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ABSTRACT

In this paper, we study the Multi-Round In�uence Maximization
(MRIM) problem, where in�uence propagates in multiple rounds
independently from possibly di�erent seed sets, and the goal is
to select seeds for each round to maximize the expected number
of nodes that are activated in at least one round. MRIM problem
models the viral marketing scenarios in which advertisers conduct
multiple rounds of viral marketing to promote one product. We
consider two di�erent settings: 1) the non-adaptive MRIM, where
the advertiser needs to determine the seed sets for all rounds at the
very beginning, and 2) the adaptive MRIM, where the advertiser
can select seed sets adaptively based on the propagation results in
the previous rounds. For the non-adaptive setting, we design two
algorithms that exhibit an interesting tradeo� between e�ciency
and e�ectiveness: a cross-round greedy algorithm that selects seeds
at a global level and achieves 1/2 � � approximation ratio, and a
within-round greedy algorithm that selects seeds round by round
and achieves 1 � e�(1�1/e ) � � ⇡ 0.46 � � approximation ratio but
saves running time by a factor related to the number of rounds. For
the adaptive setting, we design an adaptive algorithm that guaran-
tees 1�e�(1�1/e )�� approximation to the adaptive optimal solution.
In all cases, we further design scalable algorithms based on the re-
verse in�uence sampling approach and achieve near-linear running
time. We conduct experiments on several real-world networks and
demonstrate that our algorithms are e�ective for the MRIM task.
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1 INTRODUCTION

Most companies need to advertise their products or brands on
social networks, through paying for in�uential people (seed nodes)
on Twitter, with the hope that they can promote the products to
their followers [2]. The objective is to �nd a set of most in�uential
people with limited budget for the best marketing e�ect. In�uence
maximization (IM) is the optimization problem of �nding a small
set of most in�uential nodes in a social network that generates
the largest in�uence spread. It models viral marketing scenario
in social networks [12, 20, 27], and can also be applied to cascade
detection [22], rumor control [18], etc. The standard IM problem
and a number of its variants has been extensively studied (c.f. [7]).
In most formulations, the IM is formulated as a one-shot task: the
seed set is selected by the algorithm at the beginning, and one
propagation pass from the seed set activates a subset of nodes in
the network. The objective is to maximize the expected number of
activated nodes in this one propagation pass. However, in many
practical viral marketing scenarios, an advertiser’s viral marketing
campaign may contain multiple rounds to promote one product.
Each round may be initiated from a di�erent set of in�uential nodes.
The advertiser would like to maximize the total number of users
adopting the product over all rounds.

We model the above scenario by the multi-round di�usion model
and multi-round in�uence maximization (MRIM) task. We consider
the entire process over T rounds. In each round t , an independent
di�usion is carried out starting from seed set St , and a random set
of nodes, I (St ), is activated. Then the total in�uence spread over
T rounds given seed sets St , . . . , ST , � (S1, . . . , ST ), is the expected
total number of activated nodes while considering all rounds to-
gether, namely � (S1, . . . , ST ) = E[|

S

T

t=1 I (St ) |]. Note that a node
activated in a previous round may be activated again and propagate
in�uence to other nodes in a new round, but it will not be counted
again in the �nal in�uence spread. The MRIM task is to �nd seed
sets S1, . . . , ST , each of which has at most k nodes, so that the �nal
in�uence spread � (S1, . . . , ST ) is maximized.

The MRIM task possesses some unique features di�erent from
the classical IM task. For example, in the classical IM, it makes
no sense to select one seed node multiple times, but for MRIM, it
may be desirable to select an in�uential node in multiple rounds to
generate more in�uence. Moreover, it enables adaptive strategies
where the advertiser to adaptive select seeds in the next round
based on the propagation results of previous rounds.

We study both the non-adaptive and adaptive versions of MRIM
under theMulti-Round Triggering (MRT)model. For the non-adaptive
MRIM problem, we design two algorithms that exhibit an interest-
ing trade-o� between e�ciency and e�ectiveness. The �rst cross-
round greedy algorithm selects seeds globally cross di�erent rounds,
and achieves an approximation ratio of 1/2 � � , for any � > 0. The
secondwithin-round greedy algorithm selects seeds round by round
and achieves an approximation ratio of 1 � e�(1�1/e ) � � ⇡ 0.46 � � .
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The higher approximation ratio enjoyed by the cross-round greedy
algorithm is achieved by investigating seed candidates in all rounds
together in each greedy step, and thus incurs a higher running
time cost at a factor proportional to the number of rounds. For
the adaptive MRIM problem, we rigorously formulate the problem
according to the adaptive optimization framework speci�ed in [14].
We show that our formulation satis�es the adaptive submodularity

de�ned in [14]. Based on the adaptive submodularity, we design the
AdaGreedy algorithm that achieves 1�e�(1�1/e ) �� approximation
to the optimal adaptive policy.

For both the non-adaptive and adaptive cases, we greatly im-
prove the scalability by incorporating the state-of-the-art reverse
in�uence sampling (RIS) approach [4, 30].In each case, the RIS
method needs to be carefully revised to accommodate to the multi-
round or adaptive situation. In all cases, we show that our scalable
algorithms could achieve near-linear running time with respect
to the network size, greatly improving the corresponding Monte
Carlo greedy algorithms.

To demonstrate the e�ectiveness of our algorithms, we conduct
experiments on real-world social networks, with both synthesized
and learned in�uence parameters. Our experimental results demon-
strate that our algorithms are more e�ective than baselines, and
our scalable algorithms run in orders of magnitude faster than
their Monte Carlo greedy counterparts while keeping the in�uence
spread at the same level. The results also show some interesting
�ndings, such as the non-adaptive cross-round algorithm could
achieve competitive in�uence spread as the adaptive greedy algo-
rithm. This may suggest that in practice one may need to consider
whether spending the cost of collecting feedbacks and doing near-
term adaptive strategies based on feedbacks, or spending the up
front cost to do more global planning, and it opens new directions
for further investigations.

To summarize, our contributions are: (a) proposing the study
of both non-adaptive and adaptive MRIM problems; (b) proposing
non-adaptive and adaptive greedy algorithms and showing their
trade-o�s; (c) designing scalable algorithms in both non-adaptive
and adaptive settings; and (d) conducting experiments on real-world
networks to demonstrate the e�ectiveness and the scalability of
our proposed algorithms. Due to space constraints, all proofs and
supplementary materials are shown in the extended version [29].

1.1 Related Work

In�uence maximization is �rst studied by Domingos and Richard-
son [12, 27], and then formulated as a discrete optimization prob-
lem by Kempe et al. [20], who also formulate the independent
cascade model, the linear threshold model, the triggering model,
and provide a greedy approximation algorithm based on submodu-
larity. Since then, a signi�cant number of papers studies improv-
ing the e�ciency and scalability of in�uence maximization algo-
rithms [4, 9, 11, 19, 30, 32]. At this front, the state of the art is the
reverse in�uence sampling (RIS) approach [4, 30], and the IMM

algorithm of [30] is among the most competitive ones so far. Our
scalable algorithms are based on IMM, but require careful redesigns
in the reverse sampling method. Other studies look into di�erent
variants, such as community, competitive and complementary in-
�uence maximization [6, 16, 18, 24], adoption maximization [3],
robust in�uence maximization [8, 17], etc.

Another related work is adaptive seeding [28], which uses the
�rst-stage nodes and their accessible neighbors together as the seed
set to maximize the in�uence, and is quite di�erent from ours. In
terms of the multi-round di�usion model and in�uence maximiza-
tion, Lin et al. [23] focus on the multi-party in�uence maximization
where there must be at least two parties to compete in networks.
Lei et al. [21] use the same formulation of the multi-round dif-
fusion model and the in�uence maximization objective as in our
paper. They focus on the online learning aspect of learning edge
probabilities, while we study the o�ine non-adaptive and adap-
tive maximization problem when the edge probabilities are known.
Without a rigorous study of such o�ine problems, it is very di�cult
to assess the performance of online learning algorithms, and as a
result they could only propose heuristic learning algorithms with-
out any theoretical guarantee. From this perspective, our study �lls
this important gap by providing a solid theoretical understanding
of the o�ine multi-round in�uence maximization.

There are also a number of studies on the in�uence maximization
bandit problem [10, 31, 33]. Their formulations also have multi-
rounds, but each round has a separate in�uence maximization in-
stance, and the total reward is a simple count of activated nodes in
all rounds, so one node activated in multiple rounds will be counted
multiple times. This makes it qualitatively di�erent from our formu-
lation. Moreover, these study focus on the online learning aspects
of such repeated in�uence maximization tasks.

The adaptive MRIM study follows the adaptive optimization
framework de�ned by Golovin and Krause [14]. They also study
adaptive in�uence maximization as an application, but the adap-
tation is at per-node level: seeds are selected one by one. Later
seed can be selected based on the activation results from the earlier
seeds, but the earlier seeds would not help propagation again for
later seeds. This makes it di�erent from our multi-round model.

2 MODEL AND PROBLEM DEFINITION

2.1 Multi-Round Di�usion Model

In this paper, we focus on the well-studied triggering model [20] as
the basic di�usion model. A social network is modeled as a directed
graph G = (V ,E), where V is a �nite set of vertices or nodes, and
E ✓ V ⇥V is the set of directed edges connecting pairs of nodes.
The di�usion of information or in�uence proceeds in discrete time
steps � = 0, 1, 2, . . . . At time � = 0, the seed set S0 is selected to
be active, and also each node � independently chooses a random
triggering setT (� ) according to some distribution over subsets of its
in-neighbors. At each time � � 1, an inactive node� becomes active
if at least one node in T (� ) is active by time � � 1. The di�usion
process ends when there is no more nodes activated in a time step.
We remark that the classical Independent Cascade (IC) model is a
special case of the triggering model. In the IC model, every edge
(u,� ) 2 E is associated with a probability pu� 2 [0, 1], and pu� is
set to zero if (u,� ) < E. Each triggering set T (� ) is generated by
independently sampling (u,� ) with probability pu� and including
u in T (� ) if the sampling of (u,� ) is successful.

The triggering model can be equivalently described as propaga-
tions in live-edge graphs. Given a class of triggering sets {T (� )}� 2V ,
we can construct the live-edge graph L = (V ,E (L)), where E (L) =
{(u,� ) | � 2 V ,u 2 T (� )}, and each edge (u,� ) 2 L is called a live
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edge. It is easy to see that the propagation in the triggering model
is the same as the deterministic propagation in the corresponding
live-edge graph L: if A is the set of active nodes at time � � 1, then
all directed out-neighbors of nodes in A will be active by time � .
An important metric in any di�usion model is the in�uence spread,
the expected number of active nodes when the propagation from
the given seed set S0 ends, denoted as � (S0). Let Γ(G, S ) denote
the set of nodes in graph G that can be reached from the node
set S . Then, by the above equivalent live-edge graph model, we
have � (S0) = E[|Γ(L, S0) |], where the expectation is taken over the
distribution of live-edge graphs.

A set function f : V ! R is called submodular if for all S ✓ O ✓
V and u 2 V \T , f (S [ {u}) � f (S ) � f (O [ {u}) � f (O ). Intuitively,
submodularity characterizes the diminishing return property often
occurring in economics and operation research. Moreover, a set
function f is called monotone if for all S ✓ O ✓ V , f (S )  f (O ). It
is shown in [20] that in�uence spread � for the triggering model
is a monotone submodular function . A non-negative monotone
submodular function allows a greedy solution to its maximization
problem subject to a cardinality constraint, with an approximation
ratio 1� 1/e , where e is the base of the natural logarithm [26]. This
is the technical foundation for most in�uence maximization tasks.

We are now ready to de�ne the Multi-Round Triggering (MRT)
model. The MRT model includes T independent rounds of in�uence
di�usions. In each round t 2 [T ], the di�usion starts from a separate
seed set St with up to k nodes, and it follows the dynamic in the
classical triggering model described previously. Since one node can
be repeatedly selected as the seed set in di�erent rounds, to clarify
the round, we use pair notation (�, t ) to denote a node � in the
seed set of round t . We use St = {(�, t ) | � 2 St } to represent the
seed set of round t in the pair notation. Henceforth, we always use
the calligraphic S for sets in the pair notation and the normal S
for node sets. By the equivalence between the triggering model
and the live-edge graph model, the MRT model can be viewed as T
independent propagations in the T live-edge graphs L1,L2, . . . ,LT ,
which are drawn independently from the same distribution based on
the triggering model. The total active nodes in T rounds is counted

by �
�
�

S

T

t=1 Γ(Lt , St )
�
�
�
, where Γ(Lt , St ) is the set of �nal active nodes

in round t . Given a class of seed set (in pair notation) S :=
S

T

t=1 St ,
the in�uence spread � in the MRT model is de�ned as

� (S) = � (S1 [ S2 [ · · · [ ST ) = E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

t=1

Γ(Lt , St )

�
�
�
�
�
�

3
7
7
7
7
5

,

where the expectation is taken over the distribution of all live-edge
graphs L1,L2, . . . ,LT .

2.2 Multi-Round In�uence Maximization

The classical in�uence maximization problem is to choose a seed
set S0 of size at most k to maximize the in�uence spread � (S0).
For the Multi-Round In�uence Maximization (MRIM) problem, the
goal is to select at most k seed nodes of each round, such that the
in�uence spread in T rounds is maximized. We �rst introduce its
non-adaptive version formally de�ned as follows.

De�nition 2.1. The non-adaptive Multi-Round In�uence Maxi-
mization (MRIM) under the MRT model is the optimization task
where the input includes the directed graphG = (V ,E), the trigger-
ing set distribution for every node in the MRT model, the number

of rounds T , and each-round budget k , and the goal is to �nd T
seed sets S⇤1 , S

⇤
2 , . . . , S

⇤
T
with each seed set having at most k nodes,

such that the total in�uence spread is maximized, i.e.,

S⇤ = S⇤1 [ S
⇤
2 · · · [ S

⇤
T
= argmax
S : |St |k,8t 2[T ]

� (S).

The non-adaptiveness refers to the de�nition that one needs
to �nd T seed sets all at once before the propagation starts. In
practice, one may be able to observe the propagation results in
previous rounds and select the seed set for the next round based
on the previous results to increase the in�uence spread. This leads
to the adaptive version. To formulate the adaptiveMRIM requires
the setup of the adaptive optimization framework, and we defer to
Section 4.1 for its formal de�nition.

Note that as the classical in�uence maximization is NP-hard and
is a special case of MRIM with T = 1, both the non-adaptive and
adaptive versions of MRIM are NP-hard.

3 NON-ADAPTIVE MRIM

LetVt = {(�, t ) | � 2 V } be the set of all possible nodes in round t
(e.g.,St ✓ Vt ), andV :=

S

T

t=1Vt . We �rst show that the in�uence
spread function � for the MRT model is monotone and submodular.

L���� 3.1. In�uence spread � (S) for the MRT model satis�es

(a) monotonicity: for any SA ✓ SB ✓ V , � (SA )  � (SB ); and (b)

submodularity: for anySA ✓ SB ✓ V and any pair (�, t ) 2 V\SB ,
� (SA [ {(�, t )}) � � (SA ) � � (SB [ {(�, t )}) � � (SB ).

P����. The proof of monotonicity is straightforward, so we next
consider submodularity. According to the de�nition of the in�uence
spread, we have

� (SA [ {(�, t )}) � � (SA ) � � (SB [ {(�, t )}) � � (SB )

,E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
A

i
) \ Γ(Lt , S

A
t ) [ Γ(Lt , S

A
t [ {�})

�
�
�
�
�
�

3
7
7
7
7
5

� E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
A

i
)

�
�
�
�
�
�

3
7
7
7
7
5

,E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
A

i
) [ Γ(Lt , S

A
t [ {�})

�
�
�
�
�
�

3
7
7
7
7
5

� E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
A

i
)

�
�
�
�
�
�

3
7
7
7
7
5

�E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
B

i
) \ Γ(Lt , S

B
t ) [ Γ(Lt+1, S

A
t [ {�})

�
�
�
�
�
�

3
7
7
7
7
5

� E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
B

i
)

�
�
�
�
�
�

3
7
7
7
7
5

,E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
B

i
) [ Γ(Lt , S

B
t [ {�})

�
�
�
�
�
�

3
7
7
7
7
5

� E
2
6
6
6
6
4

�
�
�
�
�
�

T
[

i=1

Γ(Li , S
A

i
)

�
�
�
�
�
�

3
7
7
7
7
5

.

Then it is su�cient to show that
T
[

i=1

Γ(Li , S
A

i
) [ Γ(Lt , S

A
t [ {�}) \

T
[

i=1

Γ(Li , S
A

i
)

◆
T
[

i=1

Γ(Li , S
B

i
) [ Γ(Lt , S

B
t [ {�}) \

T
[

i=1

Γ(Li , S
B

i
). (1)
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Algorithm 1: CR-Greedy: Cross-Round Greedy Algorithm

Input: Graph G = (V ,E), integers T , k and R, triggering set
distributions.

Output: So .
1 So  ;; C  V ;

2 c1, c2, . . . , ct  0; // node counter for each round

3 for i = 1, 2, . . . ,kT do

4 for all (�, t ) 2 C \ So , estimate � (So [ {(�, t )}) by
simulating the di�usion process R times;

5 (�i , ti )  argmax(�,t )2C\So �̂ (S
o [ {(�, t )});

6 So  So [ {(�i , ti )}; cti  cti + 1;

7 if cti � k then // budget for round ti exhausts

8 C  C \ Vti ;

9 return So .

For a nodeu 2 ST

i=1 Γ(Li , S
B

i
)[Γ(Lt , SBt [ {�}) \

S

T

i=1 Γ(Li , S
B

i
),

u is reachable from SB
t
[ {�} in Lt , but not reachable from SB

i
in Li

for any i 2 [T ]. Thus u is also not reachable from SA
i
in Li for any

i 2 [t]. Therefore, we conclude thatu 2 ST

i=1 Γ(Li , S
A

i
)[Γ(Lt , SAt [

{�}) \
S

T

i=1 Γ(Li , S
A

i
). Thus the submodularity holds. ⇤

The monotonicity and submodularity above are the theoretical
basis of designing and analyzing greedy algorithms for the non-
adaptive MRIM. In the following sections, we will consider two
di�erent settings separately for seed node selection: within-round
and cross-round. For the within-round setting, one needs to de-
termine the seed sets round by round, while for the cross-round
setting, one is allowed to select nodes crossing rounds.

3.1 Cross-Round Setting

We design a greedy algorithm for the non-adaptive MRIM under
cross-round setting, named CR-Greedy (Algorithm 1). The idea of
CR-Greedy is that at every greedy step, it searches all (�, t ) in the
candidate space C and picks the one having the maximummarginal
in�uence spread without replacement. If the budget for some round
t exhausts, then the remaining nodes ofVt are removed from C.
Note that as C contains nodes assigning to di�erent rounds, CR-
Greedy selects nodes crossing rounds.

Given a setU which is partitioned into disjoint setsU1, . . . ,Un
and I = {X ✓ U : |X \ Ui |  ki ,8i 2 [n]}, (U ,I) is called a
partition matroid. Thus, the node space V with the constraint of
MRIM, namely (V, {S : |St |  k,8t 2 [T ]}), is a partition matroid.
This indicates that MRIM under cross-round setting is an instance
of submodular maximization under partition matroid, and thus the
performance of CR-Greedy has the following guarantee [13].

T������ 3.2. Let S⇤ be the optimal solution of the non-adaptive

MRIM under cross-round setting. For every � > 0 and ` > 0, with

probability at least 1 � 1
n`

, the output So of CR-Greedy satis�es

� (So ) �
✓

1

2
� �
◆

� (S⇤),

if CR-Greedy uses R = d31k2T 2n log(2kn`+1)/�2e as input. In this

case, the total running time is O (k3`T 4n2m log(n)/�2), assuming

each simulation �nishes in O (m) time.

Algorithm 2: WR-Greedy: Within-Round Greedy Algorithm

Input: Graph G = (V ,E), integers T , k and R, triggering set
distributions.

Output: So .
1 So  ;;
2 for t = 1, 2, . . . ,T do

3 for i = 1, 2, . . . ,k do

4 for all (�, t ) 2 Vt \ So , estimate � (So [ {(�, t )}) by
simulating the di�usion process R times;

5 (u, t )  argmax(�,t )2Vt \So �̂ (S
o [ {(�, t )});

6 So  So [ {(u, t )};

7 return So .

3.2 Within-Round Setting

We give the second greedy algorithm (Algorithm 2) for the within-
round setting, denoted as WR-Greedy. The idea of WR-Greedy

is that seed nodes are selected round by round. More speci�cally,
we greedily select seed nodes for the �rst round, and only after
we selected k seed nodes for the �rst round, then we greedily
select seed nodes for the next round, and so on. The immediate
advantage of WR-Greedy over CR-Greedy is that in each greedy
step the WR-Greedy only searches candidates (�, t ) with t being
the current round number, while CR-Greedy needs to search (�, t )

for all rounds. This would give at least a factor of T saving on the
running time of WR-Greedy. However, as we will show below, it
pays a price of a slightly lower approximation ratio.

To analyzeWR-Greedy, we utilize the result of Lemma 3.1 in a
di�erent way. First, when we �x the seed sets in round 1, . . . , t � 1,
and only vary the seed sets in round t , the in�uence spread certainly
still satis�es themonotonicity and submodularity. Therefore, within
round t , the seed set So

t
selected by WR-Greedy for round t is a

(1 � 1/e � � )-approximate solution when the previous t � 1 seed
sets are �xed. Second, we could view seed set St of each round
t as a unit, and when adding it to the previous units, it would
also satisfy the monotonicity and submodularity by Lemma 3.1.
Namely, � (S1 [ . . . [ St )  � (S1 [ . . . [ St 0 ) for all t < t 0, and
� (S1 [ . . . [ St [ St 00 ) � � (S1 [ . . . [ St )  � (S1 [ . . . [ St 0 [
St 00 ) � � (S1 [ . . . [ St 0 ), for all t < t 0 < t 00. This means that
WR-Greedy can be viewed as greedily selecting seed set units St
round by round with the monotonicity and submodularity, while
within each round, it can not �nd the optimal St but instead by a
(1 � 1/e � � )-approximate solution. Together, by the result in [26],
we can show that WR-Greedy achieves an approximation factor of
1 � e�(1�1/e ) � � , as summarized in the following theorem.

T������ 3.3. Let S⇤ be the optimal solution of the non-adaptive

MRIM under within-round setting. For every � > 0 and ` > 0, with

probability at least 1 � 1
n`

, the output So of WR-Greedy satis�es

� (So ) �
✓

1 � e�(1�
1
e
) � �
◆

� (S⇤),

if WR-Greedy uses R = d31k2n log(2kn`+1T )/�2e as input. In this

case, the total running time is O (k3`Tn2m log(nT )/�2), assuming

each simulation �nishes in O (m) time.
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P���� (S�����). The proof follows the same structure as the
proof of Theorem 3.7 in [7], but it needs to accommodate the
new double greedy algorithm structure and the double submodu-
lar property. let �0 = e (1�1/e )�/2. From the inner-submoduarlity
property of the MRT model and the proof of Theorem 3.7 in [7]
based on the Cherno� bound, we can conclude that when R �
d27k2n log(2kn`+1T )/�20e, for each round t 2 [T ], with probabil-

ity at least 1 � 1
n`T

, the seed set So
t
found by WR-Greedy is a

(1 � 1/e � �0) approximation of the optimal solution for round i

maximizing the marginal gain of � (S1 [ S2 [ · · · [ St�1 [ S) �
� (S1 [ S2 [ · · · [ St�1). Using the union bound, we know that
with probability at least 1 � 1

n`
, for all t 2 [T ] seed set So

t
is an

(1 � 1/e � �0) approximation of the optimal solution for round t .
Now at each greedy step, if the new item found is not the one

giving the best marginal contribution but an � approximation of
the optimal marginal solution, an easy extension of [26], already
reported in [15], show that the greedy algorithm can give a 1� e��
approximate solution to the sumodular maximization problem. In
our case, consider the outer level when treating each subset Si as an
item, Lemma 3.1 shows that � is also submodular in this case (the
outer-submodularity), and we just argued in the previous paragraph
that in each round, the selected So

t
is a (1�1/e ��0) approximation.

Therefore, the �nal output So satis�es

� (So ) � (1 � e�(1�1/e��0 ) )� (S⇤).

Because �0 = e (1�1/e )�/2, it is easy to verify that 1� e�(1�1/e��0 ) �
1 � e�(1�1/e ) � � in this case, and it is su�cient to have R =

d31k2n log(2kn`+1T )/�2e. Finally, the total running time is simply
O (TknRm) = O (k3`Tn2m log(nT )/�2). ⇤

Compared with Theorem 3.2, the approximation ratio drops from
1/2 � � to 0.46 � � , but the running time improves by a factor of T 3.
One factor of T is because each greedy step of CR-Greedy needs
to search a space T times larger than that of WR-Greedy, and the
other factor ofT 2 is becauseCR-Greedy needs more accurateMonte
Carlo estimates for each evaluation of � (S) to avoid deviation, again
because it searches a larger space. This shows the trade-o� between
e�ciency and approximation ratio, that CR-Greedy has a better
performance guarantee while WR-Greedy is much more e�cient.

4 ADAPTIVE MRIM

We now study the adaptive MRIM problem. Informally, at the be-
ginning of each round, one need to determine the seed set for the
current round based on the propagation results observed in pre-
vious rounds. The formal de�nition follows the framework and
terminology provided in [14] and will be given in Section 4.1. We
then argue about the adaptive submodularity property, propose the
adaptive greedy policy and analyze its performance in Section 4.2.

4.1 Notations and De�nition

We call (St , t ) an item, where St is the seed set chosen in round t . Let
E be the set of all the possible items. For each item (St , t ), after the
propagation, the nodes and edges participated in the propagation
are observed as the feedback. Formally, the feedback is referred to
as a state, which is the subgraph of live-edge graph Lt that can be
reached by St . A realization is a function � : E ! O mapping every

possible item (St , t ) to a state, where O is the set of all possible
states. Realization � represents one possible propagation from a
possible seed set in a round. Let � (St , t ) denote the state of (St , t )
under realization �. We use Φ to denote a random realization, and
the randomness comes from random live-edge graphs L1, . . . ,LT .
For the adaptive MRIM, in each round t , we pick an item (St , t ), see
its state Φ(St , t ), pick the next item (St+1, t + 1), see its state, and
so on. After each pick, previous observations can be represented
as a partial realization� , a function from some subset of E to their
states. For notational convenience, we represent � as a relation,
so that � ✓ E ⇥ O equals {((St , t ),o) : � (St , t ) = o}. We de�ne
dom(� ) = {(St , t ) : 9o, ((St , t ),o) 2 � } as the domain of� . A partial
realization � is consistent with a realization � if they are equal
everywhere in the domain of � , denoted as � ⇠ � . If � and � 0

are both consistent with some �, and dom(� ) ✓ dom(� 0), � is a
subrealization of� 0, also denoted as� ✓ � 0.

A policy � is an adaptive strategy for picking items based on
partial realizations in E. In each round, � will pick the next set of
seeds � (� ) based on partial realization� so far. If partial realization
� is not in the domain of � , the policy stops picking items. We use
dom(� ) to denote the domain of � . Technically, we require that
dom(� ) be closed under subrealizations: If� 0 2 dom(� ) and� is a
subrealization of� 0 then� 2 dom(� ). We use the notation E (� ,�)

to refer to the set of items selected by � under realization �. The
set of items in E (� ,�) is always in the form {(S1, 1), . . . , (St , t )}, so
sometimes we also refer to it as sequence of seed sets.

We wish to maximize, subject to some constraints, a utility func-
tion f : 2E ⇥OE ! R�0 that depends on the picked items and the
states of them. In the adaptive MRIM, f ({(S1, 1), . . . , (St , t )},�) is
the total number of active nodes by round t from the respective

seed sets, i.e., |
S

t

i=1 Γ(L
�
i
, Si ) | where L

�
t
is the live-edge graph of

round t . Based on the above notations, the expected utility of a
policy � is favg (� ) = EΦ[f (E (� ,Φ),Φ)] where the expectation is
taken over the randomness of Φ. Namely, favg (� ) is the expected
number of active nodes under policy � . Let ΠT ,k be the set of all
policies that select seed sets in at most T rounds and each seed set
has at most k nodes. The goal of the adaptive MRIM is to �nd the
best policy � such that: �⇤ = argmax� 2ΠT ,k favg (� ).

4.2 Adaptive Submodularity and Greedy Policy

Given a partial realization� of t �1 rounds with dom(� ) = {(S1, 1),

(S2, 2), . . . , (St�1, t � 1)}, and the seed set St for round t , the con-
ditional expected marginal bene�t of item (St , t ) conditioned on
having observed� is de�ned as

∆((St , t ) |� ) = EΦ [f (dom(� ) [ {(St , t )},Φ) � f (dom(� ),Φ) | Φ ⇠ � ] .
The conditional expected marginal gain of a policy � is de�ned as

∆(� |� ) = E [f (dom(� ) [ E (� ,Φ),Φ) � f (dom(� ),Φ) | Φ ⇠ � ] .
The adaptive MRIM satis�es the adaptive monotonicity and sub-
modularity shown as below. The proofs require a careful analysis
of the partial realization in the MRT model and is given in [29].

L���� 4.1. [Adaptive Monotonicity] For all t > 0, for all partial

realization� with t � 1 rounds and Pr[Φ ⇠ � ] > 0, and for all item

(St , t ), we have:

∆((St , t ) |� ) � 0.
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Algorithm 3: AdaGreedy: Adaptive Greedy for Round t

Input: Graph G = (V ,E), integers T , k and R, triggering set
distributions, active node set At�1 by round t � 1.

Output: Seed set St , updated active nodes At
1 St  MC-Greedy(G,At�1,k,R); // Monte Carlo Greedy

2 Observe the propagation of St , update activated nodes At ;

3 return (St , t ), At .

L���� 4.2. [Adaptive Submodularity] For all t > 0, for all partial

realization � with i � 1 rounds and partial realization � 0 such that

� 0 is a subrealization of � , i.e., � 0 ✓ � , and for all item (Si , i ), we

have

∆((St , t ) |�
0) � ∆((St , t ) |� ).

Following the framework of [14], adaptive monotonicity and
adaptive submodularity enable an adaptive greedy policy with a
constant approximation of the optimal adaptive policy. AdaGreedy
(Algorithm 3) is the greedy adaptive policy for MRIM. Note that
adaptive algorithms operate at per round base — it takes feedback
from previous rounds and selects the item for the current round,
and then obtain new feedback. Thus we present AdaGreedy for
a generic round t . Besides the problem input such as the graph
G, the triggering model parameters, seed set budget k , and sim-
ulation number R, AdaGreedy takes the set of already activated
nodes At�1 as the feedback from the previous rounds, and aims at
�nding the seed set St of size k to maximize the expected marginal
gain ∆((St , t ) |� ), which is the expected number of newly activated
nodes in round t . However, this problem is NP-hard, so we use a
Monte Carlo greedy approximation MC-Greedy algorithm to �nd
an approximate solution. MC-Greedy greedily �nds the seed with
the maximum estimated marginal in�uence spread until k seeds
being selected, where the marginal in�uence spread of adding an
unselected seed is estimated by simulating the propagation R times.
In AdaGreedy, MC-Greedy won’t count the in�uence of a node
if it has been activated in previous rounds. The rationale is that
maximizing the expected marginal gain ∆((St , t ) |� ) is equivalent
to the weighted in�uence maximization task in which we treat
nodes in At�1 with weight 0 and other nodes with weight 1, and
we maximize the expected total weight of the in�uenced nodes.
By [25], we know that the weighted version is also monotone and
submodular, so we could use a greedy algorithm to obtain a seed set
St as a (1 � 1/e � � ) approximation of the best seed set for round t .
We could use R Monte Carlo simulations to estimate the weighted
in�uence spread, and R is determined by the desired approximation
accuracy � . Once the seed set St is selected for round t , the actual
propagation from St will be observed, and the active node set At
will be updated as the feedback for the next round.

The following theorem summarizes the correctness and the time
complexity of AdaGreedy.

T������ 4.3. Let � ag represents the policy corresponding to the

AdaGreedy algorithm. For any � > 0 and ` > 0, if we use R =

d31k2n log(2kn`+1T )/�2e simulations for each in�uence spread esti-

mation, then with probability at least 1 � 1
n`

,

favg (�
ag) �

✓

1 � e�(1�
1
e
) � �
◆

favg (�
⇤).

Algorithm 4: CR-NS: Cross-Round Node Selection

Input: Multi round RR vector setsM, T , k
Output: seed sets So

1 Build count array: c[(u, t )] =
P

(u,t )2M |(u, t ) |, 8(u, t ) 2 V ;

2 Build RR set link: RR[(u, t )], 8(u, t ) 2 V ;

3 For all R 2M, co�ered[R] = f alse;

4 So  ;; C  V ; c1, c2, . . . , cT  0;

5 for i = 1 to Tk do

6 (u, t )  argmax(u0,t 0)2C\So c[(u
0, t 0)];

7 So  So [ {(u, t )}; ct  ct + 1;

8 if ct == k then

9 C = C \ {(�, t ) | � 2 V }
10 for all R 2 RR[(u, t )] ^ co�ered[R] = f alse do

11 co�ered[R] = true;

12 for all (u 0, t 0) 2 R ^ (u 0, t 0) , (u, t ) to do

c[(u 0, t 0)] = c[(u 0, t 0)] � 1;

13 return So .

In this case, the total running time for T -round AdaGreedy is

O (k3`Tn2m log(nT )/�2).

5 SCALABLE IMPLEMENTATIONS

In this section, we aim to speed up CR-Greedy, WR-Greedy and
AdaGreedy by the reverse in�uence sampling [4, 30].

A Reverse-Reachable (RR) set R� rooted at node � 2 V is the set
of nodes which are reached by reverse simulating a propagation
from � in the triggering model. Equivalently, R� is the set of nodes
in a random live-edge graph which can reach� . We use root(R� ) to
denote its root � . We de�ne a (random) RR set R is a RR set rooted
at a node picked uniformly at random from V , then for any seed
set S ✓ V , its in�uence spread

� (S ) = n · E[I{S \ R , ;}], (2)

where n = |V |, I{} is the indicator function, and the expectation
is taken over the randomness of R: randomness of root node and
randomness of live-edge graph. The property implies that we can
accurately estimate the in�uence spread of any possible seed set
S by sampling enough RR sets. More importantly, by Eq. (2) the
optimal seed set can be found by seeking the optimal set of nodes
that intersect with (a.k.a. cover) the most number of RR sets, which
is a max-cover problem. Therefore, a series of near-linear-time
algorithms are developed [4, 30] based on the above observation.All
RR-set algorithms have the same structure of two phases. In Phase
1, the number of RR sets needed is estimated, and in Phase 2, these
RR sets are generated and greedy algorithm is used on these RR
sets to �nd the k nodes that cover the most number of RR sets. All
algorithms have the same Phase 2, but Phase 1 is being improved
from one to another so that less and less RR sets are needed. Our
algorithms are based on IMM proposed in [30].

5.1 Non-Adaptive IMMs

For the non-adaptive MRIM, we de�ne the multi-round reverse-

reachable (RR) set R� rooted at node � for the MRT model as R� :=
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Algorithm 5: CR-NAIMM: Non-adaptive IMM Algorithm for
Cross-Round
Input: Graph G = (V ,E), round number T , budget k , accuracy

parameters (�, `), triggering set distributions
Output: seed set S
// Phase 1: Estimating the number of multi-round RR sets

needed, �

1 `  ` + ln 2/ lnn;M  ;; LB  1; � 0  
p
2� ;

2 �  
p
` lnn + ln 2; �  

q

(1 � 1/2) · (T ln
⇣

n

k

⌘

+ �2);

3 �0  [(2 + 2
3�
0) · (T ln

⇣

n

k

⌘

+ ` · lnn + ln log2 n) · n]/�
02;

4 �⇤  2nT · ((1 � 1/e ) · � + � )2 · ��2;
5 for i = 1 to log2 (n � 1) do

6 x  n/2i ;

7 �i  �0/xi ;
8 while |M| < �i do

9 Select a node u from V uniformly at random;

10 Generate RR-vector R from u, and insert it intoM;

11 Si  CR-NS(M,T ,k );

12 if n · FM (Si ) � (1 + � 0) · x then

13 LB  n · FM (Si )/(1 + �
0);

14 break;

15 �  �⇤/LB;
16 while |M|  � do

17 Select a node u from V uniformly at random;

18 Generate R for u, and insert it intoM;

// Phase 2: Generate � RR-vector sets and select seed nodes

19 S  CR-NS(M,T ,k );

20 return S.

S

T

t=1 R�,t whereR�,t denotes a RR set rooted at� of round t in pair
notation. R� is generated by independently reverse simulating the
propagation T rounds from � and then aggregating them together.
Let root(R� ) := � . A (random) multi-round RR set R is a multi-
round RR set rooted at a node picked uniformly at random from V .
We useM to denote the set of R� . We are now ready to explain
the cross-round and within-round non-adaptive IMM.

5.1.1 Cross-Round Non-Adaptive IMM. In cross-round setting,
if R is a random multi-round RR set, then for any seed set S, its
in�uence spread satis�es the following lemma.

L���� 5.1. For any node-round pair seed set S,

� (S) = n · E[I{S \ R , ;}],
where the expectation is taken over the randomness of R.

The Lemma 5.1 implies we can sample enough multi-round RR
sets to accurately estimate the in�uence spread of S.

CR-NAIMM is very similar to standard IMM and only has a
few di�erences include several points. First, CR-NAIMM generates
multi-round RR sets R from roots in V (lines 9 and 17). Second, we
need to adjust ` to be ` + log(2)/ logn, and � . This is to guarantee
that in each round we have probability at least 1 � 1/(n`T ) to
have St as a (

1
2 � � ) approximation, so that the result for the totalT

rounds would come out correctly as stated in the following theorem.
Third, we use new FM (·) denotes the fraction of multi-round RR
sets in R that are covered by a node set S in algorithm CR-NAIMM

(lines 12 and 13). Forth, CR-NS returns Tk seeds from the total T
rounds (line 5). Last, if the budget for some round t exhausts, then
the remaining nodes ofVt are removed from C in CR-NS (line 9).

By an analysis similar to that of the IMM algorithm [30], we can
show that our CR-NAIMM achieves 1/2 � � approximation with
expected running time O (T 2 (k + `) (m + n) log(n)/�2).

T������ 5.2. Let S⇤ be the optimal solution of the non-adaptive

MRIM. For every � > 0 and ` > 0, with probability at least 1 � 1
n`

,

the output So of the cross-round algorithm CR-NAIMM satis�es

� (So ) �
✓

1

2
� �
◆

� (S⇤),

In this case, the total running time forT -round CR-NAIMM isO (T 2 (k+

`) (n +m) log (n)/�2).

5.1.2 Within-Round Non-Adaptive IMM. In the within-round
setting, the idea is to use the IMM algorithm in each round to select
k seeds. However, seeds selected in earlier rounds may already
in�uence some nodes, so when we select roots for a later round t
and generate RR sets for round t , the roots should not be selected
uniformly at random. Instead, we want to utilize the idea derived
from the following lemma. Let St�1 :=

S

t�1
t 0=1 St

0 be the set of seed
pairs in �rst t � 1 rounds, and let St be a set of seed pairs in round
t . Similarly, let Rt�1� :=

S

t�1
t 0=1 R�,t

0 be the set of RR sets (in pairs)
in �rst t � 1 rounds, Rt be the RR set (in pairs) for round t . The
marginal in�uence spread of St in round t is

L���� 5.3. For any node-round pair seed set S,

� (St�1 [ St ) � � (St�1)

= n · E[I{(St�1 \ Rt�1 = ;) ^ (St \ Rt , ;)}]

= n · Pr{St�1 \ Rt�1 = ;} · E[I{St \ Rt , ;} | St�1 \ Rt�1 = ;],

where the expectation is taken over the randomness of R.

The above lemma suggests that when we want to generate an RR
set for round t , we should also generate RR sets for earlier rounds
and check that if any of them is intersecting with the seed set in the
same round, and if so, the RR set for round t is invalid andwe need to
regenerate an RR set again. By following this, the implementation is
similar to the CR-NAIMM, and the only di�erence between them is
that the within-round non-adaptive algorithmWR-NAIMM selects
k seeds round by round. The resulting algorithm would have the

approximation guarantee of 1 � e�(1�
1
e
) � � , but it does not have

signi�cant running time improvement over CR-NAIMM, since it
wastes many RR set generations.We �nd a better heuristic to use the
roots generated for the previous rounds. In particular, for each t � 2,
after we �nished selecting k seeds in round t � 1, some RR sets are
removed since they are covered by seeds selected. The remaining
roots are exactly the ones whose RR sets do not intersect with seed
sets in the �rst t � 1 rounds. Therefore, their distribution is close
to the distribution of the valid roots satisfying St�1 \ Rt�1 = ; in
Lemma 5.3. Hence, in round t , we sample roots using the remaining
roots from round t � 1. This gives a close estimate of the marginal
in�uence spread. Due to the complicated stochastic dependency
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of RR sets from round to round, the exact theoretical analysis of
this improvement is beyond our reach, and thus we propose it as
an e�cient heuristic.

The resulting algorithm WR-NAIMM runs almost exactly like
running a copy of the standard IMM for each round t . The only
di�erence is that in the standard IMM, the root of an RR set is always
sampled uniformly at random from all nodes, but in WR-NAIMM

the root of an RR set in round t is sampled uniformly at random from
the remaining roots left in round t � 1. Moreover, for each round t ,
we set the per-round approximation error bound �0 = e (1�1/e )�/2
and replace ` with ` + log(2T )/ logn. This is consistent with the
adaptive IMM setting in Section 5.2, and with the setting used in
the proof of Theorem 3.3 for the within-round greedy algorithm.
The details of WR-NAIMM are provided in [29].

5.2 Adaptive IMM

We useM to denote the set of R� . In the adaptive setting, as already
mentioned in Section 4.2, some nodesAt�1 are already activated, so
they won’t contribute to the in�uence spread in round t . Therefore,
we are working on the weighted in�uence maximization problem,
where nodes inAt�1 has weight 0 and nodes inV \At�1 has weight
1. Let ��At�1 (S ) be the weighted in�uence spread according to the
above weight. Let R�At�1 be a random RR set where the root �
is selected from V \ At�1 uniformly at random, and then reverse
simulate from � to get the RR set. The result is similar to Eq. (2):

L���� 5.4. For any seed set S ✓ V ,

��At�1 (S ) = (n � |At�1 |) · E[I{S \ R�At�1 , ;}], (3)

where the expectation is taken over the randomness of R�At�1 .

P����.

E[I{S \ R�Ai�1 , ;}]

=

X

� 2V \Ai�1
Pr{� = root(R�Ai�1 )}·

E[I{S \ R�Ai�1 , ;} | � = root(R�Ai�1 )]

=

1

n � |Ai�1 |
X

� 2V \Ai�1
E[I{S \ R�Ai�1� , ;}]

=

1

n � |Ai�1 |
X

� 2V \Ai�1
E[I{� 2 Γ(L, S )}] (4)

=

1

n � |Ai�1 |
E

2
6
6
6
6
6
4

X

� 2V \Ai�1
I{� 2 Γ(L, S )}

3
7
7
7
7
7
5

=

1

n � |Ai�1 |
E[|Γ(L, S ) \Ai�1 |]

=

1

n � |Ai�1 |
��Ai�1 (S ),

where Eq. (4) is based on the equivalence between RR sets and
live-edge graphs, and the expectation from this point on is taken
over the random live-edge graphs L. ⇤

Therefore, with Eq. (3), the same RR-set based algorithm can be
used, and we only need to properly change the RR-set generation
process and the estimation process. AdaIMM is based on the IMM

algorithm in [30]. The main di�erences from the standard IMM

include several points. First, whenever we generate new RR sets
in round t , we only start from roots in V \ At�1 as explained by
Lemma 5.4. Second, when we estimate the in�uence spread, we
need to adjust it using na = n � |At�1 | again by Lemma 5.4. Third,
we need to adjust ` to be `+log(2T )/ logn, and � to �0 = e (1�1/e )�/2.
This is to guarantee that in each round we have probability at least
1 � 1/(n`T ) to have St as a (1 � 1/e � �0) approximation, so that
the result for the totalT rounds would come out correctly as stated
in the following theorem. The details are shown in [29].

T������ 5.5. Let � ai represents the policy corresponding to the

AdaIMM algorithm. For any � > 0 and ` > 0, with probability at

least 1 � 1
n`

,

favg (�
ai) �

✓

1 � e�(1�
1
e
) � �
◆

favg (�
⇤).

In this case, the total running time forT -round AdaIMM isO (T (k +

`) (n +m) log (nT )/�2).

P���� (S�����). Let �0 = e (1�1/e )�/2, `0 = ` + log(2T )/ logn.
As explained already, one round AdaIMM is essentially the same as
IMM with parameters �0 and `0. Thus, following the result in [30],
we know that for each round i , with probability at least 1� 2/n`0 =
1 � 1/(n`T ), output Si is a (1 � 1/e � �0) approximation of the best
seed set for this round. Then following the similar arguments as
in Theorems 3.3 and 4.3, we know that across all T rounds, with
probability at least 1 � 1/n` ,

favg (�
ai) �

✓

1 � e�(1�
1
e
��0 )
◆

favg (�
⇤)

�
✓

1 � e�(1�
1
e
) � �
◆

favg (�
⇤).

Thus, the theorem holds. ⇤

Theorem 5.5 clearly shows that the AdaIMM algorithm is near
linear time, and its theoretical time complexity bound is much better
than the one in Theorem 4.3 for the AdaGreedy algorithm.

In practice, we can further improve the AdaIMM algorithm by
incremental computation. In particular, RR sets generated in the
previous t�1 rounds can be used for round t , and we only need to re-
move those rooted at nodes in At�1. Searching the lower bound LB
can also be made faster by utilizing the xt�1 already obtained in the
previous round. Our experiments would use such improvements.

6 EXPERIMENTAL EVALUATION

We conduct experiments on two real-world social networks to test
the performance of our algorithms. We use the independent cascade
model for the tests. The in�uence probabilities on the edges are
learned from the real-world trace data in one dataset and synthetic
in the other dataset, as explained below.

6.1 Data Description

Flixster. The Flixster dataset is a network of American social movie
discovery service (www.�ixster.com). To transform the dataset into
a weighted graph, each user is represented by a node, and a directed
edge from node u to � is formed if � rates one movie shortly after
u does so on the same movie. The dataset is analyzed in [1], and
the in�uence probability are learned by the topic-aware model. We
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use the learning result of [1] in our experiment, which is a graph
containing 29,357 nodes and 212,614 directed edges.
NetHEPT. The NetHEPT dataset [5] is extensively used in many
in�uence maximization studies. It is an academic collaboration
network from the “High Energy Physics Theory” section of arXiv
from 1991 to 2003, where nodes represent the authors and each
edge represents one paper co-authored by two nodes. There are
15,233 nodes and 58,891 undirected edges (including duplicated
edges) in the NetHEPT dataset. We clean the dataset by removing
those duplicated edges and obtain a directed graph G = (V ,E), |V |
= 15,233, |E | = 62,774 (directed edges).

6.2 Result

We test all six algorithms proposed in the experiment, for the MRIM
task of T rounds with k seeds in each round. We use R = 10000 for
the Monte Carlo simulation of the in�uence spread of each candi-
date seed set for all non-adaptive algorithms. The lazy evaluation
technique of [22] to optimize the greedy selection is applied to
CR-Greedy, WR-Greedy and AdaGreedy. Besides the six proposed
algorithms, we also propose two baseline non-adaptive algorithms
(SG and SG-R) using the classical single-round algorithms directly
for the multi-round in�uence maximization problem. SG simply
selectsTk seed nodes using the single-round greedy algorithm, and
then allocates the �rst k seeds as S1 for the �rst round, second k
seeds as S2 for the second round, and so on. SG-R only selects k
seeds greedily, and then reuse the same k seeds for all T rounds.

In the tests, we set T = 5 and k = 10 as the default, and we also
test di�erent combinations of T and k while keeping Tk to be the
same, to see the e�ect of di�erent degrees of adaptiveness.

6.2.1 Influence Spread Performance. We test the performance
on the in�uence spread for all algorithms introduced in the above
section. For non-adaptive algorithms, for each selected seed set
sequence, we do 10,000 forward simulations and take the average
to obtain its estimated in�uence spread. For adaptive algorithms,
to obtain their expected in�uence spread over multiple real-world
propagation simulations, we have to re-run the algorithm in each
round after obtaining the feedback from the previous rounds. Thus,
it would be too time consuming to also run 10000 adaptive simu-
lations for the adaptive algorithms. In stead, for NetHEPT we use
150 simulations and for Flixster we use 100 simulations. To make
fair comparisons, we include con�dence intervals in the obtained
in�uence spread results, so that the number of simulations used for
the estimation is taken into the consideration.

Tables 1 and 2 show the in�uence spread results for NetHEPT
and Flixster datasets. All �ve round results are shown, one for each
column. Each row is for one algorithm, and the number in the �rst
line of the row is the empirical average of the in�uence spread, and
the line below is the 95% con�dence interval. Parameter R records
the number of simulations used to obtain the average spread.

Several observations can be made from these results. First, all
six proposed algorithms in this paper performs signi�cantly better
than the baseline algorithms SG and SG-R. Besides the cross-round
non-adaptive algorithms, the con�dence intervals do not overlap
starting from round 2. In terms of the empirical average, the im-
provement is obvious: at the end of the 5th round, for NetHEPT,
MRIM algorithms is at least 8.8% better than SG, and 7.3% better

Table 1: The performance of in�uence spread on NetHEPT.

Method/Simulations
Round

1 2 3 4 5
SG 290.1 505.7 688.6 868.2 1027.3

(R = 10000) [288.8, 291.4] [504.0, 507.3] [686.6, 690.4] [866.2, 870.2] [1025.2, 1029.4]
SG-R 289.5 516.3 714.0 884.9 1042.0

(R = 10000) [288.2, 290.8] [514.6, 518.0] [712.0, 716.0] [882.7, 887.1] [1039.7, 1044.2]
E-WR-Greedy 290.7 528.9 738.8 930.2 1097.6.9
(R = 10000) [289.4, 292.0] [527.2, 530.6] [736.9, 740.8] [928.0, 932.3] [1095.3, 1099.8]
WR-IMM 290.9 532.8 745.3 930.1 1093.1
(R = 10000) [289.7, 292.3] [531.1, 534.5] [743.2, 747.3] [928.0, 932.2] [1090.8, 1095.3]
CR-Greedy 267.8 528.7 730.4 938.5 1121.3
(R = 10000) [266.5, 269.1] [527.2, 530.4] [728.5, 732.4] [933.7, 937.8] [1119.0, 1123.5]
CR-IMM 283.0 517.4 721.9 931.6 1129.7
(R = 10000) [281.7, 284.2] [515.7, 519.2] [720.0, 723.9] [929.4, 933.7] [1127.7, 1131.9]
AdaGreedy 288.3 533.4 758.1 960.1 1141.5
(R = 150) [276.7, 299.7] [519.4, 547.3] [743.6, 772.7] [943.9, 976.3] [1123.7, 1160.0]
AdaIMM 291.8 544.4 761.8 965.8 1146.3

(R = 150) [281.3, 302.4] [531.6, 557.2] [746.6, 776.9] [949.7, 982.0] [1129.1, 1163.5]

Table 2: The performance of in�uence Spread on Flixster.

Method/Simulations
Round

1 2 3 4 5
SG 558.8 936.2 1200.3 1437.9 1631.5

(R = 10000) [557.3, 560.3] [934.5, 937.9] [1198.4, 1202.2] [1435.9, 1439.9] [1629.5, 1633.6]
SG-R 559.8 949.2 1262.6 1530.3 1764.9

(R = 10000) [558.3, 561.3] [947.4, 951.0] [1260.6, 1264.5] [1528.2, 1532.4] [1762.7, 1767.0]
E-WR-Greedy 557.8 976.5 1304.2 1587.8 1840.0
(R = 10000) [556,3 559.2] [974.8, 978,3] [1302.2, 1306.1] [1585.8, 1580.8] [1838.0, 1842.1]
WR-IMM 558.1 967.5 1306.9 1599.1 1836.4
(R = 10000) [556.7, 559.6] [965.7, 969.3] [1306.9, 1308.9] [1597.1, 1601.1] [1834.3, 1838.5]
CR-Greedy 519.9 948.6 1295.7 1593.5 1863.8
(R = 10000) [518.4, 521.5] [946.7, 950.5] [1293.7, 1297.7] [1591.4, 1595.5] [1861.7, 1865.9]
CR-IMM 521.7 935.8 1275.3 1585.9 1865.1
(R = 10000) [521.7, 523.2] [933.1, 937.0] [1273.3, 1277.3] [1583.8, 1588.0] [1863.1, 1867.3]
AdaGreedy 557.8 977.8 1307.7 1605.2 1861.8
(R = 100) [539.8, 580.5] [956.2, 999.1] [1291.1, 1324.3] [1588.1, 1622.3] [1845.3, 1878.3]
AdaIMM 555.5 977.9 1317.2 1613.2 1872.5

(R = 100) [542.3, 568.6] [962.9, 993.0] [1300.8, 1333.5] [1594.2, 1632.1] [1853.0, 1891.9]

than SG-R; for Flixster, MRIM algorithms is at least 12.8% better
than SG, and 4.3% better than SG-R. Even if we use the ratio be-
tween the lower con�dence bounds of MRIM algorithms vs. the
upper con�dence bounds of the baseline algorithms, the result is
similar. SG-R performs better than SG, which implies that in�u-
ential nodes are important in these datasets and it is preferred to
re-select them. However, the improvement of MRIM algorithms
over SG and SG-R are increasing over rounds, showing that adjust-
ing to MRIM is increasingly important. It is reasonable to see that
with more rounds, always sticking to the same seed sets or always
changing seed sets would not perform well.

Second, the adaptive algorithms perform better than the within-
round non-adaptive algorithms in both dataset: the con�dence
interval does not overlap for all results in round 4 and 5 and most
results in round 3. This conforms with our intuition that adaptive
algorithms performs better. The improvement are not very signi�-
cant in Tables 1 and 2, which means the strength of the adaptiveness
has not be fully explored yet.

Third, the cross-round setting is more e�ective, but less e�cient
than within-round setting of non-adaptive algorithms, due to a
larger search space. In practice, the cross-round setting only shows
outstanding performances overall, but doesn’t guarantee the good
performance in every round. In fact, it always performs worst in
round 1 comparing to the other algorithms.

Fourth, the cross-round non-adaptive algorithm performs as well
as the adaptive algorithm on NetHept dataset. Adaptive algorithm
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Table 3: In�uence spread with di�erent adaptive degree.

Num. of Rounds 1 2 5 10
Num. of Seeds 50 25 10 5

AdaIMM 883.0 1040.3 1141.0 1204.7
(R = 100) [856.0, 910.1] [1022.6, 1058.1] [1119.3, 1162.6] [1178.2, 1231.3]

Table 4: Running time of the algorithms, in seconds.

SG SG-R E-WR-Greedy WR-IMM

NetHEPT 439.2 87.8 551.2 1.97
(R = 5) [407, 470.94] [81.5, 94.2] [527.9, 574.4] [1.91, 2.03]
Flixster 4862.3 972.5 2478.9 3.16
(R = 5) [4773.3, 4951.3] [990.3,954.7] [2422.4, 2535.5] [3.14, 3.18]

CR-Greedy CR-IMM AdaGreedy AdaIMM

NetHEPT 2105.6 2.13 465.4 2.01
(R = 5) [2036.2, 2175.0] [2.05, 2.21] [473.8, 457.0] [1.93, 2.09]
Flixster 9587.6 3.61 2305.5 3.23
(R = 5) [9145.3.10029.9] [3.59, 3.63] [2161.0, 2450.0] [3.16, 3.30]

requires the real-life spread between each round comparing to non-
adaptive algorithms, but always performs the best in each round.

Fifth, we can see that AdaIMM achieves the same level of in�u-
ence spread as AdaGreedy: the con�dence intervals always overlap,
which means AdaIMM performs well in practice.

6.2.2 Degree of Adaptiveness. We vary the parameters T and
k whiling keeping Tk the same. With smaller k , it means each
round we select a smaller number of seed sets, and we use more
adaptive rounds. Therefore, small k and largeT mean a high degree
of adaptiveness.We test this usingAdaIMM, since it is more e�cient
than AdaGreedywhile providing the same level of in�uence spread.

Table 3 presents the result on this test, in which we vary (T ,k ) as
(1, 50), (2, 25), (5, 10) and (10, 5). The in�uence spread signi�cantly
increases with the increase of the degree of adaptiveness, and the
increase is quite signi�cant. The 10-round 5-seed setup is 36.3% bet-
ter than 1 round 50-seed setup on the empirical average. This shows
that higher adaptive degree indeed improves the performance.

In summary, with same total budget, the higher number of total
rounds with higher in�uence spread performance in general.

6.2.3 Running Time. Table 4 reports the running time of all
methods on the two datasets, when running withT = 5 and k = 10.
One conclusion is that all IMM algorithms are much more e�cient
that others, with two to three orders of magnitude faster than
all other algorithms. Among greedy algorithms, SG-R runs faster
because it selects only 10 seeds once. SG is the slowest, much slower
than E-WR-Greedy and AdaGreedy because it selects 50 di�erent
seeds. When it selects more seeds, their marginal in�uence spread
doesn’t di�er from one another much and thus the lazy-evaluation
optimization is not as e�ective as selecting the �rst 10 seeds.

After combining the in�uence spread and running time perfor-
mance, our conclusion is that (a) algorithms designed for the MRIM
task is better, (b) the cross-round setting is more e�ective, but less
e�cient than the within-round setting of non-adaptive algorithms,
and (c) AdaIMM is clearly the best for adaptive MRIM task.
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