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Abstract— This paper presents a new approach to the multi-
robot map-alignment problem that enables teams of robots to
build joint maps without initial knowledge of their relative poses.
The key contribution of this work is an optimal algorithm for
merging (not necessarily overlapping) maps that are created
by different robots independently. Relative pose measurements
between pairs of robots are processed to compute the coordinate
transformation between any two maps. Noise in the robot-
to-robot observations, propagated through the map-alignment
process, increases the error in the position estimates of the
transformed landmarks, and reduces the overall accuracy of
the merged map. When there is overlap between the two maps,
landmarks that appear twice provide additional information, in
the form of constraints, which increases the alignment accuracy.
Landmark duplicates are identified through a fast nearest-
neighbor matching algorithm. In order to reduce the compu-
tational complexity of this search process, a kd-tree is used
to represent the landmarks in the original map. The criterion
employed for matching any two landmarks is the Mahalanobis
distance. As a means of validation, we present experimental
results obtained from two robots mapping an area of 4,800 m

2.

I. INTRODUCTION

One of the most challenging problems in autonomous

system navigation is reliable localization. Many robotic ap-

plications, such as search and rescue, surveillance, planetary

exploration etc., require accurate localization within unknown

environments. When robots operate in unmapped or GPS-

denied areas, achieving accurate localization requires that they

create and maintain a map of their surroundings. The problem

of building a map while exploring an unknown territory

is commonly referred to as Simultaneous Localization and

Mapping (SLAM) [1]. In order to increase the accuracy and

efficiency when mapping large areas, it is often necessary for

two or more robots to participate in this task. This process

is known as Multi-robot SLAM or Cooperative SLAM (C-

SLAM). While enhancing efficiency, the complexity of SLAM

increases when robots cooperate to construct a single, joint

map of the area they explore. This problem becomes especially

challenging when the coordinate transformation between the

initial poses of the robots is unknown. We call this transfor-

mation the initial correspondence. The main contribution of

this paper is an algorithm for merging independently created

maps with unknown initial correspondence.

In order to fuse maps created by different robots, the

transformation between their coordinate frames needs to be

determined. This can be achieved in two ways. The first

is to search for landmark matches in the two maps. The

most probable transformation is the one that produces the

maximum number of landmark correspondences. In this case,

the underlying assumption is that the two maps overlap.

Alternatively, robot-to-robot measurements can be used for

computing the unknown coordinate transformation. When two

robots meet and measure their relative distance and bearing,

this information can be used to compute the transformation

required for merging the two maps. Due to noise in these mea-

surements, the estimated transformation may be inaccurate,

which in effect will reduce the quality of the merged map. In

our approach, we use a combination of the above methods.

We first align the two maps employing the transformation

determined by the robot-to-robot measurements. Then, we

examine whether there is an overlap between the two maps

by searching for landmark matches. If landmark duplicates

are identified, this information is used to impose constraints

that improve the accuracy of the resulting map.

II. RELATED WORK

Map merging with unknown initial robot correspondence

and no assumption of map overlap, is a quite challenging

problem. In [2], the map merging decision is made in two

steps. When the two robots are in communication range but

do not know their relative locations, one of the robots receives

sensor data from the other robot and attempts to estimate

its location by matching the received scan patch against its

own map. This is the hypothesis generation step. The next

step is to verify a location hypothesis. The two robots try

to meet based on the assumed common map. If they fail to

meet at the expected location, the hypothesis is rejected. If

they succeed, the hypothesis is accepted and their maps are

combined permanently.

A Maximum Likelihood approach to the map merging

problem with unknown initial correspondence is presented

by Howard in [3]. In this work manifolds are employed for

representing maps created from two-dimensional laser scans.

The C-SLAM problem is divided into three sub-problems:

incremental localization and mapping, loop closure, and island

merging. As a robot moves within an area, incremental addi-

tions are made to the map. Loop closure and/or island merging

are triggered by mutual observations of the robots that add

new constraints between previously unrelated patches. With

these constraints, loops are closed and/or previously unrelated

maps are merged together. The manifold representation is

self-consistent at the cost of increased computational com-

plexity. Additionally, since a Maximum Likelihood estimator

processes data in a batch mode, when new measurements



arrive, all data need to be reprocessed, thus further increasing

the computational complexity.

Howard’s work is closely related to ours. Instead of ex-

pensive manifold operations and scan matching, we use an

Extended Kalman Filter (EKF) to estimate the robots’ and

landmarks’ positions. Since the EKF is a sequential estima-

tor, previously recorded measurements do not need to be

reprocessed, which reduces both memory and computational

requirements. Mutual observations are employed to quickly

align two robots’ local maps. We then search for identical

landmarks by landmark matching rather than scan matching. If

landmark duplicates are identified, the accuracy of the merged

map increases as a result of imposing constraints on their

position estimates.

III. PROBLEM FORMULATION

In this section, we address the problem of map merging,

that is, aligning the robots’ independent maps to create a

single global map of the environment. Our approach requires

that the robots meet at least once. This can be a random

event or can be arranged by the two robots.1 We solve the

map alignment problem by processing mutual relative distance

and bearing measurements, when the two robots are within

sensing range of each other. The transformation between

the two maps is computed using this pair of robot-to-robot

measurements. If the maps created by the two robots overlap,

duplicate landmarks can be identified in the merged map.2 By

imposing constraints on the positions of matched landmarks,

the quality of the resulting map is significantly improved.

Once the two maps are merged, the two robots can continue

to cooperatively explore their environment while expressing

all new measurements with respect to the common frame of

reference. In order to simplify the presentation of the ensuing

derivations, we hereafter describe the solution of the two-robot

case in a 2D environment. This can be easily extended to the

case of larger robot teams.

A. Relative Distance and Bearing Measurements

Consider two robots, R1 and R2. Each of them has explored

and mapped the area it has travelled through with respect to its

initial global frame, {G1} and {G2}, respectively. The origins

of the global frames are usually set to coincide with the robots’

starting locations. The coordinates of Ri with respect to {Gi}
are GiXRi

= [xi yi φi]
T , i = 1, 2. We assume that each

robot has a range sensor which can measure the distance ρ and

bearing θ towards a target. The measurement of the relative

position of robot j with respect to robot i is described by:

izj =

[

iρm
iθjm

]

=

[

ρ
iθj

]

+

[

ηiρ

ηiθj

]

i, j = 1, 2

1A detailed description of the latter case is beyond the scope of this work.
The interested reader is referred to [4] for a detailed discussion.

2In general, when two robots explore a connected area, their maps will at
least partially overlap, e.g., around the point where they meet. In the event
that no overlap occurs, the map merging process described in this work is
still valid and the robots can perform C-SLAM after they meet, which will
increase the accuracy of the merged map.
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Fig. 1. Relative orientation θ between the two robot frames {R1} and
{R2} as a function of the two bearing measurements 1θ2 and 2θ1; Position
and orientation of robot R2 expressed with respect to {G1}.

where ρ is the distance between the two robots, iθj is the

bearing towards robot Rj , and ηiρ, ηiθj
are white zero-

mean Gaussian noise processes with variances σ2
iρ

and σ2
iθj

respectively.

Since the two distance measurements 1ρm, and 2ρm are

independent, a more accurate estimate of the distance ρ
between the two robots can be computed as the weighted

average of the two individual measurements, i.e.,

ρm = σ2
ρ

(

1ρm

σ2
1ρ

+
2ρm

σ2
2ρ

)

,
1

σ2
ρ

=
1

σ2
1ρ

+
1

σ2
2ρ

(1)

We form the combined measurement vector as

Z =





ρm
1θ2m
2θ1m



 =





ρ
1θ2
2θ1



 +





ηρ

η1θ2

η2θ1



 = Zt + η (2)

where E[η2
ρ] = σ2

ρ and Zt denotes the vector of the real

distance and relative bearings.

As depicted in Fig. 1, the following geometric constraint

holds:

R1pR2
= −R1

R2
C(θ) R2pR1

(3)

with

RjpRi
= ρ

[

cos jθi

sin jθi

]

= ρC(jθi)e1, i = 1, 2 (4)

where e1 is the unit vector along the x-axis and RjpRi
is

the position of robot Ri in robot Rj’s local frame, R1

R2
C(θ) is

the rotational matrix that describes the angular transformation

between robot frames {R1} and {R2}.

Substituting from Eq. (4) in Eq. (3), the rotational angle θ
can be computed as:

θ = π + 1θ2 −
2θ1 (5)
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Fig. 2. Relative position G1pG2
between the origins of {G2} and {G1} as a

function of G1pR1
, R1pR2

, and G2pR2
; Position of robot R2 expressed with

respect to {G1}; Position of landmark ℓi expressed with respect to {G1}.

Once the angle θ (cf. Eq. (5)) and the distance between the

robots R1 and R2 (cf. Eq. (1)) are computed, the transforma-

tion (R1pR2
, R1

R2
C(θ)) between {R1} and {R2} is uniquely

determined in closed form.

B. Transformation from Global Frame {G2} to {G1}

In this section, given the distance and bearing measurements

recorded by R1 and R2, our goal is to determine the trans-

formation (G1pG2
, G1

G2
C(φ)) between the global coordinate

frames {G1} and {G2}. This will allow us to express the

state estimates G2X2 of robot R2 with respect to {G1}, i.e.,

determine the relation

G1X2 = h(G1X1,
G2 X2,Z) (6)

where Z is the vector described in Eq. (2).

Initially, each of the two robots performs SLAM indepen-

dently, i.e., robots R1 and R2 estimate the vectors

G1X1 =
[

G1XT
R1

G1XT
L1

. . . G1XT
Li

. . . G1XT
Ln1

]

,

G2X2 =
[

G2XT
R2

G2XT
ℓ1

. . . G2XT
ℓj

. . . G2XT
ℓn2

]

(7)

respectively, with

G1XLi
=

[

xLi

yLi

]

∈ M1,
G2Xℓj

=

[

xℓj

yℓi

]

∈ M2 (8)

where i = 1 . . . n1, j = 1 . . . n2, and n1(n2) is the total

number of landmarks in the map M1(M2) created by robot

R1(R2).
The rotational transformation matrix G1

G2
C is readily com-

puted from:

G1

G2
C(φ) = G1

R1
C(φ1)

R1

R2
C(θ) G2

R2
C(φ2)

T

⇒ φ = φ1 + θ − φ2 (9)

Similarly, the rotational transformation of {R2} to {G1} is:

G1

R2
C(G1φR2

) = G1

R1
C(φ1)

R1

R2
C(θ)

⇒ G1φR2
= φ1 + θ

Substituting for θ from Eq. (5), we have:

G1φR2
= φ1 + π + 1θ2 −

2θ1 (10)

where, φ1 is the orientation of robot R1, and jθi is the relative

bearing measurement of Rj towards Ri.

From Fig. 2, we obtain the following geometric relations:

G1pG2
= G1pR1

+ G1

R1
C(φ1)

R1pR2
− G1

G2
C(φ)G2pR2

(11)

G1pR2
= G1pR1

+ G1

R1
C(φ1)

R1pR2
(12)

where G1pR1
is the position of robot R1.

As shown in Fig. 2, the position of each of the landmarks

ℓi ∈ M2 expressed with respect to the global frame {G1} is:

G1pℓi
= G1pG2

+ G1

G2
C(φ) G2pℓi

, i = 1 . . . n2 (13)

where φ and G1pG2
are given by Eqs. (9) and (11), and G2pℓi

is the position of landmark ℓi in the map M2.

The transformation of the state vector G2X2, estimated by

robot R2, to G1X2 (cf. Eq. (6)) is described by G1pR2
, G1φR2

,

and G1pℓi
(Eqs. (12), (10), and (13)). Since the true quantities

are not known, measured and estimated quantities are used

in this transformation. There relations require (i) an estimate

of robot R1’s pose, (ii) an estimate of robot R2’s pose and

landmarks’ positions in M2, (iii) the robot-to-robot distance

and bearing measurements. The accuracy of the transformation

between the two coordinate frames will depend on that of the

state estimate in (i) and (ii) and the relative measurements

in (iii). In the following section, we show the relations that

describe how errors in each of these quantities affect the

accuracy of the aligned map.

C. Error Transformation

The transformations described in Section III-B are nonlin-

ear. In order to compute the error in the transformed quantities,

we linearize these equations at the estimated quantities. The

Jacobians of R1pR2
, G1φR2

, and G1pℓi
(Eqs. (12), (10), (13))

are computed with respect to the augmented state vector

X = [G1XT
1

G2XT
2 ]T (cf. Eq. (7)) and the measurement

vector Z (cf. Eq. (2)). The errors in R1pR2
, G1φR2

, and G1pℓi
,

expressed with respect to the global frame {G1}, are:

G1 p̃R2
=

[

pR2H1
pR2H2

]

[

G1X̃1

G2X̃2

]

+ pR2Γ η(14)

G1 φ̃R2
=

[

φR2H1
φR2H2

]

[

G1X̃1

G2X̃2

]

+ φR2Γ η (15)

G1 p̃ℓi
=

[

ℓiH1
ℓiH2

]

[

G1X̃1

G2X̃2

]

+ ℓiΓ η (16)

where i = 1 . . . n2, pR2H1, pR2H2, pR2Γ, φR2H1
φR2H2,

φR2Γ, ℓiH1, ℓiH2, ℓiΓ are the corresponding Jacobians which

can be found in [5].



D. Transforming the Map

Employing the results of the previous sections, the pose

and the feature map of robot R2 can now be described with

respect to frame {G1}. Before the two robots meet, two

independent Kalman filter estimators, one for each robot,

were used for estimating the vectors GiXi, with covariance

Pii = E[GiX̃i
GiX̃T

i ], i = 1, 2. Since G1X1 and G2X2 are

initially independent, the covariance of the augmented state

vector is block diagonal.

P = E
[

X̃X̃T
]

=

[

P11 0

0 P22

]

In order to align the two maps, we express G2X2 in the

same frame as G1X1 (Eq. (6) or equivalently Eqs. (12), (10),

and (13)). The new augmented state vector is:

X
′

=
[

G1XT
1

G1XT
2

]T
(17)

while the errors in that are described as:

X̃
′

= HX̃ + Γη

=

[

Im×m 0m×n

H1 H2

] [

X̃1

X̃2

]

+

[

0m×3

Γ2

]

η (18)

where m = 3 + 2n1, n = 3 + 2n2, and

H1 =















pR2H1
φR2H1
pℓ1H1

...
pℓn2 H1















, H2 =















pR2H2
φR2H2
pℓ1H2

...
pℓn2 H2















, Γ2 =















R2Γ
φR2Γ
ℓ1Γ

...
ℓn2Γ















Finally, the covariance of the new system is computed as:

P
′

= E
[

X̃
′

X̃
′T

]

= HPHT + ΓRΓT

=

[

P11 P11H
T
1

H1P11 H1P11H
T
1 + H2P22H

T
2 + Γ2RΓT

2

]

(19)

This new merged map can now be used by the two robots for

C-SLAM.

E. Detecting and Combining Duplicate Landmarks (Sequen-

tial Nearest Neighbor Test)

In this section, we describe a method for determining

duplicate landmarks and use the landmark matches to update

the merged map. It is very probable that the areas the two

robots covered have common regions before rendezvous. This

means that a number of landmarks might appear as dupli-

cates in the new state vector that resulted by aligning and

merging the state estimates of the two robots. Employing this

information can significantly improve the accuracy of the final

map. Specifically, if all duplicate landmark pairings are known,

these can be used to reduce both the alignment errors and

the size of the state vector. We hereafter consider the most

challenging case, where none of the landmarks can be uniquely

identified.

A straightforward approach for finding consistent matches

is simply to search through all possible feature-pairing combi-

nations. Without loss of generality, we assume that n1 ≥ n2,

and consider the case where each of the landmarks of map M2

can be matched to only one landmark of map M1 or to the null

landmark (i.e., no match). That is, there are n1+2−k possible

matches for the k-th landmark of M2, k = 1 . . . n2 which

leads to a total of (n1 + 1)!/(n1 − n2 + 1)! feature matching

hypotheses.3 For even modest values of n1 and considering the

most common case where n1 and n2 are of the same order of

magnitude, this is a prohibitively large number of candidate

matchings that cannot be computed in real-time.

Two well known methods for searching for identical land-

marks are the Nearest Neighbor (NN) and Joint Compatibility

Branch and Bound (JCBB) algorithms [6]. NN simply pairs

only the closest two landmarks. If for each landmark in

M2, we search through all landmarks in M1 for its nearest

neighbor, then the total complexity is O(n1n2). JCBB finds the

largest number of jointly compatible pairings by searching the

interpretation tree [7] with branch and bound heuristics. The

algorithm is more robust but has a much higher computational

cost. The JCBB algorithm is employed in [8] in the context

of single robot SLAM. Specifically, a set of local maps is

constructed in order to map a large indoor environment using

sonar data. Once a new sub-map is joined with the global

map, duplicate landmarks are matched and fused to update

the new global map. Although the problem considered in [8]

is different from ours (single vs. multi robot SLAM), the same

approach can be applied in our case.

Considering the trade-off between robustness and complex-

ity, we have selected to use a modified version of the NN

algorithm. NN was deemed sufficient for the purposes of

the work presented here, because the positioning uncertainty

of the landmarks in the vicinity of the rendezvous location,

expressed with respect to frame {R1}, is relatively small.

These landmarks, i.e., the ones located close to the area where

the two robots meet, have a higher probability of being within

the intersection of the two maps and are the ones that can

be reliably matched within the first few iterations of our

algorithm.

1) Mahalanobis Distance Hypothesis Test: At this point,

we present the details of our approach for testing for

duplicate landmarks and updating the map. After the

map transformation, the new state vector is X
′

=
[G1XT

R1

G1XT
L1

. . . G1XT
Ln1

G1XT
R2

G1XT
ℓ1

. . . G1XT
ℓn2

]T .

If Li and ℓj refer to the same landmark, then the difference

between the position coordinates of the two landmarks should

be zero. We denote the implicit measurement as Zij , and the

corresponding estimate as Ẑij . Using this implicit measure-

ment, we can formulate a test for duplicate landmarks based

3If we additionally allow for landmarks of map M2 to be matched to more
than one landmark of map M1, the total number of hypotheses becomes
(n1 + 1)n2 .



on a Mahalanobis distance.

Zij = G1XLi
− G1Xℓj

= 02×1

Ẑij = G1X̂Li
− G1X̂ℓj

rij = Zij − Ẑij = −Ẑij

Hij =
[

02×3 02×2(i−1) I2×2 02×2(n1−i)

02×3 02×2(j−1) −I2×2 02×(n2−j)

]

Sij = HijP
′

HT
ij

Dij = rT
ijS

−1
ij rij , i = 1 . . . n1 , j = 1 . . . n2

where Dij is the Mahalanobis distance.

If minj(Dij) is less than a threshold γ, then we consider

that Li and ℓj represent the same landmark. In this case, a

constraint is imposed via a Kalman filter update using the

implicit measurement of Zij . The remaining equations of the

Kalman filter are:

X
′

+ = X
′

+ Kijrij , P
′

+ = P
′

− KijSijK
T
ij (20)

with Kij = P
′

HT
ijS

−1
ij . After this update, the duplicate

landmark ℓj is eliminated, i.e., the corresponding row of the

state vector X
′

+, and row and column of the covariance matrix

P
′

+ are deleted. This process of searching for duplicates is

repeated for all landmarks ℓj originally in the map M2.

2) Matching Robustness - Effect of the Landmark Distance

from the Rendezvous Point: The NN match works well only

when all landmarks’ position errors are smaller than the

distance between any two landmarks. In this case, it is unlikely

to have a false match. However, this is not to be expected

when merging two large maps. Specifically, the error in the

rotation R1

R2
C(θ) will amplify a landmark’s position error with

the distance from the landmark to robot R2. A simple way to

verify this is to consider the position error R1 p̃ℓj
induced in the

position estimate of a landmark R1pℓj
due to the orientation

alignment error θ̃. It is

R1pℓj
= R1pR2

+R1

R2
C(θ)R2pℓj

⇒

R1 p̃ℓj
= ṽ + JR1

R2
C(θ)R2pℓj

θ̃ , J =

[

0 −1
1 0

]

where ṽ is the error term due to errors in the estimates of
R1pR2

and R2pℓj
. Computing the trace of the covariance

matrix for the error in R1pℓj
, we have

tr(E[R1 p̃R1

ℓj
p̃T

ℓj
]) = tr(E[ṽṽT ]) + σ2

θ
R2pT

ℓj

R2pℓj
(21)

where σ2
θ is the variance of the map orientation alignment

error θ̃. As evident, for comparable values of tr(E[ṽṽT ]), the

uncertainty in the position of a landmark ℓj ∈ M2 increases

with its distance from the point the two robots meet.

In the NN algorithm, the decision for matching two land-

marks from the two robots’ maps is irrevocable. Thus, any

false matching that occurs during the elimination process,

will cause the merged map to be inconsistent, making the

order in which the landmarks are matched crucial. Based on

the preceding analysis, the best order is to consider potential

matches starting from the current location of robot R2. Since,

in most cases, the error in the landmarks’ position estimates,

with respect to R2, will be significantly smaller in the vicinity

of R2, correct matches are most likely to be found there. As

new matches are confirmed and the state vector is updated

sequentially, the position errors of landmarks further away

will also be reduced. Thereafter, it is also more likely to find

correct matches in distant areas by employing a sequential

update procedure.

3) Computational Considerations: In order to reduce the

computational complexity, we use a kd-tree [9], [10] to effi-

ciently search for the nearest landmark Li to a given landmark

ℓj . The landmarks originally in M1 are used to build a two-

dimensional kd-tree. A kd-tree is a binary tree that partitions k
dimensional points into enclosing bounding hyperrectangles.

In addition to the landmark coordinate pLi
, each node in the

tree contains two pointers, which are either null or point to a

child node in the kd-tree, and a discriminator, d, which takes

integer values in [0, k − 1]. The splitting hyperplane is a

plane which passes through the point pLi
in the node and

perpendicular to the direction specified by the discriminator.

Let d be the value of the discriminator. Then a point belongs to

the left subtree of pLi
if and only if its d-th component is less

than the d-th component of pLi
, otherwise it belongs to the

right subtree. Fig. 3 provides an example of a two-dimensional

kd-tree.

Searching for the nearest neighbor of a given landmark ℓj

in the kd-tree is depth first. It first finds the leaf node that

contains ℓj . This is done in a similar manner as in a binary

search tree. However, the landmark Li in the leaf node is not

necessarily the nearest neighbor. The distance r between the

two landmarks is computed. The nearest neighbor can only lie

within the hypersphere centered at ℓj with a radius r. Then it

backs up to search only the nodes that have intersection with

the hypersphere. In general, during a nearest-neighbor search

only a few nodes need to be inspected. The details of this

searching algorithm can be found in [9].

The expected complexity of searching for the nearest Li ∈
M1 to each landmark ℓj ∈ M2 is O(log n1), where n1

is the total number of landmarks in M1. Since all land-

marks in M2 need to be tested against the ones in M1,

this process will require a total of O(n2 log n1) operations.

Building the kd-tree has complexity O(n1 log n1). After each

EKF update, the kd-tree needs to be rebuilt. This results

in O(n2 log n1 + mn1 log n1) operations, where m is the

number of duplicate landmarks identified. Since in most cases

m ≪ n2, using kd-tree search is significantly cheaper than

O(n1n2). Algorithm 1 summarizes the steps to detect and

combine duplicate landmarks. The whole process of C-SLAM

is outlined in Algorithm 2.

IV. EXPERIMENTAL RESULTS

We have experimentally tested the multi-robot SLAM and

map alignment approach described in this paper within an

area of size ∼ 4, 800 m2. The experiments took place in the

main building of our department. Two Pioneer 3-DX robots

were used in this experiment. Each robot carried a SICK



Algorithm 1 Detecting and Combining Duplicate Landmarks

1: Sort landmarks ℓj ∈ M2 in ascending order by their

distance to current position of R2.

2: Build kd-tree of landmarks in Li ∈ M1

3: for each landmark ℓj ∈ M2 the sorted order do

4: Search the nearest neighbor Li ∈ M1 using the kd-tree

5: Compute the Mahalanobios distance Dij

6: if Dij < γ then

7: Perform a KF update [Eq. (20)]

8: Rebuild kd-tree

9: Remove duplicate landmark from M2

10: end if

11: end for

Algorithm 2 Multi-robot SLAM with Rendezvous

1: N robots perform SLAM (individually)

2: while 1 do

3: if any two robots meet and their maps are not merged

before then

4: Each robot takes a relative distance and bearing

measurement

5: Determine the transformation between the two

robots’ maps [Eqs. (9), (11)]

6: Transform robot R2’s state to R1’s global frame

[Eqs. (12), (10), (13)]

7: Compute new state vector [Eq. (17)]

8: Compute new covariance matrix [Eq. (19)]

9: Detect and combine duplicate landmarks using Algo-

rithm 1

10: end if

11: Robots with merged maps perform C-SLAM

12: Robots without merged maps perform SLAM

13: end while

LMS200 laser range-finder and a PointGrey color camera

with a RemoteReality NetVision360 omnidirectional lens. A

colored cylinder was placed on top of each omnidirectional

camera (Fig. 4). From the laser range data, corner features

were extracted that served as landmarks in the map. Inter-robot

measurements were acquired through the omnidirectional cam-

era by means of tracking a colored cylinder mounted on the

robots. A view from the omnidirectional cameral is shown in

Fig. 5.

The following algorithm is employed to compute the dis-

tance and bearing between two robots. The radius and height

of the cylinder placed on top of each robot are known. The

idea is to match the cylinder in image space to the real

cylinder in the three-dimensional space. To do this, we employ

a Least-Squares estimation algorithm. We minimize the error

between the measured positions of the edge pixels and the

predicted positions given a distance and bearing estimate with

the camera projection model and the cylinder model. The

projection model of our omnidirectional camera can be found

in [11]. To start this process, we first locate the upper edge
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Fig. 3. An example of a kd-tree. Tall rectangles correspond to the splitting
hyperplane perpendicular to the x axis. Fat rectangles correspond to the
splitting hyperplane perpendicular to the y axis.

of the cylinder in the image as shown in Fig. 6. Then, using

the center pixel of the upper edge, an approximate estimate of

the distance and bearing is determined. The final estimates of

these measurements are computed by iteratively minimizing

the error between the measured positions of the edge pixels

and the predicted positions using the Least-Squares algorithm.

In this experiment, the two robots start their mapping tasks

at two different corners in the building (approximately 85 m

apart). The relative pose between the two robots is unknown.

Initially, each robot explores the floor independently. Their

maps are shown in Figs. 7 and 8. When the two robots meet,

they measure their relative distance and bearing. Subsequently,

the two maps are merged into a single one by the coordinate

transformation computed using their relative measurements.

Fig. 9 depicts the 3-σ ellipses of the landmarks’ positioning

uncertainty. It can be seen that as the distance of a landmark

from the current location of robot R2 increases, its position

uncertainty in the new map also increases. Note that in

Fig. 9, the rendezvous point is approximately at location (10,

0) m. The largest landmark positioning uncertainty (3-σ) is

approximately 20 m for landmarks located at the lower right

corner of the building map.

To reduce this error, landmark duplicates are identified by

employing the Nearest Neighbor test algorithm described in

this paper. The merged map is updated by imposing co-

location constraints on these landmark matches. In this ex-

periment, the number of landmarks detect by robots R1 and

R2 is 95 and 60 respectively. On average, each landmark

match using the kd-tree takes 4 msec on a Pentium 4 2.4 GHz

PC. The total computation cost of our algorithm for detecting

and combining duplicate landmarks is 0.4 sec. Compared to

testing all pairs of landmarks in M1 and M2 that takes 6 sec,

our algorithm is significantly more efficient. In this process

31 landmarks were identified as duplicates in the maps M1

and M2. The final landmark locations are depicted in Fig. 10.

Note that the 3-σ ellipses of the landmark positions are now

reduced to less than 1 m. Comparing the resulting map to

the actual floor plan, we observed that all landmarks were

matched correctly. Once the merging process is complete, the

two robots continue to perform SLAM now as a single system

in a centralized fashion (C-SLAM). The final map of the entire

floor is shown in Fig. 11. This experiment demonstrates that

our algorithm can successfully align two maps created by two



Fig. 4. The Two Pioneer 3-DX robots used in the experiment.

Fig. 5. A view of the second robot as seen in the omnidirectional camera
of the first one.

robots independently, correctly detect and combine duplicate

landmarks, and, hence, improve the accuracy of the mapping

task.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an efficient algorithm

for solving the multi-robot map alignment problem. Relative,

robot-to-robot, distance and bearing measurements are used

to compute the coordinate transformation between two maps

created independently by two robots. Subsequently, landmark

duplicates are identified and co-location constraints are im-

posed on the matched landmarks which significantly improve

the accuracy of the resulting map. A Nearest Neighbor (NN)

test is used in this process based on a kd-tree that reduces the

computational complexity of merging two maps of approxi-

mately equal sizes (n1 ≃ n2 ≃ n) from O(n2) to O(n log n).
In order to increase the robustness of the matching process, an

analysis of the position error of the landmarks as a function

Fig. 6. A zoom-in view of the cylinder as seen in the omnidirectional camera.

Fig. 7. The map created by robot 1 before map merging.

Fig. 8. The map created by robot 2 before map merging.
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Fig. 9. The approximate map computed when using only the translation and
rotation measured from the mutual observation of the two robots. The 3-σ
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Fig. 10. The final merged map after matching identical landmarks.

of the distance from the rendezvous point was presented. It

was shown that the position error for the landmarks whose

coordinates were transformed increases with their distance

to the robot-meeting location. This property is employed for

determining the order in which a NN-based algorithm should

search to find reliable landmark matches in the aligned map.

Our algorithm makes no assumptions regarding the initial

robot poses, thus increasing flexibility in the robots’ deploy-

ment. New robots can join the mapping task at any time

and/or any place in the environment of interest. Moreover,

this algorithm can be applied to any feature-based map both

indoors and outdoors. Whereas the experiments presented in

this paper were carried out using only two robots, we are

currently working on C-SLAM implementations for larger

Fig. 11. The expanded map computed after the merging and while the two
robots continue to perform SLAM and explore new areas.

robot teams. A future extension of this work will be to focus

on reliable map-merging without rendezvous.
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