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Abstract: Heart rate (HR) and respiratory rate (fR) can be estimated by processing videos framing the
upper body and face regions without any physical contact with the subject. This paper proposed a
technique for continuously monitoring HR and fR via a multi-ROI approach based on the spectral
analysis of RGB video frames recorded with a mobile device (i.e., a smartphone’s camera). The
respiratory signal was estimated by the motion of the chest, whereas the cardiac signal was retrieved
from the pulsatile activity at the level of right and left cheeks and forehead. Videos were recorded from
18 healthy volunteers in four sessions with different user-camera distances (i.e., 0.5 m and 1.0 m) and
illumination conditions (i.e., natural and artificial light). For HR estimation, three approaches were
investigated based on single or multi-ROI approaches. A commercially available multiparametric
device was used to record reference respiratory signals and electrocardiogram (ECG). The results
demonstrated that the multi-ROI approach outperforms the single-ROI approach providing temporal
trends of both the vital parameters comparable to those provided by the reference, with a mean
absolute error (MAE) consistently below 1 breaths·min−1 for fR in all the scenarios, and a MAE
between 0.7 bpm and 6 bpm for HR estimation, whose values increase at higher distances.

Keywords: remote monitoring; smartphone’s built-in camera; heart rate estimation; respiratory rate
estimation; multi-ROI approach; unobtrusive monitoring; cardiorespiratory; continuous monitoring

1. Introduction

The monitoring of vital signs such as the respiratory rate (fR), heart rate (HR), body
temperature, and blood pressure is essential to assess general health status [1]. Among
others, HR is an essential indicator. Heart function is affected by many factors such as
psychosocial stress, smoking, excessive use of alcohol, malnutrition, lack of physical activity,
and congenital diseases [2]. Even fR plays a vital role in assessing the health status of a
subject, providing information on physical deterioration, and in the prediction of cardiac
arrest. Moreover, it is related to various stressors (e.g., emotional stress, cognitive load) [3].
Therefore, information about HR and fR can be used in a wide range of applications such
as medical diagnostics, fitness assessment, and mental stress analysis. Most traditional
methods used to measure HR and fR require physical contact with the subject, which
represents the main limitation in their usage (e.g., electrocardiography via skin-attached
electrodes for HR measure, flow sensors for fR measurement).

The use of non-contact methods may extend the capability of monitoring health status
of users directly in the home environment, thus making possible early diagnosis of disease
or the continuous tracking of chronic ones in a less constrained setting outside hospital
clinics [4]. Furthermore, with the outbreak of the COVID-19 pandemic, the need to monitor
patients remotely to avoid the overload of hospitals as well as to develop telemedicine
services has become increasingly assertive. Among the wide range of existing non-contact
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technologies, such as radar [5] and thermal cameras [6], the adequate processing of videos
recorded with mobile devices built-in cameras may be advantageous because of easy
accessibility and easiness of use of these devices (e.g., laptops, smartphones).

Estimating HR and fR from a video recorded with RGB cameras can be performed
through color-intensity-based and motion-based methods. Color-based methods are related
to detecting subtle skin color changes due to the movement of the blood from the heart to
the head which occurs during the cardiac cycle. During the video record of a subject’s face,
RGB sensors can detect the remote photoplethysmographic signal (r-PPG signal) related
to volumetric changes of blood in facial capillaries [7]. Both HR and fR can be estimated
from the r-PPG signal, as the respiratory activity modulates the cardiac activity [8]. When
the r-PPG technique is used to retrieve information about the pulsatile activity through
a video recording of a subject’s face, different factors should be considered, including
the user–camera distance [9,10], the lighting source [11,12], the resolution of the video
acquisition system [13], and the region of interest (ROI) [14,15]. Among these factors, user–
camera distance, the lighting source, and the selected ROI can affect the quality of the r-PPG
waveform and thus the accuracy in the estimation of HR [9,11,16,17]. The ROI selection for
HR estimation is a debated issue, single or multiple ROIs in the facial region [18,19] or the
palm hand [20] can be employed, but performances are typically dependent on the specific
application and recording environment [18,19]. Conversely, motion-based methods rely on
the detection of small amplitude movements recorded by a video camera, such as chest
wall movements due to the breathing activity or mechanical movement of the head caused
by the flow of the blood from the heart to the head (called remote ballistocardiography—r-
BCG) [21,22]. Given the difficulty of isolating r-BCG signals from other movements, HR
estimation is very challenging to implement in this way [23]. Conversely, motion-based
methods are promising for fR estimation, especially when the breathing activity is retrieved
from the measurement of chest wall movements [24,25] through the optical flow algorithm
proposed in [21] to overcome concerns caused by ambient light variations.

Available methods based on both color-based and motion-based methods have some
drawbacks and limitations. In most cases, the measurements are taken in a structured
environment with expensive cameras that are not easily available and strongly limit the
fields of digital cameras’ use for vital signs monitoring. Additionally, the reliable estimation
of HR and fR simultaneously is uncommon, mainly because only r-PPG signal does not
provide a robust measure of fR, and motion-related methods are inaccurate for estimating
HR. Additionally, the majority of studies focus on the estimation of only average values
or complicated time-domain analysis unaddressable without supervision or with data
recorded in real-world settings [12,26–28]. In this context, average values are typically
investigated in the frequency domain by analyzing the spectrum of the whole signal to
obtain only a single value of HR and fR. This discourages the application of this technology
when abrupt increases or decreases in HR and fR are expected (i.e., sports field and athlete
recovery), or when more data are needed even for short-term recordings.

To tackle these drawbacks, in this paper, we propose a novel approach based on the
use of images captured with a mobile device using a multi-ROI approach and spectral
analysis for the continuous monitoring of HR and fR parameters. The method is based
upon (i) the automatic detection of multiple landmarks on the face and the torso, (ii) the
implementation of seven different post-processing techniques to retrieve both the pulsatile
signal based on the changes of optical properties of the facial skin for HR estimation and
torso movements for fR calculation, and (iii) the identification of most informative ROIs for
continuously estimating HR and fR values with an update time of 1 s. As for influencing
factors, we considered two recording user–camera distances and the presence or not of an
external illumination source, without any constrains on users’ clothing.

2. Measuring System: Description and Working Principle

The proposed non-contact measuring system is composed of a hardware module
(i.e., built-in camera) for video recording and an algorithm with a twofold aim: (i) pre-
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processing of the video to obtain the pulsatile and the breathing-related signals, and
(ii) post-processing the raw signals for HR and fR estimation.

The working principle behind the extraction of the pulsatile and breathing-related
signals from a video is explained in the following section.

2.1. Remote Photoplethysmography: Principle of Work

Remote photoplethysmography (r-PPG) is a technique for remote measurement of
human cardiac activities by detecting subtle color variations visible on the subject’s skin
utilizing a multi-wavelength RGB camera [29]. r-PPG shares the same principle as PPG,
which involves the measurement of light transmitted through or reflected from the skin,
capturing the changes in blood volume [30]. The optical properties of human skin are
determined by the presence of different chromophores in the layers of the skin. However,
skin color is mainly given by the presence of melanin in the epidermis and the hematic
pigments (i.e., hemoglobin, oxyhemoglobin, beta carotene, and bilirubin) present in the
dermis/hypodermis vascular plexus. Among the hematic pigments, the primary source
of rhythmic variation in light absorbance and reflectance is hemoglobin present in blood
vessels [31]. When the light falls on the skin surface, the variation of the intensity of
reflected light due to the pulse wave activity can be captured by a camera.

The observed intensity depends on the camera and light source distance to the mea-
surement point in the subject’s skin. Subtle changes can be observed over time in the color
depending on the blood circulation, movement, and specular variation in the body.

In recent years, researchers have proposed several r-PPG post-processing techniques
for extracting the pulse signal from videos, including blind source separation (BSS) [32,33],
model-based [13,34,35], and deep-learning methods [36,37].

2.2. Hardware for Video Data Recording

The measuring system used in this work consists of a built-in digital smartphone
camera (iPhone 6s, Apple Inc., Cupertino, CA, USA) with a resolution of 1280 × 720 pixels
with a framerate of 30 fps. The camera is an 8 bits per channel device. The images in
RGB space are characterized by the property that each color can be represented using the
superposition of three values (i.e., one for each channel), which encode the intensities of
red (R), green (G), and blue (B), contributing to the specific color. Since the smartphone
camera used in this work has automatic white balance (AWB) functions that allow the
variation of the camera’s exposure parameters during recording, to avoid AWB, the videos
were recorded using the ProMovie Recorder App (by Panda Apps Limited), which allows
locking the exposure parameters at the beginning of the acquisition and keeping them fixed
for the whole duration of the video. The shutter and ISO parameters were set up at the
start of the acquisition.

2.3. Algorithm for the Video Preprocessing

The preprocessing of the recorded video was performed offline via a custom-made
algorithm developed in MATLAB environment.

2.3.1. Identification of Regions of Interest (ROIs) on Face and Torso

Firstly, a video including the face and torso regions is recorded using the built-in
camera. The pit-of-the-neck and the face are identified in the image automatically via the
Viola–Jones algorithm [38]. The ROI at the level of the torso is created from the pit of the
neck to retrieve the chest wall movements associated with the respiratory activity [39].
Then, the face is automatically identified, and three ROIs are detected in the first video
frame from the face: the right (hereinafter RCheek) and left cheeks (LCheek) and the
forehead (FHead) since they are the facial regions with good vascularization [40]. Face
ROIs were square shape and size equal to 5% of the frame height for video recorded at
0.5 m and 3% for video recorded at a distance of 1 m.
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2.3.2. Respiratory Signal from the ROI Torso

The respiratory signal is extracted from the pit-of-the-neck ROI using a method that
relies on the computation of optical flow (hereinafter OF), which allows the estimation of the
displacement between two consecutive images by tracking the features of the images [41,42].
Figure 1 reports the proposed framework for the extraction of breathing waveform and the
continuous estimation of fR.
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Figure 1. Flowchart presenting the steps carried out to extract the breathing waveform from the ROI
torso for continuous estimation of respiratory frequency.

A prior transformation from images in RGB space to greyscale images is required
to apply the OF to video frames. In this paper, the Horn and Schunck (HS) algorithm is
used to extract OF from the frames [43]. The algorithm assumes that pixels maintain their
intensity along their trajectory. Assuming a constant brightness, the intensity of a pixel I (x,
y, f) at the frame f will remain stable for short time and small movements.

For a single frame step df, the following equation is valid:

I(x, y, f ) = I(x + dx, y + dy, f + d f ) (1)

where dx and dy denote the displacements in x and y directions. Assuming that the pixel
displacement is sufficiently small, Equation (2) is obtained:

∂I
∂x

vx +
∂I
∂y

vy +
∂I
∂ f

= 0 (2)

where vx and vy are the components of the pixel velocity along the x-axes and the y-axes of
the OF of the I (x, y, f) that must be determined.

The HS algorithm computes the displacement between two consecutive images by
tracking the image features on a pixel-by-pixel basis. In this way, a velocity vector for
each pixel in the image is obtained. According to [43], the velocity component along the
y-axis (i.e., v(y,f)) was assumed as the most related to movements of the ribcage caused
by breathing. The HS optical flow was applied to all video frames, and the values of the
y-velocity vectors within the ROI were averaged to obtain a single value per frame. The
average velocity vector (vy) was integrated to obtain the linear displacement of the rib cage
related to the respiratory activity (sy).

2.3.2.1. r-PPG Signal from the ROIs Face

Three time-dependent RGB signals are obtained by spatially averaging the intensity
of the pixels within the ROI for each frame. In this way, the raw signals for each ROI
are obtained:

xRCheek(i) = [xR(i); xG(i); xB(i)] (3)

xLCheek(i) = [xR(i); xG(i); xB(i)] (4)

xFHead(i) = [xR(i); xG(i); xB(i)] (5)
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with i = 1,..., N, where N is the number of frames. We then proceed with the conditioning
of the raw signals, which involves two steps: (i) raw r-PPG signals detrending [18,44,45]
and (ii) smoothness prior approach (SPA) [10,15,46–49]. At this point, for each ROI, we
obtain a three-dimensional signal in time, where the three RGB channels represent the
three dimensions. To proceed with a spectral analysis of the signals for HR extraction, it is
necessary to reduce the dimensionality of the signal to obtain a one-dimensional signal as a
function of time. The choice of which method to use is one of the most debated issues in
the r-PPG literature. In this paper, six post-processing techniques have been implemented
and compared. They can be divided into color-based methods (i.e., Green Channel Analy-
sis, modwtmra, Chrominance-based signal processing method, Plane Orthogonal to Skin)
and Blind Source Separation Analysis (i.e., Independent Component Analysis, Principal
Component Analysis). The framework of the proposed r-PPG based HR extraction method
is as shown in Figure 2.
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for continuous heart rate estimation.

Green Channel Analysis

The green channel analysis is the most used method to derive plethysmographic
signals from the analysis of RGB camera recorded videos [14,18,50–52]. As demonstrated in
the study proposed by Verkruysse and colleagues [53] in 2008, the green channel offers the
best signal quality in terms of signal-to-noise ratio (SNR) and accuracy in HR estimation,
whereas red and blue are close to the noise value. The signal obtained with this technique
is hereinafter reported as r-PPGGreen.

Modwtmra

The modwtmra is an algorithm that can be used to enhance the quality of the r-PPG
signal obtained from the green channel [54]. The raw signal was filtered using a wavelet
symlet filter of the fourth order with decomposition level 4 assumed, allowing the extraction
of the signals originating from the heart [54]. The signal obtained with this technique is
hereinafter reported as r-PPGMODW.

Chrominance-Based Signal Processing Method (CHROM)

The chrominance–based signal processing method (CHROM) was first introduced by
De Haan and Jeanne [35] to enhance the robustness in the estimation of r-PPG signal. The
CHROM technique removes components unrelated to the r-PPG signal by projecting RGB
channels into a chrominance subspace. The r-PPG signal is obtained from the difference
between two chrominance signals. It will be reported as r-PPGCHROM.
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Plane Orthogonal to Skin (POS)

Plane Orthogonal to Skin uses a different projection orthogonal to the skin tone than the
CHROM method, and it is considered more robust in complex illumination scenarios [34].
As in the CHROM method, the r-PPG signal (hereinafter reported as r-PPGPOS) is obtained
from the linear combination of two projection axes giving in-phase signals.

Blind Source Separation Analysis

A technique often used for noise removal from physiological signals is Blind Source
Separation (BSS), which consists of reconstructing source signals from a set of observed
signals. Typically, observations are acquired from the output of an array of sensors, where
each sensor receives a different combination of the source signals.

There are several methods of BSS, including Independent Component Analysis (ICA)
and Principal Component Analysis (PCA).

ICA technique was first used in the field of remote photoplethysmography by Poh et al. [32]
in 2010. The ICA aims to decompose a linear combination of sources under the assumptions
of independence and non-Gaussianity [55,56] to estimate the source signal. There are sev-
eral algorithms to perform ICA, but the JADE ICA algorithm [57] is the most widely used in
the field of remote photoplethysmography [9,14,15,32,33,47,48]. The signals obtained with
this technique are hereinafter reported as r-PPGICA1, r-PPGICA2 and r-PPGICA3 as results of
the first, second, and third ICA estimations.

Similar to ICA, the PCA technique allows the identification of the original source
signals (s1(t), s2(t), and s3(t)) from a set of observed signals (x1(t), x2(t), and x3(t)) by
recovering the directions along which the data have maximum variance. Its goal is to
represent these data as a set of new orthogonal variables named principal components [58].
The signals obtained with PCA are hereinafter reported as r-PPGPCA1, r-PPGPCA2, and
r-PPGPCA3 as results of the first, second, and third PCA estimations, respectively.

Since ICA and PCA return the independent and principal components randomly, the
component whose power spectrum contains the highest peak was selected for further
analysis [47].

3. Tests and Experimental Trials
Participants and Tests

In this study, eighteen volunteers (i.e., 15 males, 3 females, age range 20–39 years old,
height 163–177 cm, body mass 55–83 kg) were enrolled. Videos were recorded in a 30 m2

unstructured environment (i.e., a laboratory) equipped with three windows that provide
natural light. All experiments were carried out indoors and with a stable amount of light
delivered by neon lights. No restrictions have been placed on the clothing of the subjects.

Each volunteer was called to perform four trials while seated and breathing quietly.
As reported in Table 1, we investigated two different user–camera distances (0.5 m and
1.0 m) and two illumination conditions (natural light or artificial light), which resemble
circumstances that can be found in the home, office, and clinical settings. A light ring (with
a diameter of 48 cm and a total power of 55 W) was used to provide the additional (artificial)
light source (set light temperature 3500 K). The light ring was installed on a tripod. On the
same tripod, the smartphone used for capturing videos was positioned (Figure 3).
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Table 1. Experimental conditions: user–camera distance and lighting conditions. In the trial column,
the number represents the user–camera distance in m, and Off/On is the absence or presence of light
ring as additional light source, respectively.

Trial User-Camera
Distance [m] Light Source Illumination [lx]

0.5—Off 0.5 Natural Light Median: 76.5; Range: 41–271
0.5—On 0.5 Light ring Median: 180.5; Range: 148–288
1—Off 1.0 Natural Light Median: 87.5; Range: 41–272
1—On 1.0 Light ring Median: 149.5; Range: 114–289
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Figure 3. (A) Schematic representation of the experimental setup. (B) Picture of a subject during the
recording of the video in the different experimental conditions (see Table 1 for the operating conditions).

A multi-parameter wearable device, the Zephyr BioModule BioHarness 3 by Medtronic
(BH3), was used to record the reference respiratory and electrocardiographic (ECG) signal
contextually to the video recording. This system consists of a thoracic belt and an electronic
module. It acquires the user’s breathing pattern by sensing the volumetric changes in the
thorax employing a strain gauge and the ECG waveform via dry electrodes. The reference
breathing and ECG signals were sampled at 25 Hz and 250 Hz, respectively.

The protocol used was the same for the four trials: subjects at the beginning of each
trial performed a full-lung apnea lasting ~5 s to allow synchronization between the data
acquired by the reference system and those acquired by the video recording system. After
the apnea, subjects continued to breathe quietly until the end of the test. Subjects were
asked not to wear glasses, as their presence has been shown to affect r-PPG signal detection
negatively [18]. In addition, all subjects were asked not to wear make-up. At the beginning
of each trial, the environmental light intensity values of the scenario were measured using
a light meter (see Table 1).

Four videos—of approximately 90 s each—were recorded for each subject under
different conditions. All the tests were carried out in compliance with the Ethical Ap-
provals (ST-UCBM 27/18 OSS), and prior to the tests, all the participants provided their
informed consent.

4. Data Analysis

The collected videos were post-processed in MATLAB environment to extract both the
breathing patterns and the r-PPG signals from the described post-processing techniques
(Figure 4). We retrieved the sy signal from each trial by processing the optical flow method
and the r-PPG signals with the six implemented post-processing techniques used to retrieve
the cardiac pulsatile waveform. Before data processing, all the r-PPG signals were filtered
in the range 0.5 Hz–2.5 Hz (equivalent to 30–150 bpm range) to emphasize the pulsatile
component caused by the heart beating. Even the respiratory signals obtained from the
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video were filtered with a first-order Butterworth bandpass filter between 0.05 Hz and
2 Hz to remove the high frequencies related to noise but preserve all the possible fR values
(range 3–120 breaths·min−1).

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20 
 

 

4. Data Analysis 
The collected videos were post-processed in MATLAB environment to extract both 

the breathing patterns and the r-PPG signals from the described post-processing 
techniques (Figure 4). We retrieved the sy signal from each trial by processing the optical 
flow method and the r-PPG signals with the six implemented post-processing techniques 
used to retrieve the cardiac pulsatile waveform. Before data processing, all the r-PPG 
signals were filtered in the range 0.5 Hz–2.5 Hz (equivalent to 30–150 bpm range) to 
emphasize the pulsatile component caused by the heart beating. Even the respiratory 
signals obtained from the video were filtered with a first-order Butterworth bandpass 
filter between 0.05 Hz and 2 Hz to remove the high frequencies related to noise but 
preserve all the possible fR values (range 3–120 breaths · min−1). 

 
Figure 4. Example of raw r-PPG signals extracted from the three ROIs and the breathing signal 
extracted by the OF technique from the ROI torso. 

All the r-PPG signals obtained from the video were synchronized with the ECG 
waveform by using the respiratory traces recorded from the video (sy) and the reference 
breathing signal from BH3. The endpoint of the apnea was used as a synchronization 
point on both the sy and the reference system signal. The first 60 s of the video were 
considered for the analysis. 

After this process, the analysis in the spectral domain was carried out to estimate the 
values of HR and fR both for reference and video signals. The Power Spectrum Density 
(PSD) was computed using the Lomb periodogram through a moving window of 20 s [51], 
sliding by 1 s. The window length was selected according to [51], in which windows with 
sizes between 15 s and 20 s were found to represent a good deal between time resolution 
and noise robustness. 

The values of HR and fR were computed by considering the frequency at which occurs 
the highest peak of the PSD in each window, according to the following equation: 𝐻𝑅 [𝑏𝑝𝑚] = 601𝑓  (6) 

Figure 4. Example of raw r-PPG signals extracted from the three ROIs and the breathing signal
extracted by the OF technique from the ROI torso.

All the r-PPG signals obtained from the video were synchronized with the ECG
waveform by using the respiratory traces recorded from the video (sy) and the reference
breathing signal from BH3. The endpoint of the apnea was used as a synchronization point
on both the sy and the reference system signal. The first 60 s of the video were considered
for the analysis.

After this process, the analysis in the spectral domain was carried out to estimate the
values of HR and fR both for reference and video signals. The Power Spectrum Density
(PSD) was computed using the Lomb periodogram through a moving window of 20 s [51],
sliding by 1 s. The window length was selected according to [51], in which windows with
sizes between 15 s and 20 s were found to represent a good deal between time resolution
and noise robustness.

The values of HR and fR were computed by considering the frequency at which occurs
the highest peak of the PSD in each window, according to the following equation:

HR [bpm] =
60
1

f PSD
max

(6)

fR

[
breaths·min−1

]
=

60
1

f PSD
max

(7)

Figure 5 shows the temporal trends of the estimated values of fR and HR against
the reference values. Sometimes, some estimated HR values are inconsistent with the
other values since r-PPG signals are affected by artifacts. These values are defined as
outliers (Figure 6). Considering the total vector of estimated values, those falling outside
the interquartile range multiplied by 1.5 were removed and replaced with the nearest
non-outlier values.
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values, in green the outlier values; in blue, the estimated HR values after the outlier removal and
their replacement.

Three multi-ROI approaches were proposed for the HR estimation:

(1) Single-ROI approach: HR values were separately estimated from the r-PPG signals
extracted from the three identified ROIs (i.e., LCheek, RCheek, and FHead) per each
post-processing technique.

(2) Multi-ROI approach: HR values were estimated by averaging the HR values gathered
from all the ROIs as the following equation:

HRmean =
HRLCheek + HRFHead + HRRCheek

3
(8)

where HRLCheek, HRFHead, and HRRCheek are the HR values estimated by using the PSD
analysis in each window.

(3) SNR-based approach: per each post-processing technique, the signal that better
represents the pulsatile waveform was identified by evaluating the signal-to-noise
ratio (i.e., SNR) according to [35]. Only the signal with the highest SNR value was
used for HR estimation.

We used Bland–Altman and correlation analysis (coefficient of determination R2) to
investigate the agreement between the implemented approaches and the reference values.
Per each approach (i.e., single-ROI, multi-ROI, SNR-based), we carried out a separate
analysis to evaluate the influence of different ambient conditions on HR and fR estimation.
Firstly, we used the data collected at two different distances (i.e., 0.5 m and 1.0 m), using
the data collected in two different lighting conditions. Then, we evaluated the influence
of the two lighting conditions (i.e., natural and artificial light) using the data collected at
0.5 m and 1.0 m.

Additionally, for the multi-ROI and the SNR-based approaches, the Mean Absolute
Error (MAE) and the Root Mean Square Error (RMSE) were computed.
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5. Results
5.1. Respiratory Rate Estimation

Figure 7 reports the Bland–Altman plots for the fR values estimated through OF to
evaluate the influence of the user–camera distance (Figure 7A,B) and the influence of
two lighting conditions (Figure 7C,D). The dashed line represents the Mean of Differ-
ence (MOD), and the red and blue lines represent the upper Limit of Agreement (LOA)
and the low LOA, respectively. A MOD ± LOAs of −0.05 ± 3.58 breaths·min−1 is ob-
tained when the light ring is on considering both the data collected at the distance of
0.5 m and 1.0 m, and a MOD ± LOAs of −0.02 ± 4.22 breaths·min−1 is achieved in
the case of natural light (Figure 7B). Considering all the data collected in the two light-
ing conditions, a MOD ± LOAs of −0.13 ± 3.43 breaths·min−1 and a MOD ± LOAs of
0.06 ± 4.34 breaths·min−1 were obtained at distances of 0.5 m and 1.0 m, respectively.
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Figure 7. Bland–Altman plots comparing fR estimated through optical flow in different ambient
conditions: (A) when the light ring is on; (B) when there is only natural light; (C) at a distance of
0.5 m; (D) at a distance of 1.0 m.

In Table 2, MAE and RMSE values are reported per each trial by considering all the
subjects’ data. Independently of the user–camera distance and the lighting conditions,
MAE is always below 1 breaths·min−1, and the higher RMSE is obtained at a distance of
1.0 m when the light ring is off.

Table 2. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) computed per each trial
considering all the subjects. In bold are highlighted the best results.

Trial MAE [Breaths·min−1] RMSE [Breaths·min−1]

0.5—off 0.47 1.74
0.5—on 0.68 1.76
1—off 0.62 2.50
1—on 0.42 1.89

5.2. Heart Rate Estimation

The influence of user–camera distance and lighting conditions in the estimation of HR
was investigated by analyzing LOAs values obtained from Bland–Altman plots, R2, MAE,
and RMSE. These values were computed per each implemented post-processing technique
and for the three approaches followed for HR estimation (i.e., single-ROI, multi-ROI, and
SNR-based approaches).
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5.2.1. Single-ROI Approach

Table 3 reports the values of MOD ± LOAs obtained per each implemented post-
processing technique and for the three identified ROIs, as well as the results obtained
with the multi-ROI approach (see the following section). In the majority of cases, light-off
trials showed higher LOAs. The same was true in the trials with a user–camera distance
of 1 m, independently of light conditions. The single-ROI approach does not allow the
identification of the best region of the face for HR estimation because of conflicting results
in the presence/absence of light at the two distances (first two columns) and between the
two distances considering both the lighting conditions (third and fourth columns).

Table 3. MOD ± LOAs obtained in estimating HR from the three ROIs (single-ROI approach) and
the average HR (obtained with the mean-ROI approach) per each implemented post-processing
technique in the different ambient conditions. The best results are highlighted in bold.

Light on, Light off Light on, Light off

r-PPG
Post-Processing

Techniques
ROI

d = 0.5 m d = 1.0 m d = 0.5 m d = 1.0 m

MOD ± LOAs
[bpm]

MOD ± LOAs
[bpm]

MOD ± LOAs
[bpm]

MOD ± LOAs
[bpm]

Green Channel

LCheek −0.11 ± 4.01 −0.36 ± 8.74 −0.18 ± 6.33 −0.28 ± 7.24
FHead −0.07 ± 8.92 −0.20 ± 5.78 0.03 ± 6.15 −0.30 ± 8.65
RCheek −0.04 ± 4.45 −0.56 ± 7.81 −0.04 ± 3.79 −0.56 ± 8.15
ROImean −0.07 ± 4.06 −0.37 ± 4.91 −0.06 ± 3.65 −0.38 ± 5.22

modwtmra

LCheek 0.27 ± 3.31 0.57 ± 6.29 0.20 ± 4.49 0.64 ± 5.49
FHead 0.34 ± 4.10 0.88 ± 6.78 0.48 ± 4.59 0.74 ± 6.49
RCheek 0.31 ± 5.00 0.31 ± 7.46 0.43 ± 5.47 0.19 ± 7.12
ROImean 0.31 ± 3.03 0.59 ± 5.73 0.37 ± 3.95 0.52 ± 5.15

ICA

LCheek −0.06 ± 3.32 −0.04 ± 12.98 0.24 ± 9.20 −0.35 ± 9.70
FHead −0.008 ± 7.06 0.30 ± 7.62 −0.10 ± 3.86 0.39 ± 9.63
RCheek −0.03 ± 3.71 0.26 ± 11.38 0.09 ± 4.41 0.13 ± 11.14
ROImean −0.03 ± 3.47 0.17 ± 6.72 0.08 ± 3.95 0.06 ± 6.45

PCA

LCheek 0.68 ± 16.67 1.15 ± 19.44 0.76 ± 18.51 1.06 ± 17.71
FHead 0.54 ± 16.52 3.02 ± 19.92 1.40 ± 20.35 2.16 ± 16.33
RCheek 0.43 ± 15.56 1.62 ± 22.36 1.19 ± 15.16 0.86 ± 22.69
ROImean 0.55 ± 10.36 1.93 ± 12.57 1.12 ± 11.69 1.36 ± 11.50

POS

LCheek 0.07 ± 3.63 0.23 ± 11.95 −0.07 ± 3.97 0.37 ± 11.83
FHead 0.19 ± 4.83 0.65 ± 9.68 0.05 ± 2.89 0.79 ± 10.40
RCheek −0.03 ± 2.96 −0.06 ± 6.84 0.05 ± 2.91 −0.14 ± 6.85
ROImean 0.07 ± 2.67 0.27 ± 6.29 0.009 ± 2.45 0.34 ± 6.36

CHROM

LCheek −0.32 ± 6.32 3.15 ± 19.41 0.62 ± 7.06 2.21 ± 19.62
FHead 0.07 ± 5.81 3.38 ± 18.95 0.74 ± 12.47 2.71 ± 15.84
RCheek −0.17 ± 4.70 3.05 ± 19.20 1.02 ± 9.03 1.86 ± 18.11
ROImean −0.14 ± 3.71 3.19 ± 12.51 0.79 ± 6.20 2.26 ± 12.21

Figure 8 shows the values of R2 between the HR values estimated with the three
approaches (i.e., single-ROI, multi-ROI, and SNR-based approach) and the reference values
per each implemented post-processing technique. The R2 corroborate the results obtained
with LOAs. Except for PCA (showing lower R2 values in all the conditions), R2 ranged
from 0.8177 to 0.9775 in light on conditions and are lower when the light is off for all the
ROIs. At a user–camera distance of 1 m, the R2 values are generally lower than at 0.5 m.
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Figure 8. Correlation analysis between the HR values estimated with the implemented post-
processing techniques and the reference system in different conditions: (A) when the light ring
is on; (B) when there is only natural light; (C) at a distance of 0.5 m; (D) at a distance of 1.0 m. The
darkest color represents the minimum value of R2, whereas the lightest color is the highest value
of R2.

5.2.2. Multi-ROI Approach

As anticipated, Table 3 reports the results related to the HR estimation using the multi-
ROI approach. Considering the average value of HR estimated with this approach, all the
implemented techniques show good agreement in the different ambient conditions, and the
best agreement is achieved from the POS algorithm. To evaluate the influence of lighting
condition in the estimation of average HR, all data collected at the two distances were used
(n = 1476, considering that 41 values were obtained per volunteer). In all the cases (light on
and off, d = 0.5 m and d = 1 m but expect for the ICA), the performances achieved with the
multi-ROI approach outperform those provided by the single-ROI approach (see Figure 8
and Table 3). From Figure 9 (n = 1476 per Bland–Altman plot), when the light ring is on,
the HR estimations are more accurate when compared against the reference ones. All the
implemented post-processing techniques show better performances at 0.5 m (higher R2 and
lower LOAs), and the POS algorithm allows obtaining the best agreement with reference
values (MOD ± LOAs = 0.009 ± 2.45 bpm, R2 = 0.9861). Compared to all the techniques,
PCA was the worst.



Sensors 2022, 22, 2539 13 of 19Sensors 2022, 22, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 9. Bland–Altman plots comparing the average HR estimated by using six different post-
processing techniques in different ambient conditions. 

Table 4 reports the values of MAE and RMSE in bpm computed per each 
implemented post-processing technique in the estimation of average HR at different 
ambient conditions. Considering all the post-processing techniques, MAE is between 0.7 
bpm and 6 bpm, and RMSE is in the range 1.2 bpm to 9.11 bpm. The minimum value of 
MAE is achieved under the conditions 0.5 m of distance and light on for the POS algorithm 
(MAE = 0.65 bpm), whereas the minimum value of RMSE is obtained under the conditions 
0.5 m of distance and light off for POS algorithm (RMSE = 1.2 bpm). The values of MAE 
and RMSE increase at a distance of 1.0 m when the light ring is off, and the maximum 
values are obtained for the CHROM algorithm (MAE = 5.91 bpm and RMSE = 9.11 bpm). 

  

Figure 9. Bland–Altman plots comparing the average HR estimated by using six different post-
processing techniques in different ambient conditions.

Table 4 reports the values of MAE and RMSE in bpm computed per each implemented
post-processing technique in the estimation of average HR at different ambient conditions.
Considering all the post-processing techniques, MAE is between 0.7 bpm and 6 bpm, and
RMSE is in the range 1.2 bpm to 9.11 bpm. The minimum value of MAE is achieved under
the conditions 0.5 m of distance and light on for the POS algorithm (MAE = 0.65 bpm),
whereas the minimum value of RMSE is obtained under the conditions 0.5 m of distance
and light off for POS algorithm (RMSE = 1.2 bpm). The values of MAE and RMSE increase
at a distance of 1.0 m when the light ring is off, and the maximum values are obtained for
the CHROM algorithm (MAE = 5.91 bpm and RMSE = 9.11 bpm).
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Table 4. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) computed per each trial
and each implemented post-processing technique considering the average HR. The best results are
highlighted in bold.

Trial
MAE [bpm] RMSE [bpm]

r-PPG Post-Processing Techniques r-PPG Post-Processing Techniques
GC modwtmra ICA PCA POS CHROM GC modwtmra ICA PCA POS CHROM

0.5—off 0.85 0.94 1.04 4.21 0.69 2.32 1.85 2.40 2.43 6.84 1.20 4.34
0.5—on 0.80 0.80 0.76 3.44 0.65 0.84 1.87 1.62 1.49 5.17 1.30 1.55
1—off 1.63 1.93 2.25 4.56 2.71 5.91 3.07 3.46 4.20 6.54 4.39 9.11
1—on 0.82 0.74 0.90 3.54 0.77 1.21 2.25 1.53 2.01 5.45 1.43 2.19

5.2.3. SNR-Based Approach

Considering the R2 provided in Figure 8, the SNR-based approach estimations present
lower correlation with the reference data compared to the multi-ROI approach. In line with
the results obtained with the multi-ROI approach, HR values estimated at 0.5 m are closer
to the reference values than those estimated at 1 m. Light-on data collections provided
more accurate HR values estimations for all the post-processing techniques (Figure 10).
The values of MOD ± LOAs obtained in the estimation of HR from r-PPG signals with the
highest SNR value per each implemented post-processing technique are reported in Table 5.
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Table 5. MOD ± LOAs obtained in the estimation of HR from r-PPG signals with the SNR-based
approach per each implemented post-processing technique in the different ambient conditions. In
bold are highlighted the best results.

Light On, Light Off Light On, Light Off

r-PPG Post-Processing
Techniques

d = 0.5 m d = 1.0 m d = 0.5 m d = 1.0 m

MOD ± LOAs [bpm] MOD ± LOAs [bpm] MOD ± LOAs [bpm] MOD ± LOAs [bpm]

Green Channel −0.04 ± 3.31 −0.38 ± 6.30 −0.07 ± 2.72 −0.35 ± 6.58

modwtmra 0.31 ± 5.00 0.31 ± 7.46 0.43 ± 5.47 0.19 ± 7.12

ICA 0.22 ± 19.28 0.71 ± 13.39 −0.42 ± 10.80 1.35 ± 20.72

PCA 0.85 ± 16.39 0.57 ± 18.25 1.40 ± 13.63 0.02 ± 20.31

POS −0.03 ± 2.96 −0.06 ± 6.84 0.05 ± 2.91 −0.14 ± 6.85

CHROM −0.17 ± 4.70 3.05 ± 19.20 1.02 ± 9.03 1.86 ± 18.11

Data show that the POS algorithm allows obtaining the best agreement with reference
values (MOD ± LOAs = 0.05 ± 2.91 bpm, R2 = 0.9805), slightly higher than the best one
found with multi-ROI approach. POS and Green Channel techniques presented close
results in terms of MOD and LOAs for all the conditions as emerge from the bolded values
in Table 5.

MAE and RMSE values strengthen this result (see Table 6). The values of MAE are in
the range 0.60 bpm and 6.71 bpm, which are achieved for the Green Channel at 0.5—off and
for CHROM at 1—off, respectively. Similarly, the lowest RMSE value is obtained for the
Green Channel technique (RMSE = 1.27 bpm), and the highest is achieved for the CHROM
(RMSE = 12.98 bpm). At high user–camera distance, the values of MAE and RMSE increase
for all the implemented post-processing techniques except for modwtmra, which shows an
MAE of 1.10 bpm at 0.5—on and an MAE of 0.84 bpm at 1—on. The values of MAE and
RMSE increase at 1.0—off, and the maximum value is obtained for the CHROM algorithm
(MAE = 6.71 bpm and RMSE = 12.98 bpm).

Table 6. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) in bpm computed for
HR values estimated from the r-PPG signals with the SNR-based approach per each implemented
post-processing technique. The best results are highlighted in bold.

Trial
MAE [bpm] RMSE [bpm]

r-PPG Post-Processing Techniques r-PPG Post-Processing Techniques
GC modwtmra ICA PCA POS CHROMGC modwtmra ICA PCA POS CHROM

0.5—off 0.60 0.84 0.91 3.59 0.68 2.64 1.27 2.55 2.05 8.81 1.44 6.47
0.5—on 0.73 1.10 2.83 1.82 0.74 0.82 1.49 3.07 7.54 4.79 1.53 1.63
1—off 1.77 2.31 4.76 5.31 2.44 6.71 4.40 4.76 9.49 9.81 4.72 12.98
1—on 0.80 0.84 5.49 4.82 0.78 1.40 1.86 1.94 11.69 10.87 1.49 2.98

6. Discussion

In this paper, a novel approach for the continuous estimation of HR and fR based on
a multi-ROI approach and spectral analysis of RGB video-frames recorded with a mobile
device is proposed. A built-in smartphone camera is used to record videos of the subject’s
face and torso, allowing the recording of chest wall movements and subtle color changes
related to blood volume pulse in a non-intrusive and low-cost manner. The respiratory
signal is estimated by the motion of the chest, whereas the cardiac signal is from the
pulsatile activity at the level of right and left cheeks and forehead. We have investigated the
performance in scenarios simulating daily living to evaluate the influence of environmental
factors as recording distance (i.e., 0.5, 1.0 m) and illumination conditions (natural or artificial
light). We implemented and tested several commonly adopted post-processing techniques
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on video frames to (i) estimate HR and fR values through single, multi-ROI, and SNR-based
approaches; (ii) carry out a continuous estimation of HR and fR values with an update time
of 1 s; and (iii) investigate the influence of user–camera distance and light source on the
performances of the implemented approaches used to obtain HR and fR values.

Considering all the trials, we obtained comparable MAE and RMSE values in the
estimation of fR with the OF technique applied on the single torso ROI. Independently
of the user–camera distance and the lighting conditions, MAE values are always below
1 breaths·min−1, which is in accordance with the results obtained in [50], in which breath-
by-breath fR values were computed through an analysis in the time domain. Considering
all data collected in the two illumination conditions, at 0.5 m, LOAs of ± 3.43 breaths·min−1

are achieved, which are slightly worse than the results obtained in [43], in which LOAs
of ± 1.92 breaths·min−1 were obtained for breath-by-breath fR values computed with an
analysis in the time domain, which required the identification of inspiratory peaks and ap-
propriate outlier exclusion techniques. However, our results are better than those obtained
with other contactless techniques based on video [59], such as NIR cameras (MOD ± LOAs
= 2.22 ± 8.0 breaths·min−1) or FIR cameras (MOD ± LOAs = 0.78 ± 4.24 breaths·min−1).

Regarding the HR estimation, we obtained comparable MAE and RMSE in all the
trials when considering the HR computed with the multi-ROI approach. MAE is between
0.7 bpm and 6 bpm per each implemented post-processing technique, and RMSE is in
the range of 1.2 bpm and 9.11 bpm. These values are comparable with those obtained in
previous studies where the average HR values are computed from a single-ROI approach
(RMSE of 4.97 bpm in [28] and RMSE of 6.92 bpm in [60]). To the best of our knowledge, no
studies have performed continuous monitoring with similar approaches. Considering the
influence of user–camera distance and lighting conditions, in line with results reported in
previous studies, the values of MAE and RMSE increase with the distance [9] and when
the light is off [12]. Comparing the HR results obtained with the classical single-ROI with
those obtained with the multi-ROI approach, the latter are better per each implemented
algorithm. When the SNR-based approach is used to estimate HR values from r-PPG signals
extracted from each implemented algorithm, the values of MAE and RMSE are in the range
0.60 bpm and 6.71 bpm, and 1.27 bpm and 12.98 bpm, respectively, and are comparable
with those obtained when the multi-ROI approach is used per each trial. In addition, from
the Bland–Altman analysis, per each implemented post-processing technique, the values of
LOAs are slightly high when compared to those obtained in the multi-ROI approach.

7. Conclusions

Despite the absence of contact with the subject, in this study, promising results are
obtained in the context of the cardiorespiratory monitoring with a built-in smartphone’s
camera, fostering the remote monitoring of the health status of a person and of individuals
that require continuous monitoring. Our paper results demonstrated that both the proposed
multi-ROI and SNR-based approaches could be reliable to estimate values of HR and fR
with an update time of 1 s, providing a temporal trend of these values. However, some
limitations have to be clarified, mainly related to the non-inclusion of subjects with different
skin colors in the experimental trials and the non-investigation of motion artifacts’ influence
in the estimation of cardiorespiratory parameters. These observations may be considered
for further real-time applications, even in different scenarios (e.g., during sports activities,
automotive field). Further investigations will be devoted to evaluating the influence of
movements on the quality of r-PPG signals and the estimation of HR values. In addition, the
recording and analysis of longer videos can be helpful to evaluate the performances of the
proposed method in continuous monitoring of cardiorespiratory parameters, considering a
more comprehensive range of HR and fR. Further efforts will be oriented to investigate the
feasibility of estimating heart rate variability indexes in the time and frequency domains
from signals retrieved with the SNR-based approach to better assess the physiological and
psychological conditions of a person.
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