. In several simulations with aerial vehi-

cles navigating in 3D environments we showed success-

ful navigation in formation where robots may reconfigure

the formation as required to avoid collisions and make

progress.

Our method can be applied both for real-time local nav-

igation in a dynamic environment and to compute global

paths in static environments. The global planner success-

fully combines a sampling-based method in the workspace

with nonlinear optimization for the remaining degrees of

freedom of the formation, thus reducing the dimensionality

of the sampling problem.

For formation control, the approach scales to teams of

robots of arbitrary size, since only the convex hull of the for-

mation is employed in the constrained optimization. Sim-

ulations with sixteen quadrotors -although more could be

used - demonstrate this. The approach is general and can

also be adapted to other formation definitions and appli-

cations, as showed in our experiments with three mobile

manipulators collaboratively carrying an object,

In this work, we did allow for splitting and merging of

robots, from/to a joint formation to/from individual nav-

igation. An interesting avenue for future work is that of

splitting and merging of the group formation into smaller

sub-formations, or to maintain the formation while letting

dynamic obstacles through, which is currently not possible.
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Additional avenues of future research include incorporat-

ing the dynamic constraints of the robots in the nonlinear

optimization problem and accounting for uncertainties in

the prediction of the movement of the dynamic obstacles. In

this work, the nonlinear dynamics of the robots were decou-

pled from the formation control and accounted for by the

individual controllers locally.
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Notes

1. In our implementation we represent quaternions by vectors in

R4 of unit norm and consider the additional constraint C3 =

{||q||2 = 1}.

2. We employ the implementation within the Drake toolbox,

available in RobotLocomotion/drake/.

3. http://drake.mit.edu
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Appendix: Collision avoidance

In this appendix, we provide a description of the method for

collision avoidance employed with the aerial vehicles. We

implement the convex optimization introduced by Alonso–

Mora et al. (2015c) with identical motion constraints and

constraints for avoidance of other agents. This approach

adapts to changes in the environment, avoids moving obsta-

cles, and respects the dynamics of the robot via a set of

motion primitives. Each motion primitive was defined to

track a constant reference velocity with a robot-specific

controller.

We extend the method towards environments with com-

plex static obstacles. In particular, using the convex poly-

tope computation described in Section 2.4, we add a new

constraint to guarantee that the motion of the robot is

within the obstacle-free workspace F . Following the nota-

tion of Alonso–Mora et al. (2015c), the additional con-

straint for avoidance of static obstacles is computed as

follows.

Denote by Ōǫ = {p ∈ R3 | Aǫ(p) ∩ O �= ∅} the

set of static obstacles dilated by the robot volume plus a

small value ε > 0. A convex polytope P
rσ (i)
pi

( R3 \ Ōǫ) ⊂

R3 is computed following Section 2.4. This polytope is in

obstacle-free space, contains the initial position pi of the

robot, and is directed towards the robot’s goal position rσ (i)

in the new formation.

In Alonso–Mora et al. (2015c) the collision avoidance

algorithm was formulated as a constrained optimization in

velocity space. Therefore, the convex region needs to be

converted to an equivalent region in velocity space. Given

the time horizon τ of the planner, this is formally

P
u( p, ε) := (P

rσ (i)
pi

( R3 \ Ōǫ) −pi) /τ (27)

where each linear constraint defining P
rσ (i)
pi

( R3 \ Ōǫ) is

expressed relative to the current position of the robot and

is divided by the time horizon. In particular, if the robot

selects a reference velocity that satisfies this constraint,

i.e. u ∈ Pu( p, ε), then all future positions up to the time

horizon τ are within P
rσ (i)
pi

( R3 \ Ōǫ). This polytope is then

included in the distributed convex optimization of Alonso–

Mora et al. (2015c).

If the target position rσ (i) of robot i is within its line of

sight (this is the case if z ⊂ Pfo→g), then the collision

avoidance algorithm successfully drives the robot towards

it. Otherwise, a global planner, such as the ones proposed

by Bento et al. (2013) or Yu and LaValle (2013), can be

used for guidance.

Index to multimedia extension

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014

all videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia


