
Multi-Robot Task Acquisition through Sparse Coordination

Guglielmo Gemignani1⋆†, Steven D. Klee2⋆, Daniele Nardi1, and Manuela Veloso2

Abstract— In this paper, we consider several autonomous
robots with separate tasks that require coordination, but not a
coupling at every decision step. We assume that each robot sep-
arately acquires its task, possibly from different providers. We
address the problem of multiple robots incrementally acquiring
tasks that require their sparse-coordination.

To this end, we present an approach to provide tasks to mul-
tiple robots, represented as sequences, conditionals, and loops
of sensing and actuation primitives. Our approach leverages
principles from sparse-coordination to acquire and represent
these joint-robot plans compactly. Specifically, each primitive
has associated preconditions and effects, and robots can con-
dition on the state of one another. Robots share their state
externally using a common domain language. The complete
sparse-coordination framework runs on several robots. We
report on experiments carried out with a Baxter manipulator
and a CoBot mobile service robot.

I. INTRODUCTION

Multi-robot systems are often more reliable, affordable

and fault tolerant than single robots. However, they require

complex coordination mechanisms to be effective. Robots

can coordinate using a wide variety of techniques, ranging

from completely centralized to distributed approaches. There

are also many means to provide tasks to robots, including

programming each robot, providing goals in a domain to a

multi-agent planner, and directly teaching the robots.

In this work, we consider the problem of separately and

incrementally providing tasks to a group of autonomous

robots that need to infrequently coordinate. The robots may

have very different internal representations of their state,

actuation capabilities, and sensing capabilities. Furthermore,

they may acquire their tasks in different manners. For ex-

ample, a manipulator may be taught by a human through

natural language, and a mobile base may acquire tasks from a

planner. However, to pick up a package and deliver it, the two

robots must work together. In these kinds of tasks, we note

that the robots do not need to coordinate at every decision

step. In fact, much of their tasks can be completed entirely

independently. In literature, this concept of coordinating

when necessary is known as sparse-coordination [1]. In

terms of task representation, sparse-coordination represents

the joint state space only when the robots need to coordinate.

1Guglielmo Gemignani and Daniele Nardi are with the Department
of Computer, Control, and Management Engineering “Antonio Ruberti”,
Sapienza University of Rome, Via Ariosto, 25 00185 Rome, Italy.
{gemignani,nardi}@dis.uniroma1.it

2Steven D. Klee and Manuela Veloso are with the Computer Science
Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA sdklee@andrew.cmu.edu, mmv@cs.cmu.edu

⋆ The first two authors contributed equally to this work.
† Guglielmo Gemignani contributed to this work while visiting Carnegie

Mellon University.

Fig. 1: Baxter manipulator and CoBot mobile service robots

coordinated with the proposed approach.

Our goal is to enable heterogeneous robots, acquiring tasks

from different providers, to solve problems requiring sparse

coordination. We first note that coordinating different robots

requires a common means of communication. To this end, we

contribute a task representation for a robot to incrementally

acquire a task with preconditions and effects represented in

a shared domain language. Then, we present an approach

to sparsely coordinate robots using this task representation.

Specifically, each agent conditions on the state of other

robots to sparsely coordinate.

Tasks are represented in graph-based structures composed

of action and sensing primitives, conditionals, and loop

structures. The preconditions and effects of the actions are

written using a common domain language. Robots keep track

of their own state, and condition on the state of each other

by sending queries to interact. By only representing the

coordination between robots when necessary, this approach

is partially immune to the combinatorial explosion in the

number of states found in other representations.

Our contribution has been used to coordinate several

robots, including a Baxter and a CoBot robot. Baxter is

an industrial manipulator robot able to perform complex

manipulation tasks. CoBot is instead an omnidirectional

mobile service robot equipped with a variety of sensors

including a laser range finder, microphones, a camera, and

Microsoft Kinect sensors [3]. We first show an example of

how the two arms of a Baxter manipulator can be treated

as two autonomous agents and coordinated. We then show a

more complicated example involving a CoBot and the two

arms. Figure 1 shows both robots.

In the next section, we present an overview of related

work, with a focus on past research in representing multi-

agent plans compactly and on providing tasks incrementally

to a robot. We then introduce the technical details of our

approach, present demonstrative examples, and conclude

with a summary of the contributions and a brief discussion

of future work.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Received March 4, 2015.



II. RELATED WORK

Our work is mainly related to the literature on multi-

agent planning and incremental task acquisition. Multiple

approaches have been proposed to represent multi-agent

plans. For example, there are several techniques to subdivide

joint tasks into smaller tasks that each agent can execute

autonomously or as part of a smaller group. These techniques

can rely on communication models [4], on dedicated archi-

tectures [5], [6], and on collections of conventions followed

by all team members [7]. Additionally, Coordination Graphs

compactly represent dependencies between the actions of

different agents, thus capturing the local interaction between

them [8]. Local interactions have also been exploited to min-

imize communication overhead during policy execution [9]

and in game-theory to obtain compact game representa-

tions [10]. These approaches rely on dependency analysis

to decompose independent parts of the initial representation.

Finally, Petri Net Plans are another framework for collabora-

tion, similar in principle to our approach [11]. However, the

plans are not acquired through user instruction, and there is

no query language for checking the state of other robots.

All of these approaches require that a complete plan is

given to each robot a priori. In our work, tasks are acquired

by the robot incrementally, and the provider specifies the

dependencies between different robot tasks.

Research also addresses the problem of acquiring a task

incrementally, focusing on composing robot primitives into

different task representations. An early approach that tackles

such a problem focuses on creating sequences of robot primi-

tives, which represent its action and sensing capabilities [12].

To support conditionals, tasks have also been represented

as acyclic graphs composed of nodes representing finite

state machines [13]. Tasks have also been represented as

formal logic goal descriptions [14], where the instructions

received from the provider are associated with formal logic

expressions that represent the task provided to the robot.

Recently, a more expressive framework based on In-

struction Graphs has been proposed to support teaching

tasks with loops and conditionals [15]. Other works have

proposed representations of parametric tasks that are defined

by the provider at an abstract level [16]. Neither of these

representations keep track of the state of the robot. In more

recent work, robot action and sensing primitives have been

associated with preconditions and effects [17], [18]. With this

additional information, the robot can propose goal-oriented

plans, instead of purely acquiring a task step-by-step.

All of these works on task acquisition focus on a single

robot, not addressing the problem of incrementally providing

tasks to multiple coordinating robots. In this work, we focus

on robots that sparsely-coordinate [1]. Sparsely coordinated

robots have tasks that require infrequent cooperation, not at

every decision step.

In the next section, we build upon the Instruction Graph

framework, first adding robot-primitive preconditions and

effects. Then, we allow robots to condition on the state of

each other to support sparse interactions.

III. APPROACH

We consider several autonomous robots with primitives

that represent their actions and sensing capabilities. Each

robot acquires its task separately and incrementally by inter-

acting with a provider, be it a user or a planner. Our goal

is to allow these robots to sparsely coordinate to complete

their tasks. In this section, we first describe our original

task teaching framework for individual robots. Then, we

present a detailed description of our task representation that

encapsulates the robot state, and our approach for multi-agent

sparse coordination.

A. Instruction Graphs

For an individual robot, not interacting with others, we

represent tasks as Instruction Graphs (IG) [15]. Instruction

Graphs are graphs where vertices represent robot-primitives,

while edges represent possible transitions between vertices.

Formally, an Instruction Graph is a graph G = 〈V, E〉. Each

vertex v ∈V is a tuple:

v = 〈id, InstructionType, f , P〉

where id is an integer, InstructionType is the type of the

vertex and f is a function with a set of parameters P. The

function f represents an action or sensing primitive that the

agent should perform when visiting the vertex.

Each Instruction Graph is executed starting from an initial

vertex, until a termination condition is reached. During

execution, the InstructionType of the vertex describes how

the robot should transition to the next vertex based on the

output of the function f. The IG framework defines the

following InstructionTypes:

• Do and DoUntil: Used for sequences of primitives. f

has no output, and the algorithm transitions along the

sole out-edge. Here, we will refer to both of these types

of nodes simply as Actions.

• Conditionals: Used for sensing actions. The algorithm

interprets f as a boolean value used to transition to one

of two children.

• Loops: Used for looping structures. The algorithm in-

terprets f as a boolean value, and vertices inside of the

loop are repeated while the condition is true.

Figure 2 shows an example node with id 2, InstructionType

Action, function move forward, and parameter 5 meters. This

corresponds to the second node in an IG, which executes a

robot primitive to move a mobile base forward 5 meters. We

refer the reader to the original work on Instruction Graphs

for a more detailed overview [15].

Fig. 2: Example of IG node with id 2, InstructionType

Action, function move forward, and parameter 5 meters.

Instruction Graphs are incrementally constructed through

the interaction with a user. Specifically, natural language

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Received March 4, 2015.



commands are processed by a probabilistic parser and

grounder [20]. This allows the robot to learn the groundings

from natural language to robot primitives, environmental

features, and tasks. The robot starts with an initial knowledge

base of groundings and learns more over time by asking the

user when it is unsure of how to ground an expression.

B. Sparse-Coordination Instruction Graphs

To sparsely coordinate, robots must keep track of their

state and be able to query the state of one another. We define

Sparse-Coordination Instruction Graphs (SCIG) as graphs

G = 〈V, E〉 where each vertex v is a tuple:

v = 〈id, InstructionType, f , P, Prec, Eff 〉

where the additional elements Prec and Eff respectively

represent sets of preconditions and effects of the function

f. More generally, each function f has an associated set of

literals Lf that represents its preconditions and effects. Thus,

we define:

L =

⋃

∀ f

L f

as the common domain language used by all of the robots.

We represent each literal using STRIPS semantics [2]. In

particular, each action adds or removes positive literals from

the robot’s current state. While robots may represent their

internal state differently, their primitives express this state in

terms of the common set of strips literals, L .

To associate these preconditions and effects to actions,

each robot sensing and actuation primitive is defined in

the Planning Domain Definition Language (PDDL) [19].1

For example, a Baxter manipulator may have an action

pick up(object id), to pick up an object with a given ID.

Internally these objects are represented as a 3D point in

space and bounding boxes. However, the effects of the action

are to remove the literal hand empty, and then add the

literal holding(object id). Figure 3 shows an example PDDL

definition for Baxter’s “pickup” action. Currently, we assume

that all changes in state are captured by the robot primitives

and that each robot can only modify its own state.

(:action pickup

:parameters (?x)

:precondition (and (OBJECT ?x)

(hand_empty))

:effect (and (holding ?x)

(not (hand_empty)))

Fig. 3: Example PDDL definition for the primitive “pickup”.

As preconditions, its parameter must be an object, and the

hand must be empty. The effects are that the hand is no

longer empty, and the robot is holding an object.

During execution, each robot keeps track of its own

state. Specifically, the state predicates are either appended

1Although we represent actions using PDDL, any other language could
be used to define the common domain language.

or deleted from the robot’s state according to the effects

of the executed action. We introduce a special function

check literal, used in Conditional and Looping vertices that

can condition on the state of any agent. The check literal

function takes as input a unique robot identifier and a query.

In our framework the query is represented as a set of STRIPS

predicates, possibly composed with the and, or and not

operators. The query is routed to the the robot with the

corresponding identifier.

When a robot receives a query, it is evaluated against its

current state. Each robot adopts a closed-world assumption

when responding to queries. In particular, the robot checks

that positive literals are present in its state and that negated

literals are absent in its state. The result of this query is

returned to the requesting robot. In this way each robot

has only a representation of its own state, and makes no

assumptions about the state of another.

Figure 4 shows a partial example of a SCIG for a CoBot

mobile base, where the check literal function is used to

condition on the state of a Baxter manipulator. Specifically,

the CoBot will perform the move to action if Baxter’s state

does not contain hand empty.

Fig. 4: Partial example of a SCIG for a CoBot conditioning

on the state of a Baxter manipulator. If Baxter’s state does not

contain hand empty, CoBot will perform the move to action.

With this approach we are able to implement coordination

at a high level. In particular, we define several useful

coordination actions from Loops and Conditionals:

• Wait Until: The robot waits until another robot is in

some state. This is implemented with a Loop.

• Act Until: The robot repeats some actions until another

robot is in some state. This is implemented with a Loop.

• Ask: The robot conditions on the state of another robot.

This is implemented with a Conditional.

We provide examples of each of these forms of coordination

in the next sections.

We note that for sparse-coordination, many of typical

problems of multi-robot communication do not arise. For

instance, consistency is not an issue, because the robots

keep track of only their own state, and directly query each

other’s state as needed. Since coordination is infrequent, and

at a high-level, the robots can also cooperate in environ-

ments with high-latency and low-bandwidth. In this work,

we do not address the problem of faulty sensors or non-

deterministic action effects. For now, we assume that the

robot-primitives are all fault tolerant.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Received March 4, 2015.



(a) (b)

Fig. 5: Sparse-Coordination Instruction Graphs extracted from the text in Figure 6. Specifically, (a) represents the graph for

the left arm, while (b) represents the graph for the right arm. The nodes in yellow represent the vertices that require a query

to another robot’s state.

IV. DEMONSTRATIVE EXAMPLES

We coordinated several robots with the presented ap-

proach, including a manipulator and a mobile base. In this

section we show how multiple robots can be taught to

perform different tasks that involve sparse-coordination. In

particular, we show how a Baxter robot can be instructed

to perform a manipulation task during which its two arms

need to sparsely interact with each other. Then, we extend

this example by considering also a CoBot mobile base. In

this case, we show how the two arms and the mobile service

robot can be instructed to deliver and store an object.

A. Store Task

We first show how the two arms of a Baxter manipulator

can be treated as separate agents and coordinated. We denote

the arms as left arm and right arm. Table I shows the set

of robot primitives for both arms, with their associated

preconditions and effects. Our task is to have the left arm

assist the right arm in finding an unobstructed location to

place an object.

TABLE I: Baxter arms primitives with associated precondi-

tions and effects.

Action Primitives Preconditions Effects

wave() - -

wait(time) - -

is visible(landmark id) - -

move to(location) -

-pointing,

-at(old location),

+at(location)

pick up(object id) hand empty
-hand empty,

+holding(object id)

drop(object id) holding(object id)
-holding(object id),

+hand empty

point(location id) -

-at(old location id),

+at(location id),

+pointing,

+pointing at(location id)

Left arm:

wave while right hand is empty

move to location 1

if landmark 1 is visible

point to location 1

otherwise point to location 2

Right arm:

pick up object 1

wait while left arm is not pointing

if left arm is pointing at location 1

move to location 1

otherwise move to location 2

end if

drop object 1

Fig. 6: Natural language input provided to the two arms. The

names of the agents are shown in red, and their states are

shown in blue.

In this example, a user describes the task to each agent

in two separate teaching sessions through natural language.

Specifically, the left arm is instructed to wave until the

right arm picks up an orange wooden block (Figure 9a).

At this point, the state of the right arm is changed to

holding(object 1) and the function check literal(right arm,

hand empty) returns false. After realizing this fact, the left

arm starts checking if a landmark can be detected at the

drop position (Figure 9b). In the case a landmark is detected,

the left arm points at it, reaching the pointing at(location 1)

state. The function check literal(left arm, !pointing) now

returns false and the right arm drops the block at location 1

(Figure 9c). Instead, when the landmark is not detected the

left arm points at an alternative location (location 2) where

the orange block can be dropped (Figure 9d).

Figure 6 shows a natural language description of the task

provided to the two arms. Instead, Figures 5a and 5b show

the corresponding Sparse Coordination Instruction Graphs.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Received March 4, 2015.



(a) (b) (c) (d)

Fig. 7: (a) The left arm is shown waving until the right arm picks up an orange wooden block. (b) The left arm checks if

the drop position is open. (c) Since this position is open, the left arm points at it where the object will be placed. (d) In the

second run, since the drop position is not open, the left arm points at an alternative position.

In this specific case, the natural language description of the

tasks was parsed through the aid of specifically developed

parsers, similarly to a previous work [20]. The descriptions

were grounded to objects and locations of a knowledge base

containing a high-level description of the environment and

the robot primitives. In this example we assume that the

two robots have the same high-level representation of the

environment. In other words, we assume that the two robots

agree on the position of the two possible locations. The

execution of the task can be seen in the video attached.2

B. Deliver and Store Task

Next, we extend the previous example by considering also

a CoBot robot [3]. CoBot must coordinate with the Baxter’s

arms in order to deliver and store an object. To this end,

we modify the previous example by making the right arm

wait for CoBot to be at a specific location. Note that the

right arm is instructed to wait just for simplicity. It could

also be instructed to do other work while waiting for CoBot’s

arrival. When CoBot reaches the state at(location 3), the

right arm will pick up the delivered object from CoBot’s

basket, storing it at the location pointed out by the left arm.

For CoBot, we defined the robot primitives shown in table

II. For Baxter we used the previously described primitives.

TABLE II: CoBot primitives with associated preconditions

and effects.

Action Primitives Preconditions Effects

Say(message) - -

Move to(location) -
-at(old location id),

+at(location id)

The user teaches the tasks to the robots in three sepa-

rate teaching sessions. Figure 8 shows a natural language

description of the tasks provided to CoBot and to the

right arm. The task given to the left arm is the same as in the

previous example. Figure 10 depicts the Sparse Coordination

Instruction Graph extracted for CoBot. Since the SCIG of the

2http://youtu.be/4nLjuLhFUvk

right arm is almost identical to Figure 5b, we omit it due to

space constraints.

CoBot:

move to location 3

say ‘‘I am here to deliver a package"

wait while left arm is not pointing

move to location 4

Right arm:

wait while CoBot is not at location 3

pick up object 1

wait while left arm is not pointing

if left arm is pointing at location 1

move to location 1

otherwise move to location 2

end if

drop object 1

Fig. 8: Natural language input provided to CoBot and the

right arm. The description of the left arm task instead is the

same shown in Figure 6. The names of the robots are shown

in red while their states are shown in blue.

C. Discussion

Sparse-Coordination Instruction Graphs allow users to

teach a wide-variety of tasks that require multi-agent coordi-

nation. In particular, they are well suited to tasks that require

high-level cooperation between robots. We have found the

approach especially effective with robots that have separate

goals. For instance, our fleet of CoBots perform many tasks,

such as escorting people and picking up objects. Some of

these tasks require brief interaction with Baxter, which has its

own goals to accomplish. The robots coordinate infrequently

because their goals require a limited amount of interaction.

We can also represent joint-plans with goals that require

a tight coupling of robot actions at each decision step. An

example of such a task is the bimanual manipulation of a

large object. However, each robot will need to make many

queries to represent most of the joint-state space before

acting. Thus, it is often impractical for a user to teach tightly

coordinated tasks to the robot. Currently, tightly-coordinated

tasks can be taught to the robots using a planner.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Received March 4, 2015.



(a) (b) (c) (d)

Fig. 9: (a) CoBot reaches the pick up location while the right arm is waiting and the left arm is waiving. (b) The right arm

can now pick up the object. (c) Detailed view of Baxter picking up the object. (d) The left arm points at location 1, the

right arm drops the object, and CoBot leaves.

Fig. 10: SCIG extracted from the CoBot’s task description

in Figure 8. Node 3 requires a query to another robot’s state,

in this case Baxter’s left arm.

V. CONCLUSION

In this paper, we addressed the problem of multiple

robots separately and incrementally acquiring tasks that

require coordination. By leveraging principles from sparse-

coordination we enable robots to acquire and represent joint-

robot plans compactly. Specifically, we introduced Sparse-

Coordination Instruction Graphs, which encapsulate robot-

primitive preconditions and effects. The robots act indepen-

dently, and only coordinate when necessary by querying

each other’s state. We demonstrated this approach with two

examples. First we treated both arms of a Baxter robot as

separate agents and had them coordinate to store an object

at an unobstructed location. Then, we extended this example

by having a CoBot mobile base deliver the object that the

arms stored.

As a future work, we are investigating extensions to rep-

resent tasks that require tight coordination more compactly.

We are also interested in how our coordination approach can

be used with knowledge-acquiring actions. For instance, in

cloud robotics a robot-primitive may request information, or

even queue a task on another robot.

REFERENCES

[1] F. S. Melo and M. Veloso, “Decentralized MDPs with Sparse Interac-
tions”, in Artificial Intelligence, 2011.

[2] R. E. Fikes, and N. J. Nilsson, “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving”, in Artificial
Intelligence, 1972.

[3] J. Biswas and M. Veloso, “Localization and Navigation of the
CoBots Over Long-Term Deployments”, in The International Journal
of Robotics Research, 2013.

[4] B. P. Gerkey, and M. J. Matarić. “Sold!: Auction Methods for
Multirobot Coordination”, in IEEE Transactions on Robotics and
Automation, 2002.

[5] L. E. Parker, “ALLIANCE: An Architecture for Fault Tolerant Multi-
robot Cooperation”, in IEEE Transactions on Robotics and Automa-
tion, 1998.

[6] M. Tambe, “Agent Architectures for Flexible, Practical Teamwork”,
in Artificial Intelligence, 1997.

[7] P. Stone, “Layered Learning in Multiagent Systems: A Winning
Approach to Robotic Soccer”, MIT Press, 1998.

[8] J. Kok, P. Hoen, B. Bakker, and N. Vlassis, “Utile Coordination:
Learning Interdependencies Among Cooperative Agents”, in IEEE
Symposium on Computational Intelligence and Games, 2005.

[9] M. Roth, R. Simmons, and M. Veloso, “Exploiting Factored Represen-
tations for Decentralized Execution in Multiagent Teams”, in AAMAS,
2007.

[10] J. A. Xin, K. Leyton-Brown, and N. Bhat, “Action-Graph Games”, in
Games and Economic Behavior, 2008.

[11] V. A. Ziparo, L. Iocchi, P. Lima, D. Nardi, and P. Palamara, “Petri
Net Plans - A Framework for Collaboration and Coordination in Multi-
Robot Systems”, in AAMAS, 2011.

[12] S. Lauria, G. Bugmann, T. Kyriacou, J. Bos, and E. Klein, “Personal
Robot Training via Natural-Language Instructions”, in IEEE Intelli-
gent Systems, 2001.

[13] P. E. Rybski, K. Yoon, J. Stolarz, and M. Veloso, “Interactive Robot
Task Training Through Dialog and Demonstration”, in HRI, 2007.

[14] J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn, “What to
Do and How to Do It: Translating Natural Language Directives into
Temporal and Dynamic Logic Representation for Goal Management
and Action Execution”, in ICRA, 2009

[15] Ç Meriçli, S.D. Klee, J. Paparian, and M. Veloso, “An Interactive Ap-
proach for Situated Task Specification Through Verbal Instructions”,
in AAMAS, 2014.

[16] G. Gemignani, E. Bastianelli, and D. Nardi, “Teaching Robots
Parametrized Executable Plans Through Spoken Interaction”, in AA-
MAS, 2015.

[17] S. Mohan and J. E. Laird, “Learning Goal-Oriented Hierarchical Tasks
from Situated Interactive Instruction”, in AAAI, 2014.

[18] L. She, S. Yang, Y. Cheng, Y. Jia, J. Y. Chai, and N. Xi, “Teaching
Robots New Actions through Natural Language Instructions”, in Robot
and Human Interactive Communication, 2014.

[19] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson, M.
Friedman, C. Kwok, K. Golden, S. Penberthy, D. Smith, and others,
“PDDL-the planning domain definition language”, 1998.

[20] T. Kollar, V. Perera, D. Nardi, and M. Veloso, “Learning Environ-
mental Knowledge from Task-Based Human-Robot Dialog”, in ICRA,
2013.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Received March 4, 2015.


