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Abstract

Scene flow methods estimate the three-dimensional mo-

tion field for points in the world, using multi-camera video

data. Such methods combine multi-view reconstruction with

motion estimation approaches. This paper describes an al-

ternative formulation for dense scene flow estimation that

provides convincing results using only two cameras by fus-

ing stereo and optical flow estimation into a single coherent

framework. To handle the aperture problems inherent in the

estimation task, a multi-scale method along with a novel

adaptive smoothing technique is used to gain a regularized

solution. This combined approach both preserves discon-

tinuities and prevents over-regularization – two problems

commonly associated with basic multi-scale approaches.

Internally, the framework generates probability distribu-

tions for optical flow and disparity. Taking into account the

uncertainty in the intermediate stages allows for more reli-

able estimation of the 3D scene flow than standard stereo

and optical flow methods allow. Experiments with synthetic

and real test data demonstrate the effectiveness of the ap-

proach.

1. Introduction

Over the past years, there has been increasing interest in

methods that can estimate the motion of a 3D scene given

video streams obtained via a multi-camera rig. While the

demonstrated applications of the estimation of non-rigid 3D

motion are impressive, a number of aspects of the estima-

tion of 3D motion problem remain open. In particular, the

estimation of 3D motion is generally susceptible to noise

when a small number of cameras is used in the stereo-rig.

There are also problems with estimation errors in regions

of low contrast variation, or in regions where the surface is

visible in only a subset of the views.

In this paper, we propose an improved algorithm for the

computation of nonrigid 3D scene flow [19, 23], given only

binocular video streams. Three-dimensional scene flow

represents scene motion in terms of a dense 3D vector field,
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defined over every visible surface in the scene. We present

a multi-scale estimation framework that quantifies and ac-

counts for the estimation errors of 3D scene flow that arise

in regions of low contrast variation. The framework ex-

tends the basic notions of multi-scale distributions of op-

tical flow [15] to 3D scene flow, and it employs a region-

based method in order to gain a reliable solution. This com-

bined approach both preserves discontinuities and prevents

over-regularization – two problems commonly associated

with basic multi-scale approaches. The improved frame-

work yields good results for the binocular case and can be

easily extended to the multi-baseline case.

2. Related Work

There has been a fairly large amount of research done

in the area of 3D motion estimation. We broadly classify

the related work into four categories based on the setup and

assumptions made.

Rigid motion, monocular sequence: Structure-from-

motion techniques [16] recover relative motion together

with scene structure from a monocular image sequence. The

scene is generally assumed to be rigid [16] or piecewise

rigid [4]; thus, only a restricted form of non-rigid motion

can be analyzed via these techniques [1].

Non-rigid motion, monocular sequence: By making

use of strong a priori knowledge, or by directly modelling

assumptions about the scene, techniques like [11, 12, 17]

can estimate non-rigid motion from a monocular image se-

quence. The method of [17] assumes that the motion mini-

mizes the deviation from a rigid body motion. In other ap-

proaches [11, 12], a deformable model is used and the 3D

motion is recovered by estimating the parameters to deform

a predefined model.

Motion stereo: With multiple cameras, stereo and 2D

motion information can be combined to recover the 3D mo-

tion, e.g., [8, 10, 13, 20, 21, 25]. Except for [8] and [10],

almost all techniques in this category assume rigid motion.

For non-rigid tracking, [8] uses relaxation-based algorithms

and [10] generalizes the model-based approach of [11]. The

first approach cannot provide dense 3D motion while the

latter approach needs a priori knowledge of the scene, i.e.,
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Figure 1. System Overview

the deformable model.

Non-rigid motion, multi-view: Vedula, et al., [19] in-

troduce the concept of dense scene flow as the 3D coun-

terpart of optical flow. They present a linear algorithm to

compute scene flow from multi-view optical flow. Given

scene flow and initial 3D scene structure, dynamic scene

structure can be recovered. Zhang et al., [23] reformulated

the scene flow estimation problem in terms of energy min-

imization; scene flow is computed by fitting an affine mo-

tion model to image partitions with global smoothness con-

straints. This algorithm was further improved [24] so that

discontinuities are preserved. Two other approaches [5, 22]

recover shape from dynamic scenes by finding correspon-

dence in a 3D space time window. Structured light is used

to improve the accuracy in correspondence matching. How-

ever, [5, 22] require active illumination and do not estimate

inter-frame motion.

Our method is in this final category, in particular it im-

proves upon Vedula’s [19].

3. Overview

Our system is presented in Figure 1. The binocular cam-

era rig is calibrated and the images captured are rectified.

Both distributions of optical flow and disparity are com-

puted based on the unified approach described in Sections

4.1 and 4.2. 3D scene flow is then computed by combining

the distribution information of flow and disparity together

as described in Section 4.3.

4. Approach

Both optical flow and disparity can be formulated as

problems of finding corresponding points in two images.

Optical flow finds correspondence in time while disparity

finds correspondence in different views. Let f(xi, yi, c) be

the function of position and time/view for the image signal

(c = t for time, c = v for view), v be the pixel displacement

caused by change in time or view. Commonly, the goal is to

find v such that

E(v) =
∑

i

(∇fi · v + fic)
2 (1)

is minimized, where i is the index for pixels in the image.

In the following derivations, i is dropped for simplicity. ∇f

represents the spatial gradient of the image and fc repre-

sents the change in image caused either by time or view.

This error function has been used both in the context of

optical flow [7] and stereo vision [9]. This minimization

problem is under-constrained, and thus some form of regu-

larization is needed.

In the context of optical flow computation, Eq. 1 enforces

the Constant Brightness Assumption. Usually this assump-

tion is violated when there is a large motion between two

images captured at two consecutive time steps. To alleviate

this problem, multi-resolution based approaches are widely

adopted. Eero Simoncelli [15] proposed an approach that

computes distributions of optical flow using an image pyra-

mid. This approach is elegant and has many potential appli-

cations, such as probabilistic tracking and motion analysis.

In this paper, we adapt this approach in an improved for-

mulation. The proposed approach takes care of the problem

of over-smoothing of [15] and preserves the nice property of

producing a distribution of motion estimation. The same ap-

proach is extended to estimate disparity distributions. Given

the distributions of optical flow and disparity, we compute

3D scene flow via an integrated algorithm using weighted

least squares described in Section 4.3.

4.1. Distributions of Flow

Following [15], the uncertainty in optical flow computa-

tion is described through the use of Gaussian noise model,

∇f · (v − n1) + ft = n2. (2)

The image intensity signal is represented as a function

f of position (denoted by image coordinates x and y)

and time (denoted by t). The image gradient is ∇f =
(fx(x, y, t), fy(x, y, t))T and the temporal derivative of the

image is ft. The first random variable n1, modelled as

n1 ∼ N (0,Λ1), describes the error resulting from a fail-

ure of the planarity assumption. The second random vari-

able, n2 ∼ N (0, Λ2) describes the errors in the temporal

derivative measurements. For the prior distribution of v, a

zero-mean Gaussian distribution with a small covariance Λp

is used. If there is no intensity variation in the image or part

of the image, Λp makes Eq. 2 well-conditioned.

Assume that v is constant in a small region, let n be the

number of pixels within the neighborhood, each optical flow

vector (per pixel) is considered as a normal distribution with

mean flow v̂ and covariance Λv defined as follows:

Λv =

[

n
∑

i

wiMi

σ1‖∇f(xi, yi, t)‖2 + σ2

+ Λ−1

p

]

−1

, (3)

v̂ = −Λv ·
∑

i

wibi

σ1‖∇f(xi, yi, t)‖2 + σ2

, (4)

where

M = ∇f∇f
T =

(

f2

x fxfy

fxfy f2

y

)

, b =

(

fxft

fyft

)

,
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wi is the weight assigned to the neighboring pixel i, σ1I =
Λ1 and σ2 = Λ2.

4.1.1 Coarse-to-fine Estimation of Flow Distribution

To propagate the uncertainty model at coarser scale levels

(lower resolution images) to finer scale levels (higher reso-

lution images), Simoncelli developed a filter-based coarse-

to-fine algorithm [14]. We only describe the basic solution

here.

Define a state evolution equation for the estimated flow

field v̂,

v̂(l) = E(l − 1)v̂(l − 1) + n0, Λ0 ∼ N (0,Λ0), (5)

where l is an index for scale (larger values of l correspond

to finer scale). E is a linear interpolation operator used to

extend a coarse scale flow field to finer scale. The random

variable n0 represents the uncertainty of the prediction of

the finer-scale flow field from the coarser-scale flow field,

it is assumed to be point-wise independent, zero-mean and

normally distributed.

The measurement equation is defined based on Eq. 2:

−ft(l) = ∇f(l) · v(l) + (n2 + ∇f(l) · n1). (6)

Applying the standard Kalman filter framework (replace the

time index t with scale index l), given Eq. 5 and Eq. 6, an

optimal estimator for v(l) is derived from the estimate of

the coarse scale v̂(l − 1) and a set of fine scale derivative

measurements:

v̂(l) = E(l − 1)v̂(l − 1) + K(l)ν(l),

Λ(l) = Λ
′(l) − K(l)∇f

T (l)Λ′(l),

K(l) = Λ
′(l)∇f(l) ·

[∇f
T (l)(Λ′(l) + Λ1)∇f(l) + Λ2]

−1,

ν(l) = −ft(l) −∇f
T (l)E(l − 1)v̂(l),

Λ
′(l) = E(l − 1)Λ(l − 1)E(l − 1)T + Λ0. (7)

The innovation ν(l) is approximated as the temporal deriv-

ative of the warped images. More detail about this approxi-

mation process can be found in [14].

4.1.2 Region-based Parametric Model Fitting

Eero Simoncelli’s approach [15] tends to over-smooth the

solution due to:

1. uniform window size for defining a neighborhood (a

fixed weighting window size of 3 × 3 is used in [15]),

2. level to level propagation of information.

One solution to the problem is to use window sizes that

are adaptive to the local image properties. Given that in-

formation propagation is actually the desirable property

of a multi-scale approach, it is hard to address the over-

smoothing problem caused by level to level information

propagation. To solve this problem, we take inspiration

from [2] by making use of parametric model to fit flow vec-

tors to regions from image segmentation. It is commonly

assumed that motion of the pixels within the same region

can be fitted to a parametric model. For each pixel, denoted

by a its coordinates, x = (xi, yi), within the same region,

one of the following models is selected by the algorithm to

fit flow vectors:

F(xi) =

[

1 0
0 1

]

,

a =
[

a0 a3

]

,

F(xi) =

[

1 xi yi 0 0 0
0 0 0 1 xi yi

]

,

a =
[

a0 a1 a2 a3 a4 a5

]

,

F(xi) =

[

1 xi yi x2

i xiyi 0 0 0
0 0 0 xiyi y2

i 1 xi yi

]

,

a =
[

a0 a1 a2 a6 a7 a3 a4 a5

]

.

The two-parameter model corresponds to translation, six-

parameter model corresponds to affine motion and the eight-

parameter model corresponds to quadratic motion.

Minimizing the following weighted least squares equa-

tion gives the estimate of the model parameters ar for re-

gion r,

âr = arg min
ar

r
∑

i

(v−F(xi)ar)
T Λ−1

v
(v−F(xi)ar). (8)

Though this formulation is similar in spirit to that of [2],

the robust error norm is not used as we have an uncertainty

model for v from Simoncelli’s approach [14]. Pixels in the

region with reliable flow v carry more weight in the fitting

process. These pixels correspond to edge pixels or the re-

gions with rich texture. Hence the fitting is more robust.

We use this simple weighted leasts square by combining

region-fitting with Simoncelli’s approach. The cost function

of Eq. 8 is still convex and guaranteed to have an optimal

solution given enough pixels in the region. Let â be the op-

timal solution, the updated flow field v̂
′ and corresponding

covariance Λ′

v are computed as following:

v̂
′ = F(xi)â,

Λa = (J(xi)
T Λ−1

v J(xi))
−1,

Λ′

v = F(xi)ΛaF(xi)
T , (9)

where J(xi) is the Jacobian matrix of F evaluated at xi.

In the combined approach, first image segmentation

based on color/intensity information is performed via mean

shift [3] at each resolution level of the image pyramid. The

order of the parametric model used for fitting is adaptive

to the resolution level, region size and fitting residual error.
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input image (t) input image (t + 1) image pyramid segmentation pyramid resulting flow

Figure 2. Example of flow computation for Yosemite sequence [6].

input image (t) input image (t + 1) image pyramid segmentation pyramid resulting disparity

Figure 3. Example of disparity computation for Teddy data set [18].

Lower order model is preferred if an higher order model

fails to improve the fitting quality. When the residual error

of fitting a eight-parameter model is still high and the region

size is large, the region is split by using mean shift [3] on the

region flow field as color/intensity information alone is not

enough. Model fitting is then performed on the newly split

regions. This step can be recursive; the stopping criteria is

either the region is small enough or the error residual is be-

low a threshold. Figure 2 shows the process of computing

optical flow for the Yosemite sequence [6].

4.2. Distribution of Disparity

The same algorithm for optical flow computation is ap-

plied for computing disparity of input image pair captured

by the stereo rig. Just substitute the time index t and t + 1
with the view index l and r, where l refers to left view and

r refers to the right view in a binocular stereo rig. Only

horizontal displacement and corresponding variances are

computed. Most researchers treat optical flow and disparity

computation differently as the constant brightness assump-

tion is often violated in disparity computation. By using

multi-scale based approach, the problem can be solved in

the same way as optical flow. Figure 3 shows the process

of computing disparity and disparity obtained for the Teddy

data set [18].

4.3. Computing 3D scene flow

The Camera rig is fixed in our system, so there is no

camera motion. Following [19], scene flow is defined as the

3D motion field of the points in the world, just as optical

flow is the 2D motion field of the points in an image. Any

optical flow is simply the projection of the scene flow onto

the image plane of a camera.

Given a 3D point X = (X, Y, Z), the 2D image of this

point in view v is denoted as xv = (x, y). The 2D compo-

nents of xv are

xv =
[Pv]1(X, Y, Z, 1)T

[Pv]3(X, Y, Z, 1)T
, yv =

[Pv]2(X,Y, Z, 1)T

[Pv]3(X,Y, Z, 1)T
, (10)

where [Pv]j is the jth row of the projection matrix Pv . If

the camera is not moving, then v = dxv

dt
is uniquely deter-

mined by the following:

dxv

dt
=

∂xv

∂X

dX

dt
. (11)

To solve for the scene flow V = dX
dt

, two equations are

needed. Hence at least two cameras are needed. The setup

of the system of equations is simply

BV = U, (12)

where

B =
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.

(13)

A singular value decomposition of B gives the solution that

minimizes the sum of least squares of the error obtained by

re-projecting the scene flow onto each of the optical flows.

4.4. Integrated Approach

As discussed in Section 2, it is known that the correspon-

dence problem (across different views or across different

time frames) is ill-posed. Hence it is hard to compute scene

flow reliably from optical flow. One way to get around this

is to use many cameras, as reported in [19], a total number

of 51 cameras were used to solve Eq. 12 reliably.

Instead of aiming to improve the accuracy by using more

cameras, we propose to incorporate the covariances derived

from the computation of optical flow and disparity. By tak-

ing the covariances from disparity and optical flow into ac-

count, the linear system of Eq. 12 tends to produce reason-
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able scene flow given a small number of cameras. The es-

timated scene flow with covariances can be used for appli-

cations like probabilistic 3D tracking and 3D motion and

structure analysis.

For a stereo pair, the 3D coordinate X is related to the

disparity d and corresponding image coordinates xvl
and

xvr
where vl indicates left view and vr indicates right view.

Let T denote the baseline and f denote the focal length

(both cameras are assumed to have the same focal length).

The following equation defines the relationship between the

3D coordinates, 2D image coordinates in the left and right

cameras and the pixel disparity between left and right cam-

eras.

X =
T (xvl

+ xvr
)

2d
, Y =

T (yvl
+ yvr

)

2d
, Z =

fT

d
. (14)

Hence we solve Eq. 13 for scene flow, V by:

V̂ = arg min
V

(BV − U)T
W

−1(BV − U), (15)

where

W = ΛdΛv. (16)

By covariance propagation, the covariance of V is:

ΛV = (BT
W

−1
B)−1. (17)

Algorithm 1 Algorithm for computing 3D scene flow

initialize Λp and Λ0 to small value.

for l = 0 to L− 1 do

segment fvl
(t, l) and fvr

(t, l) via mean shift[3],

if l == 0 then

compute Λu(l), û(l), Λd(l) and d̂(l) [Eqs.3 and 4],

else

compute Λ
v(l), v̂(l), Λd(l) and d̂(l) [Eq.7],

end if

do model fitting as described in Section 4.1.2,

compute û
′, Λ′

u
, d̂′ and Λ′

d [Eq. 9],

set û(l) = û
′(l), Λu = Λ′

u
, d̂(l) = d̂′(l), Λd(l) = Λ′

d(l),

if l == 0 then

solve V̂(l) [Eq. 15],

else

solve V̂(l) [Eq. 15], using V̂(l− 1) as the initial estimate,

end if

end for

To compute the scene flow for two consecutive frames in

the stereo video streams, we use fvl
to denote the left video

stream and fvr
to denote the right video stream. First

we build image pyramids of height L for fvl
(t), fvl

(t +
1), fvr

(t) and fvr
(t+1). Pyramid images are indexed by l

where l = 0 is the index for image at the lowest resolution

level and l = L − 1 is the index for image at the highest

resolution level. The optical flow fields computed at each

level of the pyramid for the binocular views are denoted as

vvl
(l) and vvr

(l). Disparity is denoted as d(l). Algorithm 1
describes a single integrated method for computing optical

flow, disparity and 3D scene flow.
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Figure 4. Angular error (first row) and magni-

tude error (second row) of synthetic data with added

Gaussian noise.

5. Experiments

Two sets of experiments are conducted to demonstrate

the effectiveness of the weighted least square model and the

performance of the algorithm.

5.1. Synthetic 3D Data

To show the effectiveness of the weighted least squares

method, 3600 3D points on a planar surface with known 3D

scene flow, 2D optical flow and disparity are generated. The

point-wise 3D scene flow is drawn from a Gaussian distrib-

ution. Each point moves in slightly different direction with

different magnitude which corresponds to non-rigid motion.

Gaussian noise with different variances are added to the 2D

optical flow and disparity. Three methods are tested. Accu-

racy of the computed 3D scene flow is measured using the

average angular error and average magnitude between com-

puted 3D scene flow and known 3D motion. The mean and

standard deviation of the angular and magnitude error of the

estimated 3D scene flow are reported based on the average

of 10 runs of the experiments.

Method 1: Eq. 12 without incorporating covariance [19].

Method 2: Eq. 15 where only the covariance of 2D optical

flow is used.

5



Method 3: Eq. 15 where both the covariance of 2D optical

flow and the variance disparity are used.

Figure 4 shows the mean and standard deviation of angular

and magnitude error. It is clear that by incorporating the

covariance of the 2D optical flow and the variance of the

disparity, more accurate 3D scene flow can be estimated via

the weighted least squares.

5.2. Real Scene

To evaluate the algorithm in practice, experiments are

performed on real scene sequences. The first row of Fig-

ure 5 shows frames from a binocular video sequence cap-

tured for the experiment. The sequences were captured with

Videre MEGA-D system: a binocular stereo camera con-

nected with Matrox capture card through fire wire cable.

The frame rate of stereo sequence is around 30 frames/sec

with resolution of 320 × 240. The scene flow algorithm

is implemented Matlab and C++. Experiments were con-

ducted on an AMD Athlon MP 2100+ machine. Dense

scene flow is computed for each frame in about 2 minutes

per frame. The sequences acquired are rectified and the cal-

ibration information is known.

The binocular video sequences are acquired in an un-

controlled illuminated environment, hence the estimates of

optical flow and disparity are noisy. The observable motion

in the scene is the backward movement of right hand and

the forward movement of left hand. The second row of Fig-

ure 5 shows the 2D projection of the 3D flows in the left

and right view, the Z velocities and the variances. From the

result, we can see that the 3D movements of the left and

right hands have been described reliably. The variance of

the Z velocity gives information of how reliable is the es-

timate. Darker areas indicate lower variance and brighter

areas represent higher variance. The variance is tied to the

2D image properties, e.g. local image contrast and texture

information. We get comparable results to those of [24] in

a similar setup, while they used three cameras and we only

use a binocular camera rig.

The third and fourth rows of Figure 5 show results of an-

other sequence where both hands move forward. The last

row of Figure 5 shows the results without accounting for

covariances (Eq. 12). It is clear that the Z velocities recov-

ered are very noisy compared with the results obtained from

our algorithm.

6. Discussion and Conclusions

A multi-scale integrated algorithm for 3D scene flow

computation is proposed in this paper. Covariances and

variances from the probabilistic framework for optical flow

and disparity computation are combined to estimate 3D

scene flow. Experiments with synthetic and real data

demonstrate good performance with just two cameras. An-

other benefit of the framework is that we can get covari-

ances of the estimated 3D scene flow. The covariances are

derived from the 2D image data and give a measure of how

reliable the estimated flow is. The covariances can provide

a good initialization for model based tracking algorithms.

Our future work includes: (1) incorporating the output from

our framework in tracking applications such as vision-based

human-computer interfaces; (2) analyzing and annotating

events in video through analysis of 3D scene flow.
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