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accompanied by an independent measure-differential structure with the characteristics of a
multi-fractal, namely, different dimensionality at different scales and, at ultra-short distances,
a discrete symmetry known as discrete scale invariance. Under this minimal paradigm, five
general features arise: (a) the big-bang singularity can be replaced by a finite bounce, (b) the
cosmological constant problem is reinterpreted, since accelerating phases can be mimicked
by the change of geometry with the time scale, without invoking a slowly rolling scalar field,
(c) the discreteness of geometry at Planckian scales can leave an observable imprint of loga-
rithmic oscillations in cosmological spectra and (d) give rise to an alternative mechanism to
inflation or (e) to a fully analytic model of cyclic mild inflation, where near scale invariance of
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geometry with weighted derivatives is shown to be a Weyl integrable spacetime.
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1 Introduction

Nature is irregular. The relative simplicity of quantum and atomic physics does not prevent
the emergence of complex dynamics at scales where the fundamental degrees of freedom inter-
act with the environment and with themselves to the point where a fundamental description
of the system must be superseded by an effective one. For instance, the kinematics of ideal
particles or elementary molecules is not sufficient, by itself, to provide an adequate descrip-
tion of the diffusion of a particle in a complex medium. Even ordinary Brownian motion,
which is the simplest transport model going beyond kinetic theory, is inapplicable to the
majority of diffusing systems, which show anomalous properties requiring a still higher level
of sophistication [1–4]. A whole toolbox of techniques borrowed from multi-fractal geometry
[5, 6], transport, probability and chaos theories, statistical systems and anomalous diffusion,
becomes then necessary.

In recent years, many quantum-geometry models showed properties calling for this al-
ternative but well-honed set of tools. The chief hint that quantum gravity has a complexity
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far beyond its first principles is dimensional flow, namely the change of the dimensionality of
effective spacetime with the probed scale [7–10]. A canonical list of examples includes causal
dynamical triangulations [11–13], asymptotically-safe quantum Einstein gravity [14, 15], spin
foams [16–18], Hořava–Lifshitz gravity [13, 15, 19], non-commutative geometry [20–22] and
κ-Minkowski spacetime [23, 24], non-local super-renormalizable quantum gravity [25], space-
times with black-hole [26–28], fuzzy spacetimes [29], multi-fractal spacetimes [9], random
combs [30, 31] and random multi-graphs [32, 33].

Dimensional flow is typically encoded in the running of the spectral dimension dS.
When it decreases to values lower than 4 at small scales, the ultraviolet (UV) properties
of quantum gravity seem to improve. In most of the quantum-gravity approaches, the UV
limit of the spectral dimension of spacetime is 2. To better understand the link between
renormalizability, dimensional flow and the almost universal value dS ∼ 2, it is important to
notice that the same value of the spectral dimension may appear in widely different theories
without implying a physical duality among them. This is due to the fact that the spectral
dimension is obtained from a diffusion equation, but different diffusion equations can give
rise to the same correlation properties [15, 34]. To remove this degeneracy, it is necessary
not to limit the attention to the value of the spectral dimension and study the full solution
of the diffusion equation associated with the given effective quantum geometry.

This is a first step towards a fuller characterization of quantum geometries with the
techniques of the above-mentioned alternative toolbox. To illustrate this and other applica-
tions, the framework of multi-scale spacetimes has been developed. Geometry is described
by a continuum in D topological dimensions (for instance, D = 4) where points do not con-
tribute with the same weight to the measure. The usual Lebesgue measure dDx is replaced
by one with a non-trivial weight distribution,

dDx→ dDx v(x) . (1.1)

This weight v(x) carries in itself a hierarchy of fundamental time-length scales (t1, ℓ1), (t2, ℓ2),
. . . , which characterize the geometry. The most general measure is a ‘multi-fractal’ distri-
bution, possibly quite irregular and discontinuous. Assuming that v(x) is smooth except at
a finite number of singular points preserves most of the features of a multi-scale measure
[9, 35, 36] (see also [37–39] for applications), but to make practical advances it is convenient
to make a further simplification and move to multi-scale factorizable measures [40–43], i.e.,
such that v(x) = v0(x

0)v1(x
1) . . . vD−1(x

D−1). In this restricted class, particular importance
is attached to multi-fractional [24, 34, 41, 44–51] and log-oscillating [24, 44, 46] measures,
which realize anomalous scaling and symmetry properties of ‘irregular’ geometries in a most
immediate manner.

Only one time or length scale is sufficient for the geometry to be multi-scale and, in
fact, most quantum-gravity approaches fall into this simplest example. Consider the one-
dimensional measure

v(x) = 1 +

∣∣∣∣
x

ℓ∗

∣∣∣∣
α−1

, (1.2)

where x scales as a length, ℓ∗ is a characteristic length and α is some positive number smaller
than 1. This measure is called binomial since it is made of only two terms. The length q(R)

of an interval of size R is not linear with R but acquires an extra term, q(R) =
´ R
0 dx v(x) =

R + (ℓ∗/α)(R/ℓ∗)
α = ℓ∗[(R/ℓ∗) + (R/ℓ∗)

α/α]. For intervals much larger than ℓ∗, the length
is simply q(R) ∼ R, while for ‘microscopic’ intervals with R≪ ℓ∗, q(R) ∼ Rα: the geometric
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properties and measurement units of the system change according with the scale. One can
extend the discussion to D Euclidean dimensions and calculate the volume V(D)(R) of a
D-ball with radius R. Replicating eq. (1.2) with same α for all dimensions, one obtains

V(D)(R) =

ˆ

D-ball
dDx v(x) = ℓD∗

[
Ω1

(
R

ℓ∗

)D

+Ωα

(
R

ℓ∗

)Dα
]
, (1.3)

where Ω1,α are unit volume prefactors. Again, the volume of large balls scale as RD, while
the scaling of small balls is α times smaller. The D-ball scaling gives an operational definition
of the Hausdorff dimension dH of spacetime (time is treated as a Euclidean coordinate). In
the binomial example, dH ∼ Dα for scales R ≪ ℓ∗, while at large scales one recovers the
ordinary behaviour dH ∼ D.

The multi-scale framework can be regarded either as stand-alone or, when applied to
some model of quantum gravity, effective. Its advantage is that one can carry an analytic
study of classical and quantum mechanics and field theory on these geometries by combining
the simplicity of well-known formalisms of theoretical physics with the lore of the alterna-
tive toolbox. Multi-fractal geometry and transport theory can characterize anomalous and
quantum geometries with an extended set of topological and geometric indicators (Hausdorff,
spectral and walk dimension [34, 41, 45, 46]; harmonic structures [46]); probability theory
and statistical-systems techniques label the same geometries even better through stochastic
indicators (a natural random walker can be associated with a given geometry [15, 34, 41]);
chaos theory and complex systems can provide transition mechanisms from small-scale dis-
crete to large-scale continuous geometries [44, 46]; and so on. The price to pay is the loss of
translation and Lorentz invariance at small scales and early times, which is however recovered
in the infrared. Loss of Lorentz invariance is not typical of this setting, and there are other
quantum-gravity frameworks (fundamental or phenomenological) where an intrinsic hierar-
chy of characteristics scales demands the abandoning of the principles of special relativity,
for instance when the Planck length ℓPl acts as a minimal distance [28, 52, 53].

So far, most of the results in the multi-scale framework have been obtained in the absence
of gravity. The purpose of this paper is to include gravitation in the picture and study the
cosmological consequence of having an anomalous geometry. Depending on the symmetries
of the dynamics, we can distinguish various multi-scale theories: we will concentrate on
three classes, respectively with ordinary, weighted, or ‘q’ derivatives. For each multi-scale
class of models under examination, we will define a gravitational action compatible with the
non-trivial measure and differential structure. Then, we will specialize to the Friedmann–
Lemâıtre–Robertson–Walker (FLRW) metric of maximally symmetric (i.e., homogeneous and
isotropic) spacetimes. Cosmology with a no-scale fractional measure was considered already
in [35, 39]. However, the presence of a hierarchy of scales in the measure gives rise to far
richer scenarios. In [46, section 6.2.5], it was briefly commented that this framework can
solve the cosmological problems of the hot big bang model in a characteristic way. Here we
present the details of that claim:

• Acceleration and cosmological constant. First, one can get an effective dynamical cos-
mological constant (hence, acceleration) without invoking a slow-rolling scalar field or
any exotic type of matter. The reason, explored in the theory with weighted derivatives
(section 5), is that dynamics is reinterpreted under the multi-scale paradigm. In the
Einstein equations, the profile v(x) is fixed by the requirement that spacetime possesses
some of the characteristics of a multi-fractal (multiple scaling and, eventually, discrete
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scale invariance). Then, the measure profile determines the metric gµν(x). To make
the equations of motion self-consistent, a particular potential U(v) must be tailored.
This is a conceptual leap from what done in standard field theory or cosmology, where
the profile of a scalar field φ(x) is determined by the dynamics when an ad-hoc po-
tential W (φ) is introduced. The rigidity of the profile v(x) will strongly constrain the
dynamics as well as the form of U(v). The latter acts as a dynamical cosmological con-
stant Λ(x) ∝ U [v(x)], which can fuel an accelerated cosmic expansion. The hierarchy
of scales present in Λ also appear throughout the dynamics and it can be constrained
by independent observations, which establish upper bounds for the scales below which
effects of anomalous geometry are tolerated. In such a way, a given measure profile
in a given multi-scale theory will predict a specific evolution Λ(x). The cosmological
constant problem is thus reformulated and given a fresh insight. The evolution of the
universe follows the rolling of v down its potential U , from a point where v(t) is non-
trivial down to a minimum Umin ∝ Λtoday where v ∼ 1 (ordinary geometry). Thus,
the cosmological evolution reflects the multi-scale properties of the geometry and the
details of dimensional flow, by which it is governed.

• Alternative to inflation. A second mechanism which can solve the traditional cosmo-
logical puzzles is simply based on the fact that the measure v changes the behaviour of
cosmological horizons, to the point where acceleration may no longer be needed. While
in standard inflation the universe expands at an exponential rate and the proper Hubble
horizon remains almost constant, in these alternative scenarios it is the Hubble hori-
zon which drastically shrinks and expands because of the geometric effects. This may
happen also in the absence of a potential U . In section 6.2, we explore this possibility
in a particular model with q-derivatives capitalizing on the following feature.

• Early universe with discrete symmetry. A most graphic illustration of the multi-scale
framework, and a novelty in cosmology, is logarithmic oscillations. They reflect a
discrete symmetry of the spacetime measure typical of deterministic fractal sets, a
rescaling x → λmω x of the coordinates by (the integer power of) a fixed ratio λω.
This discrete scale invariance, or DSI [54], is present whenever the geometric structure
of spacetime is postulated to be that of a self-similar fractal. At sufficiently large
scales, log-oscillations are coarse-grained and spacetime becomes a continuum with
conventional symmetries. However, at early times they deeply affect the evolution of
the universe, which undergoes log-cyclic phases of contraction and expansion. Overall,
these cycles let the universe expand so much that a traditional inflationary era is not
necessary and it is either completely dispensed with or reduced to a very moderate
acceleration (which we call ‘mild cyclic inflation’). This scenario is strikingly similar to
emergent cyclic inflation (CI) [55–61], as we shall discuss in sections 6.2 and 6.3.

• Big bang problem. Exact cosmological solutions can show a big bounce removing the
initial singularity. Although the details differ from model to model, this is an exclusive
consequence of the multi-scale geometry.

• Miscellaneous mathematical results will also be obtained. For example (section 5.2),
it comes as a surprise that the theory with weighted derivatives is, in fact, a case of
Weyl integrable spacetime (WIST) [62–65]. Also, multi-fractional measures with the
same anomalous scaling can be written in different forms, in particular by changing
the position of their singularities. This corresponds to a change in the presentation
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of the theory rather than to a different geometric background [45]. In the context of
cosmology, it only amounts to an overall shift in the time-line of the universe, at least
in the examples of section 5.3.

1.1 Outline

The plan of the paper is the following. After commenting on the existing literature of frac-
tional cosmology and dynamical cosmological constants (section 1.2), in section 2 we review
multi-scale spacetimes and their different measures in a Minkowski embedding. Section 3
discusses, in most general terms, the conceptual novelties of the multi-scale paradigm in the
presence of gravity. First (section 3.1), it is compared with scalar-tensor and unimodular the-
ories, with which multi-scale models share some similarities. Technically and physically, all
these classes of models differ from one another. Next, the generation of an inflation-like era
and the cosmological constant problem are revised in the framework of multi-scale spacetimes
(section 3.2). The double requirement that local frames should reproduce the multi-scale ge-
ometry everywhere (section 3.3) and that some modified notion of diffeomorphism invariance
should survive (section 3.4) make the q-theory theoretically more pleasant than the models
with ordinary and weighted derivatives, which have anyway many interesting properties.

The gravitational actions and the equations of motion of three multi-scale theories
are discussed in sections 4–6. Section 4 is mainly a review of the theory with ordinary
derivatives [35], with some small extension. In section 5, we find that the theory with weighted
derivatives is nothing but a Weyl integrable spacetime and we construct solutions where the
big bang is replaced by a bounce and where the cosmological constant is reinterpreted as
a purely geometry potential. Section 6 is devoted to the q-theory, where the mechanism of
log-oscillations is analyzed in detail. Conclusions are in section 7.

The length and uneven technical level of the paper may not be palatable for the cosmol-
ogist interested in grasping the main physical features of the theory. We therefore suggest a
first-reading pattern. The Minkowski setting of section 2 assumes no prior knowledge of the
motivations and details of multi-scale measures and Lagrangians. This part is meant to pro-
vide the unfamiliar reader with a self-contained systematic introduction to the subject and
summarize the status of each proposal. The different measures used in multi-scale spacetimes
are motivated in section 2.1 with some basic arguments of fractal geometry. In cosmological
applications, we will employ simplified versions of these measures, the binomial fractional
measure given by eqs. (5.46) and (6.17) and the log-oscillating measure (6.18). However,
the formalism works with arbitrary measures all the way down to the equations of motion
and, in the case of the q-theory, also of their solutions. The replacement (1.1) changes the
kinetic terms in field-theory Lagrangians: section 2.2 introduces these modifications for a
scalar field. Section 3 is mainly theoretical and may be skipped, although sections 3.1 and
3.2 should be of interest for the reader acquainted with scalar-tensor theories. A quantitative
notion of how non-trivial measures can affect the cosmic evolution is given in section 5.3 for
the theory with weighted derivatives (the only prerequisites being the action (5.16a) and the
equations of motion (5.39)) and the whole section 6 for the q-theory.

1.2 Comparison with other literature

Spacetimes with non-integer or scale-dependent dimensions have made their sporadic ap-
pearance in the literature since the 1970s but, depending on the model, either progress had
been technically difficult from the start or no attempt to a systematic construction of the
physics (from classical static spacetimes to field theory and quantum mechanics, to gravity
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and cosmology) was made. In [46], these independent early works were discussed side by side
with the more recent multi-scale spacetimes programme. Here we complete the comparison
by looking at other proposals where fractional calculus was applied to cosmology. The reader
wishing to catch all the technical details is advised to read this subsection after the rest.

Before the introduction of multi-scale spacetimes, a ‘fractional action cosmology’ was
obtained from Friedmann equations stemming from symmetry-reduced geodesic equations,
where the measure profile was fixed to be [66–69]

v(t) ∼ tα−1 . (1.4)

This phenomenological model was later developed in parallel with our programme [70–77]
from a mini-superspace action. Attempts to extract the dynamics from covariant equations
of motion [69, 70] still considered a non-trivial measure only along the time direction, eq.
(1.4). This measure is of fractional type (eq. (2.4) below) and it is neither associated with
a multi -scale geometry nor motivated by more than a mathematical curiosity of applying
fractional calculus to cosmology. As far as the comparison can go, the dynamics of fractional
action cosmology is much simpler than ours, and the multi-scale theory which most resembles
it is the one with ordinary derivatives (section 4). The dynamical equations (4.15) and (4.16)
with v given by eq. (1.4), first considered in [35], are somewhat similar (but not equivalent)
to those of fractional action cosmology. Also, a time-dependent cosmological constant was
noticed to be necessary to obtain self-consistent dynamics in certain situations [70–72, 77],
but this observation was not framed into a theoretical interpretation. Here we do have such a
frame (still not clearly formulated in [35]), which allows us to go beyond a pedantic treatment
of dynamical solutions. Moreover, the measure profile we will work with in the theory with
weighted derivatives (eq. (5.46)) will be more realistic than eq. (1.4).

Phenomenological Friedmann equations with fractional derivatives were considered in
[78–80]. Their derivation from a variational principle is unclear, although some formalization
has been attempted [72, 81]. This framework is not conceptually unified and we do not know
whether it can bear some resemblance with the cosmology of the multi-scale theory with
fractional derivatives (see below), which we will not develop here.

A dynamical cosmological constant Λ(t) is not a novelty of multi-scale spacetimes or
of fractional action cosmology. Running couplings were obtained also in fractal-related cos-
mological models with variable dimension [82]. Their equations of motion are quite different
from ours and a comparison is difficult. Also, in varying-speed-of-light (VSL) models [83]
the speed of light c→ c(x) becomes dynamical and it can provide an alternative mechanism
to inflation [84–89]. Criticism to early VSL scenarios [90, 91] can be overcome in more re-
cent formulations [83, 92–97]. The particle horizon (i.e., the distance traveled by light since
the big bang at, say, t = 0) is modified in the early universe by a non-trivial geometric
effect. In VSL models, the comoving particle horizon rp =

´ t
0 dt

′ c(t′)/a(t′) is affected by a
non-constant c, while in multi-scale spacetimes it is the integration measure to be modified:
rp = c

´ t
0 dt

′ v(t′)/a(t′). The main reason why one can dispense with standard inflation is ap-
parently similar in both approaches, which in fact have many features in common [42]. Still,
there is a crucial difference: While the profile c(t) is determined dynamically together with
the scale factor a(t), the measure v(t) is fixed by construction with the tools of multi-fractal
geometry and complex systems, and it dynamically determines a(t) via Einstein equations
(and, as in section 5, a geometric potential U(v)). This is the point where multi-scale the-
ories depart conceptually from all models with a dynamical scalar, let them be varying-c,
varying-e, or other scalar-tensor scenarios [98].
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Another example of an effectively varying Λ can be found within the theory of quantum
gravitation based on asymptotic safety [14, 15, 99–102], a powerful principle which strongly
constrains, after a cut-off identification, the evolution of the gravitational field at early times
and small scales. The renormalization-group-improved cosmological dynamics of this theory
[103–105] is encoded in two Friedmann equations, which are the usual ones except for the
replacements Λ → Λ(t) and G → G(t). A third equation makes it possible to have running
couplings, Λ̇+8πρĠ = 0, where ρ is the energy density of matter. The resulting possibility to
have an alternative acceleration mechanism without an inflaton was clearly recognized there,
but the big bang problem still persisted. The latter, on the other hand, seems to be at least
relaxed in multi-scale theories.

Nowhere in the above-mentioned scenarios do log-oscillations appear and play such a role
as in multi-scale geometry, where they can provide both a modification of and an alternative
mechanism to inflation.1 They also constitute an original realization of cyclic inflation, which
will be compared with in section 6.3.

2 Multi-scale Minkowski spacetimes

A multi-scale Minkowski spacetime is the multiplet MD = (MD, ̺, ∂, K) specified by an em-
bedding space (in this case, ordinary D-dimensional Minkowski spacetimeMD), a Lebesgue–
Stieltjes measure ̺ for the action, a differential structure defined by some calculus rules with
derivative operators ∂, and a set of symmetries for the Lagrangian determined by how the
operators ∂ combine to give the Laplace–Beltrami operator K in kinetic terms.

A generic Lebesgue–Stieltjes measure ̺ does not allow one to employ all the conven-
tional tools of continuous geometry in mechanics and field theory. For instance, we would
like to have a well-defined D-dimensional transform between position and momentum space,
extend the multi-index covariant formalism to these geometries, calculate Noether currents,
propagators, scattering amplitudes, and so on. For these technical reasons, the action mea-
sure is assumed to be of the form d̺(x) = dDx v(x), where the weight v(x) is factorizable in
the coordinates and positive semi-definite:

v(x) =

D−1∏

µ=0

vµ(x
µ) , vµ(x

µ) ≥ 0 , (2.1)

where the D weights vµ may differ from one another (‘anisotropic’ configuration). Thanks
to factorizability, one can formally re-express the measure as a standard Lebesgue measure
d̺(x) = dDq(x), where

qµ(xµ) :=

ˆ xµ

dx′
µ
vµ(x

′µ) (2.2)

are D distributions of the coordinates x. These distributions, which we call ‘geometric
coordinates,’ have anomalous scaling q(λx) = f(λ, x) under a dilation x → λx, contrary to
the standard Lebesgue measure where dD(λx) = λD dDx.

2.1 Examples of multi-scale measures

Before introducing any dynamical field, we discuss the structure of the measure. In the
absence of gravity, the differential structure of MD is not dynamical and the coordinate

1In a non-perturbative model of asymptotic safety, the effective action is a log-oscillating function of the
Ricci scalar, but de Sitter still is the simplest cosmological solution with acceleration [106].
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profile v(x) is fixed. The requirement that geometry be multi-scale or, more specifically,
multi-fractal, turns out to be rather stringent in determining v. In general, the measure ̺
possesses most or all the qualities that characterize a fractal. The latter is a set of points
endowed with some characteristics:

(i) its structure is fine, i.e., one finds details (points) at any scale when zooming in the set;

(ii) its structure is irregular, i.e., ordinary differentiability is given up;

(iii) the spectral dimension dS of the set cannot exceed its Hausdorff dimension, dS ≤ dH,
and its walk dimension is related to the other two by dW = 2dH/dS.

Other properties such as (iv) self-similarity or self-affinity and (v) having non-integer spectral
or Hausdorff dimension are violated in many cases (for instance, random fractals are not self-
similar; space-filling curves, the boundary of the Mandelbrot set, some diamond fractals and
other sets have integer dimension; and so on).

A popular example of fractal is the middle-third Cantor set C = S1(C) ∪ S2(C), defined
by two similarity maps S1,2 acting on the interval [0, 1]. For each point x in the interval,
S1(x) = (1/3)x and S2(x) = (1/3)x+ 2/3. The coefficients in front of x are called similarity
ratios, which are equal to λ1 = λ2 = 1/3 in this case. The set is self-similar because smaller
portions of it, of size 1/3 with respect to the original, have the same structure of the whole.

Let us consider an instance of measure which is not multi-scale but, still, has anomalous
scaling. Let F be a deterministic fractal embedded in R+ ∋ x. Deterministic fractals are sets
determined by some recursive mappings; self-similar fractals are a special case. Suppose we
want to calculate the integral of a smooth function f : R → R over F . The symmetries of F
determine the Borel measure ̺F over which one integrates. Recasting the problem in Laplace
momentum space and taking the large-momentum limit Re(p) → +∞, one can show that
calculus on these fractals is approximated by continuous fractional calculus, and [107–113]

ˆ

F

d̺F (x) f(x) ≈
ˆ

dx
xα−1

Γ(α)
f(x) , (2.3)

where Γ is Euler’s function. The integral on the right-hand side is a fractional integral of real
order 0 < α ≤ 1, corresponding to the Hausdorff dimension dH ∼ α of the set. Applications
of real-order fractional integrals to complex and statistical systems have been mentioned
elsewhere [45, 46]. Here we are only interested in the mathematical meaning of eq. (2.3).
This approximation is a coarse-graining of the fine structure of the fractal by a randomizing
process, where the oscillations typical of deterministic fractal kernels are canceled by mutual
interference [114, 115]. For self-similar fractals defined by some similarity maps Si, this is
nothing but a ‘continuum approximation’ where one is taking the limit of infinitely refined
similarities (i.e., infinitely small similarity ratios λi) [45, 46]. Thus, a fractional integral of
real order represents either the averaging of a smooth function on a deterministic fractal, or
a random fractal support.

Taking the Cartesian product of D fractional measures, we obtain the first example of
weight v(x), describing spacetimes with a randomized structure and fixed Hausdorff dimen-
sion [45]:

fractional measure: vα(x) =
∏

µ

vαµ(x
µ) =

∏

µ

|xµ|αµ−1

Γ(αµ)
, (2.4)
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corresponding to d̺α(x) = dD vα(x) and to the geometric coordinates

qµα(x
µ) :=

sgn(xµ)|xµ|αµ

Γ(αµ + 1)
. (2.5)

The scaling property ̺α(λx) = λDα̺α(x) (where α :=
∑

µ αµ/D) immediately determines
the Hausdorff dimension of this spacetime, dH = Dα, which can be also obtained by self-
similarity theorems [45] or as the volume scaling of eq. (1.3).

The second example generalizes the previous case to a geometry changing with the
probed scale. For that, it is sufficient to sum over a finite number of exponents α [46], which
we do in a way preserving factorizability [40]:

multi-fractional measure: v∗(x) =
∏

µ

[
N∑

n=1

gn vαn(x
µ)

]
, (2.6)

where the dimensionful coupling constants gn = gn({ℓn}) > 0 depend on a hierarchy of
characteristic length scales ℓn. Geometric coordinates are given by

qµ∗ (x
µ) :=

N∑

n=1

gn q
µ
αn

(xµ) . (2.7)

The Hausdorff dimension is now scale dependent, as one can easily show by computing
the D-ball volume: depending on whether the radius is smaller or greater than each of the
characteristic scales ℓn, V(D) ∼ RDα1 , RDα2 , . . . , and so on. The simplest case of dimensional
flow isN = 2 (binomial measures such as eq. (1.2)), where there is only one characteristic scale
ℓ1 = ℓ∗ defining large and small scales and both dH and dS vary monotonically [34, 41, 46].

The third and last example stems from a relaxation of the approximation (2.3). On
deterministic fractals, the heat kernel displays ripples with a logarithmic oscillatory pattern
in diffusion time σ (e.g., [116–122]): P(σ) = (4πσ)−dS/2 F (σ), where F is periodic in lnσ
[117, 122]. As far as we known, these log-oscillations seem to be originated by the high
degree of symmetry of these sets. The real-order approximation corresponds to averaging
over a log-period, so that only the zero mode of the harmonic expansion of the measure
survives. Including also the other frequencies, one gets a multi-fractional measure with
complex exponents [115]: for each harmonic ω > 0, vα → vα,ω = c+|x|α+iω−1 + c−|x|α−iω−1.
Summing over all possible α and ω and imposing the measure to be real by a suitable choice
of the complex coefficients c±, we obtain a multi-scale spacetime akin to deterministic multi-
fractals, endowed with the measure weight [40, 46]

log-oscillating measure: v̄(x) :=
∏

µ


∑

n,l

gαn,ωl
vαn(x

µ)Fωl
(ln |xµ|)


 , (2.8a)

Fω(ln |x|) := 1 +Aα,ω cos

[
ω ln

( |x|
ℓ∞

)]
+Bα,ω sin

[
ω ln

( |x|
ℓ∞

)]
, (2.8b)

where gαn,ωl
> 0, A andB are real, and ℓ∞ is a fundamental length introduced for dimensional

reasons and which can be identified with the Planck length [24]. This scale is smaller than
the multi-scale hierarchy of the previous example, ℓ∞ < ℓn for all n. Geometric coordinates
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are q̄µ(xµ) =
´

dxµ v̄µ(x
µ). For each mode ω, the oscillatory part of the measure is invariant

under the discrete dilation symmetry

x → λmω x , λω = exp

(
2π

ω

)
, (2.9)

where m is integer. This symmetry is called discrete scale invariance and appears also in
chaotic systems and transport models [54, 123, 124]. All deterministic fractals possess a DSI.
For example, smaller copies of the middle-third Cantor set C have a fixed size with respect
to larger ones, governed by the self-similarity ratio λω = 1/3. Only this predetermined zoom
rescaling, and no one else, characterizes the set.

2.2 Multi-scale theories

A spacetime equipped with a multi-scale measure with the above properties is not necessarily
a fractal. That depends on the symmetries imposed on the Lagrangian. For any given
measure weight v(x), one can formulate inequivalent versions of multi-scale spacetimes. For
instance, consider the action for a real scalar field:

S =

ˆ

dDx v(x)

[
1

2
φK φ−W (φ)

]
, (2.10)

where W is the potential. The symmetries of L determine the Laplace–Beltrami operator K.
We consider four physically inequivalent theories classified according to the type of derivatives
appearing in K. To this purpose, we first introduce the generic weighted derivative

βD :=
1

vβ
∂[vβ · ] , (2.11)

where β is an arbitrary constant whose value will change according to the situation. The
cases β = 1/2, 1 will be of special interest and, to avoid too many subscripts, will be reserved
the symbols D := 1/2D and Ď := 1D, in agreement with the notation of [40].

1. Ordinary derivatives [35]:

K+ := � = ηµν∂µ∂ν , (K+)† = �† = Ď2 =
1

v
∂µ∂

µ [v · ] , (2.12)

where η = diag(−,+, · · · ,+) is the Minkowski constant diagonal metric. The La-
grangian L is invariant under ordinary Poincaré transformations (since we will move
to curved manifolds later, we replace spacetime indices µ, ν with frame indices I, J in
the transformation law, thus stressing the fact that these are frame symmetries):

x′
I
= Λ I

J x
J +XI , (2.13)

where Λ I
J are the Lorentz matrices, acting in internal space, and XI is a constant

vector. The differential-forms formalism used here is the usual one.

The operator K+ is not self-adjoint with respect to the natural scalar product with
measure weight v, but for a symmetric kinetic term it makes no difference, since
ϕK+ϕ → ϕ(K+)†ϕ when integrating by parts. However, the ordering of the opera-
tors in the Lagrangian is important and K+ is not the square of a self-adjoint operator
(quantum mechanics and quantum field theory are difficult to formulate here for this
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reason). Consequently, the kinetic term −(1/2)∂µφ∂
µφ is inequivalent to the one in eq.

(2.10) and suggests to define another operator (similar to the covariant Laplacian)

K− :=
1

v
∂µ [v∂

µ · ] = Ďµ∂
µ . (2.14)

This operator is self-adjoint but, again, is not a square. Notice that the model with
(2.14) is nothing but the covariant action on a background metric ĝµν = v2/Dηµν .
The conformal factor of the background encodes the different geometry of the effective
spacetime. In the presence of gravity, a reinterpretation of the action via conformal
rescalings of the metric will be more delicate.

2. Weighted derivatives [40, 47]:

Kv = D2 =
1√
v
∂µ∂

µ
[√
v ·
]
= K†

v . (2.15)

Contrary to (2.14), this operator is both self-adjoint and the square of a first-order
weighted derivative, a property necessary to define the momentum operator along each
direction. In general, all the derivatives (2.11) will appear in this theory, the weight
depending on the field density it acts upon. Equation (2.15) is valid for the example
(2.10) of a scalar-field density. For a vector density, again β = 1/2 [42], but for
bilinears such as the energy momentum tensor the weight is β = 1 [40]. As in the
theory with ordinary derivatives, differentials are the usual ones, although a weighted
version can be constructed. The Lagrangian L is not invariant under ordinary Poincaré
transformations, but in the free case symmetries are generated by the ordinary Poincaré
algebra, where the momentum and Lorentz operators are weighted versions of the
ordinary Poincaré generators [40]. This model is dual to the previous one in the sense
that they have exactly the same spectral dimension. Although they are multi-scale,
none of them is a fractal, since dW 6= 2dH/dS [41].

3. q-derivatives:

Kq = �q := ηµν
∂

∂qµ(xµ)

∂

∂qν(xν)
= ηµν

1

vµ
∂µ

[
1

vν
∂ν ·

]
= K†

q . (2.16)

The Lagrangian is formally identical to the usual one but the theory is non-trivial be-
cause physical momenta are conjugate to x, not q. This is, in fact, another way to
state that geometric coordinates are anomalous under rescaling. The reason why one
would consider this momentum choice rather than the one where q is the canonical
variable is simply the adoption of the multi-scale Ansatz, implemented according to
the symmetry imposed on the action. Both the measure and the Lagrangian sepa-
rately possess q-Poincaré symmetries, i.e., Poincaré transformations on the geometric
coordinates [45, 46]:

qI(x′
I
) = Λ I

J q
J(xJ) +QJ , (2.17)

which are non-linear, non-invertible transformations of the coordinates x [45, 46]. These
spacetimes can be regarded as fractal, since their dimensions are related as in fractals by
dW = 2dH/dS [41]. Despite the simplicity of the model in q position space, it predicts
new physical phenomena, as for instance the log-oscillating imprint in the observed
cosmic microwave background spectrum (6.37).
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4. Multi-fractional derivatives [34, 48]:

K∗ =
N∑

n=1

gnKγn , Kγ := − 1

2 cos(πγ)
ηµν(∞∂

γ
µ∞∂

γ
ν + ∞∂̄

γ
µ∞∂̄

γ
ν ) = K†

γ . (2.18)

Here the measure weight is ordinary (v = 1), and dH = D. All the anomalous scal-
ing is transferred into the derivatives, which are fractional. The Laplace–Beltrami
operator is split into a ‘left’ part featuring the Liouville derivative (∞∂

γf)(x) :=
Γ−1(m− γ)

´ x
−∞

dx′ (x′ − x)m−1−γ∂mx′ f(x′) and a ‘right’ part with the Weyl derivative

(∞∂̄
γf)(x) := Γ−1(m− γ)

´ +∞

x dx′ (x′ − x)m−1−γ(−∂x′)mf(x′), where m− 1 < γ ≤ m
andm is a positive integer. Only a combination of the two sectors can give a self-adjoint
operator [34, 45]. The differential structure clearly differs from the one of the other
models, since here the fractional exterior derivative [125, 126] is employed [45].

2.3 Status

Table 1 summarizes the status of each of the four models of multi-scale spacetime. In gen-
eral, for all of them we have a rigorous definition of the space, the norm, and the differential
structure [45, 46], the geometry has a detailed stochastic characterization in terms of diffu-
sive processes [34, 41, 48], we know both the Hausdorff and the spectral dimension and we
have analytic control over dimensional flow [34, 41, 46]. A discrete-to-continuum transition
happens in log-oscillating geometries, where a hierarchy of scales emerges [44, 46]. Moreover,
connections with independent models of quantum gravity have been establishes, especially
with non-commutative spacetimes [24], asymptotic safety [50], Hořava–Lifshitz gravity [50],
and varying-e and VSL models [42]. However, many details remain to be explored, including
renormalizability of some of the theories, the gravitational sector and cosmology. The focus
of this paper is on these last two aspects. The model with fractional derivatives, which is
also the least explored, will be left out from the discussion and dealt with elsewhere.

In the present formulation of multi-fractional models, there is no guiding principle fixing
the characteristic time-space scales in the measure. (The only exception is the length ℓ∞
appearing in log-oscillating measures, identified with the Planck length [24].) However, the
latter can be constrained by observations. The most stringent constraints are for the case
of a binomial measure, i.e., when the hierarchy of scales is only made by one characteristic
time t∗ and spatial size ℓ∗ [42, 46]. Various experiments of particle and atomic physics
and astrophysics give independent upper bounds on the scales at which deviations from
four spacetime dimensions may become appreciable. Some of these constraints have been
worked out in the 1980s in toy models of dimensional regularization with fixed anomalous
dimension, which we can recycle because the effect of small deviations from dH = 4 is about
the same of multi-fractional geometries [45]. Particle-physics experiment loosely suggest that
no dimensionality effects occur at energies M > 300÷ 400 GeV [129], roughly corresponding
to an upper bound ℓ∗ < 10−18 m. A stringent and more robust bound comes from the Lamb
shift for the hydrogen atom, for which |dH− 4| < 10−11 at scales ℓ ∼ 10−11 m > ℓ∗ [130, 131].
The effectiveness of dimensional bounds at astrophysical and cosmological scales is weaker at
larger and larger distances, up to the point where the cosmic microwave black-body spectrum
only requires |dH − 4| < 10−5, corresponding to scales ℓ ∼ 14.4Gpc [132]. Variation of the
fine-structure constant during big-bang nucleosynthesis roughly limits the time scale in the
binomial measure as t∗ < 0.3 s [42]. In general, the dimensionality of spacetime changes also
with time, which requires a greater care in the interpretation of experiments performed at
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K± D2 �q K∗

Momentum transform ✗? [47] ✓ [47] ✓? ✓?

Non-relativistic mechanics ✓ [41] ✓ [49] ✓ ?

Relativistic mechanics ✓ ✓ [43] ✓ [43] ?

Perturbative field theory ✓? [9, 35, 36] ✓ [40, 51] ✓? ✓?

Symmetries and dynamics of
scalar (Q)FT ? [35] ✓ [40, 51] ✓ [40, 51] ?

Scalar QFT propagator ? [35] ✓ [40] ✓? ✓?

Electrodynamics ? ✓ [42] ✓ ?

Perturbative renormalizability ? ✗ [51] ✗ [51] ✓?

Avoids Collins et al. ? ✓ [51] ✓ [51] ?

Phenomenology (obs. constraints) ? ✓ [42, 46] ? ?

Gravity ✓ [35] ? ? ?

Cosmology ✓? [35] ? ? ?

Table 1. Status of multi-scale theories with ordinary (K±), weighted (D2), q- (�q) and multi-
fractional (K∗) Beltrami–Laplace operators. For each entry, main references are given where an
advanced analysis has been carried out. Trivial analyses with no particular reference are indicated
only by their outcome (negative or problematic: ✗; positive or neutral: ✓). Aspects yet to be studied
or incomplete are marked with a question mark, possibly with an indication of the expected outcome.
The entry ‘Avoids Collins et al.’ refers to the enhancement of Lorentz-symmetry violation by quantum
loop effects, which may happen in theories where the classical dispersion relation is modified [127, 128].
Both the weighted- and q-derivative models do not to suffer from this problem.

widely different cosmological scales. Incidentally, the present study aims also to introduce
the tools to extract more precise phenomenology from gravitational multi-scale models (the
above cosmological bounds do not include multi-scale and gravity effects properly).

3 Multi-scaling gravity

3.1 Multi-scale paradigm versus scalar-tensor and unimodular theories

A theory of gravitation based on multi-scale spacetime should encode three main conceptual
landmarks. First, we would like to obtain what is expected in a ‘covariant’ description of a
fractal or any other anomalous geometry with multi-scaling: namely, a non-trivial geometric
and differential structure at all points. Vielbeins, the frame vectors mapping a local inertial
frame to another and curvilinear coordinate systems to local inertial frames, should move the
measure around and maintain the anomalous scaling properties in all frames. Second, one
should be able to describe a sensible phenomenology (including cosmology) in an economic
and self-consistent way.

Third, it is clear that the geometry of multiscale manifolds is not going to be Rie-
mannian: apart from the metric, which is determined dynamically, it possesses a measure
structure which, in the absence of gravity, is given a priori. Can we still regard this structure
as non-dynamical when gravity is turned on? The answer is Yes, but delicate. We begin with
general remarks which apply to all multi-scale theories, later specializing to specific cases.

Is the measure dynamical? Comparison with scalar-tensor models. Just as in
ordinary field theory, in multi-scale theories the equations of motions [40, 42, 46] stem from
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the variation of the gravitational-matter action S[g, v, ψi] with respect to all dynamical fields:

Σµν(g, v, ψ
i) :=

δS[g, v, ψi ]

δgµν
= 0 , fi(g, v, ψ

i) :=
δS[g, v, ψi ]

δψi
= 0 , (3.1)

which depend on the metric and measure structures as well as on the matter fields collectively
called ψi. The multi-scale paradigm fixes once and for all the coordinate profile v(x) as one
of the distributions (2.6) and (2.8). This profile does not change while the system evolves
dynamically: it is simply fixed ab initio by demanding that the integro-differential structure
of the problem be determined by the lore of multi-fractal geometry briefly recalled in section
2. The profile v(x) is not a passive spectator either: through the equations of motion (3.1),
it determines the dynamical profiles gµν(x) and ψ

i(x). (For the time being, we assume these
equations can be consistently solved.) Thus, the function v(x) is not a scalar field, it affects
the dynamics although it is not dynamical by itself. In particular, one does not consider the
variation δS/δv = 0, exactly as one does not treat friction terms in dissipative systems as
dynamical [46].

We should also notice [9] that a change in the measure is consistently accompanied by
a new definition of functional variations, Dirac distribution, Poisson brackets, Lagrangian
symmetries, momentum space, the line element and so on, in turn leading to an unfamiliar
propagator and the deformation of the Poincaré algebra (see, e.g., [40, 43, 46]). No such
modifications occur in scalar-tensor theories where gravity is non-minimally coupled to a
Lorentz scalar. The discussion on diffeo invariance of section 3.4 should further convince the
reader that there are heavy theoretical differences with respect to scalar-tensor theories: the
latter are diffeo invariant, multi-scale theories in general are not, at least in the ordinary
sense.

These considerations hold for all multi-scale theories. Next, we can make specific re-
marks for each multi-scale model separately. We begin with the theories with ordinary and
weighted derivatives, which are those that most resemble scalar-tensor theories. In the ab-
sence of matter, we will see that, in the theories with ordinary and weighted derivatives, the
equations of motion (3.1) can be written in the form

Σµν = Gµν − T v
µν = 0 , (3.2)

where T v
µν is a contribution mostly dependent on the measure weight (what would correspond

to the energy-momentum tensor of a scalar in a scalar-tensor theory) and Gµν = Rµν −
1
2gµνR is the Einstein tensor or a model-dependent modification of it, where Rµν and R

obey the same properties of the usual Ricci tensor Rµν and scalar R. Equation (3.2) is
D(D − 1)/2 equations determining the components of the metric. Thus, the profile v(x) is
dynamically found even without considering its would-be equation of motion δS[g, v]/δv = 0.
This redundancy happens because of the contracted Bianchi identities 2∇µ

Rµν = ∇νR (∇ is
the covariant derivative later to be defined). Taking the divergence of eq. (3.2) with respect to
∇µ, the Bianchi identities impose∇µGµν = 0 and, consequently, ∇µT v

µν = 0. Since v is a rank-
0 tensor density and these D equations are not independent, ∇µT v

µν = f(g, v, ∂v)∇νv = 0.
One thus obtains the equation of motion f(g, v, ∂v) = 0 for the measure weight. Thus, there
is no incompatibility with the notion that v is not a dynamical field and the existence of a
‘Klein–Gordon’ equation δS/δv = 0. The main assumption, of course, is that the Bianchi
identities hold, but such is the case in these theories. For ordinary derivatives, the action is
(4.3) and eq. (3.2) is (4.5), while for weighted derivatives the action and equations of motion
are eqs. (5.16) and (5.36).
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In order to get consistent solutions with viable properties (for instance, with ordinary
matter content, or giving a certain cosmological evolution), in general it is necessary to
include a non-vanishing ‘potential’ term U(v), and sometimes also what one would call a
‘kinetic’ term (∂v)2 for v. Both contributions are simply functional coordinates profiles
introduced into the Lagrangian. This is the point where there is a major departure from
scalar-tensor theories. If we regarded, as in ordinary scalar-tensor theories [98], v(x) as a
dynamical Lorentz scalar field

v(x) → V (x) , (3.3)

all the models with non-trivial weight would be automatically Lorentz invariant in the usual
sense, with dilaton-like actions where V is non-minimally coupled with all the other fields.
In particular, the generic profile V (x) would no longer be factorizable and positive. These
would no longer be multi-scale models in the sense of section 2 because the profile V (x) would
be solely determined by the dynamics for a given potential U(V ), and the scale hierarchy in
v(x) would be lost in the most general case. In fact, no such hierarchy would exist a priori in
solutions if one does not introduce it from first principles, and there would be no geometric
and physical motivation why V (x) should take a fractional polynomial or log-oscillating form
as in eqs. (2.6) and (2.8). If, on the other hand, we impose multi-scaling and one of the profiles
of section 2.1, the only way to accommodate the multi-scale Ansatz within the gravitational
dynamics is to fix the potential U(v) to make them mutually consistent. In other words, we
propose to change the dynamical problem into a problem of reconstruction.

Clearly, the technical difficulty of this problem is no different than having a genuine
scalar field V (x) with given potential and then getting V (x) from the equations of motion.
However, one should not overlook that the physical interpretation of multi-scale theories is
radically different from a scalar-tensor theory, which results in a very characteristic cosmic
evolution. In the multi-scale case, Lorentz invariance is broken because the texture of space-
time is assumed to be non-standard, following integration rules dictated by multi-fractal
geometry. This bears an important consequence. By eliminating U from the equations of
motion, the choice of a fixed profile v(x) will determine the gravitational dynamics (i.e.,
a solution gµν(x)) univocally, in a way which scalar-tensor theories could not reproduce in
general. This means that, if the equations of motion can be solved consistently, the resulting
physics is completely determined by the multi-scaling and it can be tested experimentally.

The theory with q-derivatives is even more strikingly different from a scalar-tensor
model: in that case, we will not even need ‘kinetic’ or ‘potential’ terms for v to get consistent
solutions. The equations of motion can be written in the form (3.2) but with T v

µν = 0, and
they are quite dissimilar from the scalar-tensor ones (see eqs. (6.3) and (6.4)).

Comparison with unimodular gravity. The situation created by a non-dynamical ge-
ometric structure may be remindful of theories of unimodular gravity, where it is assumed
that some of the metric components are non-dynamical. This can be implemented either as
a partial gauge fixing of general coordinate transformations preserving the volume (so that√−g transforms as a scalar rather than a density; in particular,

√−g = 1) [133–149], or
preserving (in full or almost) general covariance but demanding

√−g to be non-dynamical
[150, 151], or replacing the volume weight

√−g with a scalar with some internal symmetries
and no kinetic term [152–155]. At the classical level, the dynamics of unimodular gravity is
equivalent to general relativity or, when

√−g is not globally fixed to 1, to a scalar-tensor
theory [151]. In these scenarios, the cosmological constant Λ is then reinterpreted as an inte-
gration constant. Classically, this does not solve the cosmological constant problem, although
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in some models Λ = 0 by the symmetries of the theory [147] and dark energy is explained by
a dynamical dilaton field [148]. Interesting physics emerges at the quantum level, where uni-
modular gravity deviates from the structure of general relativity. In Hamiltonian formalism,
the wave-function of the Universe becomes a superposition of states with different values of
the cosmological constant, which allows for a probabilistic reinterpretation of the Λ problem.

Multi-scale theories, especially that with ordinary derivatives, are somewhat akin to
these models where the geometry of general relativity is modified from first principles. In this
respect, our proposal has some antecedents and is not conceptually shocking. In particular, in
the theory with weighted derivatives an extra consistency equation appears just like in these
models. Still, there are notable differences, the main one being the fact that we are adding
(or, more precisely, modifying) non-dynamical structure to the geometry rather than making
some components of gµν non-dynamical. In fact, while one may regard the profile v(x) in the
action as a new non-dynamical structure, it is more economic to consider the non-dynamical
structure as a multi-scale generalization of something which is already present for the start
in standard general relativity, namely, the integro-differential structure of the action and, in
particular, the coordinates charting [45]. The metric structure is independent at the action
level and all the gµν components are dynamical. This, together with a precise prescription for
the non-dynamical part dictated by multi-fractal geometry, makes the dynamics of multi-scale
theories quite dissimilar from previous ideas in this directions.2

3.2 Acceleration and cosmological constant problem

To summarize, whether the measure is a Lorentz scalar or not splits theories with ordinary or
weighted derivatives into two mutually exclusive formulations. The first case, where v → V
is a dynamically determined Lorentz scalar and its potential U(V ) is fixed a priori, is akin
to traditional scalar-tensor theories. In the multi-scale formulation, on the other hand, one
maintains both the scale hierarchy and the original motivation by multi-fractal geometry,
the profile v(x) is fixed a priori and the potential U(v) is tailored from one of the profiles
discussed in section 2.1 and the resulting dynamics (3.2). This places the cosmological
constant problem under a novel perspective.3 In fact, the quantity U(v) is determined for
self-consistency by the dynamics by keeping the multi-scale profile v fixed. This is nothing
but a spacetime-dependent cosmological constant

Λ(x, {ℓn}) ≡
1

2κ2
U [v(x, {ℓn})] , (3.4)

featuring the characteristic scales {ℓn} of the system. Thus, the energy scale of the effective
Λ is determined by the structure of the measure. At early times, we will see that there is
the possibility to obtain an accelerating evolution without adding inflaton-like matter; this
phase depends on the scales ℓn. At late times, the measure weight tends to 1, meaning
that the observed cosmological constant can be accounted for by this model only if U(v =
1) ∼ H2

0 , where H0 is the Hubble parameter today. We will confirm this later (eq. (5.50)).
However, the metric structure is independent of the measure structure, which means that

2In particular, the point of view that the measure is dynamical because determined by the equations of
motion of the other fields [152–155] is not tenable in our case, as explain above.

3On the other hand, this change of perspective where a geometric Ansatz determined by some first principles
governs the dynamics is no different from what attempted elsewhere. For instance, in asymptotic safety the
cosmological and Newton constants are assumed to scale in a certain way compatible with the existence of a
UV non-Gaussian fixed point [103].
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the constant H0 is independent of the scales ℓn. Thus, the cosmological constant problem
can be reinterpreted but not solved. Still, the rigidity of the multi-scale Ansatz allows one
to constrain the scales ℓn against experiments and, through them, to test the prediction for
the whole evolution of the universe, including possible early-time acceleration stages and the
cosmological constant (3.4). The present paper also aims to begin such a study and check
whether this reconstruction programme is feasible.

In a minimal formulation of the q-theory, the cosmological constant problem does not
find a natural relaxation, since there is no immediate need to introduce a term U(v) in
the action to obtain consistent solutions. On the other hand, inflation can be replaced
by alternative mechanisms where the hot-big-bang problems are tackled under a different
perspective, as we shall see in section 6.

3.3 Frames

The metric and measure structures are related to each other by their interplay under coordi-
nate transformations. By that, we can already determine which of the multi-scale models will
have a natural definition of local frames. Contrary to other proposals of non-Riemannian
manifolds [156], here we deal with metric spaces where a differential line element can be
defined.

To find the metric, we follow the procedure of [126], as in [45]. Consider two coordinate
systems {xI} and {x′µ}, the first (denoted with capital Roman indices) being the Cartesian
system and the second a generic curvilinear one. The ordinary exterior derivative d must
be coordinate invariant, giving dxI∂I = d = dx′µ∂µ. Applying this relation to xJ , we get
dxJ = dx′µē J

µ , where

ē J
µ :=

∂xJ

∂x′µ
(3.5)

is the usual D × D vielbein matrix (the inverse is such that ēµI ē
J
µ = δJI ). The multi-scale

Jacobian J is simply J̄ = |det ē| times the ratio of measure weight factors. In fact, the
measure transforms as

d̺(x) = d̺(x′)J (x′) , J (x′) =
v[x(x′)]

v(x′)
J̄ (x′) . (3.6)

If we defined the metric to coincide with the usual one, ḡµν := ηIJ ē
I
µ ē

J
ν , we would soon

meet a problem. In ordinary spacetime, the line element is

ds̄2 := ḡµνdx
µ ⊗ dxν . (3.7)

In finite form and space-like separation (∆t = 0), this gives the square distance between two
points. However, in multi-scale spacetimes the dimensional scaling of lengths, areas, and so
on, is anomalous. For instance, in isotropically fractional spacetimes with measure (2.4) and
αµ = α, the dimensional scaling is the usual one multiplied times α [45]. Together with the
measure structure (3.6), this points towards the line element

ds2
?
= ḡµν dq(x

µ)⊗ dq(xν) = ḡµν v(x
µ) v(xν) dxµ ⊗ dxν , (3.8)

where repeated indices are summed over and we omit indices in the symbols q and v. However,
it is easy to check that eq. (3.8) is not invariant under coordinate transformations.

The crucial point is that multi-scale spacetimes have a non-trivial differential and ge-
ometric structure at all points. Like a self-affine fractal, one should see the same structure
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both when moving to different points and changing coordinate system. This is most natu-
rally done in geometric coordinates. Equation (3.6) can be rewritten for each direction as
(repeated indices are not summed over in the second expression)

v(xJ) dxJ = v(x′
µ
) dx′

µ
e J
µ , e J

µ :=
v(xJ)

v(x′µ)
ē J
µ , (3.9)

corresponding to

dqJ = dq′
µ
e J
µ , e J

µ :=
∂qJ

∂q′µ
. (3.10)

In other words, the gravitational field in multi-scale spacetimes is most naturally defined with
respect to geometric coordinates and multi-scale frames map a curvilinear coordinate system
to the Cartesian one with the same measure structure.

The weights in the inverse eµI of the weighted vielbein eµI are swapped, eµI := ēµI
×v(x′µ)/v(xI ), so that eµIe

J
µ = δJI . The multi-scale metric is then defined as

gµν := ηIJe
I
µ e

J
ν 6∝ ḡµν , (3.11)

which is not proportional to the ordinary metric due to the weight factors in the sum over
I and J . Thanks to the orthonormality of the multi-scale vielbeins, gµνg

µρ = δρν and indices
can be raised and lowered as usual.

The multi-scale line element is formally identical to (3.8), except that the metric now
is (3.11):

ds2 := gµν v(x
µ) v(xν) dxµ ⊗ dxν = gµν dq

µ ⊗ dqν . (3.12)

Now it is possible to move from a curvilinear to a Cartesian multi-scale coordinate system:

ds2
(3.11)
= ηIJe

I
µ dq

µ ⊗ e J
ν dq

ν (3.10)
= ηIJdq

′I ⊗ dq′
J
. (3.13)

Working in q coordinates is time saving but one can repeat the same calculation in x coor-
dinates with explicit measure weight factors.

To summarize, trading local frames with multi-scale ones we are able to define the
multi-scale version of a local inertial frame, where the metric is Minkowski. Because of the
non-trivial measure, multi-scale inertial frames are not invariant under a Poincaré transfor-
mation of the coordinates, eq. (2.13), but they are invariant under eq. (2.17). This is the
transformation leading from a multi-scale local inertial frame charted by {xJ} to another one
charted by {x′I}. In multi-scale Minkowski spacetime, gµν = ηµν , the vielbeins are e

I
µ = δ I

µ ,
and there is no distinction between spacetime (Greek) and frame (capital Roman) indices.

In Euclidean multi-scale space, the finite form of ds gives the distance between two
points x and y:

∆q(x, y) :=

√√√√
D∑

µ=1

|qµ(x)− qµ(y)|2 . (3.14)

In the fractional isotropic case, ∆q(x, y) ∼ ‘
√

|xα − yα|2 ’, where quotation marks mean that
we omitted details such as sums, indices, signs and constant prefactors. This is not a 2α-norm
as in multi-scale spaces with fractional derivatives, where the distance in the same length
units is ∆γ(x, y) ∼ ‘

√
|x− y|2γ ’ [45]. Therefore, in multi-scale spaces with q-derivatives

there is no restriction of the range of γ to the semi-interval γ ≥ 1/2, as in [45].
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All this discussion indicates that the q-theory is the only one realizing the curved,
Lorentzian generalization of a genuine fractal behaviour, since in the other multi-scale models
geometric coordinates do not appear in the dynamics and, therefore, the measure structure
is not preserved by frame and coordinate transformations. This is in agreement with the
findings on the relation between spectral and walk dimension [41] recalled in section 2.2.
Also, the line element in all the other cases is not eq. (3.12), and it does not correspond to
the distance between two points: for the theory with ordinary derivatives it is eq. (3.7), for
the one with weights it is a modification of it according to [43]. In the theory with ordinary
derivatives, the metric is actually ḡµν and the frame matrices (3.5) carry no information on
the measure. This does not mean that the theories with ordinary and weighted derivatives
are ill defined; simply, they do not realize multi-fractal geometries.

3.4 Covariance and diffeomorphism invariance

We make a comment on covariance and diffeomorphism (in short, diffeo) invariance in multi-
scale theories. They can be stated as follows [157]. Let Ψ be some fields living on a manifold
M endowed with some non-dynamical structure Σ, and obeying the equations of motion
F [Ψ,Σ] = 0. Covariance determines that, under a diffeomorphism f , the transformed fields f ·
Ψ obey equations of motions with transformed non-dynamical structure: F [Ψ,Σ] = 0 = F [f ·
Ψ, f ·Σ]. On the other hand, diffeo invariance limits the amount of non-dynamical structure:
it requires that the same equation of motion be satisfied by the fields and their transforms,
F [Ψ,Σ] = 0 = F [f · Ψ,Σ] (active diffeomorphism), or, equivalently, that any solution Ψ of
the equations of motion is also solution of a different set of equations parametrized by a
transformed non-dynamical structure, F [Ψ,Σ] = 0 = F [Ψ, f · Σ] (passive diffeomorphism).

Any covariant theory with no non-dynamical structure is trivially diffeo invariant. Nor-
mally, one identifies covariance with diffeo invariance for this reason, but in multi-scale theo-
ries this is no longer true since the measure weight v(x) is, strictly speaking, non-dynamical.
Therefore, one should keep the concept of covariance and diffeo invariance distinct. In partic-
ular, multi-scale theories are covariant but not diffeo invariant in the usual sense. From the
point of view of plain diffeomorphisms, the zeros or the singularities of v are special points
which do have an independent meaning, contrary to diffeo-invariant theories where a point
acquires meaning only in relation to the happening of a physical event.

On the other hand, it would be desirable to describe multi-scale (and, in particular,
fractal) geometry in a coordinate independent way. That is, there should be no meaning in
statements such as ‘The measure singularity is located at this point, this much distant from
the particle P.’ Rather, the singularity should be ‘everywhere.’ This is the significance of the
multi-scale frames in eq. (3.10). At each point on the multi-scale manifold, one can attach
a local reference frame with a given distribution ̺(x) = q(x). Thus, from the perspective of
multi-scale geometry it is more natural to assume this modification of diffeo invariance which
also includes the anomalous geometric distribution structure attached to each point. We saw
this occurs only in the q-theory.

Obviously, the q-theory is invariant under active diffeomorphisms with respect to the
geometric coordinates. The theory with ordinary derivatives does not possess such a property
due to the overall non-trivial measure, while in the theory with weighted derivatives the
problem stems from the interaction terms. All the theories are diffeo invariant when v → V
is regarded as a dynamical scalar field. Take the example of a scalar field theory. In ordinary
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spacetime, consider the action

S̄ϕ = −
ˆ

dDx
√−ḡ

(
1

2
ḡµν∂µϕ∂νϕ+

λ

n
ϕn

)
, (3.15)

where ḡ is the determinant of the metric ḡµν . Since ḡ
′ = J̄ 2ḡ, the volume element dDx

√−ḡ
is invariant under a coordinate transformation. For the same reason, and due to invariance
of the scalar field ϕ′(x′) = ϕ(x), both the kinetic and potential term are invariant. Thus, S̄ϕ
is diffeo invariant.

1. The case of the theory with ordinary derivatives is the easiest and does not require
many comments:

Sord,ϕ =

ˆ

dDx v
√−g

(
1

2
ϕK±ϕ− λ

n
ϕn

)
, (3.16a)

K− =
1

v
∇µ [v∇µ · ] , K+ = � = gµν∇µ∇ν . (3.16b)

Here and in what follows, we denote with gµν the metric of the chosen multi-scale
model, reserving the symbol with a bar ḡµν to the metric of ordinary spacetime (in this
particular theory, however, ḡµν = gµν). ∇ is the covariant derivative with respect to g
(∇µ = ∂µ on a scalar). Notice that, after integration by parts, the kinetic term can be
also written as

ϕK−ϕ→ −gµν∂µϕ∂νϕ , ϕK+ϕ→ −gµνĎµϕ∂νϕ , (3.17)

or, in more compact form, ϕK±ϕ → −gµν1/2±1/2Dµϕ∂νϕ, where we used eq. (2.11).
The expression for the case K+ can be easily symmetrized in the indices.

Since the measure is non-dynamical but does determine the dynamics of the fields, we
can add kinetic and potential terms:

Sord,ϕ =

ˆ

dDx
√−g v

{
1

2
ϕK±ϕ− λ

n
ϕn +

1

2κ2
[ωvK±v − U(v)]

}
, (3.18)

where ω is a function of v (or just a constant) and κ2 = 8πG (G is Newton’s constant)
has been introduced for later convenience.

2. Consider now the multi-scale theory with weighted Laplacian:

Sv,φ = −
ˆ

dDx v
√−g

{
1

2
gµνDµφDνφ+

λ

n
φn +

1

2κ2
[ωgµνDµvDνv + U(v)]

}
. (3.19)

The field φ is a scalar density, which transforms as φ′(x′) =
√
v(x)/v(x′)φ(x) [40].

Thus, ϕ :=
√
v φ is a scalar and the action (3.19) can be recast as

Sv,φ = −
ˆ

dDx
√−g

{
1

2
gµν∂µϕ∂νϕ+

λ

n
v1−

n
2 (x)ϕn +

v

2κ2
[ωgµνDµvDνv + U(v)]

}
.

(3.20)
The kinetic term for v could have been defined also with normal derivatives, in confor-
mity with the ϕ sector. The difference is only a numerical factor, (Dv)2 = (9/4)(∂v)2 .
The interaction term breaks diffeo invariance even when ω = 0 = U , unless the measure
itself be a dynamical scalar field, eq. (3.3).
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3. In the q-theory, replacing everywhere in (3.15) the coordinates xµ with the geometric
coordinates qµ(xµ) and ḡµν with the multi-scale metric (3.11), one has

Sq,ϕ = −
ˆ

dDq(x)
√

−g(x)
{
1

2
gµν(x)

∂ϕ(x)

∂qµ(x)

∂ϕ(x)

∂qν(x)
+
λ

n
ϕn(x)

+
1

2κ2

[
ωgµν

∂v(x)

∂qµ(x)

∂v(x)

∂qν(x)
+ U(v)

]}
. (3.21)

The field ϕ is a scalar and the action Sq,ϕ is diffeo invariant if eq. (3.3) holds or if
ω = 0 = U . The only change with respect to (3.15) is that now coordinates are
composite objects; accordingly, the metric is defined so that Jacobians always cancel
with one another. For completeness, we have introduced a kinetic and potential term
for the measure, but in this theory they are somewhat out of place, since eq. (3.21)
resembles a field theory coupled with a non-relativistic point particle. We will ignore
them in section 6.

4 Theory with ordinary derivatives

In torsion-free (pseudo-)Riemannian manifolds, the requirement that the spin connection
realizes parallel transport of angles and lengths translates into the compatibility equation
∇̄σ ḡµν = 0, stating that the metric is covariantly constant. Explicitly,

∇̄σḡµν = ∂σ ḡµν − Γ̄τ
σµḡτν − Γ̄τ

σν ḡµτ = 0 , (4.1)

where
Γ̄ρ
µν := 1

2 ḡ
ρσ (∂µḡνσ + ∂ν ḡµσ − ∂σ ḡµν) (4.2)

is the Levi-Civita connection. The latter vanishes in a local inertial frame where ḡµν =
ηµν . To have a Minkowski metric in local frames when the action measure is non-trivial,
one possibility is to keep the same compatibility equation. This immediately leads to the
model with ordinary derivatives. Its gravitational action, Einstein equations and some of
the cosmology have been worked out in [35] for the operator K−. Here we report the main
results, adding a potential for the measure. The reader can extend the discussion to K+ by
replacing ∂v∂v → Ďv∂v in the equations of motion.

The action for gravity reads (in the following, bars are omitted)

Sg =
1

2κ2

ˆ

dDx v
√−g [R− ω∂µv∂

µv − U(v)] , (4.3)

where U may include a cosmological constant term Λ and the Ricci scalar R := gµνRρ
µρν is

defined as usual, in terms of the Riemann tensor

Rρ
µσν := ∂σΓ

ρ
µν − ∂νΓ

ρ
µσ + Γτ

µνΓ
ρ
στ − Γτ

µσΓ
ρ
ντ , (4.4)

where Γ is given by eq. (4.2). Higher-derivative operators in the action are also possible, but
we will limit the discussion to the Einstein–Hilbert term.

In eq. (4.3), we added a ‘kinetic’ and ‘potential’ term for completeness in order to find
non-trivial cosmological solutions accommodating usual matter, acceleration or other sensible
features. Not doing so leads to the very restrictive scenarios of [35] (matter with negative
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energy density, and so on). Including also the matter action Sm, the Einstein equations are
the usual ones but augmented by some terms in v:

κ2Tµν = Rµν −
1

2
gµν [R− U(v)] + gµν

�v

v
− ∇µ∇νv

v
+ ω

(
1

2
gµν∂σv∂

σv − ∂µv∂νv

)
, (4.5)

where

Tµν := − 2√−g
δvSm
δvgµν

= − 2√−g v
δSm
δgµν

(4.6)

is the energy momentum tensor of matter fields. The equation of motion for v is

R− U(v) = −2κ2Lm + vU,v − ω(2v�v + ∂µv∂
µv) , (4.7)

where Lm is the Lagrangian density of matter fields and the subscript with comma denotes
the derivative with respect to v. Taking the trace of eq. (4.5) gives

R− D

2
[R− U(v)] + (D − 1)

�v

v
+ ω

(
D

2
− 1

)
∂µv∂

µv = κ2T µ
µ . (4.8)

Plugging eq. (4.7) into (4.8), we get

R− D

2
vU,v + (D − 1)

�v

v
+ ω[Dv�v + (D − 1)∂µv∂

µv] = κ2
(
T µ
µ −DLm

)
. (4.9)

Thus, R in eq. (4.3) can be replaced by the last expression and the dynamics of the metric
is fully determined by the profile v(x) (or by the dynamics of V if the measure is interpreted
as a Lorentz scalar).

Matter solutions on Minkowski background gµν = ηµν no longer obey the condition
κ2Tµν = Ληµν . One can also show that none of the profiles in section 2.1 admit Minkowski
vacuum solutions.4

The ordinary FLRW line element is

ds2 = gµνdx
µdxν = −dt2 + a(t)2ĝijdx

idxj , (4.10a)

where t = x0 is synchronous time, a(t) is the scale factor,

ĝijdx
idxj =

dr2

1− k r2
+ r2dOD−2 (4.10b)

is the line element of the maximally symmetric (D− 1)-dimensional spatial slices of constant
sectional curvature k (equal to −1, 0 and +1 for, respectively, an open, flat, and closed
universe with radius a) and dOD−2 is the angular part. The only non-zero components of
the Ricci tensor and the expression for the Ricci scalar are

R00 = −(D − 1)(H2 + Ḣ) , Rij =

[
2k

a2
+ (D − 1)H2 + Ḣ

]
gij , (4.11)

R = (D − 1)

(
2k

a2
+DH2 + 2Ḣ

)
, (4.12)

4The 0i component of eq. (4.5) with Rµν = 0 = Tµν and gµν = ηµν gives 0 = ∂iv̇ + ωvv̇∂iv. If v is
factorizable, this equation admits solutions only if (i) ∂iv = 0 or (ii) v̇ = 0 or (iii) ω = −1/v2. Then, the
00 and ii components of eq. (4.5) combine to give v̈/v + ωv̇2 = −∂2

i v/v − ω(∂iv)
2. All three cases (i)–(iii)

require that the left- and right-hand side of this equation vanish independently. The first case prescribes that
v = v(t), and v̈/v + ωv̇2 = 0 is solved by the inverse error function, completely different from the multi-scale
profiles of section 2.1. Case (ii) is identical. Case (iii) prescibes v̈/v− (v̇/v)2 = 0 = −∂2

i v/v+(∂iv/v)
2, which

is solved by an exponential v = exp(
∑

µ
cµxµ), again not a multi-scale profile.
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where

H :=
ȧ

a
(4.13)

is the Hubble parameter. In parallel, we assume that the measure v(x) is non-trivial only
along the time direction, v(x) = v(t) = v0(t), and that matter is a perfect fluid with energy-
momentum tensor

Tµν = (ρ+ P )uµuν + gµν P , (4.14)

where ρ = T00 is the energy density, P = T i
i /(D − 1) is the pressure and u is the fluid

relativistic velocity (uµu
µ = −1). The 00 component of the Einstein equations (4.5) gives

the first Friedmann equation

(
D

2
− 1

)
H2 +H

v̇

v
=

κ2

D − 1
ρ+

1

2

ω

D − 1
v̇2 +

U(v)

2(D − 1)
− k

a2
, (4.15)

while the second Friedmann equation is

H2 + Ḣ −H
v̇

v
+

ω

D − 1
v�v = − κ2

D − 1
(ρ+ P ) . (4.16)

Early-universe cosmology was partially studied in [35], in the case where v ∼ |t∗/t|1−α. For
U(v) = 0 and on a flat FLRW background, non-vacuum solutions exist only with exotic
matter with negative energy density, which may be realized without violating unitarity by
a fermionic condensate. A more detailed analysis of this model, taking into account the
interpretation of section 3.2, will be presented elsewhere.

5 Theory with weighted derivatives

In multi-scale spacetimes with weighted derivatives, we end up modifying the compatibility
equation ∇̄σḡµν = 0 and, indirectly, the possibility to have gµν = ηµν in local frames. Thus,
either one keeps the notion of local inertial frame but abandons weighted derivatives (which
leads back to the preceding theory) or modifies it in order not to discard field theory on multi-
scale Minkowski background [40, 42, 51] (which results in a Weyl integrable spacetime). In
the second case, there is an interesting interplay between frames, the density behaviour of
the gravitational field and the number of topological dimensions (D = 4 plays a special role).

Below eq. (2.15), we recalled that weighted derivatives (2.11) act with different weights
depending on the tensorial nature of the field densities. We saw the example of a scalar
density, β = 1/2, and mentioned the case of vectors [42], with the same value of β. What
about the metric? In principle, it should be a bilinear, made of two contracted tetrads,
which makes β = 1 the most natural case. However, it will be more instructive to leave the
parameter β free and let the theory itself choose the most natural value in due course.

We define various types of covariant derivatives and connections. One is eq. (4.1) under
the replacement ∂ → βD everywhere:

β∇σgµν := βDσgµν − βΓτ
σµgτν − βΓτ

σνgµτ , (5.1)

where
βΓρ

µν [g] :=
1
2g

ρσ (βDµgνσ + βDνgµσ − βDσgµν) . (5.2)
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In particular, Γ[g] := 0Γ[g] = Γ̄[g]. Equations (5.1) and (5.2) also imply, after some simple
algebra, that the ordinary covariant derivative ∇σ = 0∇σ coincides with β∇σ when acting
on the metric (and only then):

∇σgµν := ∂σgµν − Γτ
σµ gτν − Γτ

σν gµτ = β∇σgµν . (5.3)

The relation between Γ and βΓ is

βΓρ
µν = Γρ

µν +
1
2

(
Wµδ

ρ
ν +Wνδ

ρ
µ − gµνW

ρ
)
, Wµ := ∂µ ln v

β . (5.4)

A third and fourth type of derivative are a mixture of the above two, with weighted derivative
and connection Γ or with ordinary derivative and connection βΓ:

∇+
σ gµν := βDσgµν − Γτ

σµgτν − Γτ
σνgµτ = ∇σgµν +Wσgµν , (5.5)

∇−
σ gµν := ∂σgµν − βΓτ

σµgτν − βΓτ
σνgµτ = ∇σgµν −Wσgµν . (5.6)

In this section, we consider four geometries, each characterized by a given connection
and a covariant conservation law for the metric:

Case (a): βΓ , β∇σgµν = 0 , (5.7a)

Case (b): Γ , ∇σgµν = 0 , (5.7b)

Case (c): Γ , ∇+
σ gµν = 0 , (5.7c)

Case (d): βΓ , ∇−
σ gµν = 0 . (5.7d)

We will discard cases (a) and (c), identify case (b) with the previous multi-scale theory, and
recognize case (d) as a Weyl integrable spacetime. The reader not bothered by technical
details may jump to section 5.2.

5.1 Model with standard frames

Let us first consider case (a) and write the metric

gµν = ηIJ ẽ
I
µ ẽ

J
ν (5.8)

in terms of the vielbeins ẽ I
µ , which may differ from the previously introduced ē and e. From

eq. (5.2), one gets 2gρλ
βΓρ

µν = βDµgνλ+ βDνgµλ− βDλgµν . Using the symmetry of βΓ in the
lower indices and adding and subtracting the same expression with, respectively, exchanged
indices λ ↔ µ and λ ↔ ν, we obtain βDλgµν = gρν

βΓρ
λµ + gρµ

βΓρ
λν . On the other hand,

applying βD on gµν = ηIJ ẽ
I
µ ẽ

J
ν and comparing with the last expression, one arrives at

βΓρ
λµ = ẽρI β

2
Dλẽ

I
µ . (5.9)

As in the ordinary case [158], this derivation relies on the existence of a local inertial frame
centered at some point P where the derivative of the metric vanishes, ∂σgµν = 0, meaning
that ηµν is the metric in the local inertial frame. For eq. (5.9) to be symmetric in λ and µ,
the vielbein should be of the form ẽ I

µ = v−β/2∂µ(f
IxI), where f I is some function. However,

this expression leads to a metric gµν = v−βηIJ∂µ(f
IxI) ∂ν(f

JxJ) which, in turn, implies
the following relation between curved and ‘Minkowski’ line element: vβgµνdx

µ ⊗ dxµ =
ηIJd(f

IxI) ⊗ d(fJxJ). If f I =
√
ωI(s) are line-element weights, the right-hand side is the
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line element found in [43], but the left-hand side does not have the same structure, unless
β = 0 and ωI = 1 for all I. Another way to reach the same result is to express Γ[g] in terms
of the vielbeins. Its definition gives

∂λgµν = gρνΓ
ρ
λµ + gρµΓ

ρ
λν , (5.10)

from which, via eq. (5.8),
Γρ
λµ = ẽρI∂λẽ

I
µ . (5.11)

Therefore, it must be ẽ I
µ = ∂µ(f

IxI), which, compared with the calculation above, requires

β = 0, implying gµν = ḡµν , ẽ
I
µ = ē I

µ , and f I = 1 for all I.
Ultimately, the source of the problem is the fact that βD does not obey the usual Leibniz

rule except when β = 0. Recall that the equation of motion of a free-falling relativistic
particle worldline is (D2

sx)
I := ID2

sx
I = 0, where for each direction I the derivative Ds

carries suitable (possibly all trivial) weights ωI(s) [43]. This equation should coincide with
the geodesic equation in a local frame where gravity is negligible. Using the ordinary frames
(3.5), one can show that 0 = (D2

sx)
I implies 0 = ID2

sx
′ρ+Γ̄ρ

µν∂sx
′µ∂sx

′ν+f(xI , x′ρ)ID2
s1. The

last term vanishes if ωI(s) = 1 for all I, which corresponds to a spacetime with line element
(3.7), i.e., β = 0 in eq. (5.17). Then, the metric in local frames is Minkowski. Attempts to
construct a new geodesic equation ignoring the results of [43] lead to somewhat complicated
equations of motion for xI , as well as to a non-flat metric in local frames.

All these arguments lead to eq. (3.7). The findings for the relativistic particle in
weighted-derivative spacetimes [43] suggest that, if ωI = 1 for all I, then the multi-scaling
is only along spatial directions and v0(t) = 1. This information, if taken on board, would
automatically lead to standard homogeneous cosmology. If we ignore it but still account for
the above results, we are forced to tick case (a) off the list and adopt the second geometry,
case (b), where still β∇σgµν = ∇σgµν = 0 but the connection is Γ. The ordinary Riemann
tensor is the commutator of two covariant derivatives. Applying the same definition to multi-
scale spacetimes with (5.3), [∇µ,∇ν ]uσ = Rτ

σµνuτ for any vector u, and we obtain eq. (4.4).
This, in particular, guarantees than the Riemann curvature tensor vanishes in locally inertial
frames, which are the usual ones where ∂σgµν = 0.

Then, the natural gravitational action is eq. (4.3) and we fall back into the theory with
ordinary derivatives.

5.2 Weyl integrable spacetimes

If one forfeits standard frames and allows for a general β 6= 0, one obtains a model with
weighted derivatives where ∂σgµν 6= 0 in local frames and geometry is non-Riemannian. One
can still define a notion of local frame where the connection vanishes and the metric is not
covariantly conserved in the usual sense. We thus fall in cases (c) and (d),

∇±
σ gµν = 0 ⇒ ∇σgµν = ∓Wσgµν . (5.12)

One can recognize these geometries as Weyl integrable spacetimes [62–65]. The length ℓ0 of
vectors changes under parallel transport by ∆ℓ = ∓ℓ0Wµ∆x

µ, but this variation is zero in
closed paths, provided the vector Wσ is irrotational. Such is the present case, as

Wµ = ∂µΦ , Φ := ln vβ . (5.13)

Since the non-metric part of the measure in the action is fixed to be v = eΦ/β , cases (c) and
(d) are physically inequivalent. Case (c) is immediately ruled out because the commutator
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of two covariant derivatives yields the ordinary Riemann tensor, [∇+
µ ,∇+

ν ]uσ = Rτ
σµνuτ ,

thus giving the usual Einstein–Hilbert action with plain derivatives. On the other hand, one
could insist to include weighted derivatives in the action to get a tensor density with weighted
derivatives and connection Γ, i.e., of the form +Rρ

µσν := βDσΓ
ρ
µν−βDνΓ

ρ
µσ+Γτ

µνΓ
ρ
στ−Γτ

µσΓ
ρ
ντ .

However, this object is not the commutator of two covariant derivatives and does not have
the same index symmetries as Rρ

µσν (e.g., it is not symmetric in µ and ν).
We are left with case (d), which enjoys all the properties of a WIST. The connection

βΓρ
µν is the natural connection of these spacetimes [64] and is sometimes denoted as Cρ

µν .
The commutator of the covariant derivative (5.6) on a vector gives [∇−

µ ,∇−
ν ]uσ = Rτ

σµνuτ ,
where R is the Riemann–Weyl curvature tensor with ordinary derivatives:

Rρ
µσν := ∂σ

βΓρ
µν − ∂ν

βΓρ
µσ + βΓτ

µν
βΓρ

στ − βΓτ
µσ

βΓρ
ντ . (5.14)

(Incidentally, also [β∇, β∇]u = Ru, but we have already seen that this is not a WIST).
In considering case (d) in close conformity with our construction of multi-scale geometries,
we will automatically establish a mapping of language between multi-scale spacetimes with
weighted derivatives and WISTs.

The counterparts of the Ricci tensor and Ricci scalar are

Rµν := Rρ
µρν , R := gµνRµν . (5.15)

The simplest candidate action for multi-scale gravity is the generalization of the Einstein–
Hilbert action:

Sg :=
1

2κ2

ˆ

dDx v
√−g [R− ωDµvDνv − U(v)] (5.16a)

=
1

2κ2

ˆ

dDx e
1
β
Φ√−g

(
R− 9ω

4β2
e

2
β
Φ∂µΦ∂

µΦ− U

)
. (5.16b)

It is important to stress that, strictly speaking, WISTs are defined via a dynamical scalar
field. To employ this naming rigorously, one should regard v → V as a dynamical Lorentz
scalar. However, the following equations would be unchanged and we will stick with the
interpretation of v as a fixed profile throughout this section. The actual application of
the paradigm established in section 3.1, and the differences with respect to scalar-tensor
frameworks, will emerge only at the moment of finding explicit solutions to the equations of
motion, as we shall do in section 5.3.

Actions in WISTs are characterized by an invariance under a double field redefinition
which goes under the name of Weyl mapping (or simply gauge transformation):

gµν =: e−χg̃µν , gµν =: eχg̃µν , Φ =: Φ̃ + χ , (5.17)

so that g̃µτ g̃
τν = δνµ = gµτg

τν . From eq. (5.4), one sees that the connection is invariant,

β̃Γ
ρ

µν = βΓρ
µν ⇒ R̃ρ

µσν = Rρ
µσν , R̃µν = Rµν , (5.18)

while
R = eχR̃ . (5.19)

Applying the transformation (5.17) to the action (5.16), we obtain

Sg =
1

2κ2

ˆ

dDx e
1
β
Φ̃+

(

1
β
+1−D

2

)

χ√−g̃
[
R̃ − e−χU(Φ̃ + χ)

− 9ω

4β2
e

2
β
(Φ̃+χ)∂µ(Φ̃ + χ)∂̃µ(Φ̃ + χ)

]
, (5.20)
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where we used
√−g = e−Dχ/2

√−g̃. Therefore, the action (5.16) is a theory on a WIST with
gauge invariance (5.17) only when ω = 0, U = 0 and

β = β∗ =
2

D − 2
. (5.21)

The kinetic term for the scalar field was dictated by natural considerations in the multi-
scale framework. Relaxing the latter, another case of invariance is for U = 0, ω = ω(Φ) =
const× e−2Φ/β ∝ v−2 and the particular gauge transformation χ = −2Φ̃.

When D = 4, one has β = 1 and βD = Ď, in which case gµν behaves as a field density
with weight −1. Therefore, the metric can be regarded as a bilinear (5.8) composed of density
vectors ẽ with weight −1/2, even if ẽ does not behave as a standard frame vector.

Since the action (5.16) is non-linear in the metric, one expects that it cannot be reduced
to gravity in standard spacetime. In fact, only free multi-scale systems admit this mapping
[40, 49], while interacting multi-scale field theories typically show coordinate-dependent cou-
plings [40, 42, 51]. We check this expectation by first expressing the Riemann–Weyl and
Ricci–Weyl curvature tensors in terms of the ordinary invariants, and then transforming to
the Einstein frame defined below. From eqs. (5.4), (5.14) and (5.15),

Rρ
µσν = Rρ

µσν + rρµσν , (5.22)

rρµσν := δρ[ν∇σ]∇µΦ+ gµ[σ∇ν]∇ρΦ+
1

2

(
δρ[σ∂ν]Φ∂µΦ+ gµ[ν∂σ]Φ∂

ρΦ+ δρ[νgσ]µ∂τΦ∂
τΦ
)
,

Rµν = Rµν + rµν , (5.23)

rµν := rρµρν = −
(
D

2
− 1

)
∇µ∇νΦ− 1

2
gµν�Φ+

D − 2

4
(∂µΦ∂νΦ− gµν∂τΦ∂

τΦ) ,

R = R− (D − 1)

[
�Φ+

D − 2

4
∂µΦ∂

µΦ

]
, (5.24)

where A[µBν] = (AµBν − AνBµ)/2 and in the second line we used eq. (5.10) (nowhere have
we employed eq. (5.12)). We can thus rewrite the action (5.16):

Sg =
1

2κ2

ˆ

dDx e
1
β
Φ √−g (R− Ω ∂µΦ∂

µΦ− U) , (5.25)

Ω :=
9ω

4β2
e

2
β
Φ + (D − 1)

(
1

2β∗
− 1

β

)
, (5.26)

where we have integrated by parts the term in �Φ.
TheWeyl mapping (5.17) is a frame transformation (in the sense of scalar-tensor theories

[98]) when
gµν = e−Φḡµν , χ = Φ , Φ̃ = 0 , (5.27)

moving from the Jordan frame with metric gµν to the Einstein frame with metric ḡµν . We call
the new metric ḡ because, contrary to the generic g̃, it is covariantly conserved, ∇̄σḡµν = 0.
In multi-scale spacetimes, this transformation is called integer picture [40] (where weighted
derivatives acting on gµν = v−β ḡµν become ordinary derivatives acting on ḡµν): it tries to
reduce the system to the standard one with usual measure and fields but possibly modified
(i.e., measure-dependent) couplings. Combining eqs. (5.19), (5.25) and (5.27), we obtain

Sg =
1

2κ2

ˆ

dDx e

(

1
β
− 1

β∗

)

Φ√−ḡ
(
R̄− Ω ∂µΦ∂̄

µΦ− e−ΦU
)
, (5.28)
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and a minimal coupling with gravity when eq. (5.21) holds. However, the terms in Φ persist,
meaning that the dependence on the measure weight cannot be reabsorbed completely, except
when Ω = 0 = U :

ω =
4(D − 1)

9(D − 2)
e−(D−2)Φ , U = 0 . (5.29)

Finally, we write the equations of motion in the Einstein frame, starting from eq. (5.28).
This will help to compare with the dynamics of the other multi-scale models. The energy-
momentum tensor (4.6) transforms as

Tµν = −e−
1
β
Φ 2√−g

δSm
δgµν

= −e
(

1
β∗

− 1
β

)

Φ 2√−ḡ
δSm
δḡµν

= e

(

1
β∗

− 1
β

)

Φ
T̄µν . (5.30)

The matter action is thus of the form

Sm =

ˆ

dDx e

(

1
β
− 1

β∗

)

Φ√−ḡ L̄m , L̄m = e−ΦLm . (5.31)

Taking into account the action for a scalar field, eq. (3.19) or (3.20), we see that L̄m may in
general depend on Φ, unless L̄m coincided with the Lagrangian density in integer picture of a
free system. Interestingly, this happens only if β = 1 and, if one wishes to have the Einstein
frame, this constrains the number of topological dimensions to be D = 4.

From the variations

δ
√−ḡ = −1

2 ḡµν
√−ḡ δḡµν , (5.32)

δΓ̄ρ
µν = 1

2 ḡ
ρτ
(
∇̄µδḡντ + ∇̄νδḡµτ − ∇̄τδḡµν

)
, (5.33)

δR̄µν = ∇̄σδΓ̄
σ
µν − ∇̄νδΓ̄

σ
σµ , (5.34)

δR̄ =
(
R̄µν + ḡµν�̄− ∇̄µ∇̄ν

)
δḡµν , (5.35)

the Einstein equations in this model are

κ2T̄µν = R̄µν −
1

2
ḡµν(R̄− e−ΦU)− Ω

(
∂µΦ∂νΦ+

1

2
ḡµν∂σΦ∂̄

σΦ

)

+

(
1

β
− 1

β∗

)[(
1

β
− 1

β∗

)
(ḡµν∂σΦ∂̄

σΦ− ∂µΦ∂νΦ) + ḡµν�̄Φ− ∇̄µ∇̄νΦ

]
, (5.36)

while the constitutive equation for the potential U (i.e., the equation of motion for v → V if
it was a scalar) is

0 =

(
1

β
− 1

β∗

)(
R̄+Ω∂σΦ∂̄

σΦ− e−ΦU + L̄m

)
− Ω,Φ∂σΦ∂̄

σΦ+ 2Ω�̄Φ

−e−Φ(U,Φ − U) + (L̄m),Φ , (5.37)

where everything should be re-expressed in terms of v as

(∂Φ)2 =
β2

v2
(∂v)2 , �̄Φ =

β

v
�̄v − β

v2
(∂v)2, (5.38)

and so on. As in the theory with ordinary derivatives, ḡµν = ηµν is a vacuum solution only
when the profile of the measure weight is tuned by the dynamics.
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Equations (5.36) and (5.37) can be compared with their counterparts in the theory
with ordinary derivatives, eqs. (4.5) and (4.7).5 The resemblance is stronger for β 6= β∗,
but dynamics can be drastically simplified by setting β = β∗ or Ω = const. For instance, if
both these conditions are met and (L̄m),Φ = 0, eq. (5.37) reduces to the ordinary equation of
motion for a scalar field, �̄Φ− e−Φ(U,Φ − U)/(2Ω) = 0. If only β = β∗, eq. (5.36) becomes

R̄µν −
1

2
ḡµνR̄ =

κ2

D − 1
T̄µν +

4Ω

(D − 2)2
1

v2

(
∂µv∂νv +

1

2
ḡµν∂σv∂̄

σv

)
− ḡµν

1

2vβ∗
U(v) . (5.39)

The choice β = β∗ is attractive not only because it simplifies the Einstein equations, but also
because, as said above, in D = 4 it corresponds to having a bilinear metric (β = 1, βD = Ď).
The trace of eq. (5.39) is

(
D

2
− 1

)
R̄ = − κ2

D − 1
T̄ µ
µ −

(
D

2
+ 1

)
4Ω

(D − 2)2
1

v2
∂σv∂̄

σv +
D

2vβ∗
U(v) . (5.40)

5.3 Cosmology

In the scalar-tensor interpretation, the measure weight acts as a dynamical Lorentz scalar
field in a Riemannian geometry, which is a particular form to recast a WIST. Depending on
the choice of the parameters, the kinetic term of the scalar field can acquire a minus sign and
become a phantom, thus leading to interesting phenomenology including bouncing solutions
[63, 64]. On the other hand, spacetime is not a WIST in the standard sense in the multi-scale
interpretation, where there exists a hierarchy of scales in the measure by default. We adopt
this interpretation to illustrate the consequences of eq. (3.4).

Symmetry reduction of the dynamics is done by choosing the FLRW background (4.10)
for the Einstein-frame metric ḡµν . Let β = β∗ and assume that (L̄m),Φ = 0. From eqs. (4.14)
and (5.30), T̄µν = Tµν = (ρ+P )uµuν + gµν P = v−β∗ [(ρ+P )ūµūν + ḡµν P ] = (ρ̄+ P̄ )ūµūν +
ḡµν P̄ , where ρ̄ = v−β∗ρ and P̄ = v−β∗P are the rescaled energy density and pressure.

The 00 component of eq. (5.39) yields the first Friedmann equation

(
D

2
− 1

)
H2 =

κ2

D − 1
ρ̄+

6Ω

(D − 1)(D − 2)2
v̇2

v2
+

U(v)

2(D − 1)vβ∗
− k

a2
, (5.41)

while the trace equation is

(
D

2
− 1

)(
2k

a2
+DH2 + 2Ḣ

)
=

κ2

D − 1
[ρ̄− (D − 1)P̄ ] +

2(D + 2)Ω

(D − 1)(D − 2)2
v̇2

v2

+
DU(v)

2(D − 1)vβ∗
. (5.42)

These expressions can be compared with those of the previous section, eqs. (4.15) and (4.16);
the structure is similar. Combining eqs. (5.41) and (5.42) to eliminate U , we find the master
equation giving the cosmological evolution for a given measure profile:

(D − 2)Ḣ − 2k

a2
+ κ2(ρ̄+ P̄ ) = − 4Ω

(D − 2)2
v̇2

v2
. (5.43)

5The choice between Einstein and Jordan frame can lead to two physically inequivalent models (with
metric ḡ and g, respectively) at the quantum level, although their classical cosmology yields the same physical
predictions [159, 160]. Here we work in the Einstein frame for simplicity.
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Contrary to standard cosmology, the right-hand side is given, dictated by multi-scale ge-
ometry. In particular, v(x) is part of the differential structure of the theory and is not a
dynamical scalar field, it does not possess a quantum propagator and it does not give rise to
any instability if Ω < 0 [40, 46]. Therefore, the right-hand side of, say, eq. (5.43) cannot be
interpreted as (and does not share the problems of) the kinetic term of a ghost field when
Ω < 0. The other master equation of the system is obtained by plugging back eq. (5.43) in,
say, (5.41):

U(v)

vβ∗
= (D − 2)[(D − 1)H2 + 3Ḣ] + 2(D − 4)

k

a2
+ κ2(ρ̄+ 3P̄ ) , (5.44)

where the right-hand side, determined dynamically and geometrically by eq. (5.43) and the
Raychaudhuri equation ˙̄ρ+ (D − 1)H(ρ̄ + P̄ ) = 0, is a function of t = t(v). Curiously, only
in four dimensions does the curvature not contribute to the potential.

At this point, we abandon the general treatment and concentrate on an example that
can be solved analytically: the flat case in four dimensions and in vacuum with ω = 0,

D = 4 , k = 0 , ρ̄ = 0 = p̄ , Ω = −3

2
. (5.45)

Concerning the geometric profile v, we can take the multi-fractional measure (2.6) limited to
the time direction and to two terms (binomial measure),

v(t) = 1 +

(
t

t∗

)α−1

. (5.46)

This is the simplest (but not toy) multi-scale model, where there is only one characteristic
scale t∗ discriminating between ‘early’ and ‘late’ times. Then,

t = t∗(v − 1)
1

α−1 . (5.47)

For the fractional charge α, we choose the value α = 1/2, which is somewhat typical in
these geometries [45, 46] (we checked that the solution is contracting for negative α). Also,
for simplicity we only consider positive times. We should notice immediately that choosing
a different point tsing 6= 0 for the measure singularity and adopting the profile v̂(t) = 1 +
[(t − tsing)/t∗]

α−1 does not alter anything in the dynamics except the position of the origin
of the time axis with respect to the features of the dynamical evolution (big bang, bounce,
and so on). Therefore, neither the physics nor the background are changed by v → v̂ which
amounts, rather, to a change of presentation of the formulæ [45, 50].

Integrating twice eq. (5.43) yields the scale factor

a(t) =

(
1 +

√∣∣∣∣
t∗
t

∣∣∣∣

) 3
8

exp

{
9

8

[
H0

∣∣∣∣
t

t∗

∣∣∣∣+
√∣∣∣∣

t

t∗

∣∣∣∣−
∣∣∣∣
t

t∗

∣∣∣∣ ln
(
1 +

√∣∣∣∣
t∗
t

∣∣∣∣

)]}
, (5.48)

where H0 is an integration constant. From this, one can extract the first slow-roll parameter

ǫ(t) := − Ḣ

H2
, (5.49)

which determines whether the universe expands in deceleration (ǫ > 1), accelerates (0 ≤ ǫ <
1), or super-accelerates (ǫ < 0).
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Figure 1. The solution (5.48) (left panel) and the slow-roll parameter (5.49) (right panel) for t∗ = 1
and H0 = 4/45.

At early times |t − t∗| ≪ 1, the effects of the measure weight v(t) are important and
the Friedmann equations get non-trivial corrections. As the universe evolves, the weight
in the time direction tends to unity and one obtains (in the homogeneous approximation)
an ordinary cosmological evolution, since multi-scaling is confined to spatial slices. In the
limit t/t∗ ≪ 1, a ∼ (t/t∗)

−3/16 and the scale factor diverges, while at late times t/t∗ ≫ 1
there is an exponential behaviour a ∼ eH0t and the solution expands in the late future only
if H0 > 0. This solution holds in the absence of matter but with a late-time cosmological
constant U(v) ∼ U(v = 1), hence the asymptotic de Sitter behaviour. Figure 1 presents
this evolution. Between t = 0 and some critical time tbounce the universe contracts, down
to a bounce where H(tbounce) = 0 and the scale factor acquires a minimum non-zero value
a(tbounce) 6= 0. Depending on the value of the constant H0, the bounce may happen before
or after the characteristic time t∗. After that, the universe expands in super-acceleration,
tending towards a de Sitter exponential law with late-time Hubble parameter H0.

Realistic multi-scale spacetimes with weighted derivatives will always have a non-zero
cosmological constant Λ0 at late times. The evolution of the universe is governed by the
natural rolling of the measure v down its potential U(v), which is shown in figure 2 (the
exact expression of U , which we do not write down because uninstructive, can be found by
plugging eqs. (5.48) and (5.47) in (5.44)). The minimum of the potential in this model is

Umin = U(v = 1) = 6H2
0 ⇒ Λ0 =

3H2
0

κ2
, (5.50)

where we used eq. (3.4).
This example illustrates three characteristics of cosmological models in multi-scale

spacetimes with weighted derivatives and multi-fractional measure:

1. At the classical level, the big-bang singularity can be replaced by a bounce.

2. The non-trivial measure weight induces an accelerating (actually, super-accelerating)
phase and a late-time non-vanishing cosmological constant.

3. While the universe evolves, the Hausdorff dimension along the time direction changes
with the time scale, from α to 1. The rolling of the measure weight towards the
minimum of its potential U(v) determines both the dynamics of the universe and the
change of dimensionality in time (dimensional flow).
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Figure 2. The potential U(v) obtained from eqs. (5.44) and (5.48) for t∗ = 1 and H0 = 4/45. The
measure weight v(t) rolls from v(0) = +∞ down to the non-zero minimum at v(∞) = 1.
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Figure 3. The solution ã (left panel) and the slow-roll parameter (5.49) (right panel) for t∗ = 1 and
H0 = 4/45 (here H0 does not correspond to the Hubble parameter today).

The bounce of the solution (5.48) occurs because Ω < 0. This corresponds to a theory
with no ‘kinetic’ term for the measure, ω = 0. Vacuum solutions with Ω > 0 also exist, but
they are less natural than eq. (5.48) because they entail a specific choice for ω(v) 6= 0 driven
by no concrete motivation. Still, it may be interesting to show one such example, with the
parameter choice (5.45) except Ω = +3/2 (the form of ω is then obtained by inverting eq.
(5.26)). The scale factor ã(t) corresponding to this solution can be economically written as
the inverse of eq. (5.48), ã(t) = 1/a(−t), and evolved backwards in time due to parity of
the solution. The result, together with the first slow-roll parameter, is depicted in figure 3.
The universe starts from a big bang at ã = 0 in the past infinity, expands in acceleration
(0 < ǫ < 1), then in deceleration until it reaches a maximum ‘size’, shortly after which it
contracts into a big crunch. The potential U(v) of this solution, which we do not show, is
unbounded from below.

6 Theory with q-derivatives

The action and equations of motion of this theory are straightforward in position space, but
their solutions bear the full imprint of the hierarchy of scales in the geometry. Multi-scale
frames have a clear interpretation and map a curvilinear coordinate system to the Cartesian
one with the same measure structure. Gravity and cosmology are easy to work out by
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replacing x → q(x) in standard general relativity. For instance, the metric connection and
the Riemann tensor are defined from the ordinary expressions (4.2) and (4.4):

qΓρ
µν := 1

2g
ρσ

(
1

vµ
∂µgνσ +

1

vν
∂νgµσ − 1

vσ
∂σgµν

)
, (6.1)

qRρ
µσν :=

1

vσ
∂σ

qΓρ
µν −

1

vν
∂ν

qΓρ
µσ + qΓτ

µν
qΓρ

στ − qΓτ
µσ

qΓρ
ντ , (6.2)

and so on. From the action

S =
1

2κ2

ˆ

dDx v
√−g (qR− 2Λ) + Sm , (6.3)

we get the Einstein equations

qRµν −
1

2
gµν(

qR− 2Λ) = κ2 qTµν . (6.4)

Unlike the models with ordinary and weighted derivatives, now the Bianchi identities impose
∂µΛ = 0, i.e., a constant potential for v(x). Although we could add a kinetic and potential
term for the measure in eq. (6.3) on general grounds, we prefer to restrict the dynamics
for the purpose of highlighting certain features of multi-scale theories which could not be
explored analytically in the other scenarios.

In the presence of a perfect fluid, the first Friedmann equation and the Raychaudhuri
equation are

(
D

2
− 1

)
H2

v2
=

κ2

D − 1
ρ+

Λ

D − 1
− k

a2
, (6.5)

ρ̇+ (D − 1)H(ρ+ P ) = 0 , (6.6)

where v = v0(t). The integration of the measure weight gives the geometric time coordinate

q(t) =

ˆ t

dt′ v(t′) . (6.7)

6.1 Power-law solutions and cosmological horizons

We now consider three types of solutions: with a barotropic fluid, with a scalar field, and
with a cosmological constant.

If the perfect fluid obeys the equation of state P = wρ with w constant, the solution of
eqs. (6.5) and (6.6) with k = 0 = Λ is simple:

ρ = ρ0 a
− 2

p , a(t) =

[
q(t)

t∗

]p
, p :=

2

(D − 1)(1 + w)
, (6.8)

where we chose a convenient normalization for the scale factor. The Hubble parameter in
this class of cosmologies reads

H = p
q̇(t)

q(t)
= p

v(t)

q(t)
. (6.9)

There are two horizons of interest in cosmology. One is the particle horizon, whose radius
is the distance traveled by light (with speed c = 1) since the big bang or, in the absence
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of a big bang, the initial time t = 0. The comoving and proper particle-horizon radius are,
respectively,

rp :=

ˆ t

0

dt′ v(t′)

a(t′)
= tp∗

[q(t)]1−p

1− p
, Rp := arp =

q(t)

1− p
, (6.10)

where we assumed q(0) = 0 and p < 1. Another cosmological scale is the Hubble horizon

RH = a rH =
q(t)

p
, rH :=

v

aH
=

tp∗
p
[q(t)]1−p. (6.11)

In all power-law cosmologies, the particle and Hubble horizon are interchangeable since they
differ only by an O(1) factor, if p is not too small:

|rp| =
p

|1− p| rH . (6.12)

If the fluid is a homogeneous scalar field,

ρϕ =
1

2v2
ϕ̇2 +W (ϕ) , Pϕ =

1

2v2
ϕ̇2 −W (ϕ) , (6.13)

the dynamical equations (6.5) and (6.6) in the absence of curvature and cosmological constant
become

(
D

2
− 1

)
H2 =

κ2

D − 1

[
1

2
ϕ̇2 + v2W (ϕ)

]
, (6.14)

0 = ϕ̈+

[
(D − 1)H − v̇

v

]
ϕ̇+ v2W,ϕ . (6.15)

On the other hand, integrating eq. (6.5) in the presence of only a Λ term one gets

a(t) = exp

[√
2Λ

(D − 1)(D − 2)
q(t)

]
. (6.16)

Evolution with multi-fractional measure. If 0 < p < 1, the comoving particle-horizon
radius rp and the proper particle horizon Rp increase in time provided q(t) is monotonic.
This is the case of the binomial measure (5.46), where the geometric coordinate (6.7) is

q(t) = t∗

[
t

t∗
+

1

α

(
t

t∗

)α]
. (6.17)

The only difference with respect to standard cosmology is that the radius of the particle
horizon increases faster in t at times t . t∗ if 0 < α < 1.

This implies that slow-roll inflation is still the natural mechanism solving the horizon
and flatness problems. The reason is that we do not have a non-trivial cosmological constant
in this theory, and we should fabricate it with matter so that p > 1, just like in standard
cosmology. As one can see from eqs. (6.14) and (6.15), ordinary slow-roll inflation (p ≫ 1)
is modified at times t . t∗: if the scalar field evolves slowly, neglecting its kinetic term does
not lead to an almost constant Hubble parameter, since H ∼ v (eq. (6.16)). In the binomial
case (6.17), the rate of change of the scale factor is slightly larger than ordinary de Sitter
expansion for t . t∗. In section 6.3, however, it will become apparent that eq. (6.17) can
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milden the slow-roll condition p ≫ 1 and produce a nearly scale-invariant power spectrum
just with p & 1.

We conclude that multi-fractional geometry alone does not lead to acceleration, unless it
is sustained by a dynamical potential U and a kinetic term for v. We will not switch on these
contributions as before. In the q-theory, we are more interested in considering a case of multi-
fractal measure which was analytically inaccessible in the theory with weighted derivatives:
the measure with log-oscillations. While one cannot easily obtain analytic solutions when
plugging a log-oscillating v in the equations of motion for the weighted-derivative theory, the
case of q-solutions such as (6.8) and (6.16) is most immediate. In the next sections, we will
show that logarithmic oscillations, rather than multi-fractional scaling alone, can provide
both a (partial) alternative to inflation and a cyclic inflationary scenario.

Evolution with log-oscillating measure. Consider the log-oscillating measure (2.8) on a
homogeneous background. We take a binomial multi-scaling with a combination of fractional
charges αn = 1, α and frequencies ωl = 0, ω such that the measure weight is of the form
v(t) = 1 + vα(t)Fω(ln t). (An alternative measure where the whole multi-fractional part is
multiplied times the log-oscillations is also possible, v(t) = [1+ vα(t)]Fω(ln t), but it leads to
similar results.) The geometric time coordinate is

q(t) = t+ t∗

(
t

t∗

)α

Fω(ln t) , (6.18a)

Fω(ln t) = 1 +A cos

[
ω ln

(
t

tPl

)]
+B sin

[
ω ln

(
t

tPl

)]
, (6.18b)

where A and B are some non-negative constants related to those in eq. (2.8) as follows:
Aα,ω = Aα + Bω, Bα,ω = Bα − Aω. For definiteness, we chose the fundamental scale
t∞ ≪ t∗ to be the Planck time tPl, as suggested by the relation between multi-scale log-
oscillating geometries and non-commutative spacetimes [24].

We plot q in figures 4 and 5 for some choices of the parameters. The scale factor (6.8)
for p > 0 will follow the same pattern. As one can see,

• The fundamental time scale tPl only affects the position of peaks (turn-arounds) and
troughs (bounces).

• The fractional charge α affects the slope of q(t) averaged over the oscillations (i.e., the
zero mode of the measure) as well as the amplitude of the oscillations. When α = 0,
there is no modulation of the oscillations except due to the multi-fractional structure.

• The parameter ω modulates the frequency of the peaks and troughs as well as the
steepness of the oscillations.

• The parameter B in front of the sine modulates the amplitude and position of the
oscillations.

• The parameter A in front of the cosine modulates the amplitude of the oscillations.
For sufficiently low values, the universe is always expanding. Otherwise, it undergoes
logarithmic cycles of contractions and expansions up to some time tcrit. The Hubble
parameter (6.9) vanishes, H = 0 (v = 0), at each peak and bounce (figure 6).
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Figure 4. Linear-linear plots (left column) and log-log plots (right column) of the log-oscillating
geometric coordinate (6.18) with t∗ = 1, B = 0, A = 10−1. In each log-log plot, the frequency ω
and the amplitudes A and B are, respectively, reduced and magnified 10 times with respect to the
values of the corresponding linear-linear plot, which are: (a) tPl = 10−2, 10−1 (increasing thickness),
α = 1/2, ω = 10; (c) tPl = 10−1, α = 1/2, 4/5 (increasing thickness), ω = 10; (e) tPl = 10−1, α = 1/2,
ω = 10, 30 (increasing thickness).

• Log-oscillations disappear at time scales much larger than t∗, where evolution becomes
monotonic and the Hubble parameter stops changing sign (figure 6). There is a new
critical scale tcrit ≫ t∗ ≫ tPl which does not depend on p and separates exotic from
standard cosmological behaviour. At tcrit, H = 0 for the last time.

Up to a rescaling of t∗ and an overall rescaling, the geometric time coordinate (6.18) is
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Figure 5. The log-oscillating geometric coordinate (6.18) with t∗ = 1, tPl = 10−1, α = 1/2, and
ω = 10 (linear-linear plots) or ω = 1 (log-log plots). In each log-log plot, the amplitudes A and B are
magnified 10 times with respect to the values of the corresponding linear-linear plot, which are: (a)
B = 0, 10−1 (increasing thickness), A = 0.035; (c) B = 0, A = 0.05, 0.1 (increasing thickness).
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Figure 6. Left: linear-linear plot of the Hubble parameter (6.9) with eq. (6.18) for t∗ = 1, tPl = 0.5,
α = 1/2, ω = 6, B = 0, and p = 1/2 (radiation in D = 4). Solid curve: A = 0.06, the universe
is always expanding (H > 0). Dashed curve: A = 0.1, the universe undergoes cycles of contraction
(H < 0) and expansion (H > 0). Right: log-log plot of the scale factor a (solid curve) and of
the (magnified) Hubble parameter 105H (dashed curve) for t∗ = 1, tPl = 10−1, α = 1/2, ω = 10,
A = 0.5 = B, and p = 1/2. The critical time tcrit coincides with the last change of sign of H (here,
at tcrit ≈ 150), after which the evolution of the universe becomes monotonic.
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invariant under a discrete scale transformation:

t→ λmω t , λω = e
2π
ω , m ∈ Z . (6.19)

Since m is integer and can acquire also negative values, there are oscillations also between
t = 0 and t = tPl, and the total number of oscillations between t = 0 and any given time t
is infinite. The position of two consecutive minima or maxima is governed by the constant
ratio tm+1/tm = λω:

ln
tm+1

tm
=

2π

ω
. (6.20)

The absolute position tmin,m of, say, the minima (bounces) depends on the coefficients A
and B. For instance, if A = 1 and B = 0 (the measure has only the cosine), then tmin,m =

tPlλ
m+1/2
ω , while if A = 0 and B = 1 (sine only), tmin,m = tPlλ

3(m/2+1/4)
ω .

From eq. (6.20), we also get the expansion rate between two minima (or maxima) at
early times, encoded in the net number of e-foldings per cycle

N↑↓ := ln
am+1

am
≈ 2παp

ω
. (6.21)

We can identify two regimes of the cosmic expansion. During the oscillatory era, t ≪ tcrit,
the average slope δ↑↓ of the trend of minima (or maxima) is

δ↑↓ =
ln(am+1/am)

ln(tm+1/tm)
= N↑↓

ω

2π
≈ pα , (6.22)

while at times t ≫ tcrit the slope is p. This result is easy to reach also by noting that these
are the slopes of the zero mode of the measure (the power-law part), i.e., what remains after
averaging a over the log-oscillations. Notice that for α = 0 the net number of e-foldings per
cycle is zero, N↑↓ = 0: oscillations have constant zero mode.

Equation (6.21) can be found also by calculating the slopes of an expanding and a
contracting phase. Assume for simplicity that the geometric coordinate has only the cosine
(B = 0; the case A = 0, B 6= 0 is identical; the mixed case differs only in numbers). The
relative position between any minimum and the next maximum is tmax/tmin =

√
λω = eπ/ω.

The ratio of two geometric coordinates at these points is

q(tmax)

q(tmin)
≈
(
tmax

tmin

)α 1 +A

1−A
, (6.23)

where 0 < A < 1 and we have neglected the late-time contribution to the measure since it is
subdominant in the oscillatory era. Therefore, the slope δ↑ of an expanding phase is

δ↑ =
ln(amax/amin)

ln(tmax/tmin)
≈ p

(
α+

ω

π
ln

1 +A

1−A

)
> p , (6.24)

where the inequality holds because A > 0. Notice that the larger the frequency ω, the steeper
the oscillations. The number of e-foldings of an expansion phase is N↑ = δ↑π/ω, which is
partly undone in the next contraction. In fact, taking the inverse of eq. (6.23) and noting
that tmin+1/tmax = tmax/tmin, we get

δ↓ =
ln(amin+1/amax)

ln(tmin+1/tmax)
≈ p

(
α− ω

π
ln

1 +A

1−A

)
, (6.25)

so that the net number of e-folds per cycle is N↑↓ = N↑ +N↓ = (δ↑ + δ↓)π/ω ≈ 2pαπ/ω, in
agreement with eq. (6.21). Figure 7 collects all these results.
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Figure 7. Log-oscillating scale factor (thick curve) for t∗ = 1, tPl = 10−1, α = 1/2, ω = 25, A = 0.5,
B = 0, and p = 2/3 (dust if D = 4). Thin line: evolution law ∼ tpα (eq. (6.22)) of the trend of minima
(or maxima). Dashed line: late-time asymptotic evolution law ∼ tp of the scale factor. Dot-dashed
line: evolution law ∼ tδ↑ (eq. (6.24)) of the expanding phase of an oscillation. The position of tcrit
(end of log-periodic contraction epochs) is marked by the dotted vertical axis.

6.2 Alternative to inflation?

Horizon problem. To study the fate of cosmological perturbations and the shape of their
spectrum, it is important to mark their evolution with a cosmological scale, distinguishing
between thermalized modes in causal contact and modes outside the causal region. In stan-
dard cosmology, either the particle or Hubble horizon plays this role, and such is the case
also in log-oscillating q-cosmology, since rp ≈ rH never becomes singular except at the big
bang. This happens because both H and v vanish at bounces and peaks, but rH ∼ v/H re-
mains finite. On the other hand, in usual cyclic cosmologies (e.g., [64] and references therein)
the vanishing of the Hubble parameter is not compensated, the Hubble horizon diverges at
bounces and turn-arounds, and one has to resort to a more involved cosmological time scale
[57–59]. This is one important difference with respect to ordinary cyclic inflation. The
evolution of the Hubble horizon differs also with respect to the cyclic multiverse of [161–164].

That the particle or Hubble horizon is the correct milestone of the cosmological evolution
can be also seen by considering the Mukhanov equation of a generic perturbation uk (for
instance, a scalar fluctuation or one polarization mode of the graviton). In ordinary power-
law cosmology, this equation is of the form u′′k +(k2 −C/τ2)uk = 0, where k is the comoving
wave-number, C = p(2p− 1)/(p− 1)2 = O(1), and primes denote derivatives with respect to
conformal time τ = rp/c = O(1)rH/c (c = 1 in our unit conventions). Up to anO(1) constant,
the effective mass term vanishes when the comoving perturbation k = |k| leaves the Hubble
horizon. Horizon crossing is thus defined by the relation k = 1/rH = aH. We can apply
the same discussion to the q-theory, modulo two differences. One is the form of the Hubble
horizon, which is given by eq. (6.11). The other is the structure of momentum space. Instead
of ki, for each spatial direction i one should replace the geometric coordinate of momentum
space pi(ki), whose functional form should be determined by the Fourier transform. For
instance, it is easy to convince oneself that to qi(xi) ∼ xαi there corresponds the same power,
pi(ki) ∼ qi(ki) ∼ kαi . Clearly, if spatial slices are ordinary, q(x) = x and p(k) = k for all i.
We will discuss more complicated profiles p(k) in section 6.3. For the time being, we notice
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Figure 8. Horizon problem solved in log-oscillating spacetimes with t∗ = 1, tPl = 10−1, α = 1/2,
ω = 10, A = 0.5 = B, and p = 1/2 (radiation if D = 4). Left plot: comoving particle horizon rp (thick

curve) and a comoving perturbation of geometric wave-number k̃ = 1 (dashed curve), which exits and
then re-enters in the causal horizon. Right plot: proper particle horizon Rp and a perturbation

λ = a/k̃ = a. Notice the logarithmic time scale.

that the absolute value k = |k| in the Mukhanov equation is replaced by

k̃ :=

√∑

i

p2i (k
i) =

√
k2 + . . . , (6.26)

and the horizon-crossing condition reads

k̃ =
1

rH
=
aH

v
. (6.27)

Again, rH is interchangeable with the comoving particle horizon.
Let us now consider the horizon problem, which amounts to explain why even the largest

perturbations we observe are in thermal equilibrium. In ordinary cosmology, the particle and
Hubble horizons are monotonic in regimes where the expansion is described by a power law.
For instance, assuming k = 0 = Λ and ordinary matter, 0 < p < 1, both rp and rH increase
with time, while for p > 1 (inflation) they decrease and the horizon problem is solved. Here,
the horizons oscillate without ever getting singular and originate a phenomenology completely
different from the one of the previous sections.

A perturbations of wave-length λ = a(t)/k̃ can exit the particle horizon and then re-
enter it; in comoving coordinates, the perturbation wave-number k (and k̃) is constant, it
exits the horizon at some point during the early evolution of the universe, and re-enters it as
soon as the horizon reaches its scale (figure 8).

All perturbations which enter the horizon after tcrit have never thermalized. Therefore,
in order to solve the horizon problem, we have two possibilities: either we assume p > 1 (we
will discuss this inflationary cyclic cosmology later), or we take 0 < p < 1 but assume that
tcrit is in our future, so that we are presently experiencing the expanding phase of one cycle.
On one hand, this poses us at a special point during the evolution of the universe, since we
have to be at a point (along the increasing slope of one cycle) which should not be higher
than the peak of the preceding cycle (figure 9). On the other hand, this point is less special
than deemed, since there are infinitely many cycles before us, all realizing about the same
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Figure 9. Alternative to inflation: we live in the expanding phase of one of the cycles, while
thermalized fluctuations (all those below the dashed line) re-enter the horizon.

expansion rate (6.21) (cycles close to tcrit will be 1/α times longer than early ones, but this
difference is negligible if α . O(1)).

According to eq. (6.24), an observer on the ascending slope of a cycle will experience
an effective cosmic expansion a(t) ≈ tδ↑ . Since the universe did not always accelerate, a
small exponent δ↑ would be more realistic. This would imply, in particular, that ω = O(1).
The present model is a simplified example of the possibilities of the theory and it cannot
accommodate the variety of regimes of the history of the universe (radiation domination,
matter domination, dark energy domination). We will not decide here whether more complex
models of this scenario are viable.

Flatness problem. Let Ω (not to be confused with the coefficient (5.26) in the theory with
weighted derivatives) be the density parameter

Ω :=
ρ

ρcrit
, ρcrit :=

(D − 1)(D − 2)H2

2κ2v2
. (6.28)

Equation (6.5) with Λ = 0 becomes

Ω− 1 =
2k

D − 2

v2

H2a2
=

2k

D − 2
r2H . (6.29)

If the universe is spatially flat, Ω = 1. Otherwise, from eq. (6.11),

|Ω(t0)− 1| = |Ω(t)− 1|
[
q(t)

q(t0)

]−2(1−p)

, (6.30)

where t < t0 and t0 is today. The left-hand side is very close to zero, which may imply a
fine tuning of the curvature of the universe at early times (flatness problem). In ordinary
cosmology, the ratio (t/t0)

−2(1−p) would be a monotonic function of time, decreasing if 0 <
p < 1 (increasing rH) and increasing if p > 1 (decreasing rH). The flatness problem would be
resolved in the second case (inflation), since going backwards in time one can have |Ω(t)−1| ≫
1 and still maintain the left-hand side small.

As said above, in ordinary cyclic cosmologies the Hubble radius is ill-defined at the
extrema and one has to gauge the flatness problem against a different cosmic scale [57–
59]. Here we can directly use eq. (6.11). As shown in figure 10, Ω undergoes an infinite
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Figure 10. The density parameter |Ω− 1| = r2H (eq. (6.29), solid curve) in log-oscillating spacetimes
with D = 4, t∗ = 1, tPl = 10−1, α = 1/2, ω = 10, A = 0.5, B = 0, and p = 1/2 (radiation). The zero
mode (average evolution, dotted curve) and the scale factor (dashed curve) are shown for comparison.

number of oscillations in the past, whose maxima increase very slowly according to the law
(6.21) provided ω & 2παp = O(1). Thus, from a cycle to the next the density parameter
Ω does not deviate too much from unity, nor is there an appreciable increase in entropy
(proportional to a positive power of the scale factor). However, in the past we had an infinite
number of cycles and a steady growth of the zero mode of the measure. In the special case
α = 0, the oscillations in the scale factor increase only because of the large-scale term t
in eq. (6.18). Going backwards in time, the offset of the oscillations of the Hubble radius
decreases linearly, until it stops at some finite value at t = 0, where 〈q(0)〉 = 1 in average
and |Ω(0)− 1| = (1− p)2 = O(1). Then, all the fine tuning in |Ω(t0)− 1| is transferred onto
the amplitudes A and B. Therefore, the flatness problem is not solved in these models with
0 < p < 1.

6.3 Cyclic mild inflation

In the previous subsection, we studied log-oscillating models of the form (6.8) with 0 < p < 1
but we did not find a satisfactory solution to the flatness problem. If we take p > 1,
we enter into an inflationary scenario, since we need some matter with equation of state
P/ρ = w < −(D − 3)/(D − 1). Thus, instead of the evolution in figure 9, we experience
another where we reside after a mildly accelerating cyclic phase (figure 11). This strongly
resembles models of emergent cyclic inflation [55–61], but with some important differences.

Origin of cyclic dynamics. In CI models, the cyclic dynamics is driven by a negative
cosmological constant via the standard Friedmann equation (in D = 4)

H2 =
κ2

3
ρ− |Λ|

3
, (6.31)

while in log-oscillating cosmology the dynamics is modified by the non-trivial geometry
(eq. (6.5)) which is also responsible for the cycles. Neither curvature nor Λ plays any role.

Asymmetry and periodicity of cycles. In CI the universe has no beginning and under-
goes linear asymmetric cycles with constant period due to entropy exchange between different
species (say, dust matter and radiation). Here, on the other hand, we have a flat cyclic uni-
verse with a finite past but, still, an infinite number of cycles. The cycles are log-periodic
and asymmetric by construction of the multi-fractal measure, even in the presence of only
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Figure 11. Qualitative pictorial of log-oscillating cyclic mild inflation. Our position in the evolution
of the comoving Hubble horizon (solid line) is marked with a dot. The dashed line is a perturbation
which exits the horizon during the cyclic era and then re-enters afterwards.

one matter species. We have not discussed whether the entropy of the universe is a mean-
ingful concept in this multi-scale spacetime, but we expect it to be modified with respect to
cosmological scenarios with standard differential structure.

Full analyticity. We have seen that all the dynamical properties of log-oscillating cos-
mologies can be treated analytically with very few approximations, at least in the absence of
curvature and of a cosmological constant. The amount of e-foldings of an expanding phase
and of a single cycle is known analytically, too (eqs. (6.22), (6.24) and (6.25)). The particle
and Hubble horizons (eqs. (6.10) and (6.11)) are well defined throughout the whole evolution
of the universe, and there is no need to construct another cosmological scale during the cy-
cles. All this is possible thanks to the DSI (6.19) and the geometric structure of the theory,
where the dynamical equations (derived from an action principle) are identical to the usual
ones but coordinates are composite objects determined by multi-fractal geometry (eq. (6.18)).
General CI scenarios, on the other hand, require a number of semi-analytic approximations,
and the evolution of the scale factor is sketched qualitatively.

Horizon problem. The horizon problem is solved because perturbations, which begin
inside the Hubble horizon, increase in amplitude so much that at some point they definitively
exit the causal region and get frozen. This moment, called of last exit in CI [57], is captured in
figure 12. Later in the future, the average evolution of the Hubble horizon changes signature
and perturbations can re-enter the thermalized patch. This is exactly the same mechanism of
CI, the only difference being that here we do use the Hubble radius as a cosmological scale.

Flatness problem. The flatness problem is also solved, since the density parameter
can be arbitrarily large in the past (eq. (6.30) with p > 1; see figure 13). Due to the
lack of an analytic expression for a well-defined cosmological horizon, in CI scenarios the
flatness problem is better stated in terms of the entropy of the universe. The latter increases
monotonically little by little by the same factor in every cycle. The scale factor follows the
same law, so that the overall growth during the cyclic era increases by a large number of
e-foldings, thus mimicking an inflationary era. In log-oscillating cosmology, the expansion
law per cycle is eq. (6.21), which is close to unity if ω ∼ 2παp. This number is O(1) for the
model of section 6.2, and large for large p. However, contrary to standard inflation we do
not need p to be very large, precisely because the cycles mimic the accelerated growth even
when p is smaller than or close to 1.

Graceful exit. In emergent cyclic inflation, a scalar field is added to interrupt the era
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Figure 12. Comoving and proper Hubble horizon (solid curves) and a perturbation of comoving
wave-number k̃ = 1 (dashed curves) for log-oscillating inflation. Parameters have the same values as
in figure 8, except p = 3 (mild inflation). The horizon re-entry is not shown.
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Figure 13. The density parameter |Ω− 1| = r2H (eq. (6.29), solid curve) in log-oscillating spacetimes
with the same parameters of figure 10 except p = 3 (mild inflation). The zero mode (average evolution,
dotted curve) and the scale factor (dashed curve) are shown for comparison.

of cycles and thus recovering decelerating monotonic expansion. In log-oscillating scenarios,
there is a natural exit from this period which does not require a by-hand mechanism. In
fact, at some critical time tcrit the universe stops oscillating and standard expansion begins
according to the matter content. However, we have seen that to solve the flatness problem
we have to admit an inflationary matter, albeit of a very mild type, which thus reproposes
the graceful-exit problem in the post-cyclic era just like in ordinary inflation.

Perturbation spectrum. Cyclic inflation can generate a scale-invariant spectrum by as-
cribing cosmological perturbations to statistical thermal fluctuations of a radiation bath
[56–59]. This mechanism is typically difficult to sustain in standard cosmology [165] but it
finds an agile application both in CI and other scenarios [166–169]. It should be possible
to employ it also in log-oscillating cosmologies, but such a study goes beyond the scope of
this paper. Here we only comment that the fluctuation spectrum will most likely be scale
invariant and display logarithmic oscillations, both in the non-inflationary model of section
6.2 and in the mild inflationary one. The reason has been sketched in the context of CI
[58] and we repeat the same argument here adapted to log-oscillating geometries. Consider
two perturbations of geometric comoving wave-numbers k̃ and k̃′ exiting the horizon at con-
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secutive cycles. From eq. (6.21), it follows that they represent the same perturbation with
wave-length λ if

k̃′

k̃
=
am+1

am
≈ λαpω . (6.32)

If ω & O(1), then the two wave-numbers are approximately the same. This leads to an
almost scale-invariant spectrum with a log-oscillatory pattern.6 A computation of the power
spectrum in q-theory can refine this argument. In ordinary inflationary cosmology, the spec-
trum of scalar perturbations is Ps ∝ kns−1, where ns is the scalar spectral index, presently
constrained to be about 0.96 by Planck [175]. In the q-theory, we expect the same expression
but with kµ replaced by the geometric coordinate pµ(kµ) in momentum space:

qPs = A k̃
qns−1, (6.33)

whereA is a normalization constant, k̃ is given by eq. (6.26) and the index qns may be different
from ns. The distribution p(k) can be determined as follows. In Minkowski spacetime, the
invertible unitary momentum transform of a function ϕ(x) expanded in a basis of the q-
Laplace–Beltrami operator �q is simply given by

ϕ̃(k) :=

ˆ

dDp(k)

(2π)
D
2

eipµ(k
µ)qµ(xµ)ϕ(x) , (6.34a)

ϕ(x) =

ˆ

dDq(x)

(2π)
D
2

e−ipµ(kµ)qµ(xµ)ϕ̃(k) , (6.34b)

where p(k) =
∏

µ p
µ(k) ≥ 0 is factorizable and positive semi-definite. To determine the distri-

bution p(k) uniquely for a given geometric coordinate q(ℓn, x), we require that the ultraviolet
and infrared limits of p(k), as well as all intermediate regimes where p has some characteris-
tic asymptotic form, have the correct scaling matching the one of q. Consider, for instance,
the one-dimensional multi-fractional measure (1.2), so that q(x) = x+ sgn(x) (ℓ∗/α)|x/ℓ∗|α.
Naively, one might guess that p(k) = q(ℓ∗, k) = k + sgn(k)(E∗/α)|k/E∗|α, where E∗ := 1/ℓ∗,
but the infrared (k ≪ E∗) and ultraviolet (k ≫ E∗) limits would give the incorrect scaling.
To get p ∼ k at low energies and p ∼ kα at high energies, one should have

p(k) =
1

q
(

1
E∗
, 1k

) =
E∗

E∗

k + sgn(k)E∗

α

∣∣E∗

k

∣∣α , (6.35)

so that p ∼ k and pq ∼ kx for k ≪ E∗, while p ∼ αE∗|k/E∗|α and pq ∼ |kx|α for k ≫ E∗.
Including also log-oscillations, the general form of the geometric momentum is

p(k) :=
E∗

E∗

k + sgn(k)E∗

α

∣∣E∗

k

∣∣α Fω(ln |k|)
. (6.36)

In particular, the momentum transform (6.34) is not an automorphism, since p(k) 6= q(k).
Resuming the discussion of eq. (6.33) and calling k∗ the spatial characteristic momen-

tum, if the perturbation spectrum is generated during the oscillatory phase, the term 1/k in

6Power spectra with log-oscillating features can be generated in ordinary cyclic inflation [58] but also in
multi-field inflation [170, 171], by generic initial-state effects of new physics at a fixed scale [172] and in string
scenarios such as axion monodromy inflation [173] and ‘unwinding’ inflation [174].
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the denominator of p(k) can be neglected and p(k) ∼ (k/k∗)
αF−1

ω (ln k), so that eq. (6.33)
becomes, very roughly,

qPs ∼
(
k

k∗

)neff−1

fω(ln k) , neff − 1 = α(qns − 1) , fω(ln k) ∼ [Fω(ln k)]
1−qns . (6.37)

A more rigorous expression in three spatial dimensions can be obtained by plugging (6.36)
for each direction into eq. (6.26) and then k̃ into eq. (6.33). The log-oscillatory pattern is
directly inherited from the momentum measure structure. The effective spectral index neff
can be very close to 1 even if ns is not (which may be the case if p = O(1)), since there is a
suppression by α.

6.4 Big bang problem revisited

Equation (6.18) is not the most general integration of the multi-scale log-oscillating measure
weight. A shift of the distribution q(x) by a constant does not change the Lebesgue measure,
and one could consider cosmological profiles where the composite time coordinate is

q(t) → tbb + q(t) . (6.38)

Thus, if tbb 6= 0 the power-law solution (6.8) becomes non-singular at t = 0, where the
scale factor acquires the value a = (tbb/t∗)

p. The history of the early universe is affected
by the shift (6.38), as one can see in the example of figure 14. In the q-theory, the big
bang singularity can be removed simply by choosing a non-vanishing integration constant.7

Another possibility is to stick with eq. (6.18) but set α = 0, a rather extreme but still
well-defined geometry. The zero mode becomes the constant t∗ which plays the same role
as tbb. The oscillations are not damped going towards t = 0, so this model is qualitatively
distinguishable from the other.

In principle, if log-oscillating cosmologies turned out to be viable, independent exper-
iments should be able to constrain not only the range of the scales tn, ℓn of the theory (as
shown in previous attempts [42, 46]) but also the value of the integration constant and of α.
This would open up the most intriguing possibility to have a cosmological model where the
avoidance of the initial singularity can leave an observable imprint.

7 Conclusions

The main results of this paper have been summarized in the introduction and we will not
repeat them here. There are many directions along which these models should deserve further
attention.

Much of the cosmology of the theory with ordinary derivatives is still to be explored.
Numerical investigations can probe whether viable cosmological solutions with log-oscillating
measures exist and modify the history of the early universe as in the q-theory.

In the theory with weighted derivatives, the cosmological constant problem is rephrased
but not solved. In a vacuum flat model, the asymptotic value of the cosmological constant in

7As a side remark, we note some similarity between the result (6.38) and the old idea that certain constants
in the Lagrangian may be not fundamental but, rather, constants of integration. A well-known example is
the cosmological constant Λ when obtained as a constant of motion from a non-dynamical 3-form gauge field
[151, 176–178] or by changing gravity as in unimodular theories (section 3.1). However, in our case the value of
the scale factor at the big bounce is not a constant of motion but originates from a homogeneous contribution
to the measure weight.
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Figure 14. Log-log plot of the scale factor (6.8) with t∗ = 1, tPl = 10−1, ω = 10, A = 0.5, B = 0,
p = 1/2, for α = 1/2 and tbb = 0 (dashed curve), α = 0 and tbb = 0 (thin curve), and α = 1/2 and
tbb = t∗ (thick curve).

the infinite future is determined by the arbitrary integration constant H0, eq. (5.50). Adding
matter and curvature, solutions can be found numerically. In that case, the value Λ0 of the
cosmological constant today will depend both on the curvature k = ±1 and on the details of
the matter equation of state. This should help in linking the value Λ0 with that of matter
parameters which are constrained independently. Also in this theory it would be desirable
to study log-oscillating solutions, possibly with semi-analytic or numerical methods.

Log-oscillating dynamics with matter admits an exact treatment in the q-theory. With-
out asking for it, we hit a concrete, fully analytic realization of cyclic inflation where a mild
acceleration can produce an almost scale invariant spectrum of cosmological fluctuations
modulated by logarithmic oscillations. Asymmetric cycles arise not because of an entropy
exchange between different matter species as in normal cyclic inflation, but because of the
DSI of spacetime. The enticing possibility to find evidence of deterministic multi-fractal
geometry in the sky is subordinate to a careful study of cosmological perturbation theory in
this framework and of the resulting cosmic microwave background spectrum, which has been
only sketched here. Still within the q-theory, we have constructed also a partially successful
alternative to inflation without acceleration but with a similar type of spectrum. This solves
the problems of the hot big bang with the exception of the flatness problem. The latter may
as well find a natural solution in multi-scale models. Reconsider eq. (6.29) in four dimensions,
|Ω − 1| = v2/(H2a2). If we could find a power-law solution a ∼ tp at early times, then the
only difference with respect to the standard flatness equation would be the measure factor
v2. The latter is very large at early times t ≪ t∗ for the binomial case (5.46), and if α is
close to zero and t∗ ∼ 1032tPl ≈ 10−12 s, then at the Planck scale |Ω − 1| = O(1), as in
varying-speed-of-light theories [84, 85]. One can show that the horizon problem, too, can
be solved in models with power-law solution a ∼ tp for a certain range of the parameters
0 < p,α < 1. On the other hand, in our cyclic inflationary scenario a very mild average
acceleration during the cyclic era solves the flatness problem, but then a graceful exit from
inflation is required. Further studies of both scenarios will determine whether and how we
can strike a balance between the flatness and graceful-exit problem.

Finally, we comment on the initial singularity. In the theory with weighted derivatives in
vacuum, dynamical solutions exist where the big bang is replaced by a bounce. In the q-theory
with matter, the resolution of the cosmic singularity is purely kinematical, i.e., determined
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solely by the structure of the measure. In one model, the big bounce replacing the initial
bang is nothing but an integration constant tbb (eq. (6.38)), which however can be constrained
together with the dynamics by experiments. In another model where the fractional charge α
in the measure is set to zero, the big bounce is not an integration constant but the zero mode
of the log-oscillating scale factor. It is not clear whether this singularity resolution is related
to dimensional flow of these scenarios [41] in the same way as dimensional flow is related
to the UV finiteness or renormalizability of quantum-gravity models, as mentioned in the
introduction. Results on the renormalizability of field theories in multi-scale spacetimes with
weighted and q-derivatives point towards a negative answer [51]. Last, in scenarios where
the big bang is not removed (for instance, in the q-theory when α 6= 0 and the integration
constant tbb is set to zero) log-oscillations determine the fate of the initial singularity. The
latter is reached only by the zero mode, since the universe approaches the big bang at
t = 0 through infinitely many oscillations, packed with logarithmic progression around the
origin. This is evocative [46] of BKL scenarios, where the oscillations are due to anisotropy
[179, 180]. The present analysis is a promising starting point from which to investigate this
possible relation with the BKL singularity, via the simple but powerful analytic tools of
log-oscillating geometries.
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Int. J. Mod. Phys. A 28 (2013) 1350092 [arXiv:1209.4376].

[51] G. Calcagni and G. Nardelli, Quantum field theory with varying couplings, arXiv:1306.0629.

[52] T. Padmanabhan, Quantum structure of spacetime and black hole entropy,
Phys. Rev. Lett. 81 (1998) 4297 [hep-th/9801015].

[53] T. Padmanabhan, Event horizon: Magnifying glass for Planck length physics,
Phys. Rev. D 59 (1999) 124012 [hep-th/9801138].

[54] D. Sornette, Discrete scale invariance and complex dimensions, Phys. Rep. 297 (1998) 239
[cond-mat/9707012].

[55] T. Biswas, Emergence of a cyclic universe from the Hagedorn soup, arXiv:0801.1315.

– 50 –

http://dx.doi.org/10.1088/1751-8113/45/35/355001
http://arxiv.org/abs/1202.6322
http://dx.doi.org/10.1103/PhysRevE.87.012123
http://arxiv.org/abs/1205.5046
http://dx.doi.org/10.1007/JHEP03(2010)120
http://arxiv.org/abs/1001.0571
http://dx.doi.org/10.1016/j.physletb.2011.01.063
http://arxiv.org/abs/1012.1244
http://dx.doi.org/10.1140/epjp/i2013-13040-2
http://arxiv.org/abs/1112.1028
http://dx.doi.org/10.1016/j.physletb.2013.01.06
http://arxiv.org/abs/1301.4570
http://dx.doi.org/10.1016/j.physletb.2012.12.072
http://arxiv.org/abs/1212.2137
http://dx.doi.org/10.1103/PhysRevD.87.085008
http://arxiv.org/abs/1210.2754
http://dx.doi.org/10.1103/PhysRevD.88.124025
http://arxiv.org/abs/1304.2709
http://arxiv.org/abs/1305.3497
http://dx.doi.org/10.1103/PhysRevD.88.065005
http://arxiv.org/abs/1306.5965
http://dx.doi.org/10.1103/PhysRevD.84.061501
http://arxiv.org/abs/1106.0295
http://dx.doi.org/10.4310/ATMP.2012.v16.n2.a5
http://arxiv.org/abs/1106.5787
http://dx.doi.org/10.1007/JHEP01(2012)065
http://arxiv.org/abs/1107.5041
http://dx.doi.org/10.4310/ATMP.2012.v16.n4.a5
http://arxiv.org/abs/1202.5383
http://dx.doi.org/10.1103/PhysRevD.86.044021
http://arxiv.org/abs/1204.2550
http://dx.doi.org/10.1063/1.4757647
http://arxiv.org/abs/1207.4473
http://dx.doi.org/10.1142/S0217751X13500929
http://arxiv.org/abs/1209.4376
http://arxiv.org/abs/1306.0629
http://dx.doi.org/10.1103/PhysRevLett.81.4297
http://arxiv.org/abs/hep-th/9801015
http://dx.doi.org/10.1103/PhysRevD.59.124012
http://arxiv.org/abs/hep-th/9801138
http://dx.doi.org/10.1016/S0370-1573(97)00076-8
http://arxiv.org/abs/cond-mat/9707012
http://arxiv.org/abs/0801.1315


[56] T. Biswas and S. Alexander, Cyclic inflation, Phys. Rev. D 80 (2009) 043511
[arXiv:0812.3182].

[57] T. Biswas and A. Mazumdar, Inflation with a negative cosmological constant,
Phys. Rev. D 80 (2009) 023519 [arXiv:0901.4930].

[58] T. Biswas, A. Mazumdar and A. Shafieloo, Wiggles in the cosmic microwave background
radiation: Echoes from nonsingular cyclic inflation, Phys. Rev. D 82 (2010) 123517
[arXiv:1003.3206].

[59] T. Biswas, T. Koivisto and A. Mazumdar, Could our universe have begun with −Λ?,
arXiv:1105.2636.

[60] T. Biswas, T. Koivisto and A. Mazumdar, Phase transitions during cyclic inflation and
non-Gaussianity, Phys. Rev. D 88 (2013) 083526 [arXiv:1302.6415].

[61] W. Duhe and T. Biswas, Emergent cyclic inflation, a numerical investigation,
arXiv:1306.6927.

[62] H. Weyl, Space, Time, and Matter, Dover, Mineola U.S.A (1952).

[63] M. Novello, L.A.R. Oliveira, J.M. Salim and E. Elbaz, Geometrized instantons and the creation
of the universe, Int. J. Mod. Phys. D 1 (1992) 641.

[64] M. Novello and S.E. Perez Bergliaffa, Bouncing cosmologies, Phys. Rep. 463 (2008) 127
[arXiv:0802.1634].

[65] F.P. Poulis and J.M. Salim, Weyl geometry and gauge-invariant gravitation, arXiv:1305.6830.

[66] R.A. El-Nabulsi, Differential geometry and modern cosmology with fractionally differentiated
Lagrangian function and fractional decaying force term, Rom. J. Phys. 52 (2007) 467.

[67] R.A. El-Nabulsi, Some fractional geometrical aspects of weak field approximation and
Schwarzschild spacetime, Rom. J. Phys. 52 (2007) 705.

[68] R.A. El-Nabulsi, Cosmology with a fractional action principle, Rom. Rep. Phys. 59 (2007) 763.

[69] R.A. El-Nabulsi, Increasing effective gravitational constant in fractional ADD brane cosmology,
Electronic J. Theor. Phys. 5 No. 17 (2008) 103.

[70] R.A. El-Nabulsi, Fractional action-like variational approach, perturbed Einstein’s gravity and
new cosmology, Fizika B 19 (2010) 103.

[71] R.A. El-Nabulsi, Oscillating flat FRW dark energy dominated cosmology from periodic
functional approach, Commun. Theor. Phys. 54 (2010) 16.

[72] V.K. Shchigolev, Cosmological models with fractional derivatives and fractional action
functional, Commun. Theor. Phys. 56 (2011) 389 [arXiv:1011.3304].

[73] M. Jamil, M.A. Rashid, D. Momeni, O. Razina and K. Esmakhanova, Fractional action
cosmology with power law weight function, J. Phys.: Conf. Ser. 354 (2012) 012008
[arXiv:1106.2974].

[74] U. Debnath, S. Chattopadhyay and M. Jamil, Fractional action cosmology: some dark energy
models in emergent, logamediate, and intermediate scenarios of the universe,
J. Theor. Appl. Phys. 7 (2013) 25 [arXiv:1107.0541].

[75] U. Debnath, M. Jamil and S. Chattopadhyay, Fractional action cosmology: emergent,
logamediate, intermediate, power law scenarios of the universe and generalized second law of
thermodynamics,, Int. J. Theor. Phys. 51 (2012) 812 [arXiv:1109.1506].

[76] R.A. El-Nabulsi, Gravitons in fractional action cosmology, Int. J. Theor. Phys. 51 (2012) 3978.

[77] V.K. Shchigolev, Cosmic evolution in fractional action cosmology,
Discont. Nonlin. Complexity 2 (2013) 115 [arXiv:1208.3454].

– 51 –

http://dx.doi.org/10.1103/PhysRevD.80.043511
http://arxiv.org/abs/0812.3182
http://dx.doi.org/10.1103/PhysRevD.80.023519
http://arxiv.org/abs/0901.4930
http://dx.doi.org/10.1103/PhysRevD.82.123517
http://arxiv.org/abs/1003.3206
http://arxiv.org/abs/1105.2636
http://dx.doi.org/10.1103/PhysRevD.88.083526
http://arxiv.org/abs/1302.6415
http://arxiv.org/abs/1306.6927
http://dx.doi.org/10.1142/S021827189200032X
http://dx.doi.org/10.1016/j.physrep.2008.04.006
http://arxiv.org/abs/0802.1634
http://arxiv.org/abs/1305.6830
http://www.nipne.ro/rjp/2007_52_3-4.html
http://www.nipne.ro/rjp/2007_52_5-7.html
http://www.rrp.infim.ro/2007_59_3.html
http://www.ejtp.com/ejtpv5i17
http://fizika.hfd.hr/fizika_b/bv10/b19p103.htm
http://dx.doi.org/10.1088/0253-6102/54/1/03
http://dx.doi.org/10.1088/0253-6102/56/2/34
http://arxiv.org/abs/1011.3304
http://dx.doi.org/10.1088/1742-6596/354/1/012008
http://arxiv.org/abs/1106.2974
http://dx.doi.org/10.1186/2251-7235-7-25
http://arxiv.org/abs/1107.0541
http://dx.doi.org/10.1007/s10773-011-0961-1
http://arxiv.org/abs/1109.1506
http://dx.doi.org/10.1007/s10773-012-1290-8
http://dx.doi.org/10.5890/DNC.2013.04.002
http://arxiv.org/abs/1208.3454


[78] R.A. El-Nabulsi, Fractional unstable Euclidean universe,
Electronic J. Theor. Phys. 2 No. 8 (2005) 1

[79] M.D. Roberts, Fractional derivative cosmology, arXiv:0909.1171.

[80] J. Munkhammar, Riemann–Liouville fractional Einstein field equations, arXiv:1003.4981.

[81] S.I. Vacaru, Fractional dynamics from Einstein gravity, general solutions, and black holes,
Int. J. Theor. Phys. 51 (2012) 338 [arXiv:1004.0628].

[82] R. Mansouri and F. Nasseri, Model universe with variable space dimension: Its dynamics and
wave function, Phys. Rev. D 60 (1999) 123512 [gr-qc/9902043].

[83] J. Magueijo, New varying speed of light theories, Rep. Prog. Phys. 66 (2003) 2025
[astro-ph/0305457].

[84] J.W. Moffat, Superluminary universe: a possible solution to the initial value problem in
cosmology, Int. J. Mod. Phys. D 2 (1993) 351 [gr-qc/9211020].

[85] A. Albrecht and J. Magueijo, Time varying speed of light as a solution to cosmological puzzles,
Phys. Rev. D 59 (1999) 043516 [astro-ph/9811018].

[86] J.D. Barrow and J. Magueijo, Varying alpha theories and solutions to the cosmological
problems, Phys. Lett. B 443 (1998) 104 [astro-ph/9811072].

[87] J.D. Barrow and J. Magueijo, Solutions to the quasi-flatness and quasilambda problems,
Phys. Lett. B 447 (1999) 246 [astro-ph/9811073].

[88] J.D. Barrow and J. Magueijo, Solving the flatness and quasiflatness problems in Brans–Dicke
cosmologies with a varying light speed, Classical Quant. Grav. 16 (1999) 1435
[astro-ph/9901049].

[89] J.D. Barrow, Cosmologies with varying light speed, Phys. Rev. D 59 (1999) 043515
[astro-ph/9811022].

[90] S. Landau, P.D. Sisterna and H. Vucetich, Charge conservation and time varying speed of light,
Phys. Rev. D 63 (2001) 081303(R) [astro-ph/0007108].

[91] G.F.R. Ellis and J.-P. Uzan, c is the speed of light, isn’t it?, Am. J. Phys. 73 (2005) 240
[gr-qc/0305099].

[92] J. Magueijo, Covariant and locally Lorentz invariant varying speed of light theories,
Phys. Rev. D 62 (2000) 103521 [gr-qc/0007036].

[93] J. Magueijo, J.D. Barrow and H.B. Sandvik, Is it e or is it c? Experimental tests of varying
alpha, Phys. Lett. B 549 (2002) 284 [astro-ph/0202374].

[94] J. Magueijo, Speedy sound and cosmic structure, Phys. Rev. Lett. 100 (2008) 231302
[arXiv:0803.0859].

[95] J. Magueijo, Bimetric varying speed of light theories and primordial fluctuations,
Phys. Rev. D 79 (2008) 043525 [arXiv:0807.1689].

[96] J. Magueijo, DSR as an explanation of cosmological structure,
Classical Quant. Grav. 25 (2008) 202002 [arXiv:0807.1854].

[97] J. Magueijo, J. Noller and F. Piazza, Bimetric structure formation: non-Gaussian predictions,
Phys. Rev. D 82 (2010) 0435251 [arXiv:1006.3216].

[98] A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928].

[99] S. Weinberg, Ultraviolet divergences in quantum gravity, in General Relativity, an Einstein
Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge
U.K. (1979), pg. 790–831.

– 52 –

http://www.ejtp.com/ejtpv2i8
http://arxiv.org/abs/0909.1171
http://arxiv.org/abs/1003.4981
http://dx.doi.org/10.1007/s10773-011-1010-9
http://arxiv.org/abs/1004.0628
http://dx.doi.org/10.1103/PhysRevD.60.123512
http://arxiv.org/abs/gr-qc/9902043
http://dx.doi.org/10.1088/0034-4885/66/11/R04
http://arxiv.org/abs/astro-ph/0305457
http://dx.doi.org/10.1142/S0218271893000246
http://arxiv.org/abs/gr-qc/9211020
http://dx.doi.org/10.1103/PhysRevD.59.043516
http://arxiv.org/abs/astro-ph/9811018
http://dx.doi.org/10.1016/S0370-2693(98)01294-5
http://arxiv.org/abs/astro-ph/9811072
http://dx.doi.org/10.1016/S0370-2693(99)00008-8
http://arxiv.org/abs/astro-ph/9811073
http://dx.doi.org/10.1088/0264-9381/16/4/030
http://arxiv.org/abs/astro-ph/9901049
http://dx.doi.org/10.1103/PhysRevD.59.043515
http://arxiv.org/abs/astro-ph/9811022
http://dx.doi.org/10.1103/PhysRevD.63.081303
http://arxiv.org/abs/astro-ph/0007108
http://dx.doi.org/10.1119/1.1819929
http://arxiv.org/abs/gr-qc/0305099
http://dx.doi.org/10.1103/PhysRevD.62.103521
http://arxiv.org/abs/gr-qc/0007036
http://dx.doi.org/10.1016/S0370-2693(02)02928-3
http://arxiv.org/abs/astro-ph/0202374
http://dx.doi.org/10.1103/PhysRevLett.100.231302
http://arxiv.org/abs/0803.0859
http://dx.doi.org/10.1103/PhysRevD.79.043525
http://arxiv.org/abs/0807.1689
http://dx.doi.org/10.1088/0264-9381/25/20/202002
http://arxiv.org/abs/0807.1854
http://dx.doi.org/10.1103/PhysRevD.82.043521
http://arxiv.org/abs/1006.3216
http://dx.doi.org/10.12942/lrr-2010-3
http://arxiv.org/abs/1002.4928


[100] M. Reuter, Nonperturbative evolution equation for quantum gravity,
Phys. Rev. D 57 (1998) 971 [hep-th/9605030].

[101] M. Niedermaier, The asymptotic safety scenario in quantum gravity: an introduction,
Classical Quant. Grav. 24 (2007) R171 [gr-qc/0610018].

[102] M. Reuter and F. Saueressig, Asymptotic safety, fractals, and cosmology,
Lect. Notes Phys. 863 (2013) 185 [arXiv:1205.5431].

[103] A. Bonanno and M. Reuter, Cosmology of the Planck era from a renormalization group for
quantum gravity, Phys. Rev. D 65 (2002) 043508 [hep-th/0106133].

[104] M. Reuter and F. Saueressig, From big bang to asymptotic de Sitter: complete cosmologies in a
quantum gravity framework, JCAP 09 (2005) 012 [hep-th/0507167].

[105] A. Bonanno and M. Reuter, Entropy signature of the running cosmological constant,
JCAP 08 (2007) 024 [arXiv:0706.0174].

[106] A. Bonanno, An effective action for asymptotically safe gravity,
Phys. Rev. D 85 (2012) 081503 [arXiv:1203.1962].

[107] F.-Y. Ren, Z.-G. Yu and F. Su, Fractional integral associated to the self-similar set or the
generalized self-similar set and its physical interpretation, Phys. Lett. A 219 (1996) 59.

[108] Z.-G. Yu, F.-Y. Ren and J. Zhou, Fractional integral associated to generalized cookie-cutter set
and its physical interpretation, J. Phys. A 30 (1997) 5569.

[109] F.-Y. Ren, Z.-G. Yu, J. Zhou, A. Le Méhauté and R.R. Nigmatullin, The relationship between
the fractional integral and the fractal structure of a memory set, Physica A 246 (1997) 419.

[110] Z.-G. Yu, Flux and memory measure on net fractals, Phys. Lett. A 257 (1999) 221.
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