
Nat. Hazards Earth Syst. Sci., 11, 667–672, 2011

www.nat-hazards-earth-syst-sci.net/11/667/2011/

doi:10.5194/nhess-11-667-2011

© Author(s) 2011. CC Attribution 3.0 License.

Natural Hazards
and Earth

System Sciences

Multi-rogue waves solutions to the focusing NLS equation

and the KP-I equation

P. Dubard and V. B. Matveev
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Abstract. We construct a multi-parametric family of

quasi-rational solutions to the focusing NLS equation,

presenting a profile of multiple rogue waves. These solutions

have also been used by us to construct a large family

of smooth, real localized rational solutions of the KP-I

equation quite different from the multi-lumps solutions

first constructed in Bordag et al. (1977). The physical

relevance of both equations is very large. From the point of

view of geosciences,the focusing NLS equation is relevant

to the description of surface waves in deep water, and

the KP-I equation occurs in the description of capillary

gravitational waves on a liquid surface, but also when

one considers magneto-acoustic waves in plasma (Zhdanov,

1984) etc. In addition, there are plenty of equations of

physical importance, having their origin in fiber optics,

hydrodynamics, plasma physics and many other areas, which

are gauge equivalent to the NLS equation or to the KP-I

equation. Therefore our results can be easily extended to a

large number of systems of physical interest to be discussed

in separate publications.

1 Introduction

Roughly speaking, in oceanography a rogue wave is a

unexpectedly high wave strongly localized in space-time

although recently, certain authors have also speculated about

“long-life” rogue waves. Even if testimonies about such

freak phenomena have been available for a long time,

the study of rogue waves has been booming for a couple

of decades, following the first scientific recording of an

appearance of a rogue wave in the ocean. A very good

review of the “state of the art” before 2009 can be found in
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Kharif et al. (2009). Since then, the notion of rogue waves

has appeared in several other fields such as nonlinear optics

where a Peregrine breather has been observed recently for

the first time (Kibler et al., 2010). In all cases, one of the

simplest models used is the focusing NLS equation

ivt +vxx +2|v|2v = 0 . (1)

Here we discuss an important class of solutions of (1),

representing the rational 2n-parametric modulation of the

plane wave solution of fixed amplitude B. This class of

solutions was first constructed in 1986 in the article by

Eleonskii et al. (1986).

Its relevance to the multi-rogue wave solutions was

understood only 24 years later in our work (Dubard et al.,

2010; Matveev et al., 2010) providing also a simplified

derivation of the results of Eleonskii et al. (1986) using

Darboux transform (see Matveev et al., 1991). In our work,

the connection of these solutions to a class of 2n-parametric

family of smooth rational real solutions to the KP-I equation

was also first discovered.

The case n = 1 reproduces a famous Peregrine breather

solution of the focusing NLS equation. Its amplitude reaches

one high local maximum on (x, t) plane. For n = 2,

in general, the amplitude of these solutions attends 3 big

maxima of the height several times higher with respect to

the amplitude of the background plane wave solution. We

conjecture that for higher values of n “in general position”

the number of these maxima is equal to n(n+ 1)/2. This

conjecture is supported by the tested solutions corresponding

to n = 3 and n = 4. Indeed this is true for all tested

“generic” values of parameters. In some exceptional cases

corresponding to the “higher order” Peregrine breathers

constructed in (Akhmediev et al., 2009a,b,c, 2010), the

number of local maximums for n = 2 is equal 5 and one

of them is much higher than others. All the constructed

solutions have exactly the behavior of waves “appearing from

nowhere and disappearing again”.
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We also discuss the related family of smooth real rational

solutions of the KP-I equation. Their qualitative analysis is

still far from being completed but already we have a reason

to consider some of the related solutions as two-dimensional

rogue waves.

2 Multi-rogue waves solutions to the focusing

NLS equation

2.1 Some notations and definitions

Below we describe some auxiliary objects allowing the

construction of a family of nonsingular (for all real x and t)

quasi-rational solutions of the focusing NLS equation having

the property to reach a maximum of the amplitude at some

fixed points of (x, t)-plane and so that when t2 +x2 → ∞,

|v|2 → B2

where B is any arbitrary chosen real constant.

Let q2n(k) be a polynomial of degree 2n defined by the

formula

q2n(k) :=
n
∏

j=1

(

k2 −
ω2mj +1 +1

ω2mj +1 −1
B2

)

,

ω := exp

(

iπ

2n+1

)

, (2)

where mj are positive integers satisfying the condition

0 ≤ mj ≤ 2n−1, ml 6= 2n−mj ,

for all l and j .1

We use also the definitions:

8(k) := i

2n
∑

l=1

ϕl(ik)l, ϕj ∈ R,

f (k,x,t) :=
exp

(

kx + ik2t +8(k)
)

q2n(k)
, Dk :=

k2

k2 +B2

∂

∂k
,

fj (x,t) := D
2j−1
k f (k,x,t)

∣

∣

∣

k=B
,

fn+j (x,t) := D
2j−1
k f (k,x,t)

∣

∣

∣

k=−B
, B ∈ R,j = 1,...,n.

Below we use the standard notation W(g1,...,gm) for a

Wronskian determinant of any m functions:

W(g1,...,gm) := detA, Apj = ∂
p−1
x gj , p,j = 1,...m.

We denote W1 and W2 two Wronskian determinants

composed from the functions f and fj defined above:

W1 := W (f1,...,f2n) ,

W2 := W (f1,...,f2n,f ) .

1For instance it is possible to take mj = j −1.

2.2 Multi-rogue solutions to the focusing NLS equation:

the main theorem

Theorem 1. The function v(x,t) defined by the formula

v(x,t) = −q2n(0)B1−2ne2iB2t W2 |k=0

W1
(3)

represents a family of nonsingular quasi-rational solutions of

(1) depending on 2n+1 independent real parameters B, ϕj ,

j = 1,...,2n. When t2 +x2 → ∞, |v|2 → B2.

The formulation above is equivalent to the main result of

Eleonskii et al. (1986) written in more elegant notations.2

Without loss of generality we can take B = 1 since the

NLS equation is invariant with respect to the scaling

transformation v(x,t)→ Bv(Bx,B2t). Therefore, below we

always set B = 1. As mentioned before, the simplest case

n = 1, when we have only 3 real parameters (ϕ1, ϕ2, B)

reproduces the Peregrine breather, and ϕ1,2 are translation

parameters. For B=1 its analytical form is given by the

formula

v(x,t)

=
(x −ϕ1)

2 +4(t −ϕ2)
2 −

(

2
√

3+4i
)

(t −ϕ2)+ i
√

3

(x −ϕ1)
2 +4(t −ϕ2)

2 −2
√

3(t −ϕ2)+1
e2it .

(4)

For ϕ1,2 = 0 the plot of |v(x,t)| is presented in Fig. 1.

More precisely, we obtain the original Peregrine solution

introduced in Peregrine (1983) by setting ϕ1 = 0 and ϕ2 =√
3

4
.

The case n = 2 where we have 4 phases (ϕ1,2,3,4) is already

much more interesting: it provides the first example of 3-

rogue waves solutions of the NLS equation and, under a

very special selection of phases, reproduces the simplest

“higher order” Peregrine breather first found in Akhmediev

et al. (1985). Below we present the plots of the |v(x,t)|
corresponding to B = 1 and to some particular selections

of phases for n = 2,3,4 making the multiple rogue waves

character evident in the solutions described by the main

theorem above. The denominator of the rational part of the

solution is a 6-th order polynomial with respect to x and t .

Because of the length of the related expression, we provide

here only a graphic representation of |v(x,t)| (see Fig. 2).

The detailed “polynomial” formula for these solutions is

given in Appendix A. The phases ϕ1 and ϕ2 are again

translation parameters, but ϕ3 and ϕ4 have more influence

on the behavior of the solutions.

We can consider these solutions as a 4-parametric

extension of the second-order solution given in Akhmediev et

al. (2009a). The later is distinguished by the presence of one

highest maximum and 4 additional smaller maxima, contrary

2For the proof see Dubard et al. (2010); Eleonskii et al. (1986),

although the proofs and notations are slightly different and a proof

in Dubard et al. (2010) is shorter and simpler.
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Fig. 1. Plot of |v(x,t)| for n = 1, ϕ1 = 0 and ϕ2 = 0.

to the behavior of the solutions corresponding to the generic

choice of phases. It corresponds to the following specific

selection of the phases:

ϕ1 = ϕ3 = 0,

ϕ2 =

(

7+2
√

5
)
√

10−2
√

5

24
,

ϕ4 =

(

5+
√

5
)
√

10−2
√

5

96
.

The related plot of |v(x,t)| is given by the Fig. 3.

In general, the denominator of the rational part of the

solution is a n(n + 1)-th order polynomial with respect to

x and t . For the generic choice of the phases, the solution

seems to have n(n + 1)/2 maxima and n(n + 1) minima.

An appropriate specific choice of parameters should allow

the appearance of “super-peak(s)”. Figure 4 presents the

solutions obtained with all phases equal to 0 in the cases

n = 3 and n = 4.

3 From multi-rogue waves solutions of NLS equation to

KP-I equation

Here we apply the previous results to the KP-I equation:

∂x (4ut +6uux +uxxx) = 3uyy . (5)

Denote g(x,y,t) the function

g(x,y,t) := v(x,t,ϕ3)|t=y,ϕ3=t .

-4

-2

0 x~
2

-4

0,5

-2

t~

1

0

4

2

1,5

4

2

2,5

3

-4

-2

0 x~
2

-4

0,5

-2

t~

1

0

4

1,5

2 4

2

2,5

Fig. 2. Plot of |v(x,t)| for n = 2 with ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 at the

top and ϕ4 = 1 and ϕ1 = ϕ2 = ϕ3 = 0 at the bottom.

In other words g is obtained by replacing the independent

variable t in v(x,t) by y and the phase ϕ3 by t . The following

theorem relates the described class of quasi-rational solutions

of the NLS equation to a 2n parametric family of smooth

localized real rational solutions of the KP-I equation. Its

most important part – formula (6) – was first proved by in

(Dubard et al., 2010; Matveev et al., 2010).
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Fig. 3. Amplitude of the Peregrine breather of order 2.

Theorem 2. The function

u(x,y,t) := 2
(

|g|2 −B2
)

= 2∂2
x logW1|t=y,ϕ3=t (6)

is a smooth, localized real rational solution to the KP-I

equation, satisfying the relations

∫ ∞

−∞
u(x,y,t)dx = 0, (7)

and

∀t, u(x,y,t) → 0, when x2 +y2 → ∞

Therefore, any plot of the amplitude of the solution (3)

corresponds to the plot of the solution to the KP-I equation

at the moment of time t = ϕ3. The related maxima of the

solutions of the KP-I equation become more sharp, since

with respect to the NLS case, they are described by a square

of the amplitude of the solution of the NLS equation shifted

down on the constant −B2. It is also evident that for

some special moments of time, the confluence of the KP-

rogue waves takes place corresponding to the “higher order”

Peregrine breathers. At such moments of time, the solution

of the KP-I equation reaches its highest possible value which

decays afterwards. We believe that this is a very first

explicit manifestation of the 2-D rogue waves described by

the precise analytic expression. This also gives a new view

and physical interpretation of the “higher order” Peregrine

breathers as describing a relief of a two-dimensional rogue

wave, (described by the KP-I equation) at the moment when

its height reaches the absolute maximum.

Fig. 4. Plot of |v(x,t)| with vanishing phases for n = 3 at the top

and n = 4 at the bottom.

4 Concluding remarks

– The plots quite similar to ours but corresponding to

the “pre-rogue” waves solutions periodic in x and

observed inside one period can be found in Calini

(2002); Schober (2006). From the oceanographic

point of view these pre-rogue wave solutions appear

less realistic since, due to different factors (wind,

dissipation, dispersion, etc.), it is difficult to imagine the
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appearance of the true infinite x-periodic train of rogue

waves. In fiber optics the situation is quite different.

In fact, observations made recently in Kibler et al.

(2010) concern not the pure Peregrine breather, but the

aforementioned “pre-rogue” waves solutions being very

close to the Peregrine breather for a sufficiently big

value of the period parameter. See also Shrira (2010)

for further useful comments.

– For more general multi-periodic elementary solutions

describing the N-periodic modulation of the plane wave

solution, closed analytical expressions were obtained in

Belokolos et al. (1994), Its et al. (1988). In principle,

passage to the limit when all periods tend to infinity

should also produce the quasi-rational solutions to the

focusing NLS equation, but actually this has been

achieved by A. R. Its, private communication, June

2010, only for obtaining the second order “higher”

Peregrine breather and technically also seems to be

rather involved.

– An advantage of our approach is its possibility to

explore the results obtained for the NLS equation

to get interesting new results for the KP-I equation

explained above. In fact, the correspondence between

the solutions of the NLS equation and the KP-I equation

might be extended to the whole class of the so called

finite-gap multi-periodic solutions, yet we are avoiding

discussing this topic here in order to preserve the

elementary level of our presentation.

Appendix

The solution presented below is a special case of (3) with

n = 2. It corresponds to the choice of parameters giving the

easiest form for the numerical evaluation and producing the

plots of the solutions. Below we set B = 1 and

ϕ1 := 3ϕ3, ϕ2 := 2ϕ4 +
3+

√
5

16

√

10−2
√

5 .

The whole family of solutions with n = 2 can be obtained by

a scaling transformation and space and time translations. The

related solution v(x,t) depends on two parameters α and β

proportional to ϕ3, ϕ4:

α :=
(

5+
√

5
)

√

10−2
√

5−96ϕ4, β := 96ϕ3.

It reads

v(x,t)=
(

1−12
G(2x,4t)+ iH(2x,4t)

Q(2x,4t)

)

e2it ,

where

G(x,t) := x4 +6g2(t)x
2 +2βx +g0(t),

H(x,t) := tx4 +2h2(t)x
2 +2βtx +h0(t),

Q(x,t) := x6 +3g2(t)x
4 −2βx3 +3q2(t)x

2

+6βg2(t)x +q0(t)

with

g2(t) := t2 +1,

g0(t) := 5t4 +18t2 −4αt −3,

h2(t) := t3 −3t +α,

h0(t) := t5 +2t3 −2αt2 −15t +2α,

q2(t) := t4 −6t2 +4αt +9,

q0(t) := t6 +27t4 −4αt3 +99t2 −36αt +β2 +4α2 +9.

The Peregrine breather of order 2, the same as first found

in Akhmediev et al. (1985), whose amplitude is plotted in

Fig. 3, is obtained when α = β = 0.
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