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Abstract. In the present work we investigate the multiscale nature of the correlations for high frequency
data (1 min) in different futures markets over a period of two years, starting on the 1st of January 2003 and
ending on the 31st of December 2004. In particular, by using the concept of local Hurst exponent, we point
out how the behaviour of this parameter, usually considered as a benchmark for persistency/antipersistency
recognition in time series, is largely time-scale dependent in the market context. These findings are a
direct consequence of the intrinsic complexity of a system where trading strategies are scale-adaptive.
Moreover, our analysis points out different regimes in the dynamical behaviour of the market indices under
consideration.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 05.45.Tp Time
series analysis

1 Introduction: persistency
and anti-persistency in non-stationary
systems

In recent years we have witnessed the development of
a new branch of research on the edge between physics
and economics. This new area, nowadays widely recog-
nized in both the communities, goes under the name of
econophysics. One of the most important achievement of
this novel discipline has been to point out empirically
that the stock market is far from being efficient: mem-
ory processes and feedbacks are present and they play
a quite important role in the dynamics of this system.
In particular, several studies have addressed the analysis
of market fluctuations or logarithmic returns, defined as
r(t) = ln[Pr(t)/Pr(t−1)], where Pr(t) is the price of a cer-
tain market at time t. Interestingly, the results show that
the shape of the probability distribution function (pdf),
P , irrespective of the particular stock under considera-
tion, displays a leptokurtic behaviour1, that is “fat” tails,
whose asymptotic decay can be well approximated by a
power law, P (r) ∼ r−β , with exponent β ∼ 3. This result

a e-mail: marco.bartolozzi@gmf.com.au
1 The actual shape of the distribution of returns is still a

matter of debate. Intriguing frameworks have been recently
proposed by Tsallis [1] and Beck [2]. A more complete discus-
sion on this important topic is beyond the scope of the present
work.

is very important and in fact openly contrasts with the
standard assumption that for a long time has ruled the
academic world of theoretical economics, that is, the effi-
cient market hypothesis (EMH) [3]. According to the EMH
the dynamics of market price movements are equivalent to
that of white noise and, therefore, their pdf can be well
represented by a Gaussian. In other words, the very large
fluctuations observed in the empirical price movement dis-
tribution, and represented by the power law tails, should
not exist (statistically). For a broader discussion on this
subject and the field of econophysics the interested reader
can refer to the books and reviews in references [4–10].

The source of the “anomalous” behaviour in the mar-
ket dynamics has to be related to inefficiencies, such as
feedbacks in the price which, eventually, lead to very large
fluctuations, such as crashes. It is obvious that the ex-
ploitation of these inefficiencies, even if for limited peri-
ods of time, becomes extremely important for traders and
financial companies.

For a single asset, inefficiencies are also related to cor-
relations in the price value over time. It is well-known that
first order or linear correlations can be neglected for most
of the indices when looking at time scales longer than a
few minutes [4,5]. This does not rule out the possibility of
higher order correlations, but, in order to extract these, we
need to make use of tools that are more sophisticated than
the standard autocorrelation function. Moreover, we need
to consider possible non-stationarities that may affect the
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time series: the dynamics of the stock market behaves dif-
ferently according to different “environmental” conditions
such as, for example, changes in the market regulation or
in the trading mechanism itself.

Detrended fluctuation analysis (DFA), recently pro-
posed by Peng at al. [11] in the context of DNA nucleotides
sequences, has been developed in order to extract cor-
relations from time series with local trends — that is,
from non-stationary times series. This method is particu-
lary relevant not only to finance but also to areas such as
geophysics or biophysics — where non-stationarity is the
rule rather than the exception. The DFA method, sum-
marized in Section 2, is based on the calculation of the
average variance related to a certain trend at different
scales. This procedure leads to an estimation, via a scal-
ing relation, of the Hurst exponent, H ∈ [0, 1], of the time
series: for 0 ≤ H < 0.5 it is said that the behaviour of
the time series is antipersistent, and conversely, persistent
for 0.5 < H ≤ 1. For completely uncorrelated movements,
as assumed by the EMH, we expect H = 0.5. Note that
the idea of calculating persistency/antipersistency in time
series through the scaling of the variance is not peculiar to
the DFA but in fact dates back to the pioneering work of
Hurst (and so we obtain the name Hurst exponent) in the
context of reservoir control on the Nile river dam project,
around 1907 [12,13].

In the present work we investigate the temporal evolu-
tion at different scales of the local Hurst exponent [14–18],
where by the term “local” we indicate the Hurst exponent
calculated at time t over a certain temporal window L
that extends backward in time. This concept is very im-
portant for non-stationary and multiscale systems such as
the stock market. Here, the dynamics of the trading can
be influenced at different horizons by differences in the
portfolio of strategies used by traders. In this case there
is no reason to believe that H should remain the same for
all t or that it would not vary if we calculated it using
windows of a different length. For this reason the Hurst
exponent is considered as “local”, in both time and length
scale.

In Section 4 we back up the previous arguments with
an empirical analysis where we show, using pdfs of lo-
cal Hurst exponents, that correlations depend not only on
the particular period under consideration but also on the
length scale that we are observing, therefore confirming
the multiscale nature of the market dynamics. Moreover,
we point out how this technique can be used to moni-
tor changes in the dynamics of the market which can be
clearly observed for some specific indices.

Despite the simplicity of the previous arguments, ex-
tracting a value of the local Hurst exponent that accu-
rately describes the serial correlation in a time series is
not a trivial task. Important limitations arise from a num-
ber of different sources. A first limitation comes from the
fixed temporal scale, L, that sets the limit for the num-
ber of data points to be used in the analysis. Usually a
reliable estimation of H requires a large number of sam-
ples which, on the other hand, prevents the investigation
of very small scales. A second limitation is related to the

possible presence of non-Gaussian increments in the time
series. Large non-stationary increments are able to make
significant contributions to the observed value of H . In
this situation the range spanned by the variance over a
time interval may not be related to a sequence of tem-
porally correlated steps in a certain direction but instead
may be primarily determined by large and possibly self-
similar jumps that are temporally uncorrelated.

Furthermore, we have to consider the intrinsic preci-
sion of the algorithm used to calculate H : that has to be
considered as another source of uncertainty. These issues
are discussed in Section 3. In this regard it is important to
stress that, in recent years, there has been a proliferation
of methods devoted to the estimation of H or of scaling
exponents in general. To the best of our knowledge each
method is characterized by a unique set of advantages and
disadvantages. The choice of the DFA as the working tool
in the present work is related mainly to its vast popularity
and, therefore, to the necessity of properly understanding
its limitations. For a recent review on scaling methods in
finance the interested reader could refer to [19].

The financial time series used in the analysis presented
in Sections 3 and 4, are composed of 1 minute prices for
different futures contracts starting from January 2003 up
until the end of December 2004. In particular we analyze:

– Stock Indices: Dax (DA), Euro Stoxx (XX), Stan-
dard & Poor500 (SP), Dow (DJ), Hang Seng (HI) and
Nikkei255 (NK).

– Commodities: Gold COMEX (GC) and Crude Oil E-
mini (QM).

– Exchange Rates: Japanese Yen (JY) and British Pound
(BP).

– Fixed Income: Eurex Bunds (BN), Long Gilts (GL),
Treasury Bonds (US) and BOBL (BL).

Each data set contains approximately 3 × 105 samples,
depending on the specific contract.

In summary, the present work is organized as follows:
in Section 2 we describe the algorithm used for the cal-
culation of the local Hurst exponent, that is the DFA. In
Section 3, we show some possible pitfalls of this method for
“fat” tailed time series by using fractional Brownian mo-
tion and Lévy processes as working examples. The main
analysis is presented in Section 4 while discussions and
conclusions are left for the last section.

2 The detrended fluctuation analysis method

DFA, originally proposed in reference [11], is considered
one of the most powerful technique to extract correlations
from non-stationary time series. This peculiarity makes
the DFA suitable for applications to stock market time
series. Some examples of its use in this field are given in
references [14,15,17,20–29].

The main idea behind this method is to analyze the
scaling of the average fluctuations around a possible de-
terministic local trend of some sort. In practice, if we have
a time series of random movements in time (in the same
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fashion as a random walk), x(t), of total length N , which
in the stock market case can be identified with the log-
arithmic price, x(t) ≡ ln[Pr(t)], then the implementation
of the method can be summarized as following:

1. The time series is divided in M = N/τ non-
overlapping boxes of equal length τ . In this case xi

τ (t)
represent the sub-series of length τ associated with the
ith box.

2. For each box, first we calculate the local trend which,
it is assumed, can be approximate by a polynomial of
degree p, yi

τ,p(t), and then the fluctuations, F i(τ, p),
around their local trend as

F i(τ, p) =

√
1
τ

∑
t∈ith box

(xi
τ (t) − yi

τ,p(t))2. (1)

According to the order of the polynomial used for the
detrending, we indicate DFA as DFA-p.

3. As the final step, the average fluctuation over the M

boxes 〈F (τ, p)〉M = (1/M)
∑M

i=1 F i(τ, p) is calculated
along with the τ -scaling which, for a certain range of
values, behaves as a power law

〈F (τ, p)〉M ∝ τH . (2)

From equation (2) we can finally extract the scaling
exponent, for example via a linear fit over the scales
where the power law holds.

Note that the accuracy of the method can be slightly in-
fluenced by the order of the polynomial used for the de-
treding and in principle it would be more correct to write
H ≡ H(p). However for the clarity of notation we will not
write the parameter p as a variable for H . We will return
to this matter in the next section where a study on the
dependency of H on p has been carried out.

As mentioned in the introduction, the dynamics of the
stock market can shift between phases of persistency and
anti-persistency and hence there is no reason, a priori, to
believe that the Hurst exponent has to remain constant
over long periods of time. In this context it is useful to
introduce the concept of local Hurst exponent, that is, the
Hurst exponent calculated at a certain time t ≤ N over
a time window L � N which extends backwards from
t. The choice of the window length L is very important
from a theoretical point of view. In fact, the value of H in
equation (2), as we will see in the next section, can change
according to choice of L — hence L can be identified as a
characteristic time for our calculations. The different be-
haviour of the Hurst exponent at different scales is nothing
but an expression of the multiscale dynamics of the system
enhanced by the averaged coarse-grained procedure used
by the DFA algorithm when calculating the scaling rela-
tion equation (2). Thus the Hurst exponent at a certain
temporal scale L0 can be different from the one calculated
at a different scale L1, where, for example, L1 	 L0

2. In
2 Note that if the EMH is realized then H = 0.5 should hold

independently on the particular period of time, t, or on the
particular window, L, apart from numerical inaccuracies, of
course.

order to stress these dependencies of the parameter H
we denote the local Hurst exponent calculated at a cer-
tain scale L by H ≡ HL(t). If we now successively shift
the time window L by a discrete time lag ∆t we are able
to construct a time series of local Hurst exponents and
so monitor the dynamics of the system during its evolu-
tion by extracting useful information on the correlation
at a particular scale and in a particular period of time, as
shown in Figures 6–8 of Section 4.

However we are not completely free in our choice of L,
being this parameter bounded by computational limita-
tions mainly related to the minimum number of points
needed to have a reliable calculation of the value of
H . So far, not many studies have been devoted to this
issue [30,31] and usually, in practical applications, a rule
of thumb is used. To fill this gap, in the next section we
carry out an analysis devoted to investigate possible draw-
backs and pitfalls of the DFA-p method with variable L,
in particular when applied to “fat” tailed data sets, as the
case of the data investigated in the present work.

3 DFA: application to data sets with “fat”
tails

In order to be able to perform a reliable analysis on our
sets of financial data we must have an idea of the accuracy
of the DFA-p method under the conditions that we are
going to use it.

Since we are interested in studying the changes in the
correlation at short scales it would be appropriate to have
an estimation of the error for small data sets. In fact,
it is well-known that, when dealing with power law rela-
tions such as equation (2), the most accurate results are
achieved when a very large sample of data, spanning over
several scales, is available.

Moreover, as we mentioned in the introduction, high
frequency financial time series are characterized by large,
non-Gaussian, fluctuations that are responsible for the
“fat” tailed shape of the pdf of the returns [7]. This
feature can provide an important contribution to the
value of H even if there is no serial correlation (persis-
tency/antipersistency) at all among the data. Some im-
plications of broad tailed data in the multifractal contest
and for the R/S algorithm have been discussed in refer-
ences [32] and [33] respectively.

3.1 DFA with Gaussian increments

Before tackling the important issue of the “fat” tails and
analyzing financial data, let us here give an estimation
of the error associated with the calculation of H in case
of Gaussian increments. In particular, we test the DFA-
p algorithm against an ensemble of 500 short time series
(L = 1024) of fractional Brownian motion (FBM) with
tunable H , generated via a wavelet-construction method
(WFBM) described in reference [34]. The average values
of H , along with the standard deviations, are reported in
Table 1 for DFA-1 and DFA-2.
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Table 1. Values of Hurst exponent evaluated for the WFBM
with DFA-1 and DFA-2 corresponding to the nominal value re-
ported in the first column. In both cases, p = 1, and quadratic,
p = 2, polynomials to estimate the local trend. In call cases
L = 1024.

DFA-1 DFA-2

H = 0.2 0.22 ± 0.03 0.22 ± 0.04

H = 0.3 0.30 ± 0.04 0.31 ± 0.04

H = 0.4 0.40 ± 0.05 0.40 ± 0.04

H = 0.5 0.50 ± 0.06 0.50 ± 0.05

H = 0.6 0.60 ± 0.07 0.60 ± 0.06

H = 0.7 0.70 ± 0.08 0.70 ± 0.06

H = 0.8 0.79 ± 0.08 0.79 ± 0.07
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Fig. 1. Time series of the average value of H , 〈H〉, as a function
of the number of members in the WFBM ensemble, each with
length N = 1024. The fact that each time series is relatively
short prevents in-sample self-averaging from occurring and it
actually takes the addition of a reasonable number of ensemble
members before 〈H〉 converges to a stable value. The continu-
ous lines refer to DFA-1 while the dashed ones to DFA-2.

The two examples give very similar results. Note that
we obtain a slightly biased estimate of H for high values
of correlation, (H � 0.8), and anticorrelation, (H � 0.3).
The systematic errors are toward smaller and larger H ,
respectively. However, these values are highly unrealistic
for correlations in market movements where we expect to
find H not too far from 0.5 (this would be different in
case of volatilities or volumes [23,28,35]). Note also that
standard deviations of the DFA-2 H estimates are gener-
ally smaller than that returned by DFA-1 and, therefore,
we will use DFA-2 to carry out our analysis from now on.
However, we must stress that the results reported in Sec-
tion 4 are not influenced by the particular choice of p. In
Figure 1 we show the average values of H as a function of
the number of members in the WFBM ensemble.

In Figure 2 we report for DFA-2 the pdfs obtained
by the previous 500 ensembles for the specific cases of
H = 0.3 and H = 0.8. From this plot we can clearly see

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
H

0

2
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6

8

10

P(
H

)

  H=0.3
  H=0.8
  H=0.3 shuffled
  H=0.8 shuffled

Fig. 2. Pdfs for H for the correlated data set of WFBM with
Gaussian increments and L = 1024. As expected, the distri-
butions for the original data sets are centered in H = 0.3 and
H = 0.8. Note also that the distributions are slightly skewed
toward 0.5 leading to a slightly biased estimation of H for these
high correlations — as shown also in Figure 1. The distribution
of the H values for the shuffled data is instead a Gaussian cen-
tered on 0.5. These pdfs have been averaged over 5 independent
shuffling.

the source of the bias, pointed out in the previous para-
graph, as being a skewness toward 0.5 in the distributions
of the evaluated Hurst exponents. Note also that if we
randomly shuffle the time series, as shown in the same
plot, the resulting pdfs are perfectly symmetric and cen-
tered around 0.5, as expected for uncorrelated increments.
For 0.3 � H � 0.7, the distributions of Hurst exponents,
not shown, are Gaussian distributed and centered on the
“expected” nominal value. Therefore, we can deduct that
these increments do not lead any systematic bias in the
DFA-2 algorithm, at least for values of H included in the
range previously mentioned. In all cases the statistical un-
certainty can be considered as a good estimate of the error
in the H estimate. The source of the small systematic er-
ror revealed for H � 0.8 and H � 0.3 is not clear — it
could be in the generating process or in the estimation
algorithm. It will not be considered further at this time
since we are extremely unlikely to face these kinds of cor-
relations when studying price movements. However, the
source of this bias may be of interest for studies where
high (low) values of the Hurst exponent are involved —
such as for volatilities and volumes.

Once again using ensembles of time series produced us-
ing the WBFM method, we can try to understand how the
statistical error in our estimate of H varies with L. Results
from this study are plotted in Figure 3. From this figure
we deduce that the standard deviation σH ∝ L−γ , with
γ ∼ 0.36, irrespective of the particular value of H consid-
ered. This scaling law is a consequence of self-averaging
effects for stationary time series. Apart from this, and as
previously noticed, the absolute value of the error slightly
grows with H .
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Fig. 3. The standard deviation of estimated H against L for
Gaussian increments from the WBFM process. We can no-
tice a power law relation with exponent ∼0.36, independent of
H . Note also that for a fixed L the standard deviation grows
with H .

3.2 DFA with Lévy increments

Now we turn our attention to the challenges posed by the
large fluctuations which characterize high frequency finan-
cial time series. As a first step we consider the relationship
between the Hurst exponent and i.i.d. increments y, gen-
erated at a temporal scale τ by a symmetric α-stable Lévy
process [6,36]. For α ∈ (0, 2) the pdf of these increments
is characterized by fat tails and a probability distribution

Lα(y, τ) ∼ 1
|y|1+α

, (3)

for y → ±∞. As a consequence, the variance and all higher
moments are infinite. Moreover, the pdf of a Lévy process
obeys the scaling property

Lα(y, τ) = τ− 1
α Lα(τ− 1

α y, 1) ≡ τ− 1
α L�

α(τ− 1
α y), (4)

which is equivalent to saying that, irrespective of the ob-
servation scale of the process, we can always rescale the
increments and the time so that every observed pdf can
be collapsed into a pdf, L�

α, of rescaled increments τ−1/αy
and τ = 1. This feature characterizes the statistical self-
similarity of the process, despite the fact that the variables
are independent.

The same feature is found for self-affine increments
x(t) defined as

x(λt) = µ(λ)x(t), (5)

to which the Hurst exponent is related3 [36–38]. In fact,
if the pdf of x(t) at certain scale t is known — say
P (x(t), t) — then we can derive the corresponding pdf for
the rescaled variable in τ = λt, G(x(λt), λt). From simple
probability considerations we have that

G(y, τ) =
∣∣∣∣dx

dy

∣∣∣∣ P (x, t)
∣∣
y,τ

, (6)

3 Note that in equation (5) the equal sign holds in the sta-
tistical sense.

where y = x(λt). It follows that

G(y, τ) =
1

µ(λ)
P

(
y

µ(λ)
,
τ

λ

)
, (7)

and, since the rescaling factor is arbitrary, setting λ = τ
gives that

G(y, τ) =
1

µ(τ)
P

(
y

µ(τ)
, 1

)
≡ 1

µ(τ)
P �

(
y

µ(τ)

)
, (8)

where P � is the collapsing pdf with time increments τ = 1.
For mono-fractal self-affine time series the Hurst expo-
nent is defined as µ(λ) = λH ≡ τH . By comparing equa-
tion (4) and equation (8) we can deduce that H = 1/α.
For 0 < α < 2 we are in a fat tail regime where H > 0.5 is
related just to the self-affinity of the increments and not
to serial correlations. Note that α = 2 is a special case
of stable distribution, i.e., the Gaussian. In this case the
Hurst exponent assumes the well-known value for uncor-
related signals, H = 0.5. For an exhaustive discussion of
Lévy and self-similar processes we refer the reader to the
book of Samorodnitzy and Taqqu [36].

In order to validate the results presented in the previ-
ous discussion and to test the reliability of DFA-2 on Lévy
processes we have performed numerical tests for different
values of H > 0.5 (since α ∈ (0, 2)) and different lengths
L of the time series. The Lévy increments y have been
generated via the algorithm proposed in reference [36].
Accordingly

y =
sin(αφ)

[cos(φ)]1/α

[
cos((1 − α)φ)

ν

] 1−α
α

, (9)

where φ is a uniformly distributed random number in the
interval [−π/2, π/2] and ν an independent realization of
an exponential random variable with mean 1. The results
for the average value of H are reported in Table 2 for the
average obtained using 500 realizations of the Lévy pro-
cess of length L4. In this case, with the process increments
being serially independent a shuffling of them would have
no effect and hence all the contributions to H come from
the self-similarity of the increments. Note that the accu-
racy of the DFA-2 algorithm in this case is quite poor.
This result is not surprising at all: DFA-p has been de-
veloped specifically for particular kind of trends — those
that can be well described via a polynomial — and not
for the large (spiky) jumps such as the ones considered in
this example [39].

Although the tails for the Lévy stable processes tend
to be systematically broader that the ones of the financial
data [4,5] we can use the results from these preliminary
studies as a general indication of the likely behaviour of
DFA-2 when applied to “fat” tailed data. Accordingly it
seems not unreasonable to expect that the presence of
large non-Gaussian fluctuations in stock market data will
give rise to a bias toward large H . This contribution is of

4 Note that, since the second moment of the distribution
diverges, this procedure is just limited to finite time series.
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Table 2. Values of Hurst exponent evaluated for Lévy pro-
cesses of different H = 1/α and and L.

L = 1024 L = 4096 L = 16384
H = 0.6 0.56 ± 0.08 0.58 ± 0.07 0.57 ± 0.05
H = 0.7 0.63 ± 0.10 0.64 ± 0.08 0.65 ± 0.07
H = 0.8 0.68 ± 0.12 0.70 ± 0.10 0.71 ± 0.08

0.2 0.3 0.4 0.5 0.6 0.7 0.8
H

0

1

2

3

4

5

6

7

P(
H

)

BN
BN shuffled

Fig. 4. Pdfs of HL(t) for the BN time series with L = 1024.
Note that the distribution of the original data is peaked on a
value slightly below 0.5. On the other side, the shuffled curve
is not peaked around 0.5 but at a higher value.

no help in inferring serial correlation and, therefore, should
be taken into consideration when drawing conclusions on
the persistency/antipersistency of a time series.

3.3 DFA for futures indices

In this section we apply the DFA-2 to different sets of
financial data. Let us start considering the logarithmic
price of the 1 min BN (Bund futures) time series. At this
time scale large fluctuations are very frequent and the pdf
of returns displays a pronounced leptokurtic shape. In this
case, instead of producing an ensemble of short time series,
we fix a time frame L and we slide it through the all the
data set at intervals of 10 min. In addition, we applied the
DFA-2 estimator to sets of shuffled BN data. The pdfs for
the raw and shuffled data sets are shown in Figure 4.

The results are quite different to those obtained from
i.i.d Gaussian increments. At this scale, L = 1024, the
1 min BN time series shows on average a slightly antiper-
sistent behaviour. The shuffled set, on the other hand,
displays a slightly persistent behaviour. This latter ob-
servation can be seen as an indication of the systematic
contribution toward large H values that may be expected
when large non-Gaussian fluctuations are present in the
time series. Such an outcome was in fact presaged by the
discussion in Section 3.2. Results from the other sets of
futures data show equivalent behaviour. Hence, it can per-
haps be argued that if one is interested in determining H
attributable to serial correlations in a data set then one
should also take into account the “offset” in H that can

arise from any large non-Gaussian fluctuations that may
be present. This offset may be estimated by evaluating the
persistency/antipersistency of the shuffled data.

In order to double check that the source of the persis-
tence in the shuffled BN time series is related to the “fat”
tails of the data set we have created a surrogate time series
of the BN returns (r) data according to

{
r(t) → |g(t)| if r(t) > 0,

r(t) → −|g(t)| if r(t) < 0,
(10)

where g(t) is a random Gaussian increment. In this way,
while keeping the possible temporal correlations in the
increments direction, we get rid of the large fluctuations
that, as we saw in the previous subsection, can be a pos-
sible source of an unwanted contribution. The results of
the analysis for the BN surrogates are shown in Figure 5.
In this case, the pdf displays anticorrelation, in a sim-
ilar fashion to the original time series but with a peak
that is centered at a slightly lower value of H . More in-
teresting, the Hurst exponent for the shuffled version of
the surrogates is centered around 0.5 as it should be for
non-correlated time series. These are important results —
in fact we have shown that the value of H obtained from
short leptokurtic sets is, in reality, the result of two con-
tributions: the possible genuine temporal correlations and
the self-similarity in the non-Gaussian increments, as ob-
served for Lévy processes.

For the 1 min time series that we use in the present
work we give an estimate of the average contribution to
H due to the large self-similarity fluctuations: this can
change from time series to time series according to their
degree of intermittency. In particular we report in Table 3,
for each index and different L, the mean value of H after
shuffling the increments along with the relative difference
from the theoretical value 0.5. The former can change from
values of approximately 15% for the most “bursty” indices
as NK, JY or BP to 2% for SP and DJ. Note also the small
sensitivity on the window size for some indices. This effect
is related to the phenomenon of volatility clustering [4,5]
which enhances the value of H when smaller windows are
considered.

It is important to underline that the estimate of the
contribution of the large fluctuations to the value of H ,
see Table 3, is just the average effect over the two years
period under consideration and cannot be directly sub-
tracted from the single values of the H that we find. Nev-
ertheless, it gives an idea of the order of magnitude that
this phenomenon can assume, on average, over this time.
A careful examination of the problem would require one to
consider separately each sub-window under examination.
However, the problem of manipulation of the “outliers” is
not trivial: they can contain important information that
otherwise could go missing. Moreover, we need to con-
sider the multiscale nature of these fluctuations: in this
context a wavelet filtering would give results appropriate
for a possible analysis [40]. Part of our future work will be
devoted to a further study of this problem. The problem
of “outliers” in the calculation of a self-affine exponents
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Table 3. The average values of H along with the standard deviations are reported for different indices and scales after an
average over 5 independent shuffling of the time series. The relative difference, ∆H/H , from the expected value of 0.5 is also
given.

L = 512 L = 1024 L = 2048 L = 4096 L = 8192 L = 16384 ∆H/H

SP 0.51 ± 0.08 0.51 ± 0.05 0.51 ± 0.04 0.51 ± 0.03 0.51 ± 0.03 0.51 ± 0.02 ≈2%

DJ 0.51 ± 0.08 0.51 ± 0.05 0.51 ± 0.04 0.51 ± 0.03 0.51 ± 0.03 0.51 ± 0.02 ≈2%

NK 0.58 ± 0.10 0.58 ± 0.07 0.57 ± 0.05 0.56 ± 0.04 0.56 ± 0.03 0.55 ± 0.02 ≈16 ÷ 10%

HI 0.55 ± 0.09 0.55 ± 0.06 0.55 ± 0.05 0.54 ± 0.04 0.54 ± 0.03 0.53 ± 0.02 ≈10 ÷ 6%

DA 0.52 ± 0.09 0.52 ± 0.06 0.52 ± 0.04 0.51 ± 0.03 0.51 ± 0.03 0.51 ± 0.02 ≈4 ÷ 2 %

XX 0.51 ± 0.08 0.51 ± 0.05 0.51 ± 0.04 0.51 ± 0.03 0.51 ± 0.03 0.51 ± 0.02 ≈2%

GC 0.53 ± 0.09 0.53 ± 0.05 0.52 ± 0.04 0.52 ± 0.03 0.52 ± 0.03 0.52 ± 0.02 ≈6 ÷ 4%

QM 0.53 ± 0.09 0.53 ± 0.06 0.52 ± 0.04 0.52 ± 0.03 0.52 ± 0.03 0.52 ± 0.02 ≈6 ÷ 4%

JY 0.56 ± 0.10 0.56 ± 0.06 0.56 ± 0.05 0.55 ± 0.04 0.55 ± 0.03 0.54 ± 0.02 ≈12 ÷ 8 %

BP 0.57 ± 0.10 0.57 ± 0.07 0.56 ± 0.05 0.56 ± 0.04 0.55 ± 0.03 0.54 ± 0.02 ≈14 ÷ 8 %

BN 0.52 ± 0.09 0.52 ± 0.06 0.52 ± 0.05 0.52 ± 0.04 0.52 ± 0.03 0.52 ± 0.02 ≈4%

GL 0.52 ± 0.09 0.53 ± 0.06 0.53 ± 0.06 0.53 ± 0.05 0.53 ± 0.05 0.53 ± 0.05 ≈6 ÷ 4%

US 0.52 ± 0.09 0.52 ± 0.06 0.52 ± 0.05 0.52 ± 0.04 0.52 ± 0.03 0.52 ± 0.03 ≈4%

BL 0.51 ± 0.09 0.52 ± 0.06 0.52 ± 0.05 0.52 ± 0.04 0.52 ± 0.03 0.52 ± 0.03 ≈4%
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Fig. 5. Pdfs of HL(t) for the surrogate BN time series with
L = 1024. The distribution of the surrogate data is peaked on
a value slightly smaller than the one found for the original set,
underlying the positive contribution of the large fluctuations.
Moreover, the shuffled version is this time centered on 0.5.

with underlying Lévy process has been addressed also in
reference [38].

4 Multiscale Hurst exponent statistics
from 1/1/2003 to 31/12/2004

In this section we apply the concept of local Hurst ex-
ponent, HL(t), described in Section 2 to different future
indices introduced in Section 1. The main aim here is to
investigate its global short term statistical behaviour over
the period starting from 1/1/2003 and ending 31/12/2004.
The time windows used for the analysis are the following

Fig. 6. Time series of local Hurst exponents, HL(t), for the
time series SP (a) and DJ (b) on a scale of approximately
16 days (L = 8192) and constant shift ∆t = 10 min. For these
particularly liquid markets H is always very close to 0.5, irre-
spective of the particular scale under consideration. A confi-
dence interval based on Gaussian errors is shown as well. The
time period goes from 1/1/2003 to 31/12/2004.

L = 16 384, 8192, 4096, 2048, 1024 and 512 samples which,
for the 1 minute data under consideration, span from 32
to 1 working days approximately. For lengths shorter that
512 the computation of H becomes overly contaminated
by noise and therefore we take this value as our finest
scale. Examples of time series of HL(t) for some indices
are shown in Figures 6–8 for L = 8192 and a constant shift
of ∆t = 10 min. From these figures we can notice how the
Hurst exponent over L = 8192 min is not strictly sta-
tionary during the period under consideration for any of
the indices investigated. Moreover, the dynamics of HL(t)



214 The European Physical Journal B

Fig. 7. Local Hurst exponents with L = 8192 and ∆t = 10 for
BN (a), GL (b) GC (c) and XX (d). The anomalous “burst”
observed for GL, indicated by the arrow in (b), is nothing but
an artifact of the data set where a large artificial gap is present,
see also Section 3.

Fig. 8. Local Hurst exponents with L = 8192 and ∆t = 10 for
BP (a), JY (b) DA (c) and NK (d).

appear to be quite different from index to index. For ex-
ample, the estimates of the local Hurst exponents for the
S&P500 and the Dow Jones, shown in Figure 6, are al-
ways very close to the value of 0.5 (apart from a few
periods) and, considering the estimated error over their
values, there is no evidence for long periods of persistency
or antipersistency at this temporal scale. A very similar
situation is observed for the XX, Figure 7d. Note that
SP, DJ and XX are very liquid indices with large volumes
involved: this is usually the case when markets are more
“efficient”. These results are in agreement with the previ-
ous findings in reference [15].

The situation looks different for other indices: well de-
fined periods in which H significantly differs from 0.5 can
be observed. These can be due, especially for the less liquid
markets and for short periods of time, to some groups of
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Fig. 9. Pdfs for HL(t) at various L for the S&P500 futures.
The distributions are peaked at H ∼ 0.5 for all scales consid-
ered: the index is close to “efficiency”.
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Fig. 10. Similarly to those of the S&P500 futures, the Dow
Jones futures distributions show basically no significant corre-
lation over the time period considered. Note the shoulder for
L = 8192: this indicates a different regime in the dynamics of
the system.

large investors that can alone actually drive the behaviour
of the market.

In order to gain some insight into the general behaviour
of the Hurst exponent at different scales we now calculate
the pdfs of HL(t) for various L. The results of the analysis
are reported from Figures 9 to 22.

From these plots we can infer some interesting features
which characterized the multiscale dynamics of the indices
under investigation during the two years period analyzed.

First of all, the various distributions, irrespective of
the particular index, are all centered not too far from 0.5,
as we might have expected. In fact, large deviations from
this average value would have been related to significant
inefficiencies which could have been subjected to market
arbitrage. These inefficiencies do not last for long in well



M. Bartolozzi et al.: Multi-scale correlations in different futures markets 215

0.2 0.3 0.4 0.5 0.6 0.7 0.8
H

0

5

10

15

20

P(
H

)

L=512
L=1024
L=2048
L=8192

NK

Fig. 11. For the Nikkei225 futures we have generally persistent
behaviour with different shoulders.
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Fig. 12. Pdfs for the Hang Seng futures. Interestingly this
is the only index where the average dynamics drifts toward a
more persistent regime at shorter temporal scales.

developed markets such as the ones studied in the present
work.

As we examine the distributions in more detail we can
notice that they get sharper as we increase the length of
the time scale, that is, the fluctuations around the average
value decrease. This is a natural consequence of the DFA-
2 algorithm which produces a smaller dispersion on the
value of HL(t) as we increase the length of the time series
to be evaluated.

More interestingly, a relatively smooth shift in the
peak of the pdfs is evident as we move from longer to
shorter scales — this is particularly noticeable for the
BP, BN, QM, BL, US, GL, JY, DA and NK. Remark-
ably, in the BN, BL and US (fixed income) we observe a
clear crossover from an average persistent to an average
antipersistent dynamics at a time scale of approximately
1 day. On the other hand the HI displays a more persistent
behaviour, on average, at shorter time scales.
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Fig. 13. The German DAX futures show generally persistent
behaviour with some shoulders at larger scales.
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Fig. 14. Pdfs for the Euro Stoxx futures. No significant average
correlations can be observed for the shorter scales. At the two
longer scales shoulders are present for H > 0.5.
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Fig. 15. For Gold futures we observe persistency across all
scales investigated. Noticeable shoulders are present at a time
scale of approximately eight working days (L = 4096).
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Fig. 16. Pdfs for the Crude Oil futures. A shift toward a
“efficient” behaviour at short temporal scales can be observed.
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Fig. 17. For the Japanese Yen futures the situation is very
similar to the British Pound futures, Figure 18, where overall
persistent behaviour is evident. Different changes in the dy-
namics are observed.
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Fig. 18. The British Pound futures display generally persistent
behaviour interrupted by many shoulders: different phases have
characterized the two years period considered.
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Fig. 19. The pdfs for the Eurex Bunds futures show a quite
singular behaviour. The index seems to shift from a slightly
persistent to a slightly antipersistent behaviour as we move
toward smaller scales.
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Fig. 20. The pdfs for the Long Gilts futures point out an
average slightly persistent behaviour until a time frame of ap-
proximately one trading day (L = 512). Shoulders are present
as well.
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Fig. 21. Pdfs for the Treasury Bonds futures. A smooth shift
toward antipersistency at short time scales can be observed.
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Fig. 22. Pdfs for the BOBL futures. As for the Bunds, Fig-
ure 19, a crossover from persistency to antipersistency is evi-
dent.

For most of the indices there is also evidence of shoul-
ders. These anomalies indicate that the system has moved
through different phases in the period under consideration
and that in each phase the Hurst exponent was signifi-
cantly different from its average value. This could be due
to different exogenous reasons such as changes in finan-
cial regulations, market “mood” or just variations in the
trading mechanism.

In order to have a feeling of how the dynamics of an
index can differ over the two years period under consid-
eration and to gain a better insight into the origin of the
shoulders we split the time series of local Hurst exponent
for the BP into three identical subperiods. Each of the sub-
periods corresponds to eight months of trading. It is clear
from the relative pdfs, Figure 23 (top), that the dynamics
of the system is rather different in each of the subperiods
and it becomes clear how the shoulders have origins in
these phases. Of course, this is just a pedagogical exam-
ple and, in principle, we could perform a more accurate
analysis by monitoring the changes in the pdf of HL(t) in
real time, as we did for the local Hurst exponent. It would
be interesting, for example, to monitor the behaviour of
the distribution of Hurst exponent at different scales just
before a market crash. However this issue goes beyond
the aim of the present paper and it will be addressed in a
future work.

The relationship between the market dynamics and the
scale of observation appears to become more evident when
we plot the average value of the local Hurst exponent,
〈H〉L, against the scale L, Figure 24. From this graph we
can notice how time series belonging to the same sector
tend to have a qualitatively similar scale dependency. The
indices futures, for example, Figure 24a, do not display a
strong correlation between 〈H〉L and L with the exception
of the Hang Seng (HI) whose persistency increases sharply
at smaller scales. On the other hand a scale dependency
is quite evident for the fixed income products, Figure 24d,
where, interestingly, some time series (BN, US and BL)
move from an antipersistent-like to an persistent-like be-
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Fig. 23. (Top) Pdfs of three subperiods, (bottom), for the BP.
Note the different distributions of the Hurst exponent: these
are clear indications of non-stationarity in the time series. In
this plot we used L = 8192.

haviour as the scale increases, as already pointed out by
our qualitative observation of the pdfs.

As a result of the analysis carried out in this section we
can claim that the actual behaviour of the stock market,
described in terms of Hurst exponent, apart from being
influenced by the particular period of time under consid-
eration and by the maturity of the market [15,16,41–43],
is also related to the particular scale of observation: this is
an extremely relevant issue for practical applications. In
fact, if we consider long time scales (large L), in reality,
we are estimating the average Hurst exponent over that
period.

Moreover, these empirical findings confirm the multi-
scale and non-stationary nature of the stock market, in
contrast with the assumptions inherent in the EMH.

4.1 Hurst exponent and end-of-day gaps

Before concluding, we want also to briefly address the
question of the relevance of end-of-day (EOD) gaps in the
analysis carried out so far. It is well-known that the price
can undergo large changes while a market is not in ses-
sion. This phenomenon is mainly related to the flow of
information from active markets in different time zones
which, somehow, is “digested” by other markets during
their closure and then reflected in the opening price of the
following day.

So far we have considered these changes as a natu-
ral part of the dynamics of the market itself. In this last
section, instead, we want to consider the relative impor-
tance of these events in our analysis by treating them as
“spurious” effects. In fact, as we already discussed, large
fluctuations tend to increase the value of the Hurst ex-
ponent despite the genuine presence of persistency in the
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Fig. 24. Average value of the local Hurst exponent, 〈H〉L, for index futures (a), commodity futures (b), exchange rate futures
(c) and fixed income futures (d). The error bars on these points, not plotted for clarity, are approximately equal to the standard
deviations in Table 3. The horizontal dotted line is set at 0.5 for visual reference.
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Fig. 25. Same as Figure 24 but, this time, in the analysis we do not consider price returns that cross two different days.

time series. In order to account for this fact we have re-
moved from the original time series the EOD returns and
then we have repeated the analysis performed in the pre-
vious section. A summary of the results for the average
value of HL(t) is shown in Figure 25. If we compare these
plots with Figure 24 we can notice how most of the curves,
while maintaining the same qualitative shape, are shifted
toward smaller values of 〈H〉, as expected.

However, it is important to point out how this shift
can change the conclusions of the analysis in terms of per-
sistency/antipersistency. For example, the exchange rates
futures appear to move from an average persistent be-
haviour at all scales, Figure 24c, to an average uncorre-

lated behaviour for the BP and anticorrelated for the JY,
Figure 25c.

This last analysis, therefore, confirms the relevance
of the large fluctuations in the calculation of Hurst ex-
ponents. Moreover, it points out the issue of the pre-
conditioning of high frequency data: this can lead to dif-
ferent conclusions regarding their behaviour across time
series.

5 Discussion and conclusion

In the present work we have used the concept of local
Hurst exponent in order to investigate the short scale dy-
namical properties of the correlations in different future
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contracts (indices, commodities, exchange rate and fixed
income) from the beginning of 2003 to the end of 2004.

Analysis on the behaviour of HL(t) at different scales,
and in particular its distribution, points out a scale de-
pendent and non-stationary evolution of this scaling ex-
ponent, independent of the specific kind of contract.

The Eurex Bunds, BOBL and US Treasury Bonds,
for example, display an average persistent behaviour over
time scales of approximately three weeks but they then
become antipersistent, on average, for time scales of the
order of one day. Moreover, we observe changes in the
shape of the pdfs of HL(t) with time. This fact points to
the existence of different market phases in the two years
period from 1/1/2003 to 31/12/2004 and, therefore, ev-
idence for non-stationarity. These empirical facts are in
contrast with the EMH hypothesis, according to which
HL(t) should be constant and equal to 0.5 for each time
scale.

It is worth to stress that the dynamical behaviour of
the Hurst exponent is not related only to the liquidity
of the market but also to the variety of time horizons in-
volved in the trade of a particular asset. As a consequence,
markets which involve many exogenous agents, such as the
S&P500, tend to be more “efficient”.

In conclusion, we have shown that the concept of Hurst
exponent for non-stationary time series has a practical va-
lidity only in the period and the scale of observation. By
estimating H with a large sample, due to the coarse-grain
procedure of the DFA-p algorithm, we lose the local infor-
mation and we obtain an “average” value over that period.
This can or cannot be a problem for technical trading: it
depends on the horizon we are interested in. Moreover,
market models should be bounded to reproduce the time-
scale variability of the Hurst exponent, as already pointed
out in reference [15].

In addition, we have shown that self-similarity of the
large fluctuations responsible for the “fat” tail property
of financial time series can produce a substantial contri-
bution to the value of H which is not related to temporal
correlations in the price variation. This effect cannot be
neglected for high frequency financial applications or, in
general, for “fat” tailed data sets. In particular, we have
pointed out the contribution of the EOD gaps present in
high frequency financial data. These results are in agree-
ment with the conclusions of Alfi et al. [33] who investi-
gated the robustness of the R/S algorithm [12] against
tick-by-tick data from the New York Stock Exchange.
Note, however, that the DFA-p algorithm results to be
more robust than the R/S method with respect to both
the large fluctuations and the window size. In particular,
for small samples and Gaussian increments, we do not ob-
serve the systematic bias of H that was reported in [33]
— at least for 0.3 � H � 0.8 (see Sect. 3.1 for details).

Given the present results we feel it will be necessary
to develop an alternative methodology — one that is not
based on scaling exponents — if we are to reliably exploit
the high order correlations found in non-stationary and fat
tailed data sets. Some alternatives could be found in ran-

dom matrix theory [44–46], hyperbolic networks [47], or
information theory tools such as the transfer entropy [48].

Finally, it is worth noting that the time/scale de-
pendency of the scaling exponent H investigated in the
present work can also be extended to the multifractal
framework [32]. In this case, the time series is assumed
to be characterized not by one but by an entire spectrum
of scaling exponents. Our future work will be devoted to
the study of the temporal properties of these multifractal
spectra in different financial time series [19,49–53] along
with their financial implications.
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