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Abstract

In the last decade, collaborative assembly systems (CAS) are becoming increasingly common due to their ability to merge the

flexibility of a manual assembly system with the performance of traditional robotics. Technical constraints, e.g., dedicated

tools or resources, or performance requirements, e.g., throughput, could encourage the use of a CAS built around a multi-

robot and multi-operator layout, i.e., with a number of resources greater than 2. Starting from the development of a prototype

multi-robot multi-operator collaborative workcell, a simulation environment was developed to evaluate the makespan and

the degree of collaboration in multi-robot multi-operator CAS. From the simulation environment, a mathematical model was

conceptualized. The presented model allows estimating, with a certain degree of accuracy, the performances of the system.

The results have investigated how several process characteristics, i.e. the number and type of resources, the resources layout,

the task allocation method, and the number of feeding devices, influence the degree of collaboration between the resources.

Lastly, the authors propose a compact analytic formulation, based on an exponential function, and define the methods and the

influence factors to determine its parameters.

Keywords Collaborative robots · Assembly systems · Makespan evaluation · CAS

Introduction

The mass customization requested by the current market is

pushing companies to offer a wide range of different prod-

ucts. Assembly, due to its position at the end of the production

process, is the production technology most affected by this

trend (Kim et al. 2020). It is therefore fundamental to use flex-

ible assembly systems that could manage changes in volumes

and products (Azzi et al. 2012a, b). For a flexible assembly
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system to be successful it requires the optimization of Bar-

bazza et al. (2017):

– Unit direct production cost (e/part), i.e. the ratio of the

hourly costs of the workcell and the average throughput;

– Mix flexibility, i.e. the ability to handle a wide variety of

parts, and manage a wide variety of parts and products;

– Volume flexibility, i.e. the ability to change the produc-

tivity of the system without reducing its efficiency.

A possible solution could be the adoption of a traditional

Manual Assembly System (MAS), toward which companies

are directed due to the requested flexibility and number of

product variants (Heilala and Voho 2001). These systems

grant the maximum degree of flexibility in comparison to

others, but they present several drawbacks. The accuracy of

the task and the activity repeatability need improvements;

ergonomics problems could also occur (Battini et al. 2011).

To lower the costs of labor, Western countries have

adopted automatic systems. Since Boothroyd et al. (1982)

described the automatic assembly systems, they are increas-

ing their importance thanks to their high production rates,

reduced costs and better quality of the final product. The
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optimization of the assembly process is required for a

cost-effective and competitive paradigm shift from mass

production to mass customization, while also ensuring the

requested product variety (Hu et al. 2011).

Several developments of the flexible assembly systems

(FAS) have been proposed in the literature (Rosati et al.

2013, 2015). Among those, Collaborative Assembly Sys-

tems (CAS) (Faccio et al. 2019) improve the flexibility and

lower the cycle time by using collaborative robots, or cobots

(Colgate et al. 1996). Indeed, the market request for cus-

tomized products could be too expensive to be performed

with traditional automatic systems, whereas a manual pro-

duction has the drawbacks mentioned above. Therefore,

cobots could lead, under proper conditions, to improved pro-

ductivity (Gil-Vilda et al. 2017), thanks to reduced setup

times and by sharing the tasks between the human opera-

tor and the robotic device. Moreover, task-sharing not only

reduces the cycle times since the robot operates in parallel

with the operator but also because it avoids additional and

useless movements of the operator.

A model was previously proposed to allow small- and

medium-sized enterprises (SMEs) to evaluate the benefits of

CAS, in particular identifying the influence of the product

characteristics (Faccio et al. 2020) on the interferences in

the shared workspace, and therefore on the cycle time and

economic advantage of cobots.

However, the previous simulated model is somewhat

restricting towards the possible application of CAS, in partic-

ular on the hypothesis of multi-robot and/or multi-operator

scenarios. The optimal number of resources in a CAS is

not bound to be limited to two, and a multi-resources sce-

nario could improve the throughput. Though, two key factor

(Faccio et al. 2020) should be considered to observe a posi-

tive change: the spatial interferences between the resources

should be kept at a minimum in order to collaborate, and suit-

able process characteristics, i.e. the resources should have the

ability to perform the tasks in a shared workspace. There-

fore, multiple resources should be considered for adoption

whenever: the needed assembly time of the product is greatly

superior to the desired cycle time; in the case of several dif-

ferent tasks that require dedicated tools and resources, e.g.

screwing processes; only if the layout size allows for the

usage of multiple resources. Several studies were proposed

for collaboration of multiple robot systems and the collabo-

ration in CAS systems, however, systems for the analysis and

design of multi-robot multi-operator CAS have not been suf-

ficiently studied. For these reasons our works aims to provide

a model that allows to estimate the performance of CAS sys-

tems in a multi-resource context. Moreover, the model helps

to identify a set of variables that should be introduced to take

into account the influence of the workplace characteristics.

A fundamental constraint for multi-resource systems is

the workspace of the resources. Indeed, not only the size

of the workplace needs to be sufficient for the adoption of

multiple resources, but it is also a critical key factor that

influences the performance of the system. If each workspace

overlaps, the resources could interfere with each other; if all

the workspaces are completely separated, a CAS does not

have any meaning to be used, both from the economic and

performance point of view. Thus, to achieve the required per-

formance, the design of the layout, i.e. the resource position

in the assembly cell and respective assembly task alloca-

tion, and the design of the workspace of each resource are

needed. This study is therefore driven by the need to study

systems able to carry out complex assembly tasks in multi-

resources scenario, guaranteeing a high level of collaboration

with proper workspace-sharing.

The main contribution to the field provided by this

research is:

– The identification of the characteristics that influences

the performance of a multi-resources CAS;

– To provide a model that allows to estimate the cycle time

given the product characteristics, the number of feeding

devices and resources and the degree of collaboration

without the need of a simulation environment.

This study provides to the SMEs a model useful to evaluate

with a reasonable error the cycle time obtainable with a multi-

resources CAS, therefore allowing to identify if these systems

may be a viable solution and evaluating the possible benefits.

Starting from the results of a simulation environment used

to determine in a preliminary phase the achievable degree

of collaboration for a particular application, we propose a

mathematical model to estimate the performance of multi-

resources systems considering different scenarios. Therefore,

we believe that after the preliminary phase the proposed

model is of practical interest, since it allows to estimate the

performance, and thus the costs and benefits, of collaborative

robots even in complex assembly systems without the need

of time-consuming simulations.

The mathematical model investigates the influence of the

system workplace on its performance. Indeed, previous mod-

els take into account only the task distribution or product

characteristics. However, other process characteristics such

as the resources position have to be taken into account when

studying complex assembly systems such as multi-resources

CAS, since their influence is relevant. Therefore, our work

not only presents a model for the perfomance estimation but

also states how to take into account these process character-

istics. In this way, we think that we can provide practitioners

a model that allows them to estimate if a CAS is suitable for

their application and how to optimize the workplace and the

task distribution to maximize economic convenience.

The paper is organized as follows: section “Related work”

presents the state of the art, which shows the novelty and
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the importance of the presented study; section “Performance

evaluation model for multi-robot multi-operator CAS” intro-

duces the variables and hypotheses defined and presents the

cycle time evaluation model. section “Simulation environ-

ment” introduces the assumptions adopted in the simulation

environment from which the model has been conceptual-

ized and its experimental validation. Section “Results and

discussion” presents the results and, section “Conclusion”

concludes the presented work.

Related work

Traditional robotic workcells composed by multiple coop-

erating robots are nowadays more frequent. Indeed, despite

they are a more complex solution to maintain and to recover

in case of faults, they present several advantages, i.e. fewer

fixtures and reduced cycle time (Ranky 2003). It is therefore

understandable that, as soon as robots and human operators

could work alongside, multi-robot multi-operator systems

were studied. Moreover, since the difference in skill between

the human operator and the cobot leads to greater complex-

ity, the use of simulation environments allows to consider

the interaction between the resources and the workplace

(Bänziger et al. 2020).

Ding et al. (2013) defined a finite state automata to design

a human robot application. The algorithm, focused on guar-

anteeing the worker safety without any production loss, was

tested on an CAS workcell composed by two human oper-

ators and a ABB Dual-Arm Concept Robot, also referred

as FRIDA, cobot. Two intersecting interaction zones were

defined, where direct contact between the cobot and the

operator might occur; inside these, different thresholds were

established, adapting the cobot speed. A similar scenario

is studied in Sadik et al. (2017), which is focused on the

optimization of the task scheduling through the Johnson’s

method. As observed by the authors, the two operators might

have different assembly speeds, further complicating the task

optimization; however it should be noted that the tasks are

carried out in a sequential order between the cobot and the

human team. In a similar way, Tsarouchi et al. (2017) pro-

posed a method for the allocation of sequential tasks assigned

to multiple human and robotic resources that constitute a

CAS. The framework was tested in a scenario different from

the previous ones, constituted by two industrial robots and a

human operator, which interact through a depth sensor and

a gesture handler software. A similar scenario is inspected

in Tan et al. (2009), who developed a prototype CAS system

composed by a human operator assisted by two traditional

robots on a mobile platform. The interaction between the

human and the robot team is analysed considering the oper-

ator safety and mental workload and the performance of the

system.

Three different case studies are also presented in Michalos

et al. (2015), with one scenario presenting four collaborat-

ing resources. The type of resources and the layout to be

used in each case are affected by several variables, such as

the type of robot, its payload, product characteristics, i.e.,

geometry and weight, and the process characteristics. How-

ever, it should be noted that the work is focused on the safety

related aspects that need to be considered during the design of

human–robot collaborative applications. The layout design

problem is also analysed by Tsarouchi et al. (2017), consid-

ering at the same time the task planning problem. The authors

propose a model for automatic generation of layout genera-

tion and task planning, since the workplace design and task

allocation is a critical issue for the throughput increase and

the cycle time reduction. When a process changes, the layout

is designed with the objective of the cycle time improve-

ment and the time reduction for re-design and reconfiguration

(Tsarouchi et al. 2016). Differently, Ore et al. (2016) use a

developed simulation software that evaluates the CAS appli-

cation, minimizing the operation time, both for the robot and

for the operator, and the biomechanical load on the oper-

ator, observed from the basis of the adopted posture. The

method was used to optimize a CAS, considering not only

the three-dimensional layout, but also the spatial position

of the human–robot handover. Lastly, Fechter et al. (2018)

presents a practical approach for workplace design.

The studies presented so far not only highlight the neces-

sity of considering the workplace design when developing a

CAS application, but also the increasing presence of multi-

resource CAS. However, it is clear examining the literature

that the contributions available on multi-resources CAS seem

to be focused on proposing technical solutions to increase

safety, productivity and reduce costs. On the contrary, to

the authors’ knowledge, a model which allows to estimate

the cycle time obtainable in a particular application, without

the need of a simulation environment, is not present. This

is probably due to the difficulties encountered when mod-

elling the human–robot interaction, since it is affected by

the unpredictability of the human behaviour; this is further

complicated when considering multi-resource scenario.

Performance evaluationmodel for
multi-robot multi-operator CAS

The objective of this work is to evaluate the achievable

makespan when considering a multi-resource layout. In

greater detail, the addressed problem is:

– To obtain a suitable collaboration between the resources;

– To estimate the achievable makespan Ttot with the con-

sidered task allocation.
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Therefore, this work aims to define a function that estimates

Tnorm , i.e. Ttot normalized by unit of space and number of

parts, for the considered scenario (P, W ):

Tnorm = F(P, W ) (1)

where P are the product characteristics (number of parts and

product size) and W represents the workplace characteristics

(e.g. number of resources, distance between the resources

and task allocation method).

To exemplify the main idea of our approach and also

its effectiveness, we will present a numerical example. We

consider a collaborative assembly system composed by four

resources, 2 collaborative robots and 2 operators, placed in

a certain disposition and with 4 feeders; these parameters

belongs to the W variables. The considered CAS is tasked to

assembly a square product of size equal to 400 mm and com-

posed by 22 parts, which results from previous works to a

possible collaboration value of about 45%; these parameters

belongs to the P variables. Our model estimates a normalized

cycle time Tnorm equal to: 6.73 · 10−4
[

h
mm

]

Nomenclature

Input variables and parameters

Np Number of parts to be assembled

L Side of the square workspace (mm)

Nr Number of resources

N f Number of feeding devices

c% Total collaboration parameter (%)

For each resource i considered, both human operator(s)

and cobot(s), the following parameters were defined:

ta,i Assembly time [h/part]

tpp,i Unit pick time [h/part]

si Hand/end-effector

movement speed [mm/h]

wi Resource weight on collaboration

Output variables

Ttot Achievable cycle time [h]

Tnorm Cycle time normalized byL

and Np [h/mm]

Variables used in the simulation environment

Several other variables are defined in the simulation envi-

ronment used to test the model:

Lmin Minimum arm length of

resource i [mm]

Lmax Maximum arm length of

resource i [mm]

R Radius i of the 2D sphere-swept

line [mm] Ericson (2004)

c%i, j Collaboration parameter for

resources i, j[%]

Ttot,a Total assembly time [h]

Tcoll,i, j Resources i, j

collaboration time [h]

Variables used to define the model

Ttask Time spent on task completion [h]

Tmotion Time spent on motion [h]

Ttask,c0 Time spent on task completion

without collaboration [h]

Tmotion,c0 Time spent on motion

without collaboration [h]

Tc0 Cycle time normalized by L

and Np without collaboration [h/mm]

f Factor of collaboration

Other variables used in this work

P Product characteristics

W Workplace characteristics

Ttot,a,i, j Total assembly time

for resources i, j [h]

Tk Time required for task k [h]

Tc Desired cycle time [h]

ri Ratio between the process time

of resource i and a reference

tri Total time for resource i [h]

r f Ratio between N f andNr

Hypotheses

The hypotheses that characterize the model are:
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– The considered assembly system does not distinguish

between different feeding typologies, since this work

supposes that all the devices can provide each part when

required.

– Between each change in assembly tasks the payload dif-

ference is minimal, therefore retooling is not needed and

each resource can move every parts.

– The considered assembly process does not take into

account any precedence constraint.

– The number of resource Nr is defined as:

Nr =

∑Np

k Tk

Tc

(2)

where Tk is the time needed to carry out task k and Tc is

the desired cycle time. In this work we will focus only

on the scenarios with Nr > 2.

Model description

First of all, to describe the model it is important to define

the three main tasks considered to represent the assembly

process:

– picking, i.e. when a resource moves from the feeding

point to an assembly point and returns to the feeder or

from a point to the following one in the case of a pure

assembly process;

– placing, i.e. when a resource places the picked part in the

proper position;

– fastening, i.e. when a resource attaches the part to another

or to the product base.

Two main groups were defined from these three tasks, called

picking and assembly, where the latter groups the placing

and fastening tasks. The total process time for each resource

will be therefore composed by the total picking and assembly

time for said resource.

Considering the assembly for large pieces, or in the case

of large workspaces, it is possible for each resources to work

simultaneously. Therefore, when evaluating the total assem-

bly time Ttot,a,i, j for two resources i, j as Faccio et al.

(2019):

Ttot,a,i, j = (ta,i − Tcoll,i, j ) + (ta, j − Tcoll,i, j ) + Tcoll,i, j

= ta,i + ta, j − Tcoll,i, j

(3)

a certain shared time Tcoll,i, j between the two resources

should be considered. This shared time is dependent by inter-

ferences that can happen between cobots and human oper-

ators during the assembly process; interferences which are

represented by the degree of collaboration c% ∈ [0,100][%]

Faccio et al. (2019). Extending the definition presented in

Faccio et al. (2020), the total c% is evaluated as the weighted

arithmetic mean of the degree of collaboration between two

resources i, j c%,i, j , therefore:

c% =

∑Nr

i, j (wi + w j )Tcoll,i, j

(Nr − 1)Ttot,a

∑Nr

i wi

[%] (4)

where wi and w j are the weight of the resources i and j

respectively and Tcoll,i, j the collaboration time evaluated

for each couple i, j of resources, Nr the total number of

resources considered in the layout and Ttot,a is the total

assembly time of the CAS.

The simulation environment used in Faccio et al. (2020)

showed that there is a relation between c% and the cycle time.

To avoid considering the effects of Np and L on the cycle

time, i.e. the increase in the cycle time due to the increase

in Np and the increase in the motion time due to increase in

the product size, it is suggested to evaluate the effects of the

collaboration on the normalized cycle time Tnorm , defined as

Tnorm =
Ttask

Np

+
Tmotion

Np · L

[

h

mm · points

]

(5)

where Ttask is the time spent on task completion and Tmotion

the remaining time, thus motion time. Due to its nature, even

if Ttask is not divided by L , it can be considered applied

to unit of L . The evaluated time is related to the assembly

process speed, since it represents the speed to assembly one

part on one millimetre-sized product, thus the lower is Tnorm

the higher the assembly speed and therefore the throughput.

The results obtained from the adopted simulation envi-

ronment were fitted with different models, e.g. polynomials,

power and hyperbolic, and considering the sum of squares

due to error (SSE), the model which fitted in the most signif-

icant and correct way was the one-term exponential model,

with an SSE ranging around a 10−7 order of magnitude.

Therefore, the relation between c% and Tnorm can be rep-

resented by the following one-term exponential model:

Tnorm = Tc0e− f c% (6)

with Tc0 and f constants. This model allows therefore to esti-

mate Tnorm of a particular application with different degree

of collaboration; given the product characteristics L and Np

it it then possible to estimate the cycle time.
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Definition of Tc0

Due to the exponential nature of the model, Tc0 is equal to

the measured Tnorm in a zero-collaboration scenario, i.e.

Tc0 =
Ttask,c0

Np

+
Tmotion,c0

Np · L

[

h

mm · points

]

(7)

with Ttask,c0 the time required to carry out the tasks without

any collaboration and Tmotion,c0 the time required for the

resource to move towards the feeding device and towards the

placing point with null c%. In a similar scenario, it is easier

to determine this two values: indeed, since the resources are

not collaborating, the tasks are carried out in sequence, which

could imply that it is the sum of the time required for each

process tasks, meant as picking and assembly. However, the

resources presents different picking and assembly times due

to their different nature; therefore, Ttask,c0 is between the

sum of the task times of the fastest resource and the sum of

the task times of the slowest one, i.e.

ta, f + tpp, f ≤ Ttask,c0 ≤ ta,s + tpp,s (8)

with ta, f and tpp, f the assembly and picking time of the

fastest resource respectively and ta,s and tpp,s the assem-

bly and picking time of the slowest resource respectively.

To evaluate Ttask,c0, the distribution of the tasks between

the resources should be considered. Without considering

any technological limitation, i.e. every resource can perform

every task, and without considering any precedence between

the tasks, the task allocation for the resource i is based on

the weight ri , i.e. the ratio between the process time between

the resources:

ri =
tr1

tri

=
ta,r1 + tpp,r1

ta,ri + tpp,ri

(9)

with tr1 is the total time of the reference resource, i.e. the sum

of the picking time tpp,r1 and the assembly time ta,r1, and tri

is the total time of the resource i , i.e. the sum of the picking

time tpp,ri and the assembly time ta,ri . Ttask,c0 is therefore

evaluated as:

Ttask, c0 = Np

∑

i ri tri
∑

i ri

(10)

Moreover, the time required for the resource to move towards

the feeding device and towards the placing point, hereafter

called motion-time, should be considered. Considering a uni-

form distribution of the placing points, the motion-time for

each resources can be evaluated as the sum of the time

needed to move from one placing point and another, and the

time needed to move from the feeding device nearest to the

resource i and the center of the workspace. These two values

can be obtained by considering a weighted mean speed, with

the weight ri evaluated as before, since the task allocation is

based on the time needed to carry out the assembly process.

Moreover, the distance between the feeding devices and the

center is also the weighted mean distance. The motion-time

Tmotion,c0 is therefore evaluated as:

Tmotion,c0 =
FCw + P1 P2

sw

(11)

with FCw the weighted mean distance between the feeding

device and the center, P1 P2 the average distance between the

placing points and sw the weighted average speed.

It should be noted that the proposed definition of Tnorm ,

and therefore of Tc0, reduces the influence of Tmotion,c0 on

its value, thus it is possible to evaluate Tc0 by considering

only Ttask,c0 with a fair approximation.

Definition of f

In regards to the exponent constant f , called factor of col-

laboration, our study shows that it represents the level of

criticality of the layout, i.e. how much it is important that the

resources collaborate on the shared workspace. Indeed, f is

higher in scenarios where the probability of interference is

higher and thus a higher value of c% is needed. As presented

in Faccio et al. (2020), the risk of interferences, represented

indirectly by c%, depends on the product characteristics, but

also on certain process characteristics, e.g. the layout config-

uration and/or the assembly process time.

The simulation tests show that f depends on several pro-

cess characteristics, which can be grouped as related to the

resources and the feeding devices.

– Resources

– Resource type and number, i.e. the distribution of human

operators and cobots composing the CAS. Since the

resources present greatly different task times (ta and tpp)

between each other, an asymmetrical resource distribu-

tion, e.g. n cobots and m operators, results in a more

critical layout, increasing f . Moreover, considering n

type 1 resources and m type 2 resources, with m < n,

the considered layout will be more critical if the type 1

resources have higher task times since they will occupy

the shared workspace for a longer time, thus increasing

the risk of spatial interferences.

– Resource task time, i.e. the difference between ta and tpp

of the resources. As shown previously, different times

between the resources increase f , since higher differ-

ences reduce the possibility of synchronization between

the resources, i.e. they cannot enter and leave the shared

workspace at the same time. Moreover, in the hypothe-
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sis of an assembly process without any precedence, the

resources time and distribution influence the task distri-

bution r which in turn further influences f .

– Feeding devices

– The ratio r f between the number of feeding device N f

and Nr . Under the hypothesis that each bulk can provide

every part required for the process assembly, each bulk

can serve every resource, thus lowering r f to values infe-

rior to 1 increases the chances of interferences, and as a

consequence f . It should be noted that due to the hypoth-

esis set on the feeding devices, values of r f greater than 1

does not imply a further reduction of f since the resources

will reach the nearest unoccupied feeding device.

– Feeding device position, since an increase of the mini-

mum distance of each resource from the feeding devices,

decreases the possibility of interferences, and therefore

f .

Differently from Tc0, the great number of variables con-

siderably makes it difficult to provide a significant formula

for f ; however, as presented in section “Results and discus-

sion”, several observations can be inferred from the proposed

tests.

Simulation environment

The simulation environment has allowed to evaluate the

makespan and c% for several layouts in a multi-resources

CAS scenario given the product and process characteristics.

This section introduces the assumptions adopted in the sim-

ulation environment and description of the model.

Model application: assumptions and input values

The simulation environment is based on the following

assumptions:

– The pick-and-place time is evaluated as the time needed

to move from the completed point to the feeder and then

to the placing point, considering also the time required

for grasping the object. Regarding the cobot(s), we con-

sidered a gripper with a closing/opening time of 0.7 s.

– The human operator(s) is allowed to move his/her base,

representing the shoulder, around the workspace in order

too reach bulks/placing points too far from the base. This

motion is outside the workspace in order to reduce the

risk of interferences, but it is simulated to better compute

the expended time.

– Besides the motion time component, the assembly and

picking time of each task are equal.

Table 1 Values of the input variables and parameters

Product parameter Value Unit

Np >16 & <40 –

L >150 & <600 mm

Manual parameter Value Unit

ta 1.04 · 10−3 h/part

tpp 3 · 10−4 h/part

s 7.2 · 105 mm/h

Lmin 0 mm

Lmax 600 mm

R 95 mm

Robot parameter Value Unit

ta 2.1 · 10−3 h/part

tpp 1.94 · 10−4 h/part

s 9 · 105 mm/h

Lmin 65 mm

Lmax 1300 mm

R 95 mm

– The space occupied by the cobot(s) and by the human

operator(s) is represented by a two-dimensional sphere-

swept line (SSL) with corresponding radius.

As reported in our previous work (Faccio et al. 2020), the

input variables are set to be compatible with the industrial

practice, to include a wider range of possible cases; however

considering different values from the ones in Table 1 provides

for similar results to the ones presented in this work.

Differently from Faccio et al. (2020), the range of Np is

between 16 and 40 points considering only even numbers,

while the side length L is defined between 150 mm and 600

mm with increments of 25 mm for L values up to 300 mm and

increments of 100 mm after that. This separation for L was

required to better evaluate the increase in c% which, as shown

in Faccio et al. (2020), presents a plateau after a certain value

of L depending on the considered process characteristics. The

increment in the number of points is due to the increased Nr ,

since scenarios where one of the resources was idle were

considered not significant. Lastly, the diameter of the 2D

sphere-swept line representing the cobot arm is considered

equal to the footprint of a Universal Robots UR10 cobot

(https://www.universla-robots.com).

The simulation environment was applied on two different

allocation method presented in Faccio et al. (2020):

– shared tasks allows each agent to perform picking and

assembly tasks, i.e. every resource fasten each part they

picked.
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Table 2 Comparison between the estimated and mean values: example

for a 2-cobots-2-operators layout

Std. deviation σ Estimated Tc0 Mean Tc0 Unit

0.1µ 1.7 · 10−3 1.62 · 10−3 h/mm

0.3µ 1.7 · 10−3 1.61 · 10−3 h/mm

Std. deviation σ Estimated f Mean f Unit

0.1µ 1.95 1.97 –

0.3µ 1.95 2.00 –

– human p/p separates the placing from the assembly tasks,

thus the human operators pick and place every part so

that the robots can fasten it; this choice was driven by the

assembly considered, which showed a manual picking

faster than the robotic one.

with different Nr , resource position, and number of bulks.

Validation test

We analysed the robustness of the model to uncertainties,

which could lead to performance deterioration (Boudjelida

2019). The operator(s) task times are considered as the main

sources of uncertainty, which is reasonable since the robot(s)

task times are more repeatable. We assumed that the opera-

tor(s) task times are normally distributed, which is realistic in

most cases of manual work (Moodie 1965; Buzacott 1990):

for each scenario we set the mean µ equal to the value in

Table 1 and the standard deviation σ equal to 10% and 30%

of µ, respectively. For each scenario the mean values of Tc0

and f have been evaluated using 100 samples of the opera-

tor(s) task times, as seen in Table 2. The results show that the

estimation of Tc0 and f is compatible with the mean value.

An experimental test was also carried out to confirm the

reliability of the results in a real scenario since some effects

could not be considered in the simulation algorithm. Indeed,

the used simulation environment has been developed follow-

ing the extension to a multi-resource system, i.e. Nr > 2, and

therefore a new validation test is required. For this purpose,

a prototype collaborative workcell has been developed in the

Robotics and Automation Laboratory at the Department of

Management and Engineering of the University of Padova

starting from the experimental setup presented in Faccio et al.

(2020). Similarly to Faccio et al. (2020), the test compares the

measured makespan with the simulated one for several lay-

outs, resource number and distribution and r f ; one of these

scenarios is presented in Fig. 1, where two human operators

collaborates with the robotic device, a KUKA LBR iiwa 14

R820, a cobot widely used by industries (https://www.kuka.

com).

Fig. 1 One of the layouts developed for the validation test, composed

by 2 human operators and 1 robotic device.

To better compare the measured makespan with the sim-

ulated one, the task allocation proposed by the simulation

was provided to the human operator(s) and the cobot: the

measured idle times are therefore due to real physical inter-

ferences between the resources. Similarly to Faccio et al.

(2020), we defined a minimum force limit (±30 N) to avoid

that an accidental impact would disable the cobot. However,

the model does not consider the force setting as one of its vari-

ables since it focuses on presenting an optimistic evaluation

of the performance achievable with collaborative systems.

Figure 2 presents a comparison between the measured

makespan (light blue) and the simulated one (red) for one

of the configurations considered. The mean percentage error

observed between the measured and the simulated data is

equal to −2.35% with a standard deviation of 4.06%. The

results presented are similar to the ones obtained for the other

scenarios considered, which are not presented for shortness.

Results and discussion

The next section will present the results obtained from the

simulation environment for several configurations and how

the different process characteristics influence f and Tc0, as

briefly presented in section “Model description”.

Process characteristics

The different process characteristics, e.g. the layout, have a

great influence on the exponent f and thus on the exponential

behavior. To better grasp this influence, several tests were

carried out by changing only one of the possible variables.

Table 3 presents the values used for the results presented in

this work.
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Fig. 2 Comparison between the simulated (red) and measured (light

blue) makespan for one of the configurations. The mean percentage error

is −2.35% with a standard deviation of 4.06% (Color figure online)

Table 3 Tested process characteristics influencing f

Process characteristic Scenarios

Nr 3,4

Resource distribution 2 cobots 1 operator

1 cobot 3 operators

2 cobots 2 operators

3 cobots 1 operator

r f 1/2

2/2

3/4

4/4

2/3

3/3

Layouts for Nr = 3 a,b,c

Task allocation method Shared tasks

Human p/p

Firstly, a number of resources Nr greater than 2 was con-

sidered to show how an increased number of resources can

lead to greater f . Since the given resources are classified by

only two different types in the model, i.e. human operator

or cobot, scenarios composed by an uneven or equal num-

ber of cobots and human operators are possible. The effects

of an asymmetrical resource distribution on f in compari-

son to symmetrical one is therefore studied for both the Nr

considered.

Moreover, the resources position has also a great effect on

f and different layouts were examined: e.g. Fig. 3 presents

the layouts used for a scenario composed of 2 cobots, 1 human

operator, 3 feeding devices and product size of 150 mm, i.e.

the minimum L . The circles represents the base point and

the hand/end-effector, where the cobots are represented by

the green and black cirlces and the human operator by the

red ones. Three feeding points are represented as three small

cyan circles, and the black square represents the product.

Layouts studied for different resource distribution and Nr ,

while presenting similar results, are omitted for shortness.

Reducing the number of feeding devices, and therefore

testing values of r f less than 1, increases the probability of

interferences, as the resources could interfere both near the

common feeding device, but also in the shared workspace.

Indeed, under the hypothesis of an assembly process without

any precedence, the tasks carried out by each resource will

be the nearest to the resource bases, but also to the common

feeding device, therefore increasing the risk of interferences.

This effect could be considered even in the case that the feed-

ing devices provide only specific parts, by placing a sufficient

number of feeding devices to satisfy each resource simulta-

neously; however, a compromise with the cost of this solution

should be considered. As stated above, values of r f greater

than 1 are not considered relevant due to the hypotheses.

Furthermore, for the Human p/p task allocation method the

feeding devices concern only the human operators, therefore

r f is evaluated as 2/2 or 1/2 even if Nr is greater than 2.

Again, several ratios were examined but this work presents

only a limited number for shortness.

The following paragraph will present some of the obtained

results for each task allocation method considered and focus-

ing on the effect of one parameter at a time.

Shared tasks method

Resources distribution

Considering Nr equal to 4, three scenarios for different dis-

tributions of resources are possible:

– 1 cobot and 3 human operators;

– 2 cobots and 2 human operators;

– 3 cobots and 1 human operator.

whereas scenarios composed of only cobots or human oper-

ators are not considered significant for the purpose of the

research. For r f equal to 1 and the same resources position,

we can observe the behaviour represented in Fig. 4, where

the equation of the one-term exponential model represented

is obtained through least square fitting.

Considering one of the scenarios for reference, e.g. the first

scenario with 3 human operators and 1 cobot, the coefficient

Tc0 can be roughly estimated considering only Eq. (10) as

Tc0 =
3 · (tpp + ta)op + rc · (tpp + ta)rc

3 + rc

= 1.5 · 10−3 [h/part]

(12)
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Fig. 3 Resource and bulk position tested. For each one of them, the mean distance between the resources is presented
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Fig. 4 Effect of the resources type and distribution on the exponential model considering four resources with r f equal to 1 and the same resources

position

with the weight rc evaluated as presented in (9), considering

the human operator as the reference resource r1 and equal to

0.5841. The resulting percentage error between the estimated

value and the one resulting from the simulation environment

(1.56 · 10−3[h/part]) is therefore −4.13%, which can be

considered acceptable in a rough design phase. Analogously,

the value of Tc0 for the other two scenarios, i.e. 2-cobots-2-

operators and 3-cobots-1-operator, can be estimated equal

to 1.7 · 10−3[h/part] and 1.9 · 10−3[h/part] respectively,

thus the estimation differs from the simulated values by a

percentage error of 4.93% and −1.04%, which can be consid-

ered acceptable. Regarding the exponent f , despite it cannot

be estimated similarly to Tc0, two important consideration

can be made, especially observing the layout composed by 3

operators and 1 cobot. The higher value of f (−2.20) for this

scenario is due to two different effects: first of all, the odd

resource distribution, differently from the scenario with two

resources per type (−1.95). As previously stated, the differ-

ent task time between the two type of resources increases the

probability of spatial interferences, which is related to f .

However, the other layout with odd resource distribution

(3 cobots-1 operator) has a lower f (−1.96), which is due

to the characteristics of the single resource: in the layout

composed by 3 cobots, the human operator is faster than the

cobots in terms of task time, therefore they will occupy the

shared workspace for a lower amount of time, and therefore

it presents a decrease in the probability of spatial interfer-

ence, given a certain task distribution. On the contrary, the

scenario presenting only 1 cobots has a higher f since the

single resource is slower than the others in terms of task

time. Moreover, despite the higher speed of the cobot, the

motion time is much lower than the task time due to the size

of the workspace, thus, with the data considered, the human

operators occupy the shared workspace for less time than the

cobots.

Number of resources

The number of resources can indeed influence f since it is

strictly related to the number of interferences in the shared

workspace. Figure 5 represent the scenario of 2 cobots and 1

human operator, r f equal to 1, with the resources and feed-

ing devices defined to keep the same distance between the

resources as the previous scenarios, thus removing the effect

of the layout.
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Fig. 5 Effect of the number of resources on the exponential model

considering 2 cobots and 1 operator with r f equal to 1 and the same

resources position. (Tnorm = 1.96 · 10−3e−1.47c% h
mm

)

The value of f is lower for 3 resources (2 cobots and

1 human operator, −1.47) than for four (3 cobots and 1

human operator, −1.95): indeed, the influence of Nr should

be considered, since fewer resources are used in the CAS,

and therefore that occupy in the shared workspace, lowering

the possibility of spatial interferences.

Furthermore, the value of Tc0 is different from the ones of

the previous layouts due to the different resource distribution.

The value of Tc0 can be estimated considering (10) as

Tc0 =
(tpp + ta)op + 2 · rc · (tpp + ta)rc

1 + 2 · rc

= 1.86 · 10−3 [h/part]

(13)

with the weight rc again evaluated as 0.5841. The result-

ing percentage error between the estimated value and the

one resulting from the simulation environment (1.96 ·

10−3[h/part]) is therefore −5.37%, which can be consid-

ered acceptable in a rough design phase. Lastly, the influence

of the resource distribution is also noticeable for different

number of resources, with results similar to the ones pre-

sented above.

Layout

The influence of the resources and feeding devices position

on f is studied by considering three scenarios composed by

2 cobots and 1 human operator, with r f equal to 1, placed at

different distances between each other, i.e. Layout a,b, c in

Fig. 3.

While the Layout a corresponds to the one presented in

Fig. 5, and therefore is omitted here for shortness, the simu-

lation results for the other two layouts are presented in Fig. 6.

As shown, Layout b, characterized by the furthest resources,

with a mean distance between their base position equal to

1024.8 mm, presents the minimum absolute value of f , equal

to −1.34. Indeed, considering that without any precedence

the current task for each resource will be the nearest one, as

the distance between the resources increase, the risk of spa-

tial interferences decreases. This effect could be considered

even in the case of precedence between the tasks, by keeping

the maximum possible distance between the simultaneous

tasks of the resources.

As the mean distance decreases (Layout a, 765.9 mm) the

value of f increases, and the maximum value of f for the

three scenarios is measured in Layout c, which presents the

minimum mean distance, equal to 731.9 mm, and an exponent

f equal to −1.48. Interestingly, the difference between these

two values of f is smaller than with the one of Layout b, since

the difference between the mean distance is also smaller.

Number of feeding devices

The last variable that was observed influencing f is the num-

ber of feeding devices, as seen in Fig. 7, where we considered

two layouts composed by 2 cobots and 2 human operators,

placed at the same distance in the two scenario.

For the considered task allocation method, this effect is

the one that most influences f , with an increase of over 70%

by only reducing r f from 1 to 0.75. Further reduction of

the number of feeding devices greatly increases the factor of

collaboration, since the possibility of interferences greatly

increases also near the common feeding device. Similar

results are obtained for different r f , Nr , resource distribu-

tion and position.

Human p/pmethod

Resource distribution

The results of the tests for the resource distribution consid-

ering the Human p/p task allocation method are presented

in Fig. 8. Differently from the previous one, this method

requires less feeding devices, as only the human operators

are carrying out the picking tasks. However, this method also

leads to greater makespan and lower c%, as shown in Faccio

et al. (2020). Moreover, this scenario differs in the evaluation

of Tc0: indeed, rc will be equal to 1 since every placing tasks

carried out by the operators correspond to an equal number

of fastening tasks by the cobots. Therefore the value of Tc0

for a layout composed of 2 operators and 2 cobots can be

evaluated as:
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Fig. 6 Effect of resource position on the factor of collaboration f for Layout b and c
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Fig. 7 Effect of the number of feeding devices on the factor f in a layout composed of 4 resources, 2 cobots and 2 human operators

Tc0 =
(tpp + ta)op + rc · (ta)rc

1

= 2.7 · 10−3 [h/part]

(14)

This equation can be better explained by considering that

each tasks time is composed by the picking (tpp) and placing

(ta) time of the human operators and the fastening (ta) time

of the cobots.

Two different scenarios were considered, with Nr equal

to 4, r f equal to 1 and same resources position:

– 2 cobots and 2 human operators;

– 3 cobots and 1 human operator.

123



Journal of Intelligent Manufacturing (2021) 32:1455–1470 1467

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

C% [ ]

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

T
n
o
rm

 [
h
/m

m
]

10-3 T normalized - point/size, 2 feeders

y = 2.78e-03 e-2.47e+00 x

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C% [ ]

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

T
n
o
rm

 [
h
/m

m
]

10-3 T normalized - point/size, 2 feeders

y = 2.87e-03 e-4.90e+00 x

(a) (b)

Fig. 8 Effect of the resources distribution on the exponential model considering four resources with r f equal to 1 and the same resources position,

applying the Human p/p task allocation method

A layout composed of 3 human operators and 1 cobot were

not considered due to the resulting low value of c%, lower than

0.1%, which makes it difficult to distinguish the trend of c%

from its variability. This is due to the low collaboration of the

cobot, which greatly interferes with the three operators. This

leads to a behavior similar to the ones presented in Faccio

et al. (2020), therefore it is not considered significant for the

proposed study.

Regarding the other two layouts, as previously shown, an

uneven distribution of the resources leads to an increase in

f ; moreover, this increment is greater than before, with an

increase of over the 98% in comparison to the 12.8% reached

with the shared tasks method. This increase is due to the

task allocation method, which designate the single human

operator to carry out all the picking tasks, thus increasing the

criticality of the layout. Lastly, the values of Tc0 obtained

by the simulation environment for the 2 cobots and the 3

cobots layouts are equal to 2.78 · 10−3 [h/part] and 2.87 ·

10−3[h/part] respectively, which differ from the estimated

one by −2.8% and −5.9% respectively.

Number of resources

As shown in Fig. 9, Nr greatly effects f , since considering

three resources, placed as the Layout a presented in Fig. 3,

f decreases by the 33% in comparison of a layout composed

by 2 cobots and 2 human operators with r f equal to 1.

Indeed, the Human p/p task allocation method is more sus-

ceptible to the number of resources, especially to the number

of cobots: while the human operator is carrying out the pick-

ing tasks, the cobots are able to carry out only a limited
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Fig. 9 Effects of the number of resources on f with the Human p/p

task allocation method, considering a layout composed by 2 cobots and

1 human operator. (Tnorm = 2.83 · 10−3e−1.65c% h
mm

)

number of assembly tasks, i.e. the tasks where the opera-

tor already carried out the picking, therefore an increase in

the number of cobots leads to a more severe increase in the

probability of interferences. Similarly to the previous task

allocation method, the effects of the resource distribution are

also observable for different number of resources.

Differently from the other task allocation method, the

value of Tc0 is not influenced by Nr , as shown by comparing

the value for 3 resources in Fig. 9 (2.83 · 10−3 h
mm

) with the

values for 4 in Fig. 8 (2.78 · 10−3 h
mm

and 2.87 · 10−3 h
mm

).
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Fig. 10 Effect of resource position on the factor of collaboration f for Layout b and c applying Human p/p task allocation method
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Fig. 11 Effect of the number of feeding devices on the factor f in a layout composed by 4 resources, 2 cobots and 2 human operators

Since the cobots should complete all the tasks started by the

operator, rc is equal to 1 and Tc0 is evaluated as the sum of

the picking and placing time of the operator and the assembly

time of the cobots.

Layout

Considering the same layouts presented in Fig. 3, the effect of

the resources and feeding devices position on f were studied

for the Human p/p task allocation method for 2 cobots and

1 operator, with r f equal to 1. The simulation results for

Layout b and c are presented in Fig. 10, whereas Fig. 9 has

presented the results for Layout a.

Similarly to the previous task allocation method, an

increase in the mean distance between the resources, decreases

f , since it reduces the probability of spatial interferences.

Moreover, the influence of the layouts is greater, with an

increase of f of about 21.8% in comparison to the 10.4%

reached with the shared tasks method. This is due to the

same reasons that led to a greater effect of Nr , since an

increased distance limits the interferences caused when the

cobot assembly the limited number of tasks.
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Number of feeding devices

Lastly, the influence of r f on f was observed using the

Human p/p method in Fig. 11. Differently from the previ-

ous task allocation method, r f is related only to the number

of human operators, since the picking tasks are not carried

out by the cobots. Therefore, considering a layout composed

by 2 human operators and 2 cobots, the possible value of r f

will be 1, i.e. 2 feeding devices, and 0.5, i.e. 1 feeding device;

for the same reasons presented above, values of r f greater

than 1 were not considered in this study.

Figure 11 presents the results for two scenarios:

– 2 cobots and 2 operators, r f equal to 1;

– 2 cobots and 2 operators, r f equal to 0.5;

with the same resource position. The results show, similarly

to the previous method, that the reduction of r f leads to an

increase of f above the 60%, therefore the great impact of

the number of feeding devices on the criticality of the layout

is confirmed also with the Human p/p method. It should be

noted that, due to the nature of the proposed method, the

resource distribution has a greater influence on f , leading to

even lower collaboration values.

Conclusion

This paper presents a model developed starting from a pro-

totype workcell which aims to estimate the cycle time of a

CAS given the product characteristics, the number of feeding

devices and resources, and the degree of collaboration. The

exponential model shows how different process characteris-

tics, such as the number and type of resources, the layout and

the number of feeding devices, affect the exponent f . These

effects were presented and discussed for two different task

allocation using a tested simulation environment. The results

demonstrate that:

– An exponential model for determining the Tnorm of a

CAS is provided;

– A method for evaluating Tc0, the coefficient of the

exponential model, is provided; moreover the difference

between the estimation and the simulated result is up to

5%.

– The influence of different process characteristics, e.g. the

layout, on the exponent f is presented along with their

effect.

The proposed model will be useful for practitioners that aims

to evaluate the feasibility of a multi-resource CAS, and also

the most appropriate design, in a rough design phase.

Future research will examine the effects of the introduc-

tion of task precedence on the exponential model, which

limits the collaboration between the resources; moreover,

we will analyze if other characteristics, such as technological

constraints, will be considered. The effect of the uncertainties

on the model will be studied in more detail, considering other

probability density functions, such as the gamma model.

Lastly, studying several case studies will allow defining a

guide for the evaluation of the exponent.
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