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Abstract. To jointly map an unknown environment with a team of au-
tonomous robots is a challenging problem, particularly in large environ-
ments, as for example the devastated area after a disaster. Under such
conditions standard methods for Simultaneous Localization And Map-
ping (SLAM) are difficult to apply due to possible misinterpretations of
sensor data, leading to erroneous data association for loop closure. We
consider the problem of multi-robot range-only SLAM for robot teams by
solving the data association problem with wireless sensor nodes that we
designed for this purpose. The memory of these nodes is utilized for the
exchange of map data between multiple robots, facilitating loop-closures
on jointly generated maps. We introduce RSLAM, which is a variant of
FastSlam, extended for range-only measurements and the multi-robot
case. Maps are generated from robot odometry and range estimates,
which are computed from the RSSI (Received Signal Strength Indica-
tion). The proposed method has been extensively tested in USARSim,
which serves as basis for the Virtual Robots competition at RoboCup, and
by real-world experiments with a team of mobile robots. The presented
results indicates that the approach is capable of building consistent maps
in presence of real sensor noise, as well as to improve mapping results of
multiple robots by data sharing.

1 Introduction

To jointly map an unknown environment with a team of autonomous robots is
a challenging problem, particularly in large areas as for example the devastated
area after a disaster. In USAR (Urban Search and Rescue) the mapping problem
is generally harder, due to difficult operation conditions, such as unstructured
environments and existing constraints for communication. However, the ability
to map environments jointly is an essential requirement for coordinating robots
and humans, such as first responders, within this domain. In urban environments
GNSS (Global Navigation Satellite System) positioning is affected by the mul-
tipath propagation problem [6]. Buildings in the vicinity of the receiver reflect
1 This research was partially supported by DFG as part of the collaborative research

center SFB/TR-8 Spatial Cognition R7



GNSS signals, resulting in secondary path propagations with longer propagation
time, causing erroneous position estimates. Furthermore, long-range communi-
cation is perturbed by building structures made of reinforced concrete. Con-
ventional methods for Simultaneous Localization And Mapping (SLAM), which
require reliable data association for loop closure, are difficult to apply due to
possible misinterpretations of sensor data. For example, bad visibility caused
by smoke and fire affects vision-based tracking methods, and arbitrarily shaped
structures from collapsed buildings require laser range finder-based data associ-
ation to be fully carried out in 3D.

In this paper, we consider the problem of multi-robot SLAM for large robot
teams in USAR. The data association problem is solved by using the unique
IDs of deployed sensor nodes as features which are detectable in presence of low
visibility via an omni-directional 2.4 GHz antenna. Furthermore, the memory of
these nodes is used for indirect communication, e.g. for the exchange of map data
between multiple robots. More precise, robots subsequently store their position
estimates of known sensor nodes into the memory of nodes within writing range.
This information can be utilized by other robots for updating their individual
map representations, facilitating loop-closures on jointly generated maps. In con-
trast to other approaches that require a priori a subset of sensor node locations
that have to be surveyed in advance (so called anchor nodes), our method learns
this locations stepwise from robots exploring the terrain. Moreover, new sensor
nodes can arbitrarily be deployed during robot exploration, e.g. while searching
for victims in an unknown environment.

The proposed method, named RSLAM, is a variant of FastSlam [16], ex-
tended for the multi-robot case and range-only measurements that are derived
from the RSSI (Received Signal Strength Indication). We use a voting scheme
for determining initial node locations from pairwise intersections of the signal
strength measured at different robot locations [17]. The method is computational
efficient, i.e. applicable in real-time, since it applies fast computable updates from
robot odometry and rare range observations only. Each update is carried out in
O (nk), where n is the number of sensor nodes and k is the number of robot
trajectories considered at the same time.

For our experiments we developed sensor nodes [20] meeting the ZigBee spec-
ification [8]. They are equipped with three sensors, measuring air pressure, tem-
perature, and node orientation. The first two sensors might be utilized for user
applications, such as monitoring the temperature and the air pressure during cri-
sis management. Measurements of the node’s orientation are useful for detecting
the alignment of the antenna, which might be used for improving the RSSI in
order to increase the accuracy of distance measurements.

The proposed method has been extensively tested in the USARSim [1] sim-
ulation environment which serves as basis for the Virtual Robots competition
at RoboCup. We modified the simulator in that it provides range readings of
virtual sensor nodes with respect to a model for signal path attenuation [18],
which has been parameterized according to the developed hardware. The simu-
lation results show that our method is capable to successfully map diverse types



of environments by robot teams, also indoors, where signal strength has been
heavily perturbed by walls. Finally, we present results from a real-world exper-
iment demonstrating the capability of our system to handle communications of
multiple nodes at the same time, as well as to deal with real sensor noise.

The remainder of this paper is structured as follows. In Section 2 related work
is discussed, and in Section 3 the real system and the simulation system utilized
for experiments are described. In Section 4 the sensor model, and in sections 5
the introduced SLAM method are discussed. Finally, we present experimental
results in Section 6 and draw conclusions in Section 7.

2 Related Work

Inspired by the fundamental work of Smith et al. [19], early work on SLAM was
mainly based on the Extended Kalman Filter (EKF) [3]. In connection with radio
transmitters, the SLAM problem has been addressed as “range-only” SLAM [10,
4] since the bearing of the radio signal cannot accurately be determined. RFIDs
have been successfully utilized for localizing mobile robots [7] and emergency
responders [9, 15]. Hähnel et al. [7] successfully utilized Markov localization for
localizing a mobile robot in an office environment. Their approach deals with
the problem of localization in a map previously learned from laser range data
and known RFID positions, whereas the work presented in this paper describes
a solution that performs RFID-based localization and mapping simultaneously
during exploration. Also sensor networks-based Markov localization for emer-
gency response has been studied [9]. In this work, existing sensor nodes in a
building are utilized for both localization and computation of a temperature
gradient from local sensor node measurements. Miller and colleagues examined
the usability of various RFID systems for the localization of first responders in
different building classes [15]. During their experiments, persons were tracked
with a Dead Reckoning Module (DRM). In former work we introduced RFID-
SLAM, an extension of graph-based SLAM for networks of RFIDs [11]. Further-
more, we demonstrated the efficient deployment of sensor nodes for multi-robot
coordination and exploration [21].

3 Test platform

The test platform utilized for experiments is based on a team of 4WD differen-
tially steered Zerg robots, as depicted in Figure 1(a). Each robot is equipped
with a Sick S30-B Laser Range Finder (LRF), an Inertial Measurement Unit
(IMU), over-constrained odometry for wheel-slippage detection, and a mobile
sensor node.

The simulated counter part (see Figure 1(b)) has been designed for the US-
ARSim simulator developed at the University of Pittsburgh [2]. USARSim, which
serves as a basis for the RoboCup Rescue virtual competition, allows realistic
simulations of raw sensor data and robot actuators, which can directly be ac-
cessed via a TCP/IP interface. Sensors, such as odometry and LRF, can be



(a) (b)
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Fig. 1. (a) A team of Zerg robots equipped with antennas for sensor node communica-
tion, and (b) the corresponding simulation model in USARSim (b). (c-d) The designed
sensor node: (a) the PCB, and (b) with housing.

simulated with the same parameters as they are found on real robots. We mod-
ified the simulator in that it provides range readings of virtual sensor nodes
with respect to a model of signal path attenuation [18] (see Section 4). The
model considers obstacles, such as walls and trees, that are located between two
transceivers. Obstacles are detected by a ray tracing operation that is applied
each time two transceivers are within communication range. Both platforms, the
real and the simulated robot, achieved the first place during the RoboCup 2005
Rescue Autonomy competition, and the RoboCup 2006 Virtual Robots competi-
tion, respectively [12, 13].

We developed wireless sensor nodes based on the TI CC2420 transceiver [8]
that meets the ZigBee specification. The transceiver implements an anti-collision
protocol allowing the simultaneous reading of multiple nodes within range. The
printed circuit board (PCB) is shown in Figure 1(c), and the sensor node with
housing and omni-directional antenna is shown in Figure 1(a,d). An on board
eight-bit micro controller [14] monitors the sensors on the PCB and establishes
the communication link via the transceiver. The communication protocol is tai-
lored for power minimization and transparent access to the radio link. Further-
more, the sensor node is equipped with three sensors, measuring air pressure,
temperature, and antenna orientation, which might be utilized for user applica-



tions. Measurements of the antenna orientation, for example, can be considered
to improve the reliability of communication. RSSI and Link Quality Indication
(LQI) are directly read from the transceiver chip and are directly transmitted
to the reader.

In order to enable communication between several sensor nodes at the same
time, a random broadcast scheme has been implemented. If the air channel is
occupied heavily by radio traffic, nodes are sleeping for a random amount of
time before re-sending their data. Alternatively, we experimented with a polling
mechanism triggered by a master node that requests data packages within fixed
cycles from each node, which led to a high latency time of the system. With the
random broadcast scheme, we measured an average data rate of 28.6 Hz for one,
27.5 Hz for four, and 16.5 Hz for eight nodes transmitting at the same time. This
data rate is sufficient also for mobile platforms since we assume a node density
of maximally 4 nodes being in communication range at any location. Finally, we
determined experimentally a maximal range of up to 35 meters for performing
reliable communications.

4 Sensor model

The Transceiver-Receiver (TR) separation, i.e. the distance between an observed
sensor node and the detector, can generally be estimated from the power of the
signal known as RSSI (Received Signal Strength Indication). The sensor model
describes the relation between the RSSI and range estimates denoted by distance
r an variance σr. Signal propagation, particularly in indoor environments, is per-
turbed by damping and reflections of the radio waves. Since these perturbations
can depend on the layout of the building, the construction material used, and
the number and type of nearby objects, modeling the relation between signal
path attenuation and TR separation is a challenging problem.

Seidel and Rapport introduced a model for path attenuation prediction that
can also be parameterized for different building types and the number of walls
between transceiver and receiver [18]. The model relates the signal power P to
distance d in the following way:

P (d)[dB] = p(d0)[dB]− 10n log
d

d0
+Xσ[dB], (1)

where p(d0) is the signal power at reference distance d0, n is the mean path
loss exponent that depends on the structure of the environment, and Xσ is the
standard deviation of the signal.

During practical experiments we noticed that signal strength measurements
of the used transceiver contain a high amount of outliers. Therefore, we applied
RANSAC [5], which is an iterative method to estimate model parameters from
a set of observations containing outliers. The parameter we are interested in is
the average signal strength given a set of measurements. Therefore, a subset of
measurements is randomly sampled, the average computed, and finally all the
other measurements are tested against this average. If measurements fit well to
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Fig. 2. (a) Measured signal strength at varying distance. (b) Relation between esti-
mated distance and real distance. Each data point has been averaged from ten measure-
ments, green points denote the computed mean and red bars the standard deviation.

the average, they are added to the subset, and rejected otherwise. The procedure
is repeated iteratively until the subset contains sufficient data points.

We conducted several measurements for determining the model parameters
of the described 2.4 GHz sensor nodes in the testing environment, which are
p(d0) = −12dB, and n = 2. The standard deviation Xσ is taken from a look-
up table that has been determined experimentally, as shown in Figure 2(a).
Figure 2(a) depicts the mean and variance of the measured signal strength at
different distances averaged over 10 measurements at each location. Figure 2(b)
compares the estimate of the parameterized model from Equation 1 with ground
truth.

5 RFID SLAM

We utilize FastSlam [16] in order to compute simultaneously the locations of
the robot and of the sensor nodes. FastSlam estimates simultaneously the robot
path l1, l2, ..., lt and beacon locations b1, b2, ..., bN , where li = (xi, yi, θi), and
bj = (xj , yj). The path of the robot is estimated by using a particle filter with
M particles, whereas each particle possesses its own set of Extended Kalman
Filters (EKFs). EKFs are estimating beacon locations independently from each
other conditioned on the robot path. Hence, there are M × N low-dimensional
EKFs updated by the system.

We denote each EKF’s state vector by si = (bx, by)T , and the corresponding
2×2 covariance matrix by Σsi , where (bx, by)T is the location of beacon i. From
an observation z = r of a landmark at range r with covariance σz (see Section 4),
each particle is updated as follows: first, the observation is associated to one of
the EKFs stored in the particle based on the unique ID of the detected nodes.



Second, the observation is predicted by the following measurement function:

hi (s) =
(√

(rx − bx)2 + (ry − by)2
)
. (2)

Third, the associated state vector is updated from the observation by computing
the innovation v and covariance σv by applying the law of error propagation:

vi = z − hi (s) (3)

σvi
= ∇hsΣs∇hTs + σz, (4)

where ∇hs is the Jacobian matrix:

∇hs =
(
−∆x

d
,−∆y

d

)
, (5)

where ∆x = rx − bx, ∆y = ry − by, and d =
√
∆x2 +∆y2. Then, the following

Kalman update is applied:

K = Σsi
∇hTs σ−1

vi
(6)

si+1 = si +Kvi (7)
Σsi+1 = Σsi

−Kσvi
KT . (8)

Finally, we update from each observation an importance weight for each
particle based on the Mahalanobis distance between the measurement and the
prediction:

wi+1 = wi − vTi σ−1
vi
vi. (9)

During each cycle, these weights are utilized to stochastically sample robot paths
that best explain the measured ranges. According to the particle filtering frame-
work, these particles are furthermore propagated based on the motion model of
the robot if steering commands occur [16].

5.1 EKF initialization

One difficulty in range-only SLAM is to estimate the initial beacon locations.
This is particularly important since beacon observations do not contain bearing
information as required by SLAM methods in general. We use a voting scheme
for determining initial node locations from pairwise intersections of range mea-
surements at different robot locations [17]. This is carried out by maintaining a
grid for each beacon, where each cell represents the probability that the beacon is
located at the corresponding location. The grid is updated by a likelihood func-
tion f (oi, zi) that assigns to each cell a probability with respect to the robot’s
pose estimate from odometry oi and range observation zi. Given range mea-
surements, the likelihood function generates circular probability distributions
centered at the current pose of the robot, and width according to the confidence
of the observation. After integrating several observations, the most likely bea-
con location can be determined by taking the maximum over all grid cells. The
location at this maximum is taken to initialize one EKF for each particle.



5.2 Multi-robot mapping

The memory of the sensor nodes is used for indirect communication, e.g. for the
exchange of map data between multiple robots. If sensor node k is within writing
distance of robot R, its current map estimate, consisting of nR known beacon
locations, is stored into the local memory Mk of the node:

Mk ←Mk ∪
〈
j, bj , Σbj , R

〉
, for all j ∈ nR (10)

The stored data is utilized by other robots for updating their individual maps.
This is carried out by calculating the local offset between individual robot maps
from the relative pose displacement to common sensor nodes. Note that we
assume that the IMU angle of each robot is aligned to magnetic north leading
to displacements without angular components.

Map data from other robots can significantly accelerate the convergence of
the map from a single robot. First, the initialization procedure described in
Section 5.1 is not required for nodes that are observed the first time, if their
location estimate is already known. Second, known sensor node locations can
directly be updated by the EKFs, facilitating loop closure on jointly generated
maps. Note that the update procedure automatically degrades from SLAM to
ocalization if many of the communicated location estimates have tight covariance
bounds, i.e. are close to ground truth.

6 Results

RSLAM has been tested in various USARSim environments generated by the
National Institute of Standards and Technology (NIST). They provide both in-
door and outdoor scenarios of the size bigger than 1000m2, reconstructing the
situation after a disaster. Furthermore, we conducted real-world experiments
showing the capability of the developed sensor nodes to handle communications
of multiple clients at the same time, as well as the capability of the proposed
approach to deal with real sensor noise.

Figure 3 compares visually the mapping result from wheel-odometry and
RSLAM, which has been carried out by aligning measurements from the LRF
according to the pose estimates. The map generated from odometry is unusable
for navigation, whereas the map generated by the introduced method is close to
ground truth. For this experiment the map RC07-Mapping has been used, which
is also listed in Table 1.

Table 1 summarizes the results from applying the method on simulated indoor
and outdoor maps. Maps starting with RC06, and RC07 were introduced by
NIST for RoboCup 2006 and 2007, respectively. Ground truth, i.e. the true
trajectories of the robots, is directly provided by the simulator. The results
show that single RSLAM successfully improves maps generated from odometry.
Moreover, multi RSLAM, i.e. taking advantage of map data stored by other
robots into node memories, yields even better results than single RSLAM.



(a)

(b)

(c)

Fig. 3. Indoor map generated from wheel odometry (a), and multi RSLAM (b). The
ground truth image has been provided by NIST (c).

Table 2 summarizes the results from real-robot experiments. During this
experiment real sensor nodes have been distributed at fixed height and with
fixed orientation in an outdoor environment. Four robots were manually steered 1

through the environment while computing map estimates, i.e. the robot path and
sensor node location, online. This information was used by subsequent robots
for initializing their particle filters. Also during this experiment, maps generated
from wheel odometry have been significantly improved by applying RSLAM.
As can be seen by the third row, map data provided by other robots helps to
increase this improvement. Due to limited accuracy of range readings computed
from signal strength, a minimal possible positioning error around one meter
has been reached. Figure 4 depicts the true positions and the positions finally
estimated by the robots. During all experiments, an average computation time
of 20 ms on a Pentium4 1 GHz has been measured.

7 Conclusions and Future Works

In this paper we presented RSLAM, an approach for multi-robot range-only
SLAM based on sensor nodes for Urban Search and Rescue. We demonstrated
recently developed sensor nodes and their capabilities in terms of signal strength
detection and multi-sensor communication. Furthermore, we showed that RSLAM

1 Note that two robots have been steered two times sequentially.



Map name (size in [m2]) Robot Odometry [m] RSLAM [m] RSLAM [m] # RFID
(single) (multi)

RC07-Plywood (109)
1st 4.7± 3.4 0.3± 0.9 0.3± 0.9

7
2nd 3.5± 2.6 0.8± 1.3 0.6± 1.1

RC07-Mapping (250)
1st 7.0± 4.9 0.5± 1.1 0.5± 1.1

8
2nd 4.1± 3.0 0.6± 1.4 0.3± 0.8

RC06-Day4a (846)
1st 8.2± 3.2 0.4± 0.6 0.4± 0.6

14
2nd 13.2± 5.8 2.0± 1.9 0.8± 1.5

RC07-Factory (1975)
1st 17.4± 8.3 2.1± 2.8 2.1± 2.8

58
2nd 28.2± 9.6 4.6± 3.6 1.6± 2.5

RC07-Mobility (3819)
1st 12.9± 6.9 1.4± 2.7 1.4± 2.7

58
2nd 13.3± 6.3 1.7± 3.0 1.3± 2.3

RC06-Day4b (4529)

1st 5.0± 3.3 0.5± 0.9 0.5± 0.9

60
2nd 6.7± 4.3 1.2± 1.2 0.3± 1.0
3rd 5.2± 2.7 0.4± 0.8 0.1± 0.4
4th 12.7± 3.4 0.8± 1.0 0.2± 0.6

Table 1. Avg. Cartesian positioning errors: Comparison between wheel odometry,
single-robot RSLAM, and multi-robot RSLAM applied on different USARSim maps.
Values are averaged from the total trajectory of each robot. Ground truth has been
directly taken from the simulator.

Odo. [m] RSLAM [m] RSLAM [m] Speed [m/s] Dist [m] # RFID
(single) (multi)

1st robot 8.6± 6.0 1.1± 0.6 1.1± 0.6 1.0 410

9
2nd robot 5.0± 4.0 2.1± 1.9 1.3± 0.9 1.2 348
3rd robot 7.1± 4.5 2.2± 1.7 1.3± 1.0 1.3 320
4th robot 5.3± 3.2 1.9± 0.9 1.5± 0.6 1.5 282

Table 2. Avg. Cartesian positioning errors: Comparison between wheel odometry and
RSLAM applied on real robots. Ground truth has been manually generated by geo-
referencing.

allows it to a team of robots to map efficiently large areas under severe commu-
nication and operational constraints. Our results from simulation and real-word
experiments show that robots can successfully correct noisy odometry readings
and jointly improve their map estimates based on the wireless nodes. Moreover,
we have shown that with multi RSLAM individual robots consistently gain better
mapping results by data sharing via sensor nodes than carrying out the mapping
task on their own.

Sensor nodes greatly simplify the task of multi-robot SLAM in three ways:
First, features can be uniquely identified, solving trivially data association prob-
lems. Second, the number of features is low w.r.t. visual features and thus the
SLAM problem is tractable even for large areas. Third, node memories can be
used for indirect communication allowing robots to jointly correct their local
maps.
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Fig. 4. Real-robot experiment: Comparison of the locations of the deployed real sensor
nodes with manually measured ground truth

In future work we are planning to extend the approach by inter-node com-
munication allowing nodes to improve their estimates in a decentralized manner,
and to synchronize map data with other nodes that are in direct communication
range. During our experiments we observed high variations of distance mea-
surements when orientation and height of sensor nodes have been modified. Our
future goal is to address these problems by integrating sensor measurements from
the nodes, such as orientation and height. This will allow to generate specific
sensor models for each node leading to more accurate distance estimations.
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