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ABSTRACT Object discrimination plays an important role in an infrared (IR) imaging system. However, at a

long observing distance, the presence of detector noise and the absence of robust featuresmake space objects’

discrimination difficult to tackle with. In this paper, a multi-scale convolutional neural network (MCNN) is

proposed for feature learning and classification. It consists of three parts: transformation, local convolution,

and full convolution. Different from previous objects’ classification methods, the MCNN can automatically

extract features of objects at multi-timescales and multi-frequencies. Low-level features are combined with

high-level features to simultaneously capture long-term tendency and short-term fluctuations of the time

sequences of IR radiation intensity. Training data are generated from IR radiation models considering

micro-motion dynamics and inherent properties of space point objects under different scenarios. The

simulation results indicate that our method not only promotes the performance but is also robust to the

detector noise. The classification accuracy can reach 96% at a strong noise level (signal-to-noise ratio is

10 dB) in a simulation scenario.

INDEX TERMS Convolutional neural network, space point objects, infrared radiation, discrimination,

multi-scale.

I. INTRODUCTION

Objects discrimination using IR sensor is a key technology

for space tracking systems and surveillance systems [1] and

is significant to space security. In the case of long observing

distance, objects emerge as small dots on the IR image plane

lacking shape and attitude information. And when objects are

free from air resistance and gravity, they follow the same tra-

jectory during flight. Those objects have similar IR radiation

intensity, which poses a great challenge to the discrimina-

tion system. Recently, object discrimination based on time

sequence of object IR radiation intensity has attracted much

attention, which provides a feasible way for the problem

solving. Thus, the problem of IR point objects discrimination

can be converted into the classification of time sequences of

IR signatures.

Existing space IR objects discrimination methods [2]–[7]

can be mainly classified into two categories, i.e., either hand-

crafted models or learning based approaches. Most hand-

crafted models focus on feature extraction which is of vital

importance for object classification. Silberman [2] extracted
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several statistical features of input signatures, e.g., mean,

variance, to build classifier for ballistic targets. The analysis

of objects infrared signatures showed that different objects

may possess different temperatures and cool at varying rates.

Wang and Yang [4] proposed probabilistic neural network

for exo-atmospheric target discrimination using the temporal

evolutional characteristics of temperature and emissivity-area

products as inputs of the neural network. Temperature feature

can be extracted through the radiation ratio of two different

wavelengths. Besides the temperature feature, the micro-

motion features and geometrical shape also serve as important

features. Exo-atmospheric objects are always in rotational or

vibrational motion, referred to as micro-motion, until they

re-enter the atmosphere [5]. Micro-motion of object leads to

periodic fluctuations of the time sequence of IR signature [7].

Although the shape of object cannot be resolved by IR

imaging, different shape of micro-motion object can induce

different time sequence of IR signature [8], [9]. Wu et al. [10]

and Liu et al. [11] estimated the micro-motion and shape

parameters based on the model they proposed, respectively.

However, these approaches are limited by the assumptions of

specific parameters, when the conditions change, the perfor-

mance of these hand-crafted features will obviously decrease.
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The feature extraction of space infrared point object remains

challenging.

Deep learning techniques have recently achieved impres-

sive results in a variety of domains [12]–[19], which provide a

new perspective for the problem mentioned above. Instead of

extracting hand-crafted features, learning based approaches

can adopt deep neural network for feature learning from the

raw data directly. As one of deep neural networks, convolu-

tional neural network (CNN) has been successfully applied to

object detection [17], visual recognition [18], [20] and time

series classification [21]–[28]. However, for space IR point

objects, the dissimilarity between classes is small. In typical

CNN, the first convolution layer may lose some important

information in bottom layers of the CNN, limiting its perfor-

mance in multiple feature extracting. To overcome this short-

coming, CNN combining Multi-scale representation [21],

[29]–[31] is explored in this work. Since the IR signatures

are generated by dynamical systems which are mainly caused

by motion, including orbit motion and micro-motion, and are

susceptible to detector noise. The challenge of the application

of CNNs is to explore the framework that is appropriate for

learning both fast variables and slow variables and is robust to

noise. Considering the properties of IR signature, we propose

a multi-scale convolutional neural network (MCNN) to auto-

matically learn suitable feature in both time and frequency

domains for objects classification.

Our contributions can be summarized as follows:

(1) The infrared radiation intensity sequence model of

space point objects is established. By analyzing the char-

acteristics of motion, temperature and shape projection of

space object, a direct mathematical model of micro-motion

observation and the mathematical expression of projection

area series are derived. On this basis, time sequence of IR

signature can be easily obtained.

(2) We propose a multi-scale CNN structure for discrim-

ination of space IR point objects, where the multi-timescale

and multi-frequency information are used and serve as input

to the network, enabling more richer feature learning.

(3) Extensive evaluations are performed and validate that

the proposed framework can significantly improve the perfor-

mance of space IR point objects discrimination under limited

data and strong noise scenarios.

The rest of this paper is organized as follows.

Section 2 introduces IR signature model of space point

objects. Section 3 presents the detailed methodology of our

work. We present results with the simulated IR radiation

datasets to demonstrate the effectiveness of our classifier in

Section 4. And conclusion is drawn in Section 5.

II. IR SIGNATURES MODELING

Due to consuming time, high expense, limited number of

experiments depending only on measurement, it is inconve-

nient to analyze IR signature of space point objects under

various complex conditions. Thus, the simulation is an alter-

native method [6], which provides an effective research

facility to analyze IR signature with more flexibility and

lower costs. There are a number of models used for sim-

ulating IR signature measurements in literature [8]–[11].

The majority of previous work are based on simplified

assumptions. However, the space object IR signature detected

by motion platform depends on a wide range of complicated

factors, including the object surface temperature, emissivity

of material, geometry, motion attitude and detector charac-

teristics [5]. To bridge the gap between simulation and real

scenarios, we provides a relative comprehensive considera-

tion for space IR objects applications. Our IR object signature

simulation is performed by IR radiation intensity model,

projection area model, and time sequence model.

A. IR RADIATION INTENSITY MODEL

According to Planck’s Law of Radiation, an object’s radiation

is mainly depended on its temperature distribution. To calcu-

late the temperature, we divide the objects’ surfaces into small

pieces using finite element method [9]. Compared to the sun

and the earth, the other sources contribute little radiation to

the object. Therefore, the main factors that affect an object’s

temperature are as follows:

1) External heat source radiation q1,

2) Internal heat source radiation q2,

3) Heat exchange between adjacent nodes q3,

4) Radiation from other nodesq4,

5) Node’s own heat radiation q5,

6) Node’s temperature variation q6.

In the finite element method, the above heat radiations

factors all have mature calculation formulas and details are

available in the references [9]. Based on law of energy conser-

vation, the node heat equivalence function can be understood

as the following:

q1 + q2 + q3 + q4 = q5 + q6 (1)

The temperature of every node at a given time can be calcu-

lated according to the initial temperatures supplied in Table 1.

Thus, for an object at absolute temperature T , the power

received by the sensor in the wave band λ1 ∼ λ2 is

PT (λ1 ∼ λ2) =
πD2

4
ετAproj ·

∫ λ2

λ1

MT (λ)dλ (2)

where D is the optical aperture diameter, R is the distance

between the sensor and the object, τ is the optical transmit-

tance of the system, ε is the emissivity of the object, MT (λ)

is the spectral radiant exitance of blackbody. According to

Planck’s law, MT (λ) can be represented as

MT (λ) = 2hc2/λ5[exp(hc/(kλT )) − 1]−1 (3)

where c denotes the velocity of light in vacuum, k denotes the

Boltzmann entropy constant, and h denotes the Planck con-

stant. Aproj is the projection area along the line of sight (LOS)

of the detector. During the flight of space object outside the

atmosphere, the detector is approaching the object continu-

ously, the projection area is varying due to the micromotion.

So the Aproj, T and R are the keys to the changing of IR
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TABLE 1. Simulation parameters of four classes and IR detector.

signature while the other parameters are invariant. More cru-

cially, the object projection area Aproj is a complex variable

that closely related to the shape and the motion attitude.

B. PROJECTION AREA MODEL

Generally, the shape model of space objects detected by

IR detector include irregular fragments and symmetrical

likes flat-base cone, ball-base cone, cylinder, cone-cylinder,

sphere etc. In this work, our classification mainly consid-

ers four representative categories: flat-base cone, ball-base

cone, cone-cylinder and arc-shaped debris. We define them

as object 1 (O1), object 2 (O2), object 3 (O3) and object 4

(O4), respectively. We choose them because they are similar

in shape. Once the algorithm can accurately discriminate

them, it can also discriminate those objects that have larger

difference in shape.

To calculate the projection area, it is necessary to deduce

the micro-motion process of the objects as it varies with

micro-motion parameters. The geometry of the sensor and a

FIGURE 1. Geometry of the sensor and a coning object.

coning object is illustrated in Fig. 1. Coning is a rigid body

rotation about an axis that intersects with an object body coor-

dinate, which usually combined with spinning. The sensor

coordinate system is (U, V, W), the object body coordinate

is (x, y, z), the reference coordinate (X, Y, Z) is parallel to

the sensor coordinate and its origin locates in object’s mass

center. α,β are the azimuth and elevation angle of the sensor

LOS in reference coordinate.

It is supposed that the convex object surface is assembled

by N small triangular patches, and the area and normal vector

of patches are ai and ni(i = 1, 2, ...,N ) respectively. Rinit is

initial rotation matrix, described by Euler angle (φ, θ, ψ). the

matrix of Euler angle can be expressed as

Rinit =





cosψ − sinψ 0

sinψ cosψ 0

0 0 1



 ·





1 0 0

0 cos θ − sin θ

0 sin θ cos θ





·





cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ



 (4)

Viewed in the reference coordinate system, when an object

rotates about a rotation axis −→oz whose azimuth and elevation

angle in the reference coordinates (X, Y, Z) are αR and βR with

the angular velocity ωR, the point Ep1 at time t0 = 0 described

in the reference coordinate would move to a new position

Ep2 at time t by rotation matrix Rt. According to Rodrigues

formula [7], the rotation matrix Rt can derived as

Rt = I + ê sinωRt + ê
2(1 − cosωRt) (5)

where ê is a skew symmetric matrix.

ê =





0 − sinβR sinαR cosβR
sinβR 0 − cosαR cosβR

− sinαR cosβR cosαR cosβR 0





(6)
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So at time t , the normal vector Eni = [x0, y0, z0] of any an

object patch will rotate from its initial vector in the object

local coordinate system to a new vector Ennewi in the reference

coordinate system by

n
new
i = Rt · Rinit · ni (7)

Therefore, according to Eq. (5)-(7), the object’s projection

area along the LOS at time t can be expressed as

Aproj =

N
∑

i=1

ai · max[cos(n′,nnewi ), 0] (8)

C. TIME SEQUENCE MODEL

In subsection A and B, the main factors affecting the varying

of the IR radiation have been discussed in detail. In this

subsection, the time sequence of IR radiation is established

based on the IR signature model.

The detection distance is computed based on the ellipse

trajectory theory. The flight trajectory of object and detector

is illustrated in Fig. 2.We set the start position of geographical

coordinates of objects is (130◦ E, 80◦ N, 150 km) and the end

position is (80◦ E, 40◦ N, 150 km). The peak distance of tra-

jectory from the ground is 469.3km. The detector observes the

objects with speed of 6 km/s from start position (95◦ E, 35◦ N,

300 km). The data are gathered from 300 s to 320 s. A series of

IR signature sequences are generated by sampling randomly

from a distribution of physical attributes and dynamic states

as listed in Table 1.

FIGURE 2. The flight trajectory of object and detector.

Based on themodelingmethod stated above and simulation

parameters listed in Table 1, four types of objects were simu-

lated. Fig. 3 shows the idealized radiation intensity of objects

varies over time. We can see that the IR signatures have not

only the long-term variation but also short-term fluctuation

characteristics. They all have periodic fluctuations due to

micromotion. The O1 has relatively small periodic variation

amplitude while the O2 and O3 have larger periodic variation

FIGURE 3. IR radiation intensity sequences under ideal condition.

amplitude. The IR radiation sequences of the O1, O2 and

O3 are unsmooth and somewhat jagged while O4 is relatively

uniform. There are complicated factors induced this variation,

including the object surface temperature, emissivity of mate-

rial, geometry, motion attitude and observing angle. It can-

not be discriminated simply depending on several specific

features.

It should be noted that the description of the IR radiation

intensity sequence model of the target is inevitably idealized.

In fact, the temperature variation on the surface of the object

is not completely inconsistent, and the IR sensor sensitivity,

response rate, etc. will change slightly. For these reasons,

in the IR radiation intensity sequence simulation, these fac-

tors are usually described as Gaussian additive white noise to

improve the authenticity of the data description. Fig. 4 shows

the IR radiation sequences of four classes at noise level of

SNR =5 dB. The SNR is defined as the ratio of signal

power Ps to the noise power Pn and is computed by the

formula: SNR = 10 log10(Ps/Pn). It poses a great difficulty

for discrimination as four classes affected by strong noise are

very similar.

FIGURE 4. IR radiation intensity sequences with noise.
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III. PROPOSED CLASSIFICATION FRAMEWORK

Given a time sequence of IR signature, our goal is to learn

a set of discriminative features using the CNNs, which

captures the essence of different objects. The challenge is

the insufficiency of feature extraction for objects classifi-

cation. In this work, we propose a MCNN framework to

extract multi-scale features from IR signatures. As shown

in Fig. 5, the framework contains three sequential parts,

namely, transformation part, local convolution part and full

convolution part. The transformation part includes identity

mapping, down-sampling transformations in time domain,

and spectral transformations in the frequency domain. The

local convolution has three CNN in parallel which learn

features from different transformations of input. The full con-

volution part concatenates all extracted features from local

convolution part and apply twomore convolutional layers and

max pooling layers, one fully connected layer and a softmax

layer for final classification.

FIGURE 5. Proposed MCNN framework.

A. TRANSFORMATION OF INPUT SPACE

The transformation of input IR signature is inspired by Cui

et al. [21]. In fact, our IR signature classification problem

can be viewed as a special time series classification problem.

There are complicated factors induced the fluctuate of time

sequence of IR signature both in short range and long range.

Moreover, the time sequence of IR signature is often distorted

by detector noise. It remains challenge to learn an appropriate

feature representation from raw data. In this work, we make

a try to address this problem through diversity transformation

of input space before feature extracting. The transformation

includes down-sampling in time domain and smoothing in

frequency domain. By means of down-sampling and smooth-

ing with different window sizes, we can get multiple time

sequences of IR signature with different time scales and

frequencies. We denote a time sequence of IR signature as

T = {t1, t2, · · · , tn} and the down-sampling rate is m, then

the new time series Tm can be expressed as

Tm = {t1+m∗i}, i = 0, 1, · · · ,
n− 1

m
(9)

Moving average is applied to generate multiple time

sequences of IR signature with different degrees of smooth-

ness. Defining the window size as s, then the new time series

T s can be expressed as

T s =
xi + xi+1 + . . .+ xi+s−1

s
, i = 0, 1, · · · , n− s+ 1

(10)

By doing multi-scale transformation, both short-term fea-

tures and long-term features can be utilized at the same

time. While traditional CNN learns features from low level

to high level, which may lose some important features for

classification. Moving average with different window sizes

plays a role to reduce the noise level, which is equivalent to a

low frequency filter. After transformation, the input is divided

into three branches, namely, original branch, multi-timescale

branch and multi-frequency branch.

B. CONFIGRATION OF THE PROPOSED MCNN

The local convolution block has three channels sharing the

same CNN architecture, while the full convolution block

adopts a different structure. The details of layouts of each

network are described in Table 2.

TABLE 2. Architectures of the proposed MCNN.

First, we design the local convolution block with three

identical CNN structure, which separately extracts features

from the output of transformation part. The architecture of

CNN in each channel contains three convolution layers, three

max pooling layers and one fully connected layer. The con-

volution operation between an input feature map x and a

convolutional kernel W is defined by

h(x) = f (x ∗W + b) (11)

where ∗ denotes the convolution operator, f is the activation

function for each layer that adds nonlinearity to the feature

vector. We use ReLu for layer activation, which is defined by

f (x) = max(0, x) (12)

Following the convolutional layer, a max-pooling layer is

applied to reduce feature maps’ size as well as the number
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of following layers’ parameters to reduce redundancy and

improve computation efficiency. After convolution and max

pooling, a fully connected layer is introduced for the later

feature extraction block.

Then, we concatenate the output of each fully connected

layer from three branches and feed them into the next block

as input.

Finally, we design the full convolution block, which is

composed of two convolution layers, two max pooling layers,

one fully connected layer, and a softmax classifier. ReLu

is used for layer activation and dropout is applied to avoid

overfitting. A softmax function is used to restrict outputs in

the ranges (0,1), which is defined by

yj(h(x)) =
exp(hj)

∑

i exp(hi)
(13)

Cross entropy is used as loss function and can be expressed

as

L(θ ) = −
1

n

n
∑

i=1

logP(yi|x i; θ ) (14)

where vector θ are the parameters of network, {(x i, yi), i =
1, 2, . . . n} are the set of labeled training set, yi corresponding
to the true label of the sample x i. Then the MCNN is trained

by adaptive moment estimation (Adam) [32] by minimizing

the cross-entropy loss between the outputs and the labeled

data. The parameters updating rule is

θt = θt−1 −
α

√

v̂t + ε
m̂t (15)

m̂t = mt/(1 − β t1)

v̂t = vt/(1 − β t2) (16)

where α is the learning rate, t is the iteration step, m̂t , v̂t are

the first moment estimation and second moment estimation

respectively. The parameters β1,β2 are exponential decay rate

and the default value of ε is 10−8 generally. Adam is an algo-

rithm for first-order gradient-based optimization of stochastic

objective functions which is well suited for problems with

noisy or sparse gradients. Empirical results show that Adam

algorithm performs well in practice and has great advantages

compare to other stochastic optimization algorithms.

IV. SIMULATION RESULTS

In this section, the classification framework is validated

using simulated data which are generated from physics-based

models as mentioned in section 3. Comparison with tradi-

tional methods are conducted to evaluate the performance

of our proposed approach on different noise level and data

length (L). Our method is implemented in Python with the

TensorFlow wrapper and run on a PC with 2.7 GHz CPU and

8 GB 1600 MHz DDR3 memory.

A. DATA DESCRIPTION

To meet the requirement of real situation, we simulated data

with different length and noise level. Firstly, we transform

the simulated 20 second objects IR signature data into three

parts: the first 5 second, the first 10 second and 20 second,

respectively. We make this division according to the micro-

motion periodicities of simulated signatures which are set in

the range of 6 second to 8 second, as displayed in table 1.

Then, we add White Gaussian noise to the data with different

signal-to-noise ratios (SNR =5 dB, 10 dB, 15 dB, 20 dB,

25 dB, 30 dB) to validate the performance of our proposed

method. In all the experiments, we use 60 percent of data

for training, 20 percent of data for validation and 20 percent

of data for test. To achieve the best performance, a set of

experiments are conducted to choose the suitable amount of

dataset. The classification results are the average of 10 runs.

Fig. 6 is the accuracy curve under different amount of training

samples where the horizontal axis represents for the dataset

size. It can be seen that when the amount of training samples

reach about 1600, the accuracy gradually converges.

FIGURE 6. Classification accuracy using different number of training
samples.

B. EFFECT UNDER DIFFERENT SCENARIOS

To verify the effectiveness of our proposed method to the

space point IR objects discrimination. We conduct simula-

tions under different scenarios. Table 3 displays the classi-

fication performance of MCNN with different data length

under a range of noise level. The results show that the accu-

racy increases with the input data length L and SNR. This

is because the higher noise level can distort the signature,

which directly worsen the classification accuracy. On the

TABLE 3. Classification results under different scenarios.
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other hand, for periodic IR signature, it would be a challenge

to the classifier when the objects information is less than one

cycle. However, the accuracy would not increase too much

with the increment of the input data length when the input

contains more than one cycle information. The classification

accuracy of our proposed method can reaches 96% at strong

noise level (SNR = 10 dB), demonstrating its robustness to

noise. And when the IR signatures are less polluted by noise

(SNR = 25 dB), it can achieves 89.5% with limited input

information (L = 5 s).

C. EFFECTIVENESS OF THE MULTI-SCALE CONVOLUTION

To validate the effectiveness of multi-scale transforma-

tion, we perform simulation under three different sce-

narios, namely, Scenario I, Scenario II and Scenario III.

Scenario I represents the time sequence of IR signature with

5 seconds (the length of sequence is 100) at the noise level

of 30 dB. Scenario II represents the time sequence of IR

signature with 10 seconds (the length of sequence is 200)

at the noise level of 20 dB. Scenario III represents the time

sequence of IR signature with 20 seconds (the length of

sequence is 400) at the noise level of 10 dB. In each sim-

ulation, we remove the multi-frequency branch to test the

effect of multi-timescale transformation on the classification

accuracy and remove the multi-timescale branch to test the

effect of multi-frequency transformation on the classification

accuracy. We denote the down-sampling window size, step

size, number and the data length after down-sampling asW 1,

S1, N1, L1, respectively, and denote moving average window

size, step size, number and the data length after moving aver-

age as W2, S2, N2, L2, respectively. In the column of down-

sampling, we only perform multi-timescale transformation.

In the column of moving average, we only perform multi-

frequency transformation.

An evaluation of our proposed method with varying

down-sampling and moving average parameters under differ-

ent scenarios is shown in Table 4-6. The results show that

the different down-sampling parameters and moving average

TABLE 4. Classification accuracy (%) with varying down-sampling
parameters (W1, S1, N1)-L1 and moving average parameters (W2, S2,
N2)-L2 under Scenario I.

TABLE 5. Classification accuracy (%) with varying down-sampling
parameters (W1, S1, N1)-L1 and moving average parameters (W2, S2,
N2)-L2 under Scenario II.

TABLE 6. Classification accuracy (%) with varying down-sampling
parameters (W1, S1, N1)-L1 and moving average parameters (W2, S2,
N2)-L2 under Scenario III.

parameters affect the classification accuracy at different level.

The parameters N1 and N2 play a major influence to the

accuracy. From the last row of Table 4-6, we can see that

the worst performance is obtained when applying single scale

transformation. The parameters owning best performance are

shown in bold. Considering three scenarios comprehensively,

we select (2,1,4) as down-sampling parameters and (4,3,3)

as moving average parameters. It should be noted that the

data length is varied with different parameters setting. The

performance of adopting multi-timescale branch alone or

multi-frequency branch alone is worse than the combination

of the two simultaneously. In Scenario I, the accuracy of pro-

posed method with three branches can reach 88.75% (shown

in Table 3) while that is 88.50% (shown in Table 4) with two

branches. In Scenario II, the accuracy of three branches is

94.75% (shown in Table 3) while that is 93.25% and 93.75%

(shown in Table 5), respectively, with two branches. In Sce-

nario III, the accuracy of three branches is 96.00% (shown

in Table 3) while that is 95.25% (shown in Table 6) with two

branches. It demonstrates the effectiveness of application of

multi-scale transformation.
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FIGURE 7. Classification performance comparison on different data length. (a) L = 5s. (b) L = 10s. (c) L = 20s.

FIGURE 8. ROC curves of three methods on different data length. (a) L = 5s. (b) L = 10s. (c) L = 20s.

D. COMPARISON WITH OTHER METHODS

We evaluate the performance of the proposed framework

with two classical baseline methods: Long Short-TermMem-

ory (LSTM) and standard CNN. LSTM is a canonical recur-

rent network which has superior performance in sequence

modeling tasks [33]–[35]. To show the benefit of using the

proposed multi-scale transformations and local convolution,

we test standard convolutional neural network with the same

number of parameters as in MCNN. Four groups of compar-

isons are conducted in the following.

1) COMPARISON OF ACCURACY ON SIMULATED DATA

We use the Adam optimizer with learning rate 0.001. The

cross validation is applied to select the optimal model param-

eters. Fig. 7 displays the comparison results of three clas-

sifiers at the data length of 5s, 10s and 20s, respectively.

The results illustrate that the classification accuracies of three

methods increase with the input length L and SNR. From the

comparisons of three methods, we can see that the MCNN

outperforms the other two networks not only in the conditions

of different noise level but also in the scenes of different

input length. In addition, the proposed framework still shows

prominent performance even in lower noise level and with

insufficient objects information. While the LSTM classifier

perform not well. The comparisons of CNN and MCNN

demonstrate the effectiveness of multi-scale transformations

and local convolution of our proposed framework. The reason

is that our method can extract features at different time scales

exploring richer feature space. Instead of increasing differ-

ent filter size in the same convolution layer, the multi-scale

transformation of input time series can obtain different local

receptive field with a same filter size. It benefits the learning

of overall trends and subtle changes of time sequences, both

of which are crucial to the classification. On the other hand,

the transformation part can be viewed as a data augmentation

technique, which significantly improves the networks’ gen-

eralization capabilities, thus make the proposed model more

robust to the variations of the input data compared to the

standard CNN. LSTM can learn temporal dependencies in

sequence and is suitable for short term sequence prediction

problems. However, it still has difficulty with long term

dependencies. For classification tasks, many existing works

have shown that CNNs possess superior performance than

LSTM. Our results are consistent with it.

2) COMPARISON OF ROC CURVES

To analyze the effectiveness of our method under different

criteria, the receiver operating characteristic (ROC) curves

and the areas under the ROC curves (AUC) of the above

three methods at the data length of 5s, 10s and 20s are given

in Fig. 8. ROC is a graphical plot that illustrates the diagnostic
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ability of a binary classifier system as its discrimination

threshold is varied and is created by plotting the true positive

rate (TPR) against the false positive rate (FPR) at various

threshold settings [36]. AUC is a common indicator used

to characterize the merits of the classification or prediction

model, and the larger the AUC value, the better the perfor-

mance of the model. It is noticed that the ROC curve of our

method is above the other two methods and our method has

the highest AUC.

3) COMPARISON OF ACCURACY ON REAL DATA

To further verify the classification performance of MCNN,

we conduct experiments on real-world data sets originating

from the ‘‘UCR Time Series Classification Archive’’ [37],

which is a public datasets for time series classification and

includes time series sets from different application domains.

Since our IR radiation intensity data is essentially a time

series. It is reasonable to use this datasets verifying MCNN’s

performance on real data. Table 7 provides the detailed infor-

mation about each dataset we used.

TABLE 7. Summary of data sets, including the number of classes,
the time series length and the size of train/ validate/test set.

Table 8 shows the classification accuracy of three methods

on real-world time series. The best results are shown in bold.

It can be seen that MCNN obtains the best classification per-

formance. CNN achieves the same performance with MCNN

on two groups of data sets, which are ‘‘ Synthetic control’’ and

‘‘Wafer’’. In fact, the classification accuracy of threemethods

are close on referred two data sets. However, MCNN shows

superior performance on other data sets compared to CNN

and LSTM as a whole. We believe that the main reason is that

MCNN can learning more discriminative features through

multi-scale convolutions and can easily converge to global

optimal solutions while CNNmay get local optimal solutions

in some scenarios. The results on real data are consistent

with the results on simulated data, which demonstrate the

robustness of our proposed methods.

4) COMPARISON OF EFFICIENCY

Considering the efficiency of our proposed method, we pro-

vide the comparison of total parameters and run time of three

methods in Table 9. It should be noted that the run time

in the Table 9 refers to the time running on the same test

TABLE 8. Classification accuracy comparison of three methods on
real-world time series.

sets, which are the average of 10 runs. We can see that the

LSTM has lowest model parameters but the longest run time.

This is due to the fact that LSTM processes the input one

by one. It takes more time to training and testing. While the

CNNs can process the input in batch which are more efficient

than LSTM. The increase of multi-channels inevitably has

a slight influence on the efficiency of the proposed MCNN,

which requires more parameters and run time than standard

CNN. However, for the space object discrimination task,

the accuracy serves as a key role. The MCNN framework

achieves significantly improved performance despite with a

minor increase in run time. On the whole, the design of our

framework is relative lightweight.

TABLE 9. Comparison of three methods on parameters and run time.

E. DISCUSSION

As MCNN method has significantly improved the perfor-

mance of space point IR objects discrimination under dif-

ferent scenarios, the structure of MCNN has been analyzed.

There are two features of MCNN that make MCNN really

suitable for solving IR objects discrimination problem.

(1) Multi-scale convolution: time sequences of IR signa-

tures have both long-term tendency and short-term fluctu-

ations due to the combination of micro-motion and orbit

motion. For our model, we transform the raw data into dif-

ferent time scales and frequency scales, which avoids losing

important information in the bottom layers of MCNN and

provides local features and global features at the same time

after convolution. Meanwhile, the multi-frequency transfor-

mation makes the framework more robust to noise, which

are essential for IR objects discrimination at long observ-

ing distance. Furthermore, by down-sampling the input time

sequence instead of increasing the filter size, it can greatly
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reduce the number of parameters in the local convolutional

layer.

(2) Tolerance of shape changes and displacement: time

sequences of IR signatures have many local period features

and these features are distributed on the time axis, where

every feature will appear to the center around a particular time

which varies in a limited range. In other words, there are a

lot of shape changes and displacements due to errors caused

by motion platform and observing line of sight. To deal with

the problem of variability in MCNN, max-pooling layers are

inserted into the network structure. Generally, the activations

of max-pooling layers are divided into some bands and there

are a smaller number of bands can be obtained which pro-

vide a lower resolution feature. Those features contain more

useful information and are more robust to shape changes and

displacement.

Nevertheless, there are some limitations to this work. First,

the training of deep neural networks is time consuming since

model parameters are determined by lots of experiments and

themodel still can be further optimized; Second, the proposed

method lacks actual flight data for test. But we believe that

once trained this framework can be applied to real-data clas-

sification examples. Hence, in the future work, we plan to

study and extend our framework for IR objects classification

on more data sets and parameter settings.

V. CONCLUSION

In this paper, we established an IR radiation intensity

sequencemodel of space point objects and proposed aMCNN

framework for discrimination. The performance is evaluated

with extensive simulations and experiments. The results show

that using multi-scale convolution significantly improves

the classification performance, especially in conditions with

strong noise and limited information. The classification accu-

racy can reach 96% at strong noise level (SNR=10 dB) in

simulation scenario. It overcomes the shortcoming of previ-

ous works that they only learn features with single time scale

and are sensitive to detector noise. The proposed framework

shows promise as a tool for space point objects discrimina-

tion. For future work, we will further optimize our framework

using more data sets and applying to other similar classifica-

tion problems.
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