
EUROGRAPHICS 2003 / P.Brunet and D. Fellner Volume 22 (2003), Number 3

(Guest Editors)

Multi-scale Feature Extraction on Point-Sampled Surfaces

Mark Pauly Richard Keiser Markus Gross

ETH Zürich

Abstract

We present a new technique for extracting line-type features on point-sampled geometry. Given an unstruc-

tured point cloud as input, our method first applies principal component analysis on local neighborhoods to

classify points according to the likelihood that they belong to a feature. Using hysteresis thresholding, we then

compute a minimum spanning graph as an initial approximation of the feature lines. To smooth out the features

while maintaining a close connection to the underlying surface, we use an adaptation of active contour mod-

els. Central to our method is a multi-scale classification operator that allows feature analysis at multiple

scales, using the size of the local neighborhoods as a discrete scale parameter. This significantly improves the

reliability of the detection phase and makes our method more robust in the presence of noise. To illustrate the

usefulness of our method, we have implemented a non-photorealistic point renderer to visualize point-sampled

surfaces as line drawings of their extracted feature curves.

1. Introduction

Point-sampled surfaces have emerged in recent years as a

versatile representation for geometric models in computer

graphics. The surface of a 3D object is described by a set of

sample points without further topological information such

as triangle mesh connectivity or a parameterization. Reduc-

ing the representation to the essentials, i.e., the geometric

position of the sample points, is particularly useful when

dealing with large data sets generated by modern acquisi-

tion devices [15]. To display such models, numerous point-

based rendering systems have been developed, e.g., [20, 21,

25, 1]. Apart from acquisition and rendering, a variety of

geometry processing applications have been introduced

recently [18, 19, 26] that demonstrate the versatility of

points as a geometric modeling primitive.

In this paper, we present a new method for detecting and

extracting line-type features on point-sampled surfaces.

This type of information can serve as input for many pro-

cessing applications such as meshing, model segmentation,

or anisotropic fairing. Feature lines can also be used for

visualization to enhance the semantics of renditions of 3D

objects. In Section 4 we will show how artistic line draw-

ings of point-sampled surfaces can be created using the

extracted feature curves.

Features are usually defined as entities of an object that

are considered important by a human for an accurate

description of the object. This definition is highly subjec-

tive, however, and very difficult to express in algorithmic

form. Our goal was to design a feature extraction algorithm

that requires no additional semantic information about the

object. Also, our method should be semi-automatic, i.e.,

only require the user to specify a few thresholding parame-

ters. Additional interaction with the object, such as setting

seed points or guiding feature movement, is not necessary.

We therefore base our feature definition on low-level infor-

mation using a statistical operator that measures local sur-

face variation. This operator classifies points according to

the likelihood that they belong to a feature. To improve the

robustness and reliability of the classification stage, we

apply this operator at multiple scales, which allows us to

measure the persistence of a feature [4]. Additionally,

multi-scale classification provides further structural infor-

mation per classified point, e.g., the characteristic scale at

which a feature is most prominent.

We concentrate on line-type features. These are probably

the most important features for surfaces, which are often

composed of patches that are framed by feature lines. A fea-

ture line approximately passes along a ridge of maximum

inflection, which is adequately captured in our surface vari-

ation estimate.

We believe that low-level feature extraction methods

such as ours always require some user feedback, in particu-

lar for our example application of an artistic line-drawing

renderer. To obtain visually pleasing renditions, the user has

to adjust the various parameters of our feature extraction

method until she is satisfied with the result. We therefore

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

put particular emphasis on efficiency, allowing interactive

control in a low-latency feedback loop.

We should note that additional knowledge about the
object, e.g., knowing that the model is a laser-range scan of
a human head, can of course be utilized to design more
accurate feature extraction algorithms. Such information is
very application-dependent, however, and limits the scope
of suitable data sets considerably.

1.1. Previous Work

Feature extraction is a well-studied research area in many

scientific fields, including computer vision, medical imag-

ing and computational fluid dynamics. Most of the past

research efforts concentrated on data defined in a Euclidean

domain, e.g., images, volume data or flow fields. Feature

extraction on surfaces, i.e., two-manifolds embedded in 3-

space, has gained less attention, but is important in many

fields such as range data analysis or reverse engineering. In

these applications, the input data is typically a large point

set acquired by some 3D scanning device. Thus feature

extraction directly on the point cloud is very attractive, as it

can be used to support early processing steps such as sur-

face reconstruction or adaptive decimation.

Our method combines and extends existing techniques

from different research fields. In particular, we integrate

recent results from image processing, discrete geometric

modeling and scale-space theory.

Canny [2] introduced an optimal filter for step-edge

detection in images. He found that there exists a natural

uncertainty principle between detection and localization

performance and derives operators that are optimal at any

scale. We use his method of hysteresis thresholding during

feature classification.

Hubeli and Gross [8] introduced a multiresolution frame-

work for feature extraction on triangle meshes. Based on

various classification operators they identify a set of feature

edges and use thinning to extract line-type features from the

set of selected edges.

Feature sensitive meshing of surfaces defined as the zero-

set of a discrete 3D distance function has been presented in

[13]. Here features are detected using the width of the nor-

mal cone spanned by adjacent vertices as a measure of sur-

face curvature. The focus in this work is on avoiding the

aliasing artefacts generated by the standard marching cubes

algorithm and the authors report that their simple feature

classification method yields good results for this purpose.

Geometric snakes have been used in [14] to extract fea-

ture lines in triangle meshes based on normal variation of

adjacent triangles. This system requires the user to specify

an initial feature curve, which is then evolved under internal

and external forces and re-projected onto the surface using a

local parameterization.

Gumhold et al. [5] presented a feature extraction method

for point clouds that is similar to ours. They also use covari-

ance analysis for classification and compute a minimum

spanning graph of the resulting feature nodes. We extend

this scheme using a multi-scale classification that allows

robust feature extraction for noisy surfaces. By modeling

the extracted feature lines using snakes, we also gain more

control on the smoothness as compared to the spline fitting

method used in [5].

1.2. Overview

Figure 1 gives an overview of our feature extraction pipe-

line. Given an unstructured point cloud

that approximates some two-manifold surface , our algo-

rithm starts by classifying points according to the likelihood

that they belong to a feature (Section 2). This is done using

a multi-scale approach that assigns weights to each

. After thresholding these weights, we compute a

minimum spanning graph of the remaining sample points

(Sections 3.1 and 3.2). Each separate component of the

graph is modeled by a snake, an energy-minimizing spline

that is attracted to the feature vertices. Using Euler integra-

tion, we can smooth the feature lines represented by the

snakes, while maintaining a close connection to the under-

lying surface (Section 3.3). The extracted feature lines can

then be visualized using non-photorealistic point-based ren-

dering (Section 4).

2. Feature Classification

The first stage of our feature extraction pipeline is classifi-

cation. For each point we compute a weight that

measures the confidence that belongs to a feature. Our

Figure 1: Feature extraction pipeline.

multi-scale

classification

feature

smoothing

MSG

construction

input

point cloud

line art

rendering

hysteresis

thresholding

P pi IR3∈{ }=

S

ωi

pi P∈

pi P∈ ωi

pi

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

feature classification is based on surface variation estima-

tion using covariance analysis of local neighborhoods. We

will show how this statistical approach can be incorporated

into a scale-space framework that allows feature classifica-

tion at multiple scales.

2.1. Scale Space

Since their introduction in 1983 [24], scale-space represen-

tations have been studied extensively in the context of fea-

ture detection for images. The fundamental idea is to model

a signal at different scales as

, where is defined as a convolution

of with Gaussian kernels of varying width :

(1)

with (see Figure 2). Equivalently, can be

defined as the solution of the diffusion equation

. (2)

Given a scale-space representation , we can then

apply a classification operator to measure the desired func-

tion properties, e.g., curvature, at different scales.

To transfer these concepts to point-sampled surfaces, we

need to specify a suitable classification operator for mani-

fold geometry, e.g., using curvature estimation from poly-

nomial fits. Additionally, we have to define an appropriate

Gaussian smoothing method. Choices include Taubin’s iter-

ative Laplacian smoothing [23], Desbrun et. al.’s curvature

flow [3], or Kobbelt’s variational fairing [12], which can all

be generalized to point-sampled surfaces. This approach

has some drawbacks, however. To compute a complete

multi-scale classification, we have to apply the curvature

estimation for each sample point at each scale. Since fitting

a local polynomial is a fairly expensive operation, the com-

putational overhead quickly becomes excessive for large

models or high resolutions of the scale axis. Another prob-

lem is that the smoothing methods often produce surface

deformation artefacts such as volume shrinkage, caused by

inevitable distortions in the parameterization. Thus by

applying these approximative Gaussian smoothers, surface

curvature can even be increased as illustrated on the ears of

the bunny in Figure 3.

2.2. Multi-Scale Surface Variation

As discussed above, the classical multi-scale method is dif-

ficult to transfer from the functional setting to discrete man-

ifold geometry. Therefore, we use a different approach

based on a statistical operator on local neighborhoods. We

will show that the size of these neighborhoods can be used

as a discrete scale parameter.

Surface Variation. Various researchers have used

principal component analysis of local point neighborhoods

to estimate local surface properties, such as curvature, on

point-sampled surfaces [5, 22, 19]. We define a local neigh-

borhood as the index set of the -nearest neighbors of a

sample point . Let be the centroid and the

 covariance matrix of defined as

. (3)

In [19], Pauly et. al. introduced surface variation as

, (4)

where the are the eigenvalues of with .

Note that the surface variation is invariant under rescaling

and that the total variation is given as

. (5)

Figure 4 illustrates surface variation for different neighbor-

hood sizes on the Max Planck model.

Multi-scale Variation Estimation. To apply the con-

cepts of scale-space for our feature classification using sur-

face variation , we observe that the size of the

neighborhood of a sample can be used as a discrete scale

parameter. In fact, increasing the size of the local neighbor-

hood is similar to applying a smoothing filter. This becomes

intuitively clear if we look at the way the covariance matrix

is defined as sums of squared distances from the neighbor-

Figure 2: Scale-space representation of an image with in-

creasing scale factor from left to right.

f : IRd IR→
L : IRd IR +× IR→ L

f G t

L x t,() G x t,() f x()⊗=

x IRd∈ L

L∂
t∂

1

2
---∇

2
L=

L x t,()

Figure 3: Volume shrinkage leads to increased curvature at

the bunny’s ears for iterative Laplacian smoothing.

Np k

p P∈ p C

3 3× Np

C
1

k

pi1
p–

…

pik
p–

T

pi1
p–

…

pik
p–

ij Np∈,⋅=

σn p()

σn p()
λ0

λ0 λ1 λ2+ +
------------------------------=

λi C λ0 λ1 λ2≤ ≤

pi p–
2

i Np∈

∑ λ0 λ1 λ2+ +=

σn p() n

p

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

hood’s centroid. If we increase the neighborhood size, each

individual point contributes less to the surface variation

estimate. Hence high-frequency oscillations are attenuated,

analogous to standard low-pass filter behavior.

Comparison to Gaussian smoothing. To evaluate

the multi-scale variation estimation, we compare our

method with the traditional multi-scale approach using

Gaussian filter kernels (see Section 2.1). We use a terrain

model defined as a regularly sampled height-field. Since

this surface can be parameterized without distortion, we can

compute coarse scale representations using standard Gauss-

ian filtering for grids. As illustrated in Figure 5, the classifi-

cation on the smoothed surfaces using surface variation of

smaller neighborhood sizes corresponds very well to the

output of the variation estimate on the rougher surfaces with

bigger neighborhood sizes. Even though some quantitative

deviations are observable, in terms of feature classification

both methods are almost equivalent and thus interchange-

able. Note also that multi-scale surface variation can be

computed very efficiently as described in detail in the

Appendix.

2.3. Determining Feature Weights

Given a multi-scale variation estimate, we can let the user

specify the appropriate scale of interest and simply use the

variation estimate of that scale as our feature weights .

Thus be selecting a single parameter, the scale, the user can

decide whether fine-scale or coarse-scale features should be

extracted.

Automatic Scale Selection. However, finding the

right scale parameter is often difficult and this is why meth-

ods for automatic scale selection have been of interest in

many fields. Lindeberg pioneered these techniques for

functional scale-space representations [16]. His principle

for scale selection states that the scale level at which some

normalized derivative operator assumes a local maximum,

reflects a characteristic length of the corresponding struc-

ture in the data. As illustrated in Figures 6 and 7 this princi-

ple can easily be transferred to the scale-space

representation introduced above. To determine the feature

weights, we look for the strongest local maximum in the

surface variation at all points across the scale axis. The

points on the ear, nose and leg in Figure 7, for example,

have been classified as feature points because they exhibit a

distinct local maximum in surface variation, while the point

on the back shows no such characteristic.

Persistence. Instead of using a single local maximum

for classification, we can also look at the number of times

that the surface variation exceeds a certain threshold .

For a point and a neighborhood size we define

, (6)

Figure 4: Surface variation on the Max Planck bust. (a)

original, (b) color-coded variation (blue corresponds

to low values and red to high values), (c) variation .

(a) (b) (c)

σ10

σ50

ωi

Figure 5: Multi-scale surface variation on height field data.

Left column: Scale-space representation of a terrain model

with increasing smoothness from top to bottom. Right col-

umn: Corresponding surface variation with increasing

neighborhood size from bottom to top.

n 200=

n 140=

n 90=

n 40=

n 15=

in
c
re

a
s
in

g
 G

a
u
s
s
ia

n
 f

ilt
e
r

w
id

th

in
c
re

a
s
in

g
 n

e
ig

h
b
o

rh
o

o
d
 s

iz
e

σmax

pi P∈ n

Ω pi n,()
1

0

=
σn pi() σmax>

σn pi() σmax≤

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

so that the corresponding feature weight is given as

. (7)

Thus this counting approach measures the persistence of a

feature over all scales. (see also [4]).

Surface Boundaries. When dealing with non-closed

surfaces, we extend the feature classification method to

include points that lie on the surface boundary. To detect

these points we use the method of Linsen et al. [17]. All

points of a local neighborhood of size of a point

are projected into the tangent plane and ordered according

to angle. Whenever the angular distance between two con-

secutive points exceeds some maximum angle , is

classified as a boundary point and its feature weight is

set to maximum. The parameters and effectively

control the size of the holes that are detected as boundaries.

Neighborhood Size. Increasing the size of the local

neighborhood when computing the variation estimate even-

tually violates the prerequisite that all points of the neigh-

borhood belong to the same connected region of the

underlying surface. We can deal with this problem in two

ways: Either we use neighborhood relations that are more

sophisticated than Euclidean distance, e.g., a Riemannian

graph or mesh connectivity, if available. Or we can try to

estimate when the neighborhood becomes too large and

stop the calculations of the variation measure. A simple

heuristic that works well in practice is to look for jumps in

, as they indicate strong deviations in the normal direc-

tion. Figure 8 shows an example for this method for a point

on the bunny’s ear. When increasing the size of the neigh-

borhood, points from the opposite side of the ear will even-

tually be included in the set of -nearest neighbors, as

illustrated in Figure 8 (a). We can determine this critical

neighborhood size by examining the variation-scale curve

as shown in Figure 8 (b).

3. Feature Reconstruction

Feature reconstruction consists of three stages: First we

select a set of feature nodes, i.e., points that with

high probability belong to a feature. Then we compute a

minimum spanning tree (MST) for these feature nodes.

After pruning short branches and closing cycles, each com-

ponent of the resulting graph is modeled as a snake, which

allows user-controlled smoothing of the feature lines.

Figure 6: Automatic scale selection for a 1D signal. The top

row shows the signal, the bottom row the variation at the

central point as a function of neighborhood size. The local

maxima are indicated as vertical lines and the characteristic

lengths as horizontal bars. In (a) a simple sine curve is ana-

lyzed, while in (b) another high-frequency sine wave has

been added. Note how the different frequencies are reflected

in the distinct local maxima of the variation estimate. In (c)

random noise has been added to the signal. If we look at the

coarser scales, i.e., larger , we can still faithfully recover

the feature.

Figure 7: Multi-scale surface variation. The left diagram

shows values of for different points on the bunny as a

function of neighborhood size . To avoid instabilities in the

detection of local maxima, these curves have been pre-

smoothed as shown on the right. The vertical lines show the

scale of the extracted maxima in surface variation.

σn

n

σn σn

n n

(a) (b) (c)

n

0.05

0.1

0.15

0.2

0.25

20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

20 40 60 80 100

σ20 σ80

nn

σn σn

σn

n

ωi

ωi Ω pi n,()

n

∑=

Figure 8: (a) Illustration of an invalid neighborhood,

(b) the critical neighborhood size for a point on the bunny’s

ear occurs at a jump in the variation-scale curve.

nb pi P∈

αb pi

ωi

nb αb

σn

0.05

0.1

0.15

0.2

0.25

50 100 150 200

(b)(a)

σn

n

Np

p

k

Q P⊂

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

3.1. Selecting feature nodes

In the classification stage of Section 2 we assigned weights

 to each sample point that measure the confi-

dence that belongs to a feature. To select the relevant

feature nodes , we could discard all points whose

weights fall below a certain threshold. This hard threshold-

ing can cause undesirable artefacts, however, such as inter-

rupted or dangling feature lines. As suggested in [2],

hysteresis thresholding can alleviate these effects by using

two thresholds . Points with corresponding

weights smaller than are discarded, while points with

 are included into the set of feature nodes . All

points with will be used to bridge the

gaps between feature nodes during the construction of the

minimum spanning tree (see below).

3.2. Minimum spanning graph

To create a set of feature patterns we first compute the min-

imum spanning tree (MST) of the set of feature nodes .

We start by ordering all feature nodes according to

their weights. Then we choose the feature node with big-

gest weight as the seed point for the construction of the

MST. We define an edge for each of the -nearest neigh-

bors of and compute corresponding edge cost as

, (8)

where is the length of the diagonal of the model’s bound-

ing box and is an additional parameter that allows to bal-

ance feature weights against Euclidean distance. All these

edges are put on a heap ordered by increasing cost values.

Then we take the edge with the smallest cost and add it to

the MST, if both edge nodes are not already part of the tree.

For the new feature node we compute a new set of edges

and corresponding cost values and also put these on the

heap. We repeat this process until the heap is empty. Figure

9 (b) shows the MST of the dinosaur head generated with

this algorithm.

Pruning and closing cycles. As can be seen in this

example, the MST of all feature nodes contains many short

branches, which are usually treated as artefacts that do not

describe salient features. To eliminate these short branches

from our set of feature patterns, we use a bottom up graph

pruning method. Our algorithm starts by sorting all leaves

of the MST according to their depth. By traversing the tree

upward from the deepest node, we can determine the long-

est path, which defines a new root of the MST. Now we

recursively compute all branches of the tree and assign to

each branch an importance value that is given as the length

of the branch multiplied by the product of all edge weights.

Thus we retain short branches that contain feature nodes

with high confidence values and only prune those branches

that with low probability are part of a feature line.

The MST construction above does not support cycles in

the feature lines. It is often desirable, however, to allow

closed loops as these more naturally describe certain feature

lines. Therefore we transform the MST into a graph by clos-

ing cycles that are longer than a user-specified threshold. To

close a cycle, we use those edges whose feature nodes are

already in the graph. From both these nodes we traverse the

tree upward until the two paths cross at a common node.

The sum of the two path lengths then equals the cycle

length. Note that our method for pruning and closing cycles

does not require an expensive breadth first search as was

done, for example, in [5]. Figure 9 (c) shows the MST of

Figure 9 (b) after pruning and closing cycles.

3.3. Active Contour Models

As can be seen in Figure 9 (c), the extracted feature lines

connect samples of the original point cloud and are often

jagged. This might be acceptable for partitioning algo-

rithms, but for feature-based visualization methods (see

Section 4) it leads to inferior rendering quality. We there-

fore need a mechanism for smoothing feature lines. Spline

fitting has been used in previous approaches [5], but we

found that it does not provide enough flexibility and control

over the smoothness and accuracy of the extracted feature

lines. In [11], Kass et al. introduced snakes, active contour

models, for detecting features in images. A snake is an

energy-minimizing spline that moves under internal and

external forces. We use snakes to smooth the feature curves,

while maintaining a close contact to the surface. The main

benefit of snakes is their explicit control over the degree of

ωi pi P∈
pi

Q P⊂

ωmin ωmax<
ωmin

ωi ωmax> Q

ωmin ωi ωmax≤ ≤

Q

qi Q⊂
q

k

qi q

c q qi,()
1

ωqωqi

--------------- γ
q qi–

d
------------------⋅+=

d

γ

Figure 9: Feature reconstruction on the dinosaur head: (a)

feature weights, (b) minimum spanning tree of feature

nodes, (c) MST after pruning and closing cycles, (d) smooth-

ing with snakes.

(b)(a)

(c) (d)

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

smoothness that can be adapted to the specific application

needs. Additionally, external constraints can easily be

incorporated, for instance to enable user interaction for

positioning feature lines.

Energy Minimization. We model each component of

the MSG as a parametric curve that tries to minimize

the energy functional

, (9)

The internal spline energy consists of first- and second-

order terms, modeling the behavior of a membrane and a

thin plate, respectively:

, (10)

where and control the relative weight of the two

terms. The external energy is related to the surface varia-

tion:

, (11)

where is computed by interpolating the maximum

variation of each point at . Discretization of the

functional finally leads to a system of Euler equations

that we solve using Euler integration (see [11] for details).

Figure 9 (d) shows the smoothing effect on the dinosaur

head.

4. Non-photorealistic Rendering

The feature lines extracted by our method can be used as

input for a variety of processing algorithms, including mesh

generation, anisotropic fairing and model segmentation. In

this section we introduce a point rendering system for creat-

ing line drawings of point-sampled surfaces. Based on the

surface splatting technique of Zwicker et. al. [25], our ren-

derer takes as input a surfel model of the original surface

and the output of our feature extraction method. Each fea-

ture line is converted into a set of feature surfels by sam-

pling the model surface along the feature line. The surfels

of the original model are only rendered into the z-buffer to

resolve visibility and are assigned the background color.

The final image is then only composed of the visible feature

surfels. Note that no shading computations are applied,

which significantly improves rendering performance.

To enhance the semantics of our renditions, we can uti-

lize the additional information of the classification stage.

We scale the splat radii of the feature surfels according to

scale and adjust the intensity (e.g., grey level) according to

the maximum surface variation. Thus features on coarser

scales are rendered as thicker lines, while features on fine

scales are rendered as thinner lines. Also prominent features

are rendered at high intensities, while less significant fea-

tures are rendered at low intensity. With these simple exten-

sions, we achieve a very intuitive effect, similar to what an

painter would do when drawing an image. To obtain more

artistic looking renditions, we apply an additional screen

space filter, as illustrated in Figures 10 to 14.

5. Results

We have implemented the feature extraction pipeline

described in the previous sections and tested our method on

a variety of point-sampled surfaces. Tables 1 and 2 summa-

rize performance data for the different stages of the pipe-

line. For multi-scale classification we evaluate the surface

variation estimate for each point for all neigh-

borhood sizes between 15 and 200 using the method

described in the Appendix. We use kd-trees for computing

the set of -nearest neighbors, similar to [19]. Note that the

interactive feedback loop for adjusting the various thresh-

olding parameters does not include the multi-scale classifi-

cation stage, which hence needs to be executed only once.

Figure 10 shows feature lines extracted on the Igea model.

The middle image shows a rendition without the artistic

screen space filter. The cat model of Figure 11 is more diffi-

cult, since it exhibits strong local imbalances in the sam-

pling pattern. Still our method faithfully recovers the salient

surface features. Figure 12 shows an example of a noisy

laser range scan, which demonstrates that our multi-scale

method is superior to single-scale classification. Also note

that this is a difficult example for a (semi-) automatic fea-

ture extraction algorithm, because humans have a very clear

and distinct perception of important feature lines in faces.

The dragon and dinosaur models (Figures 13 and 14) show

that our feature reconstruction method in connection with

the point-based rendering method is very suitable for gener-

ating artistic line drawings of complex geometric surfaces.

v s()

E Eint v s()() Eext v s()()+ sd∫=

Eint v s()() α s() v s()′
2

β s() v s()″
2

2⁄⋅+⋅=

α s() β s()

Eext v s()() 1 σ̃ v s()()⁄=

σ̃ v s()()
p P∈ v s()

E

Model multi-scale-

classification

MST, pruning,

closing cycles

snakes (100 Eul-

er steps)

Igea 25.156 1.468 0.203

Cat 1.829 0.062 0.031

Gnome 6.703 0.203 0.047

Dinosaur 10.187 2.484 0.234

Dragon 64.422 8.469 1.125

Table 1: Timing of the feature extraction pipeline in sec-

onds on an Intel Pentium IV, 2.8 GHz.

Model #input points #feature nodes #snake points

Igea 134,345 40,509 7,327

Cat 10,000 3,593 798

Gnome 54,659 9,655 1,714

Dinosaur 56,194 45,879 6,395

Dragon 435,545 203,713 31,154

Table 2: Complexity of the different stages.

σn p P∈

n

k

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

6. Conclusions & Future Work

We have presented a complete semi-automatic feature

extraction pipeline for point-sampled surfaces. Our main

contribution is a new classification framework that allows

discrete surface analysis at multiple scales. Feature lines are

extracted using a minimum spanning graph, which is mod-

eled by a set of snakes for subsequent smoothing. We also

present a new point-based non-photorealistic renderer that

directly utilizes the additional information of the classifica-

tion stage to enhance the semantics of the renditions.

Multi-scale feature analysis offers a number of advan-

tages. First it makes the method more robust in the presence

of noise. Second it allows coarse-scale features to be

extracted even though the curvature might be low. Third it

provides additional structural information, which can be

used, for example, to adapt the width of feature lines

according to the scale. We believe that our framework is

Figure 10: Feature reconstruction on the igea model.

Figure 11: The cat model is sampled very non-uniformly.

Figure 12: Multi-scale feature extraction (bottom right) is

superior to single scale extraction (bottom left) on a noisy

range scan. The top row shows the original point cloud and

variation estimates for different scales.

Figure 13: The dinosaur model.

Figure 14: The dragon model.

Pauly et al / Multi-scale Feature Extraction on Point-Sampled Surfaces

general enough to be easily extended to incorporate more

semantic information. It could, for instance, serve as a pre-

process for model-based feature extraction that tries to

match the extracted feature lines to a parameterized feature

model. The surface variation estimate only considers the

eigenvalues of the covariance matrix. More insights could

be gained by also looking at the distribution of the eigen-

vectors over scale. In particular for early processing appli-

cations, such as surface reconstruction, this information

could prove very useful.

Acknowledgements

This work is supported by the joint Berlin/Zurich graduate

program Combinatorics, Geometry, and Computation,

financed by ETH Zurich and the German Science Founda-

tion (DFG).

References

1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D.,
Silva, T. Point Set Surfaces, IEEE Visualization 01, 2001

2. Canny, J. A Computational Approach to Edge Detection. IEEE
Trans. on Pattern Analysis and Machine Intelligence, Vol
PAMI-8, No. 6, Nov. 1986

3. Desbrun, M., Meyer, M., Schröder, P., Barr, A. Implicit Fairing
of Arbitrary Meshes using Diffusion and Curvature Flow. SIG-
GRAPH 99, 1999

4. Edelsbrunner, H., Letscher, D., Zamorodian, A. Topological
Persistence and Simplificiation. Discrete and Computational
Geometry, Springer, 2002

5. Gumhold, S., Wang, X., McLeod, R. Feature Extraction from
Point Clouds. Proc. 10th Int. Meshing Roundtable, 2001.

6. Hall, P.M., Marshall, A.D., Martin, R.R. Incremental Eigenan-
alysis for Classification. Proc. of the British Machine Vision
Conference 1998, Vol. 1., 1998

7. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle,
W. Surface reconstruction from unorganized points. SIG-
GRAPH 92, 1992

8. Hubeli, A., Gross, M. Multiresolution Feature Extraction from
Unstructured Meshes. IEEE Visusualization 01, 2001

9. Jolliffe, I. Principle Component Analysis. Springer-Verlag,
1986

10. Kalaiah, A., Varshney, A. Differential Point Rendering. Ren-
dering Techniques 01, Springer Verlag, 2001.

11. Kass, M., Witkin, A., Terzopoulos, D. Snakes: Active Contour
Models. Int. Journal of Computer Vision, 1988

12. Kobbelt, L. Discrete Fairing. Proc. 7th IMA Conference on the
Mathematics of Surfaces, pp. 101-131, 1997

13. Kobbelt, L. Botsch, M., Schwanecke, U., Seidel, H. Feature
Sensitive Surface Extraction from Volume Data. SIGGRAPH
01, 2001

14. Lee, Y., Lee, S. Geometric Snakes for Triangle Meshes.
EUROGRAPHICS 02, 2002

15. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D.,
Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J.,
Shade, J., Fulk, D. The Digital Michelangelo Project: 3D Scan-
ning of Large Statues. SIGGRAPH 00, 2000

16. Lindeberg, T. Feature Detection with Automatic Scale Selec-
tion. Int. Journal of Computer Vision, vol. 30, no. 2, 1998

17. Linsen, L. Point Cloud Representation. Technical Report, Fac-
ulty of Computer Science, University of Karlsruhe, 2001

18. Pauly, M., Gross, M. Spectral Processing of Point-Sampled
Geometry, SIGGRAPH 01, 2001

19. Pauly, M., Gross, M., Kobbelt, L. Efficient Simplification of
Point-Sampled Geometry, IEEE Visualization 02, 2002

20. Pfister, H., Zwicker, M., van Baar, J., Gross, M. Surfels: Sur-
face Elements as Rendering Primitives. SIGGRAPH 00, 2000

21. Rusinkiewicz, S., Levoy, M. QSplat: A Multiresolution Point
Rendering System for Large Meshes. SIGGRAPH 00, 2000

22. Shaffer, E., Garland, M. Efficient Adaptive Simplification of
Massive Meshes. IEEE Visualization 01, 2001

23. Taubin, G. A Signal Processing Approach to Fair Surface
Design. SIGGRAPH 95, 1995

24. Witkin, A. Scale-Space Filtering. Proc. 8th Int. Joint Confer-
ence on Artifical Intelligence, 1983

25. Zwicker, M., Pfister, H., van Baar, J., Gross, M. Surface Splat-
ting. SIGGRAPH 01, 2001

26. Zwicker, M., Pauly, M., Knoll, O., Gross, M. Pointshop 3D: An
Interactive System for Point-based Surface Editing. SIG-
GRAPH 02, 2002

Appendix

We present an incremental method for computing the sur-

face variation at a point for increasing neighbor-

hood size (see Section 2.2). Assume that we have

computed a neighborhood with mean , covariance

matrix and corresponding eigenvalues .

Now we increase the neighborhood size by one, i.e., include

the next closest point to . The new mean can be

obtained as and the new covari-

ance matrix as

, (12)

where [6]. To compute the eigenvalues we find

the roots of the characteristic polynomial, i.e., solve

. (13)

The explicit formula for analytically computing the roots of

a cubic polynomial uses trigonometric functions. We pro-

pose a more efficient method that exploits coherence of the

local neighborhood. We are only interested in the smallest

eigenvalue of (note that , cf.

Equation 4) hence we use Newton iteration to find .

Since the characteristic polynomial changes only

slightly when adding another sample point to the neighbor-

hood of , provides a very good initial guess for

(see Figure 15). Due to the quadratic convergence of the

Newton scheme, we then typically require less than 3 itera-

tions.

Figure 15: Exploiting coherence when computing surface

variation using Newton’s method.

σn p() p

n

Np p

C λ0 λ1 λ2≤ ≤

q Np p′
p′ np q+() n 1+()⁄=

Γ λ()

Γ′ λ()

λ0 λo′

C′

C′
n

n 1+
------------ C

q′q′
T

n 1+
-------------+

 =

q′ q p–=

Γ λ() C λI– λ3 pλ2 qλ r+ + + 0= = =

λ0′ C′ p– λ0 λ1 λ2+ +=

λ0′
Γ λ()

p λ0 λ0′

