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Abstract— In this paper we present a novel approach to
estimating the position of objects tracked by a team of mobile
robots and to use these objects for a better self localization.
Modeling of moving objects is commonly done in a robo-centric
coordinate frame because this information is sufficient for most
low level robot control and it is independent of the quality of
the current robot localization. For multiple robots to cooperate
and share information, though, they need to agree on a global,
allocentric frame of reference. When transforming the egocentric
object model into a global one, it inherits the localization error of
the robot in addition to the error associated with the egocentric
model.

We propose using the relation of objects detected in camera
images to other objects in the same camera image as a basis
for estimating the position of the object in a global coordinate
system. The spacial relation of objects with respect to stationary
objects (e.g., landmarks) offers several advantages: a) Errors in
feature detection are correlated and not assumed independent.
Furthermore, the error of relative positions of objects within a
single camera frame is comparably small. b) The information
is independent of robot localization and odometry. c) As a
consequence of the above, it provides a highly efficient method
for communicating information about a tracked object and
communication can be asynchronous. d) As the modeled object
is independent from robo-centric coordinates, its position can be
used for self localization of the observing robot.

We present experimental evidence that shows how two robots
are able to infer the position of an object within a global frame
of reference, even though they are not localized themselves and
then use this object information for self localization.

Index Terms— Sensor Fusion, Sensor Networks

I. INTRODUCTION

For a mobile robot to perform a task, it is important to model

its environment, its own position within the environment, and

the position of other robots and moving objects. The task of

estimating the position of an object is made more difficult

when it comes to the fact that the environment is only partially

observable to the robot. This task is characterized by extracting

information from the sensor data and by finding a suitable

internal representation (model).

In hybrid architectures [1], basic behaviors or skills, such as,

e.g., following a ball, are often based directly on sensor data,
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e.g., the ball percept. Maintaining an object model becomes

important if sensing resources are limited and a short term

memory is required to provide an estimate of the object’s

location in the absence of sensor readings. In [6], the robot’s

belief subsumes the robot’s localization and the positions of

objects in the environment in a Bayes net. This yields a

powerful model that allows the robot to, say, infer where it is

also by observing the ball. Unfortunately, the dimensionality

of the belief space is far too high for the approach to be

computationally tractable under real time constraints. Model-

ing objects and localization is somewhat decoupled to reduce

the computational burden. In this loosely-coupled system,

information is passed from localization to object tracking.

The effect of this loose coupling is that the quality of the

localization of an object in a map is determined not only by

the uncertainty associated with the object being tracked, but

also by the uncertainty of the observer’s localization. In other

words, the localization error of the object is the combined error

of allocentric robot localization and the object localization

error in the robot coordinate frame.

For this reason, robots often use an egocentric model of

objects relevant to the task at hand, thus making the robot

more robust against global localization errors. A global model

is used for communicating information to other robots [11], to

commonly model a ball by many agents with Kalman filtering

[2] or to model object-environment interactions [6]. In all

cases, the global model inherits the localization error of the

observer.

We address this problem by modeling objects in allocentric

coordinates from the start. To achieve this, the sensing process

needs to be examined more closely. In feature based belief

modeling, features are extracted from the raw sensor data. We

call such features percepts and they correspond directly to

objects in the environment detectable in the camera images.

In a typical camera image of a RoboCup environment, the

image processing could, for example, extract the following

percepts: ball, opponent player, and goal. Percepts are com-

monly considered to be independent of each other to simplify

computation, even if they are used for the same purpose, such

as localization [10]. Using the distance of features detected



within a single camera image to improve Monte Carlo Local-

ization was proposed by [5]: when two landmarks are detected

simultaneously, the distance between them yields information

about the robot’s whereabouts.

When modeling objects in relative coordinates, using only

the respective percept is often sufficient. However, information

that could help localize the object within the environment is

not utilized. That is, if the ball was detected in the image right

next to a goal, this helpful information is not used to estimate

its position in global coordinates.

We show how using the object relations derived from

percepts that were extracted from the same image yields

several advantages:

Sensing errors As the object of interest and the reference

object are detected in the same image, the sensing error caused

by joint slackness, robot motion, etc. becomes irrelevant as

only the relation of the objects within the camera image

matters.

Global localization The object can be localized directly

within the environment, independent of the quality of current

robot localization. Moreover the object position can be used

by the robot for self localization.

Communication Using object relations offers an efficient

way of communicating sensing information, which can then

be used by other robots to update their belief by sensor fusion.

This is in stark contrast to what is necessary to communicate

the entire probability density function associated with an

object.

A. Outline

We will show how relations between objects in camera

images can be used for estimating the object’s position within

a given map. We will present experimental results using a

Monte-Carlo Particle Filter to track the ball. Furthermore,

we will show how communication between agents can be

used to combine incomplete knowledge from individual agents

about object positions, allowing the robot to infer the object’s

position from this combined data. In a further step we will

demonstrate how this knowledge about object position can be

used to improve self localization.

Our experiments were conducted on the color coded field

of the Sony Four Legged League using the Sony Aibo ERS-7,

which has a camera resolution of 208 ∗ 160 pixels YUV and

an opening angle of only 55o.

II. OBJECT RELATION INFORMATION

In a RoboCup game, the robots permanently scan their

environment for landmarks as there are flags, goals, and the

ball. We abstract from the algorithms which recognize the ball,

the flags, and the goals in the image as they are part of the

image processing routines. The following section presents the

information gained by each perception.

A. Information gained by a single percept

If the robot sees a two colored flag, it actually perceives the

left and the right border of this flag and thus the angle between

Fig. 1. As testbed served the play field of the Sony 4-Legged League.
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Fig. 2. Single percept: a) When a flag is seen, the robot can calculate its
distance to it, a circle remains for all possible robot positions, b) if a goal is
detected the robot can calculate its distance to the center of a circle defined
by the robot’s camera and the two goal posts. The circle shows all possible
positions for the given goal-post angle. Light grey robot shapes are examples
for possible alternative robot positions and orientations in a given situation;
Two percepts in one image c) a flag and a ball let the robot determine the ball’s
distance relative to the flag dbl; all possible positions of the ball relative to the
flag form a circle, d) the same calculation for a goal and a ball. The circular
arc determines all possible positions for the robot, the spiral arc represents
all possible ball positions.

those two borders. Because the original size of landmarks is

known, the robot is able to calculate its own distance to the

flag and its respective bearing (Fig. 2 a). In the given approach

we don’t need that sensor data for self localization, but for

calculating the distance from other objects as the ball to the

flag.

If a goal is detected, the robot can measure the angle

between the left and the right goal-post. For a given goal-

post angle the robot can calculate its distance and angle to

a hypothetical circle center, whereas the circle includes the

two outer points of the goal-posts and the point of the robot

camera (Fig. 2 b).



If a ball is perceived, the distance to the ball and its direction

relative to the robot can be calculated. Lines or line crossings

can also be used as reference marks, but the sensor model for

lines is more complex than for a goal or a flag as there are

many equally looking line segments on the field. For simplicity

reasons we didn’t use line information in the given approach.

B. Information gained by two percepts within the same image

If the localization object is visible together with another

landmark, e.g., a flag or a goal, the robot does not only get

information about distances to both objects but also informa-

tion about the angle between them. With the law of the cosine

the distance from the ball to a flag can be calculated (Fig. 2

c).

When a goal and a ball were seen, a similar determination

of the position can be done for the ball, but the set of possible

solutions leads to a spiral curve (Fig. 2 d). Now we have shown

how object relations can help to constrain the set of possible

ball positions. But we have also seen that one landmark and

one ball alone are not sufficient to exactly determine the ball’s

position. One possibility to overcome this limitation would be

to scan for other landmarks and take this information into

account, but this could be time consuming. Another approach

would be to let the robots communicate and interchange the

necessary information for an accurate object localization. This

has two advantages:

1) Apart from communication time which takes, in our

case, about two or three tenth of a second, information

transfer between robots is cheap in resources, as only

few data needs to be transferred.

2) Many robots can gather more information than a single

robot, because many robots can see more than one robot.

In Fig. 3 we can see a two-agents scenario, where both

agents acquire ball percepts and different landmark percepts.

We get two cirles/arcs, representing the possible ball positions

calculated by each agent. By communicating object relations

between the agents, the intersections of the arcs reduce the

number of possible ball positions to one, or sometimes, two

points. In general, the number of remaining possible solutions

highly depends on the sensor model inferred by the landmark

properties, i.e., the more unique a landmark can be identified

the smaller the remaining solution space for the object position

and/or the observing agent will be.

Now we want to describe a possible implementation of

this approach. As the sensor data of our Aibo ERS-7 robot

are not very accurate, we have to cope with a lot of sensor

noise. Furthermore, the probabilistic distribution is not always

unimodal, e.g., in cases where the observations lead to more

than one solution for possible ball positions. This is why a

simple Kalman filter would not be sufficient [6]. We chose an

implementation using a Monte-Carlo Particle Filter because

Fig. 3. Two agents perceiving the ball position relative to a goal/flag.

of its ability to model multimodal distributions and its robust-

ness to sensor noise. Other approaches as Multi Hypothesis

Tracking or Grid Based algorithms might work also [4].

III. MONTE-CARLO FILTER FOR MULTI AGENT OBJECT

LOCALIZATION

Markov localization methods, in particular Monte-Carlo

Localization (MCL), have proven their power in numerous

robot navigation tasks, e.g., in office environments [3], in

the museum tour guide Minerva [12], in the highly dynamic

RoboCup environment [7], and outdoor applications in less

structured environments [9]. MCL is widely used in RoboCup

for object and self localization [10][8] because of its ability

to model arbitrary distributions and its robustness towards

noisy input data. It uses Bayes law and Markov assumption

to estimate an object’s position. The probability distribution

is represented by a set of samples, called particle set. Each

particle represents a pose hypothesis. The current belief of the

object’s position is modeled by the particle density, i.e., by

knowing the particle distribution the robot can approximate

its belief about the object state. Thereby the belief function

Bel(st) describes the probability for the object state st at

a given time t. Originally it depends on all sensor inputs

z1, .., zt and all robot actions u1, .., ut. But by using the

Markov assumption and Bayes law, the belief function Bel(st)
depends only on the previous belief Bel(st−1), the last robot

action ut−1 and the current observation zt:

Bel−(st)←−

∫

p(st|st−1ut−1)
︸ ︷︷ ︸

process model

Bel(st−1)dst−1 (1)

Bel(st)←− η p(zt|st)
︸ ︷︷ ︸

sensor model

Bel−(st) (2)

whereas η is a normalizing factor. Equation (1) shows how

the a priori belief Bel− is calculated from the previous

Belief Bel−(st−1). It is the belief prior the sensor data,

therefore called prediction. If we modeled the ball speed, in

the prediction step we would calculate a new ball position,

given the old position plus the current speed and the passed

time since the last state estimation. Also actions of the robot,

changing the ball state must be taken into account. But in

our static situation nothing has to be propagated, because the



ball position is static and the robot is not interacting with the

ball. Furthermore, the ball position is modeled relative to the

field and not to the robot, which makes it independent from

robot motions. In (2) the a-priori belief is updated by sensor

data zt, therefore called update step. Our update information

is information about object relations as described in section II.

Therefore a sensor model is needed, telling the filter how

accurate the sensor data are. The particles are distributed

equally at the beginning, then the filtering process begins.

A. Monte-Carlo Localization, Implementation

Our hypotheses space for object localization has two dimen-

sions for the position q on the field. Each particle si can be

described as a state vector −→s i

−→s i =

(
qi
xt

qi
yt

)

(3)

and its likelihood pi.

The likelihood of a particle pi can be seen as the product of

all likelihoods of all gathered evidences [10], which means in

our case that for all landmark-ball pairs a likelihood is being

calculated. From every given sensor data, e.g., a landmark l

and a ball (with its distances and angles relative to the robot)

we calculate the resulting possible ball positions relative to the

landmark l, as described in section II-B. The resulting arc will

be denoted as ξl. We showed in II-B that ξl has a circular form,

when l is a flag and a spiral form, when l is a goal. The shortest

distance δl from each particle −→s i to ξl is our argument for

a Gaussian likelihood function N (δ, µ, σ), where µ = 0 and

with a standard deviation σ, which is determined as described

in the next section. The sensor model being assumed to be

Gaussian showed to be a good approximation in experiments.

The likelihood is being calculated for all seen landmarks l and

then multiplied:

pi =
∏

l∈L′

N (δl, 0, σ) (4)

In cases without new evidence all particles get the same

likelihood. After likelihood calculation, particles are resam-

pled.

a) Multi Agent Modeling.: To incorporate the informa-

tion from other robots, percept relations are communicated

to other robots. The receiving robot uses the communicated

percepts for likelihood calculation of each particle the same

way as if it was its own sensor data. This is advantageous

compared to other approaches:

• Some approaches communicate their particle distribution,

which can be useful when many objects are modeled

in parallel. But when, as in our examples, two robots

only know the arcs or the circular function on which the

ball could be found, this would increase position entropy

rather than decreasing it. Communicating whole particle

sets can also be very expensive in resources.

• By communicating percept relations rather than particles,

every robot can incorporate the communicated sensor data

to calculate the likelihood of its particle set. Thereby we

get a kind of sensor fusion rather than Belief-fusion as

in case when particle distributions are communicated.

Because of this, we decided to let every robot communicate

every percept relation (e.g., flag, ball) it has gathered to other

robots.

b) Sensor Model.: For the sensor model, we measured

the standard deviation σl by letting a robot take multiple

images of certain scenes: a ball, a flag, a goal and combinations

of it. The standard deviation of distance differences and

respectively angle differences of objects in the image relative

to each other were measured as well. The robot was walking

the whole time on the spot to get more realistic, noisy images.

The experiment results are shown in table 1.

Object Standard Deviation σ

Distance in mm σDst in mm σAng in Rad

Ball 1500 170 0.015

Flag 2000 273 0.019

Goal 2000 25 0.021

Flag- Ball-Diff. 500 196 0.008

Goal- Ball-Diff. 500 175 0.0054

Table 1. Object Distance Standard Deviations

It can be seen that the standard deviation for the distance

from the ball to the flag (or goal) is smaller than the sum

of the distance errors given a ball and a flag (or goal). The

same can be said for the angle standard deviation. This gives

evidence that the sensor error for percepts in the same image is

correlated, due to walking motions and head swings. Because

in our experiments we coped with static situations only, we

could abstract from network communication time and the

delay after which percept relations were received.

B. Self Localization

For self localization we used the algorithm described in [10].

We used a three dimensional hypothesis space, two dimension

for the field position of the robot and one dimension for its

orientation. As sensor update input data served the angle to

the goal posts and to the flag boundaries as in [10], plus in

our approach, the distance and angle to the modeled ball.

IV. EXPERIMENTAL RESULTS

The Aibo ERS-7 robot serves as a test platform for our

work. In the first reference algorithm, to which we compare

our approach, two robots try to localize and to model the ball

in an egocentric model. As a result each robot maintains a

particle distribution for possible ball positions, resulting from

self localization belief and the locally modeled ball positions.

In our situation neither robot is able to accurately determine

the ball position (Experiment A,B). In the next step the two

robots communicate their particle distribution to each other.

After communication each robot creates a new particle cloud



as a combination of its own belief (the own particle distri-

bution) and the communicated belief (communicated particle

distribution). We want to check how this algorithm performs

in contrast to our presented algorithm in situations, where self

localization is not possible, e.g., when every robot can only see

one landmark and the ball. In our first experiment, we placed

both robots in front of a different landmarks with partially

overlapping fields of view, such that both robots could see the

ball (Fig. 4).

a) b)

Fig. 4. Experiment A - two flags: a) no percept relations communicated,
the robots are self localizing (arrows show SL-particles of the upper robot
schematically), the ball positions (cloud of dots) are modeled egocentricly and
then transformed into global coordinates. The globally modeled ball particle
distribution is then communicated to the other robot and merged with its ball
particle distribution. b) No self localization needed, percept relations used
as described, two robots communicating object relations for calculating the
particle distribution; the small circle at the center line marks the real ball
position in the given experiment

One can see from the experiments that there is almost no

convergence to a confined area for the case in which the

two robots are communicating their particle distributions to

each other. In case of percept communication, the particle

distribution converges nicely to a confined area. The entropy of

the particle distribution confirms this quantitatively; as shown

in Fig. 6 a), the entropy is decreasing slightly because the

particle distribution converges circular to the flags, but not to

a small area. Thus the entropy decrease is much higher in case

where percept relations are communicated as Fig. 6 a) shows.

In our second experiment, we placed one robot in a way

that it could see the flag and the ball, the other one in front

of a goal and a ball (Fig. 5 a,b). Again we let the robots try

to self localize and communicate their particle distributions.

Later, we compared the result to the algorithm making use of

percept relations. In the first case, no convergence of particles

to a certain area was visible as before. The particle distribution

can be interpreted as a union of the loop like distribution of the

robot seeing the goal and the ball, combined with the circular

distribution of the robot seeing the flag and the ball.

a) b)

c) d)

Fig. 5. Experiment B - one robots sees a goal (a) and another robots sees
a flag (b); c) both robots are communicating their particle distribution, after
trying to self localize and transforming their local particle distribution for the
locally modeled ball into a distribution, based on field-coordinates, similarly
to Fig. 4 a). In d) two robots are communicating object relations.

Our presented algorithm performed nicely again, leaving

two remaining areas for the modeled ball position. Also

the entropy was decreasing more in case of communicating

percept relations compared to communicating particle distri-

butions 6 b). Furthermore, the entropy (Fig. 6) for two seen

flags (experiment A) remains lower than for a goal and a flag

(experiment B), because the second possible ball position was,

in case A, outside the field. Fig. 6 shows also that the particle

distribution converged very quickly.

a) b)
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Fig. 6. The entropies for particle distributions using object relations (solid
blue line) vs. not using object relations (dotted orange line). a) Experiment A,
two seen flags: using object relations leads to a much lower entropy b) one
goal, one flag: also a much lower entropy when using object relations instead
of particle distribution communication; It can also be seen, that convergence
of the particle distribution takes just a part of a second.

In the next experiment we put one robot in front of a flag and

a ball and let it try to localize. The next reference algorithm we

used was the self localization approach as described in [10]. As

the robot could only see one landmark, the particle distribution

did not converge to a certain area, two circle like clouds

remained, one for the ball and one for the self localization

particle distribution (fig. 7 a). As one can see, accurate self



localization was not possible. Neither was it possible in case

for two robots not interchanging percept relations, because

the ball particle distribution did not converge as in fig. 4 a).

But when we took two robots and let them determine the

ball position using percept relations, a robot can use its own

distance and angle to the ball for improved self localization.

Fig. 7 b) shows that self localization could be improved when

using percept relation and the resulting ball position data.

The lower entropy of the self localization particle distribution

proves quantitatively, that using position data from objects

modeled in allocentric coordinates can reduce uncertainty in

self localization (fig. 8).

a) b)

Fig. 7. Experiment C - Ball and robot localization: a) one robot is perceiving
the ball and self localizing by the upper flag. A circular particle distribution
remains for the robot positions (bigger circle) and the ball positions (smaller
circle); b) two robots localizing the ball with percept relations, the upper
robot is localizing, using its distance to the upper flag and its distance to the
modeled ball position. Two particle clouds can be seen, one for the ball, one
for the robot.
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Fig. 8. The entropies for particle distributions of the self localization process
(Experiment C). The orange line shows the self localization entropy when no
object relations were used. Entropy decreases when perceiving the flag but
remains at a high level; The self localization entropy becomes much lower
when using visual object relations for ball modeling.

V. CONCLUSION

Object relations in robot images can be used to localize

objects in allocentric coordinates, e.g., if a ball is detected in

an image next to a goal, the robot can infer something about

where the ball is on the field. Without having to be localized at

all, it can accurately estimate the position of an object within

a map of its environment using nothing but object relations.

Furthermore, we were able to show how the process of object

localization can be sped up by communicating object relations

to other robots. Two non-localized robots are thus able to both

localize an object using their sensory input in conjunction with

communicated object relations. In a next step we showed how

the gained knowledge about allocentric object positions can

be used for an improved Markov self localization.

Future Work. Future work will investigate the use of other

landmarks (e.g., field lines) for object localization. Current

work tries to extend the presented approach to moving objects,

letting the robot infer not only about the position but also about

the speed of an object. An active vision control, trying to look

at two objects at once is also being developed.
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