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Abstrakt

En generel metode til at finde det homogeniserede respons af metal-matrix komposit-
ter er udviklet. Det antages, at den mikroskopiske skala er tilstrækkelig lille sammen-
lignet med den makroskopiske skala, s̊aledes at makro-responset ikke p̊avirker den
mikro-mekaniske model. Mikroskalaen kan da analyseres ved hjælp af et Repræsen-
tativt Volumen Element (RVE), hvor homogeniserede data gemmes og bruges som
input til makroskalaen. Afhængigheden af fiberstørrelsen i materialet analyseres
ved hjælp af en højere ordens plasticitetsteori, hvor oplagring af fri energi som følge
af plastiske tøjningsgradienter p̊a mikrometerskala er inkluderet. Hill-Mandels en-
ergiprincip benyttes til at finde makroskopiske operatorer baseret p̊a mikromekaniske
analyser, udført ved hjælp af finite element metoden under generaliseret plan tøjning.
En makroskopisk fænomenologisk model for metal-matrix kompositter udvikles ved
hjælp af konstitutive operatorer, som beskriver den elastiske opførsel og den frie
energi i materialet, s̊avel som den plastiske opførsel gennem en flydeflade og dennes
anisotrope udvikling. Det er vist, at en generalisering af Hill’s anisotrope flydekri-
terium kan anvendes til at beskrive Bauschinger effekt, samt tryk- og størrelses-
afhængighed. Udviklingen af den makroskopiske flydeflade som følge af deforma-
tioner er undersøgt, herunder b̊ade anisotrop hærdning (udvidelse af flydefladen),
samt kinematisk hærdning (translation af flydefladen). Den kinematiske hærd-
ningslov beskrives p̊a baggrund af den oplagrede frie energi i materialet som følge
af plastisk deformation. De fundne makroskopiske operatorer kan benyttes til at
modellere metal-matrix kompositter p̊a makroskopisk skala ved hjælp af hierarkisk
multi-skala modellering. Til sidst er skade under træk- og tværbelastning studeret
ved hjælp af en kohæsiv lov for interfacet mellem matrix- og fibermateriale.

ii



Abstract

A general method to obtain the homogenized response of metal-matrix composites
is developed. It is assumed that the microscopic scale is sufficiently small compared
to the macroscopic scale such that the macro response does not affect the microme-
chanical model. Therefore, the microscopic scale is analyzed using a Representative
Volume Element (RVE), while the homogenized data are saved and used as an input
to the macro scale. The dependence of fiber size is analyzed using a higher order
plasticity theory, where the free energy is stored due to plastic strain gradients at
the micron scale. Hill-Mandel’s energy principle is used to find macroscopic oper-
ators based on micro-mechanical analyses using the finite element method under
generalized plane strain condition. A phenomenologically macroscopic model for
metal matrix composites is developed based on constitutive operators describing
the elastic behavior and the trapped free energy in the material, in addition to the
plastic behavior in terms of the anisotropic development of the yield surface. It
is shown that a generalization of Hill’s anisotropic yield criterion can be used to
model the Bauschinger effect, in addition to the pressure and size dependence. The
development of the macroscopic yield surface upon deformation is investigated in
terms of the anisotropic hardening (expansion of the yield surface) and kinematic
hardening (translation of the yield surface). The kinematic hardening law is based
on trapped free energy in the material due to plastic deformation. The macroscopic
operators found, can be used to model metal matrix composites on the macroscopic
scale using a hierarchical multi-scale approach. Finally, decohesion under tension
and shear loading is studied using a cohesive law for the interface between matrix
and fiber.
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Chapter 1
Introduction

This thesis covers research on Metal Matrix Composites (MMCs) addressing some
current issues. The study is an initial step of a new approach towards the evaluation
of composite’s behavior. The research is summarized here, while it is elaborated in
the appended papers.

1.1 Definition

The possibility of combining various material systems like metals, ceramics and non-
metals gives the opportunity for unlimited variation. The properties of these new
materials are basically determined by the properties of their constituents. MMCs as
the heterogeneous media are made by dispersing a reinforcing material (e.g. alumina,
silicon carbide) into a metal matrix (e.g. aluminum, magnesium, titanium) and are
classified according to the type of used reinforcement, e.g. long unidirectional fibers
as continuous reinforcement, short fiber/whiskers and particles as noncontinuous
reinforcement. The long unidirectional fiber reinforcements produce an anisotropic
structure, while the noncontinuous reinforcement may be considered as isotropic.
Different types of the reinforcement can have many different improved properties,
e.g. temperature strength, stiffness, wear resistance, low density, damping capabil-
ities, thermal expansion coefficients and corrosion resistance, but can also be ac-
companied by deficiencies like poor ductility and fracture properties (see McDanels,
1985). A conventional modeling approach for evaluating the mechanical behavior
of MMCs has been considered by several authors including Tvergaard (1990a), Bao
et al. (1991), Tvergaard (1995), Legarth (2003) and Legarth and Kuroda (2004).

1.2 Size effects

One of the important factors which plays a significant role on the strength of the
composites is the size of the fiber. Lloyd (1994) showed that the response of com-
posites, with the same volume fraction of SiC particles, depends on the size of the
particles. Mughrabi (2001), Fleck et al. (2003) and Gao and Huang (2003) showed
that in MMCs, dislocations can not pass from the matrix into the fiber and conse-
quently pile up at the interface. This would lead to a suppression of plastic strain
at the interfaces. Strain gradient plasticity has the capability to model this due
to the inclusion of constitutive length parameters and the use of non-conventional
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1.3 Multi-scale modeling and homogenization 2

boundary conditions. Several non local plasticity theories have been developed.
While some of these are of lower-order nature retaining the structure of conven-
tional boundary value problems (see Acharya and Bassani, 2000; Bassani, 2001),
most of the proposed theories are of higher order nature, employing higher order
stress-measures as work-conjugates to strain gradients, demanding non-conventional
higher order boundary conditions (e.g. Fleck and Hutchinson, 1997, 2001; Gao et al.,
1999; Gurtin, 2002; Gudmundson, 2004; Gurtin and Anand, 2005; Lele and Anand,
2008; Fleck and Willis, 2009a,b).

1.3 Multi-scale modeling and homogenization

Multi-scale modeling is the analysis of a material, where the required information
at each scale is enriched by the information emanated from the lower scales. Both
Hierarchical and Concurrent models are two different types of multi-scale modeling
methods. With hierarchical models, it is assumed that the scales are separated such
that they don’t affect each other. Therefore, the properties of the material are ob-
tained prior to the modeling of any more complex problem (e.g. Tamma and Chung,
1999; Feyel, 1999, 2000). With Concurrent models, the global constitutive behavior
is determined simultaneously throughout the analysis based on the behavior of the
constituents and their interactions (e.g. Zohdi and Wriggers, 1999; Vemaganti and
Oden, 2001).
The connection between the scales is considered by homogenization. Different ho-
mogenization techniques have been proposed to estimate the overall macroscopic
properties; like the effective medium approximation by Eshelby (1957) and Budian-
sky (1965), the self consistent method by Hill (1965) and the variational bounding
methods by Hashin (1983). Recently, due to the powerful computational resources,
the most efficient method has been the computational unit cell method as was pro-
posed by (e.g. Hashin and Shtrikman, 1963; Suquet, 1985; Keller et al., 1990; Ghosh
et al., 1995; Terada et al., 2000; Wieckowski, 2000; Kouznetsova et al., 2001). Ho-
mogenization techniques have also been extended to cover the gradient theories.
Niordson and Tvergaard (2001, 2002) used strain gradient plasticity to model the
matrix material in order to predict the particle size dependent overall properties of
metal matrix composites. Kouznetsova et al. (2004) developed a second order com-
putational homogenization, where the higher order stress conjugate to the full strain
gradient tensor is available at the macro scale while using a conventional model at
the micro scale.



1.4 Homogenized yield function 3

1.4 Homogenized yield function

For multi-scale modeling, it is needed to introduce a homogenized yield function for
composites where the work hardening is traceable. Different hardening rules have
been proposed to specify the evolution of the yield surface during plastic deformation
including expansion (anisotropic hardening) and translation (kinematic hardening)
(e.g. Jansson, 1992, 1995; Iyera et al., 2000; Lee et al., 2004; Chung and Ryou,
2009; Lissenden, 2010). However, experimental results show a distinct change of the
shape of the yield surface (rotated or dented) depending on the loading conditions
and load paths, (see Phillips and Juh-Ling, 1972; Gupta and H.A., 1983; Kowalsky
et al., 1999). One of the more interesting findings from finite element micromechanic
analyses is that for an elastic fiber and an inelastic metal matrix, the overall inelastic
response is not necessarily pressure independent, even if the local response is pres-
sure independent, see Dvorak et al. (1973). This is associated with the constraint
provided by the fiber and the large difference between the local stress (and strain)
field with respect to the overall stress (and strain). On the other hand, due to the
elastic mismatch of the microstructure constituents, the elastic compressibility at
the microscopic scale shows up as plastic compressibility at the macroscopic scale.
There have been several numerical attempts to evaluate the anisotropic behavior
of metal-matrix composite such as Bao et al. (1991) and Asaro and Needleman
(1985). A variety of criteria for anisotropic homogeneous materials, independent of
hydrostatic pressure were proposed by Hill (1948), Barlat et al. (1991). Drucker and
Prager (1952), Liu et al. (1997), Deshpande et al. (2001) improved previous yield
criteria to consider the hydrostatic pressure dependency.

1.5 Research overview

In this research, MMC with long unidirectional fibers is chosen to be studied. The
study includes both elastic and plastic deformations. The goal is to specify the
phenomenological behavior of MMC with mathematical descriptions, e.g. the yield
surface, flow rule and hardening, where it can be used at the higher scale using
heirachical method in multi-scale modeling. The study assumes a conventional plas-
ticity theory with an anisotropic pressure dependent yield function at the macro
scale and an energetic rate independent strain gradient plasticity theory with an
isotropic pressure independent yield function at the micro scale. Fig. 1.1 shows a
schematic description of the research including the input and output of the study.
Chapter 2 elaborates the material model at both scales.
Chapter 3 considers a multi-scale modeling method, where the connection between
the scales is justified with homogenization using Hill-Mandel energy condition.
Chapter 4 includes the summary of the results presented in papers [P1] to [P7] as
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Φ, Φ̇

Isotropic hardening

Anisotropic hardening
Kinematic hardening

Conventional

f , ḟ

Gradient dependent

Output

Input

Figure 1.1 A schematic description of the research. Input: f and ḟ as the micro yield
function and the evolution of the micro yield function, respectively. Output: Φ and Φ̇ as
the macro yield function and the evolution of the macro yield function, respectively.

well as additional findings.
Chapter 5 includes the conclusion.



Chapter 2
Model description

The material model is considered to be gradient dependent at the micro scale, where
the free energy holds elastic strains and plastic strain gradients, while it is conven-
tional at the macro scale, where the free energy holds elastic strains and plastic
strains.

2.1 Material model at the micro scale

The matrix is considered to be a gradient enhanced isotropic elasto-plastic material
governed by the rate independent energetic strain-gradient plasticity theory pro-
posed by Gudmundson (2004), while the fibers are assumed to be purely elastic.
The first law of thermodynamics in the incremental form is written as

ẇ = ḋ+ ψ̇ (2.1)

where ẇ is the rate of total work, ḋ is the dissipation rate and ψ̇ is the rate of
the free energy. In a more general thermodynamic framework, Eq. (2.1) would
contain additional heat flux and entropy production terms but the purely mechanical
calculations here provide no basis for including these contributions. The second law
of thermodynamics, see Chaboche (1993b), must be satisfied as

ḋ = ẇ − ψ̇ ≥ 0 (2.2)

The variation of the internal virtual work, δwI , is considered as

δwI =

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij +mijkδǫ

p
ij,k]dv (2.3)

where v is the micro volume and ǫij is the total strain as the summation of the
elastic strain, ǫeij, and the plastic strain, ǫpij, as ǫij = ǫeij + ǫpij. The Cauchy stress, the
deviatoric part of the Cauchy stress, the micro stress (work conjugate to the plastic
strain) and the higher order stress (work conjugate to the plastic strain gradients)
are denoted by σij, sij, qij and mijk, respectively. By application of the Gauss

5



2.1 Material model at the micro scale 6

theorem,

δwI =

∫

s

[σijnjδui +mijknkδǫ
p
ij]ds− (2.4)

∫

v

[σij,jδui + (mijk,k + sij − qij)δǫ
p
ij]dv

where ni is the unit vector, normal to the surface, s, and ui is the displacement
vector. Considering the first term of the right hand side of Eq. (2.4) as the external
virtual work, δwE, and using the principle of virtual work, δwI = δwE, the last
term has to vanish for arbitrary variations and two sets of equilibrium equation are
obtained as

σij,j = 0, in v (2.5)

mijk,k + sij − qij = 0, in v

By imposing the incremental version of the internal work, ẇI , on the second law of
thermodynamics, Eq. (2.2), and using σij ǫ̇

p
ij = sij ǫ̇

p
ij, one can show

(

σij −
∂ψ

∂ǫeij

)

ǫ̇eij +

(

qij −
∂ψ

∂ǫpij

)

ǫ̇pij +

(

mijk −
∂ψ

∂ǫpij,k

)

ǫ̇pij,k ≥ 0 (2.6)

It is assumed that the free energy, ψ, depends on both elastic strains and plastic
strain gradients, as

ψ
(

ǫeij, ǫ
p
ij,k

)

=
1

2
cijklǫ

e
ijǫ

e
kl +

1

2
GL2

∗
ǫpij,kǫ

p
ij,k (2.7)

where L∗ is a material length scale parameter, G is the elastic shear modulus and
cijkl is the isotropic tensor of the elastic moduli, defined in terms of Young’s modulus,
E, and Poisson’s ratio, ν. Assuming that both the Cauchy stress and higher order
stress can be determined directly from ψ, two constitutive equations are extracted
as

σij =
∂ψ

∂ǫeij
= cijklǫ

e
kl, mijk =

∂ψ

∂ǫpij,k
= GL2

∗
ǫpij,k (2.8)

The second law of thermodynamics, Eq. (2.6), then reads

qij ǫ̇
p
ij ≥ 0 (2.9)

In order to be sure that the above equation is always non-negative, a dissipation
potential function, f ∗ = f ∗(qij), has to be defined as

ǫ̇pij = λ̇
∂f ∗

∂qij
(2.10)
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where λ̇ is a microscopic plastic multiplier. The above equation can satisfy the
second law of thermodynamics if the dissipation potential function is convex. More-
over, Eq. (2.10) implies that the plastic strain increment is normal to the dissipation
potential function. Here, we decide to have an associative flow rule where the plastic
potential function can be substituted by the yield surface, f , see Lubliner (1990)
and Tvergaard (2001), as

f ∗(qij) = f(qij) (2.11)

The microscopic yield surface, f , is then defined as

f =

√

3

2
qijqij − σf = 0 (2.12)

where the flow stress is given by σf = σy + hǫpe, with σy denoting the initial yield
stress, h denoting the hardening modulus and ǫpe denoting the accumulated effective

plastic strain as ǫpe =
∫

ǫ̇pedτ in which τ is ”pseudo-time” and ǫ̇pe =
√

2
3
ǫ̇pij ǫ̇

p
ij. Then

the flow rule, which ensures the normality of the plastic strain increment to the yield
surface, is obtained by

ǫ̇pij = λ̇
∂f

∂qij
=

3

2

qij
qe

ǫ̇pe = rij ǫ̇
p
e (2.13)

where qe =
√

3
2
qijqij is the effective micro stress and rij =

3
2

qij
qe

is the flow direction.

For the numerical implementation, the evolution law of the micro stress, q̇ij,
needs to be extracted. By considering rij = 3

2

qij
qe

or equivalently qij = 2
3
qerij, one

can have

q̇ij =
˙2

3
qerij =

2

3
(q̇erij + qeṙij) (2.14)

where q̇e = hǫ̇pe. Using ǫ̇pe =
2
3
rij ǫ̇

p
ij, the above equation is rewritten as

q̇ij =
2

3
(q̇erij + qeṙij) =

2

3

(

2

3
hrijrklǫ̇

p
kl + qeṙij

)

(2.15)

Fig. 2.1 shows a schematic plot of the above equation. It is important to know that
rij is orthogonal to ṙij. This is shown as below

rij =
3

2

qij
qe

, ṙij =
3

2

q̇ij
qe

− 3

2

qij q̇e
q2e

, (2.16)

rij ṙij =
9

4

qij q̇ij
q2e

− 9

4

qijqij q̇e
q3e
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qτij

qτ+∆τ
ij

q̇ij

rτ+∆τ
ij

rτ+∆τ
ij

Current Yield Surface

Subsequent Yield
Surface

rτij

ṙij

Figure 2.1 A schematic plot of the current and subsequent yield surfaces.

Using 2qeq̇e = 3qij q̇ij, one can show rij ṙij = 0. It is seen that rij is normal to the
current yield surface, while ṙij is tangential to it. Therefore, q̇ij has both the normal
and tangential part. Considering the flow rule, Eq. (2.13), the tangential part of
the plastic work must not generate any plasticity. To ensure this, the second term
of Eq. (2.15) is written in such a way that the tangential plastic strain increment
vanishes, see Fredriksson et al. (2009), as

qeṙij = E0(ǫ̇
p
ij −

2

3
rijrklǫ̇

p
kl) (2.17)

where E0 is the penalty factor and has to be very large compared to the hardening
modulus, h. As can be seen, the plastic strain direction is forced to be normal to the
current yield surface provided a large value of penalty factor is chosen. Finally, by
substituting this term with the second term of Eq. (2.15), the micro stress increment
can be written as

q̇ij =
2

3

(

2

3
(h− E0)rijrkl + E0δikδjl

)

ǫ̇pkl (2.18)

The incremental version of the constitutive equations is completed by considering
the incremental Cauchy stress and higher order stress as

σ̇ij = cijklǫ̇
e
kl (2.19)

ṁijk = GL2
∗
ǫ̇pij,k (2.20)
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2.2 Material model at the macro scale

At the macroscopic scale, the first and second law of thermodynamics must be
satisfied while a conventional plasticity theory is incorporated. The first law of
thermodynamics reads

Ẇ = Ḋ + Ψ̇ (2.21)

where Ẇ is the rate of total energy, Ḋ is the dissipation rate and Ψ̇ is the rate of the
free energy. Again, the heat flux and entropy production terms are ignored. Con-
stitutive descriptions must also be restricted by the second law of thermodynamics
as, see Lubliner (1972) and Chaboche (1993b),

Ḋ = Ẇ − Ψ̇ ≥ 0 (2.22)

The rate of the total energy is written as

Ẇ = ΣijĖij (2.23)

As it was outlined by Benzerga et al. (2005), a part of the total work is stored and
may not be recovered during the unloading. The trapped energy can be represented
by an internal state variable like plastic strain, see also Rice (1971) and Rosakis
et al. (2000). Here, we decide to add the plastic strain as an internal variable upon
which the free energy may depend, Ψ = Ψ(Ee

ij, E
p
ij). The function is chosen as

Ψ =
1

2
CijklE

e
ijE

e
kl +

1

2
PijklE

p
ijE

p
kl (2.24)

where Cijkl is the elastic modulus, Pijkl is a modulus which contributes the plastic
strain towards the free energy (P -modulus) and Ep

ij is the macroscopic plastic strain
defined as

Ep
ij = Eij − SijklΣkl (2.25)

where Sijkl is the compliance tensor that relates the stress tensor to elastic strain
tensor. The second term of Eq. (2.24) is the portion of the free energy which can
not be recovered by elastic unloading and is trapped inside the micro structure.
Imposing both Eqs. (2.23) and (2.24) on Eq. (2.22) leads to

ΣijĖij −
∂Ψ

∂Ee
ij

Ėe
ij −

∂Ψ

∂Ep
ij

Ėp
ij ≥ 0 (2.26)

Knowing Ėe
ij = Ėij − Ėp

ij,

ΣijĖij −
∂Ψ

∂Ee
ij

(Ėij − Ėp
ij)−

∂Ψ

∂Ep
ij

Ėp
ij ≥ 0 (2.27)

(

Σij −
∂Ψ

∂Ee
ij

)

Ėij +

(

∂Ψ

∂Ee
ij

− ∂Ψ

∂Ep
ij

)

Ėp
ij ≥ 0
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Since Ėij can be chosen arbitrary, a conservative way to ensure that Eq. (2.27) is
always non-negative is to let the first term vanish. To accomplish this, one must
have

Σij =
∂Ψ

∂Ee
ij

= CijklE
e
kl (2.28)

It can be seen that the macroscopic Cauchy stress, Σij, is work conjugate to the
macroscopic elastic strain, Ee

ij. Benzerga et al. (2005) showed that there is a connec-
tion between the stored energy of cold work (Trapped energy) and the Bauschinger
effect. The Bauschinger stress is then defined as, (see Rice, 1971; Chaboche, 1993b,a;
Rosakis et al., 2000),

Aij =
∂Ψ

∂Ep
ij

= PijklE
p
kl (2.29)

where Aij is the Bauschinger stress. It is important to mention that the quadratic
function of the plastic strain for the trapped energy, last term of Eq. (2.24), gener-
ating a linear function of the plastic strain for the Bauschinger stress, Eq. (2.29),
is a constitutive choice. This choice is evaluated by the numerical data and a good
agreement is achieved. The dissipation rate, Eq. (2.27), is then rewritten as

(Σij − Aij)Ė
p
ij ≥ 0 (2.30)

In order to be sure that the above equation is always non-negative, a dissipation
potential function, Φ∗ = Φ∗(Σij − Aij), is defined as

Ėp
ij = Λ̇

∂Φ∗(Σij − Aij)

∂(Σij − Aij)
= Λ̇

∂Φ∗(Σij − Aij)

∂Σij

(2.31)

where Λ̇ is a macroscopic plastic multiplier. Note that Aij must be inside the stress
field defined by the dissipation potential function if one wants to satisfy Eq. (2.30).
Here we choose Aij to be the geometric center of the dissipation potential function.
Adopting the principle of maximum plastic dissipation (see Lubliner, 1990), implies:
(I) the dissipation potential function is convex; and (II) the plastic strain is normal to
the dissipation potential function. Incorporating the Drucker’s postulate, Drucker
(1951), as a non-thermodynamical approach for the plastic work definition, it is
seen that the yield surface is itself a plastic potential, and therefore the normality
is associated with the yield criterion or, briefly, an associative flow rule. Therefore,
one can have

Φ∗(Σij − Aij) = Φ(Σij − Aij) (2.32)

where Φ(Σij − Aij) is the macroscopic yield function. It will be shown that a
modification of the Hill anisotropic yield function (Hill, 1948) is applicable to the
material system analyzed. The first modification is that the Bauschinger stress, Aij,
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is assumed to be the geometric center of the yield surface. Ignoring the terms Σ13

and Σ23, we may express the yield function as

Φ = F (Σ̃11 − Σ̃33)
2 +G(Σ̃22 − Σ̃33)

2 +H(Σ̃11 − Σ̃22)
2 + 2NΣ̃2

12 − 1 (2.33)

where Σ̃ij = Σij − Aij and F , G, H and N are the anisotropic parameters. While
the above function is pressure independent, it will be shown that the yield surface
for the material system considered here is not independent of pressure, but instead
independent of some other linear combination of the normal components of Σ̃ij. It
is noted that this linear combination depends on the fiber volume fraction. Incor-
porating this into the yield function, we may express it as

Φ = F λ(Σ̃λ1)
2 +Hλ(Σ̃λ2)

2 +NλΣ̃2
λ4

− 1 (2.34)

where F λ, Hλ and Nλ are new anisotropic parameters and Σ̃λ4 = Σ12 − A12. The
remaining Σ̃λi

(i = 1, 2, 3) are linearly independent combinations of the normal
components of Σ̃ij. In the above expression, it is assumed that the yield function
is independent of Σ̃λ3 (Σ̃λ3 is parallel to the composite cylindrical axis), hence it is
not included in the yield function.

In Tab. 2.1, an overview of the corresponding equations at the micro and macro
scale is given.

The computational procedure for the evaluation of the macroscopic yield func-
tion, Φ, and its evolution, Φ̇, including the kinematic hardening and anisotropic
hardening for composites with perfectly bonded parallel circular fibers distributed
through the entire structure are found in [P5] and [P6].

2.3 Cohesive zone model

An extra study is also considered for the weak fiber-matrix interface. Interfacial
debonding is a major failure mode in composites with certain constituents. One of
the widely used method in the literature for simulation of the interfacial debonding
in composites is the cohesive zone model. The idea for the cohesive model is based
on the consideration that the damage analysis knows the existence of the crack
in advance. Here, the model proposed by Tvergaard (1990b) which accounts for
both normal and tangential separation at the interface is used. This model uses a
polynomial relation between the traction and the separation. A non-dimensional
parameter, λ, describing the separation of the matrix material from the fiber is
defined as

λ =

√

(un/δn)
2 + (ut/δt)

2 (2.35)
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where un and ut are normal and tangential separation, respectively, while δn and δt
are the corresponding maximum separations at which total decohesion occurs. A
function F (λ) is introduced as

F (λ) =
27

4
σ
max

(λ2 − 2λ+ 1), 0 ≤ λ ≤ 1 (2.36)

The normal traction, Tn, and the tangential traction, Tt, are then given by

Tn =
un

δn
F (λ) (2.37)

Tt = α
ut

δt
F (λ)

In pure normal separation, ut = 0, the maximum stress is σ
max

at λ = un

δn
= 1

3
.

Similarly, in pure tangential separation, un = 0, the maximum stress is ασ
max

at
λ = ut

δt
= 1

3
. Generally, total debonding occurs when λ = 1. The model requires

four damage parameters including δn, δt, σmax and α. More details on the rate form
of the above equations can be found in Tvergaard (1990b).
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Equation Micro scale Macro scale

1st law of TD ẇ = ḋ+ ψ̇ Ẇ = Ḋ + Ψ̇

2nd law of TD ḋ = ẇ − ψ̇ ≥ 0 Ḋ = Ẇ − Ψ̇ ≥ 0

Internal work ẇ = σij ǫ̇
e
ij + qij ǫ̇

p
ij +mijk ǫ̇

p
ij,k Ẇ = ΣijĖij

Free energy ψ = 1
2cijklǫ

e
ijǫ

e
kl +

1
2GL2

∗
ǫpij,kǫ

p
ij,k Ψ = 1

2CijklE
e
ijE

e
kl +

1
2PijklE

p
ijE

p
kl

Dissipation inequality 1
(

σij − ∂ψ
∂ǫeij

)

ǫ̇eij +

(

qij − ∂ψ

∂ǫ
p
ij

)

ǫ̇pij+ (Σij − ∂Ψ
∂Ee

ij
)Ėij + ( ∂Ψ

∂Ee
ij
− ∂Ψ

∂E
p
ij

)Ėp
ij ≥ 0

(

mijk − ∂ψ

∂ǫ
p
ij,k

)

ǫ̇pij,k ≥ 0

Conventional stress σij =
∂ψ
∂ǫeij

= cijklǫ
e
kl Σij =

∂Ψ
∂Ee

ij
= CijklE

e
kl

Non-conventional stress mijk = ∂ψ

∂ǫ
p
ij,k

= GL2
∗
ǫpij,k Aij =

∂Ψ
∂E

p
ij

= PijklE
p
kl

Dissipation inequality 2 qij ǫ̇
p
ij ≥ 0 (Σij −Aij) Ė

p
ij ≥ 0

Flow potential ǫ̇pij = λ̇
∂f∗(qij)
∂qij

Ėp
ij = Λ̇

∂Φ∗(Σij−Aij)
∂Σij

General yield surface f(qij) = f∗(qij) Φ (Σij −Aij) = Φ∗ (Σij −Aij)

Specific yield surface 1 f =
√

3
2qijqij − σf Φ = F λ(Σ̃λ1)

2 +Hλ(Σ̃λ2)
2 +NλΣ̃2

λ4
− 1

Table 2.1 Material models at the micro and macro scale.



Chapter 3
Multi-scale modeling and homogenization

In this chapter multi-scale modeling is described and a certain type of which is cho-
sen for the study. Computational homogenization as a key element of multi-scale
modeling is elaborated. The homogenization connects the gradient dependent theory
at the micro scale to the conventional theory at the macro scale using the governing
equations extracted in Chapter 2. The chapter comprises four sections. Sec. 3.1
defines different approaches for multi-scale modeling and homogenizations. Sec. 3.2
considers the kinematics of the motion at both scales. Sec. 3.3 considers the Hill-
Mandel energy condition. As a result, macroscopic quantities are finally described
by the microscopic ones. Secs. 3.4 and 3.5 show the macroscopic conventional and
non-conventional operators (elastic and Bauschinger moduli), respectively, using the
derived macroscopic quantities.

3.1 Definition

Macroscopic properties hold the key criteria in choosing a material for a specific
engineering application. The origins of material properties reside in the properties
and interactions that take place at the scale of its microstructure. It is important to
faithfully model macroscopic material response together with mechanisms and in-
teractions occurring at the microstructural scale. On the other hand, if a continuum
material is subjected to some load and Boundary Conditions (BCs), the resulting
deformation and stresses may vary rapidly from point to point due to material het-
erogeneity. With a high level of heterogeneity in the material, these quantities also
vary rapidly within a very small neighborhood of a given point. Thus, it is reason-
able to claim that all quantities have two explicit dependences. One is on the fine
scale (microscopic) and the other is on the large scale (macroscopic). The purpose
of multi-scale modeling is to determine the global constitutive behavior of hetero-
geneous materials taking into account the effect of the microstructure. Generally,
there are two different types of multi-scale modeling methods, I) Hierarchical mod-
els, and II) Concurrent models.
With hierarchical models, it is assumed that the scales are separated such that they
do not affect each other. As a requirement, two assumptions are considered in-
cluding I) Uniformity of macroscopic field variables, and II) Periodic Representative
Volume Element (RVE). In this model, macroscopic properties are obtained by ho-

14
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mogenizing the microscopic quantities over a RVE and they are used as an input for
the large scale, see (Fish and Shek, 2000). As a result, a purely macroscopic domain
(so-called level-0) with homogenized material parameters is obtained.
It has been found that the uniformity assumption is not appropriate in critical
regions of large gradients like at material discontinuities and in the vicinity of inter-
faces and free edges. The evolution of the localized stress close to a crack can also
violate the assumption of periodicity. Concurrent models have been developed to
tackle these issues, (e.g. Zohdi and Wriggers, 1999; Ghosh et al., 2007). Such models
not only use the so-called level-0 field but also consider two more levels (so-called
level-1 and level-2) at the critical regions. The levels are described as below

Level-0) Purely macroscopic domain with homogenized material properties.

Level-1) Macro-micro domain with the micro-domain represented by a RVE.

Level-2) Purely microscopic domain without RVE.

Multi-scale modeling

Hierarchical models

Level-0

Uniform macroscopic
fields and periodic

RVE

Concurrent models

Level-0
Level-1 Level-2

Macroscopic fields
with gradients, e.g.
localized stress,

damage, free surface
and interfaces

Figure 3.1 Multi-scale modeling methods.

Fig. 3.1 summarizes the multi-scale modeling methods with assumptions and
requirements. More discussion is found in Ghosh et al. (2007). Fig. 3.2 schemat-
ically shows an example with different regions needing appropriate computational
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Level-0

(a) Hierarchical model for the material
without crack.

Level-0

Level-1

Level-2

(b) Concurrent model for the material
with crack.

Figure 3.2 Composites under simple tension and different multi-scale modeling approach.

approaches. As can be seen, a hierarchical model can be used for the composite un-
der simple tension without any material discontinuity, while concurrent model must
be considered when crack is available. The domain of each level can also be changed
according to how many terms of the Taylor expansion of e.g., the displacement field,
U =

∑

∞

n=0
1
n!

(

∂nU
∂Xn

)

X0
(X −X0)

n where U is the displacement field and (X −X0)
is the distance from the crack tip, are considered. Fig. 3.3 shows schematically a
crack inside the material and the change in the domain of different levels. It is seen
that level-0 is expanded while level-1 is shrunk with the higher number of n in the
Taylor expansion.
In this study, uniformity of macroscopic quantities is assumed, where the hierarchi-
cal model can be implemented. Moreover, the Taylor expansion of the displacement
field is truncated at n = 1. Using these assumptions, the microscopic quantities are
homogenized and saved.

Homogenization is a condensation procedure at the smaller scale which results
in the evaluation of the quantities at a larger scale. On the other hand, e.g. for the
conventional case, by defining the macro stress, Σij, and macro strain, Eij, finding a
plausible relation between them is necessary as Σij = CijklEkl, where Cijkl is a macro
constitutive operator. However, due to the contrast between the properties of the
macroscopic constituent, there is no unique representation of the constitutive oper-
ator at the macro scale with different BCs. This implies that the macro constitutive
operator is strictly dependent on the boundary conditions. This is not a problem at
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Level-0 Level-1 Level-2

More terms in the Taylor expansion of the displacement field

Higher n value

Figure 3.3

the micro scale, where the constitutive operator is assumed to be well known in ad-
vance, σij = cijklǫkl. The fact that the macro constitutive moduli strongly depends
on the type of boundary condition employed was demonstrated in the linear elas-
ticity setting by Hazanov and Huet (1994). This implies that the homogenization
technique has to provide macroscopic data, which are applicable for complicated
macroscopic loading. Different homogenization techniques have been proposed to
estimate the overall constitutive operators at the macro scale, like effective medium
approximation by Eshelby (1957), self consistent method by Hill (1965) and varia-
tional bounding methods by Hashin (1983). However, computational methods using
unit cells are found to be more efficient. Several approaches have been proposed by
Hashin and Shtrikman (1963), Budiansky (1965), Suquet (1985), Keller et al. (1990),
Ghosh et al. (1995), Terada et al. (2000), Wieckowski (2000) and Kouznetsova et al.
(2001).

By the development of strain gradient theories, the homogenization techniques
have lately been extended to include such theories. Zhu et al. (1997) used strain
gradient in the matrix material to obtain particle size dependent overall properties of
metal matrix composites. Li et al. (2010) presented a micro-macro homogenization
modeling of heterogeneous gradient-enhanced Cosserat continuum in the frame of
the average-field theory. Kouznetsova et al. (2004) and Geers et al. (2010) elaborated
on a computational homogenization, where the higher order stress conjugate to the
full strain tensor is only available at the macro scale, while it vanishes at the micro
scale.

In the next three sections, a computational homogenization method employing
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a unit cell is described, where the gradient theory is used at the micro scale and
conventional theory is obtained at the macro scale.

3.2 Kinematics at the micro and macro scale

Kinematics of the motion is represented in Fig. 3.4. Deformation of an undeformed
macroscopic state, Xi, to the deformed state, xi, is defined as

xi = Xi + Ui (3.1)

where Ui is the macroscopic displacement vector.

X3 X2

X1

Xi

xi

Ui

Figure 3.4 Kinematic of the motion.

Neglecting the higher order terms, the Taylor expansion about a point, X0
i , reads

Ui = (Ui)X0
i
+

(

∂Ui

∂Xj

)

X0
i

(Xj −X0
j ) (3.2)

where ∂Ui

∂Xj
is the macroscopic displacement gradient at the undeformed macroscopic

point, X0
i , which can be decomposed into the symmetric and skew symmetric part

as
(

∂Ui

∂Xj

)

X0
i

=
1

2

(

∂Ui

∂Xj

+
∂Uj

∂Xi

)

X0
i

+
1

2

(

∂Ui

∂Xj

− ∂Uj

∂Xi

)

X0
i

(3.3)

The symmetric part of the above equation stands as the macroscopic strain tensor,
Eij, and the skew-symmetric part stands as the macroscopic rotation tensor, Rij.
Therefore,

(

∂Ui

∂Xj

)

X0
i

= (Eij +Rij)X0
i

(3.4)
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The microscopic displacement, ui, is written as

ui = Ui + wi (3.5)

where wi is a microstructural fluctuation field which denotes a difference between
microscopic and macroscopic displacements. By imposing the Taylor expansion of
the macroscopic displacement, Eq. (3.2), into above equation while considering Eq.
(3.4), one should have

ui = (Ui)X0
i
+ (Eij +Rij)X0

i
(Xj −X0

j ) + wi (3.6)

By defining the microscopic strain tensor as ǫij = 1
2

(

∂ui

∂Xj
+

∂uj

∂Xi

)

and imposing on

Eq. (3.6), one can show

ǫij =
1

2
(Eij +Rij + Eji +Rji)X0

i
+

1

2

(

∂wi

∂Xj

+
∂wj

∂Xi

)

(3.7)

Exploiting the properties of the symmetric strain tensor, Eji = Eij, and skew-
symmetric rotation tensor, Rji = −Rij, one can have

ǫij = Eij +
1

2

(

∂wi

∂Xj

+
∂wj

∂Xi

)

(3.8)

Volume integration is imposed on both side of the above equation as

1

v

∫

v

ǫijdv = Eij +
1

2v

∫

v

(

∂wi

∂Xj

+
∂wj

∂Xi

)

dv (3.9)

where v is the volume of the microstructure.
Here, it is assumed that the macroscopic strain tensor is the volume average of the
microscopic strain for the perfectly bonded interface as

Eij =
1

v

∫

v

ǫijdv (3.10)

To survive the assumption, the second term of the right hand side of Eq. (3.9) has
to vanish. To accomplish this, Gauss theorem is imposed as

1

2v

∫

v

(

∂wi

∂Xj

+
∂wj

∂Xi

)

dv =
1

v

∫

s

winjds = 0 (3.11)

where s is the surface of the micro volume, v. There are three conditions which can
satisfy the above equation
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I. wi = 0, for all the microstructural points inside the volume of the unit cell. This
condition suppresses any fluctuation and forces each microscopic point to deform
precisely as the macroscopic one.

II. wi = 0, for all the microstructural points at the surface of the unit cell. This
condition prescribes a zero fluctuation at the boundary of the unit cell, while the
rest of micro displacements remains undetermined.

III. winj = 0, for all the microstructural points at the surface of the unit cell. This
condition prescribes a periodic fluctuation at the boundary of the unit cell as below

wA
i (Γ)n

A
j (Γ) + wB

i (Γ)n
B
j (Γ) = 0 (3.12)

where A and B are the opposite sides of the unit cell and Γ is the local coordinate
system on the surface. Using nA

j (Γ) = −nB
j (Γ) as the unit vectors normal to the

surface of the unit cell,

(

wA
i (Γ)− wB

i (Γ)
)

nA
j (Γ) = 0 (3.13)

One possible way to fulfill Eq. (3.13) can be written as

wA
i (Γ) = wB

i (Γ) (3.14)

It is seen that the only case which let us have deformation at the borders of the
unit cell is the third case. Therefore, it is considered for the study known as the
periodic displacement boundary conditions, consistent to the required assumption
for the hierarchical multi-scale modeling.

3.3 Hill-Mandel energy condition

An extended Hill-Mandel energy condition is used which requires the microscopic
volume average of the variation of the work performed on the unit cell (conven-
tional+higher order works) to be equal to the variation of the work at the macro
scale (conventional work) as

1

v

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij +mijkδǫ

p
ij,k]dv = ΣijδEij (3.15)

Using the Gauss theorem and equilibrium equation, Eq. (2.5),

1

v

∫

s

[σijnjδui +mijknkδǫ
p
ij]ds = ΣijδEij (3.16)
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Here the variation of Eq. (3.6) is considered as

δui = (δEij + δRij)Xj + δwi (3.17)

By imposing the above equation on Eq. (3.16), one can show

1

v

∫

s

σijnjXkdsδEik +
1

v

∫

s

σijnjXkdsδRik +
1

v

∫

s

σijnjδwids+

1

v

∫

s

mijknkδǫ
p
ijds = ΣijδEij (3.18)

The second term of the above equation vanishes upon application of Gauss’ theo-
rem and equilibrium, since Rik is skew-symmetric. The other terms can disappear
considering a certain set of the boundary conditions as

∫

s

σijnjδwids =

∫

s

Tiδwids = 0, (3.19)
∫

s

mijknkδǫ
p
ijds =

∫

s

Mijδǫ
p
ijds = 0

where Ti = σijnj and Mij = mijknk are traction and higher order traction on the
surface of the unit cell, respectively. One possible way to ensure that Eq. (3.19) is
satisfied can be written as

TA
i (Γ)w

A
i (Γ) + TB

i (Γ)wB
i (Γ) = 0, on s

MA
ij (Γ)(ǫ

p
ij)

A(Γ) +MB
ij (Γ)(ǫ

p
ij)

B(Γ) = 0, on s (3.20)

The above conditions are satisfied when

wA
i (Γ) = wB

i (Γ), (ǫpij)
A(Γ) = (ǫpij)

B(Γ) (3.21)

TA
i (Γ) = −TB

i (Γ), MA
ij (Γ) = −MB

ij (Γ)

It is seen from above equation, the fluctuations and plastic strains are equal at the
opposite sides of the unit cell, while tractions and higher order tractions are opposite
of each other. This reminds the periodic boundary conditions on the surface of the
unit cell. Eq. (3.18) is then reduced to

[

1

v

∫

s

σijnjXkds

]

δEik = ΣikδEik (3.22)

Using the Gauss theorem and equilibrium equation, Eq. (2.5),

Σij =
1

v

∫

v

σijdv (3.23)
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3.4 Macroscopic conventional operator

It is important to mention that the macroscopic conventional constitutive behavior,
Σij = CijklEkl, has not been considered as a priori. Therefore, the macroscopic con-
ventional operator, Cijkl, can be determined numerically from the relation between
variation of the macroscopic free energy and variation of the macroscopic deforma-
tion at any point in the elastic regime. For the five loading trials, shown in Fig.
3.5 (Transverse and longitudinal loading, 0o and 45o in-plane shear and out-of-plane
shear), the microscopic elastic energy is evaluated at pseudo-time τ as

Ψτ+∆τ
e = Ψτ

e +

∫

v

στm
ij ǫ̇eijdv ·∆τ (3.24)

where τm = 2τ+∆τ
2

and ∆τ is pseudo-time increment. The components of the macro-
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Figure 3.5 Five trial loadings used to obtain the macroscopic operators, Cijkl and Pijkl.

scopic conventional operator, Cijkl, are solved using the relation, Ψe =
1
2
CijklE

e
ijE

e
kl.

Exploiting the material symmetries for the present problem, all moduli can be solved
from the following system of equations:

⎡

⎢

⎢

⎢

⎢

⎣

Ψ1
e

Ψ2
e

Ψ3
e

Ψ4
e

Ψ5
e

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

C1111

C1122

C1133

C3333

C1212

⎤

⎥

⎥

⎥

⎥

⎦

(3.25)

where for each of the five loading trials, the constants are defined according to
a = 1

2
(Ee

11)
2+ 1

2
(Ee

22)
2, b = Ee

11E
e
22, c = (Ee

11+Ee
22)E

e
33, d = 1

2
(Ee

33)
2 and e = 1

2
(Ee

12)
2.

Using a reduced index notation according to 1 ≈ 11, 2 ≈ 22, 3 ≈ 33 and 4 ≈ 12, a
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matrix of elastic moduli as the macroscopic conventional operator is defined as

C =

⎡

⎢

⎢

⎣

C11 C12 C13 0
C12 C11 C13 0
C13 C13 C33 0
0 0 0 C44

⎤

⎥

⎥

⎦

(3.26)

where the decoupling between the shear component and the normal components
arises due to the material symmetries. Assuming the transversely isotropic with
a = b, results in C11 = C22 and C13 = C23.

3.5 Macroscopic non-conventional operator

Non-conventional macroscopic constitutive behavior described by the Bauschinger
stress as a work conjugate to the plastic strain, Aij = PijklE

p
kl, has not been con-

sidered as a priori. Therefore, the non-conventional macroscopic operator, Pijkl,
is determined numerically from the relation between variation of the macroscopic
trapped energy and variation of the macroscopic plastic strain. For the same load-
ing trials, shown in Fig. 3.5, the microscopic trapped energy at pseudo-time τ is
evaluated as suggested by Benzerga et al. (2005) according to

Ψτ+∆τ
T = Ψτ

T +
1

v

∫

v

[στm
ij ǫ̇eij +mτm

ijk ǫ̇
p
ij,k]dv ·∆τ − 1

2
Στm

ij SijklΣ
τm
kl (3.27)

where Sijkl is the macroscopic elastic compliance tensor. The components of the
tensor of Bauschinger moduli, Pijkl, are solved for the maximum load using the
relation, ΨT = 1

2
PijklE

p
ijE

p
kl. Exploiting the material symmetries for the present

problem, all moduli can be solved from the following system of equations:
⎡

⎢

⎢

⎢

⎢

⎣

Ψ1
T

Ψ2
T

Ψ3
T

Ψ4
T

Ψ5
T

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

P1111

P1122

P1133

P3333

P1212

⎤

⎥

⎥

⎥

⎥

⎦

(3.28)

where for each of the five loading trials, the constants are defined according to
a = 1

2
(Ep

11)
2+ 1

2
(Ep

22)
2, b = Ep

11E
p
22, c = (Ep

11+Ep
22)E

p
33, d = 1

2
(Ep

33)
2 and e = 1

2
(Ep

12)
2.

Using a reduced index notation according to 1 ≈ 11, 2 ≈ 22, 3 ≈ 33 and 4 ≈ 12, a
matrix of Baushinger moduli is defined as

P =

⎡

⎢

⎢

⎣

P11 P12 P13 0
P12 P11 P13 0
P13 P13 P33 0
0 0 0 P44

⎤

⎥

⎥

⎦

(3.29)
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where the decoupling between the shear component and the normal components
arises due to the material symmetries. Assuming the transversely isotropic with
a = b, results in P11 = P22 and P13 = P23. Tab. 3.1 summarizes the connection
between the scales.

Micro scale Macro scale Connection

Displacement ui Ui ui = Ui + wi

Conventional strain ǫij Eij Eij =
1
v

∫

v
ǫijdv

Non-conventional strain ǫpij,k Not Available Not Available

Conventional stress σij Σij Σij =
1
v

∫

v
σijdv

Non-conventional stress mijk Aij Not Applicable

Free energy ψ Ψ Ψ = 1
v

∫

v
ψdv

Internal work w W W = 1
v

∫

v
wdv

Conventional operator cijkl Cijkl Ψe =
1
2
CijklE

e
ijE

e
kl

Ψe =
1
v

∫

v
ψedv

Non conventional operator GL2
∗

Pijkl ΨT = 1
2
PijklE

p
ijE

p
kl

ΨT = 1
v

∫

v
ψTdv

Table 3.1 Connection between the scales.



Chapter 4
Summary of results

In this chapter, the entire response of the composite under general loadings, e.g.
macroscopic stress strain response (Σij, Eij) together with operators, microscopic
plastic flow (ǫpe), macroscopic yield surfaces, evolution of the yield surfaces including
both anisotropic and kinematic hardening (expansion and translation) are presented.
A thorough description of the macroscopic yield function (Φ) and its evolution (Φ̇)
is presented. The chapter includes a summary of the main results of the papers
[P1]-[P7], as well as additional findings.

Section 4.1 presents the response of the composite under normal loadings con-
sidering the size effect of the fiber. Two different types of unit cells, rectangular
fiber [p1] and circular fiber [p2]-[p3], are studied assuming perfectly bonded inter-
face. For the circular fiber, since only loading with the same symmetry planes as
the geometry and the material itself are considered (we do not consider shear in
the (x,y) coordinate system), the analyses can be carried out on a reduced unit
cell containing only one quarter of a fiber. The overall stress strain curve, plastic
strain distribution inside the micro structure and computational macroscopic yield
surfaces are shown.
Section 4.2 presents the size-effect of the fiber on the response of the composite un-
der simple shear loading using both rectangular and circular fibers. The simulation
needs to consider both the higher order and conventional periodic boundary condi-
tions. A thoroughly computational investigation of both the initial and subsequent
yield surfaces are presented in [P4].
Section 4.3 tries to find a mathematical description of the trapped energy and corre-
sponding Bauschinger stress for the unit cell with perfectly bonded circular fiber [p5].
Non-conventional operator is computed using the trapped energy and correspond-
ing plastic strains. The function of trapped energy can further be used to track the
kinematic hardening of the composite yield surface under general loading conditions.
Section 4.4 shows the evolution of the composite yield surface regarding the anisotropic
hardening (expansion). An anisotropic pressure dependent yield function with its
evolution is finally introduced [P6].
Section 4.5 follows the study in Secs. 4.1 and 4.2 for weak interfaces using the co-
hesive zone model of Tvergaard (1990b). The effect of the strength of fiber matrix
interface on the composite behavior is investigated [P7].
The main conventional material parameters used for the matrix are H/Em = 0.1,

25
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σy/Em = 0.004, τy = σy/
√
3, υm = 0.3, and for the fibers, Ef = 5.7Em and

υf = 0.17.

4.1 MMCs under normal loadings [p1]-[p3]

A unit cell is extracted from a composite with rectangular fibers similar to what was
considered in Bittencourt et al. (2003). The geometry of the unit cell is w =

√
3h,

hf = 2wf = 0.588h, where; w, h, wf and hf are the width of the unit cell, height of
the unit cell, width of the fiber and height of the fiber, respectively. A fiber volume
fraction of 0.2 is chosen for the study. Fig. 4.1 shows the geometry of the unit
cell with rectangular fibers and both the conventional and higher order boundary
conditions for normal loadings. The incremental boundary conditions are

u̇1 = 0, Ṫ2 = 0, on x = −w/2, y ∈ [−h/2, h/2],

u̇1 = ∆̇1, Ṫ2 = 0, on x = w/2, y ∈ [−h/2, h/2],

u̇2 = 0, Ṫ1 = 0, on x ∈ [−w/2, w/2], y = −h/2,

u̇2 = ∆̇2, Ṫ1 = 0, on x ∈ [−w/2, w/2], y = h/2,
ǫ̇pij = 0, at all fiber matrix interfaces

Ṁij = 0, at x = ±w/2, and y = ±h/2,

(4.1)

The unit cell is loaded in the transverse direction under plain strain condition. The
displacement BC are controlled such that Σ22 = 0 while Σ11 �= 0. The method of
having proportional stress loading using displacement control of the boundaries is
elaborated in [P3] and Tvergaard (1976).

Fig. 4.2 shows the macroscopic stress strain curve of the unit cell loaded until
E11 = 2.8ǫy affected by the material length scale, L∗/h. The macroscopic yield
criterion is defined as

|Eij − SijklΣkl| ≥ ǫt (4.2)

where ǫt = 0.001 is the offset strain. Initial yield of the composite is postponed to
1.52σy, 1.54σy and 1.62σy corresponding to L∗/h = 0, L∗/h = 0.05 and L∗/h = 0.1,
respectively. The elastic response of the composite is shown to be independent of
the size of the fibers, as could be expected. A slight enhancement of the hardening
is seen with the higher material length scale.
Fig. 4.3 shows the distribution of the effective plastic strain, ǫpe/ǫy, on the unde-
formed geometry. For the conventional material, the highest effective plastic strain
is seen close to the fiber due to the stress concentration, ǫpe = 3.27ǫy, while for
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Figure 4.1 A unit cell of composite with rectangular fibers under normal loadings with
w =

√
3h and hf = 2wf = 0.588h.

the gradient dependent material the highest effective plastic strain is reduced to
ǫpe = 1.48ǫy at the border of the unit cell. An overall suppression of plastic flow is
observable for the gradient dependent material. This results in the enhancement of
the hardening shown in Fig. 4.2. Initial and subsequent yield surfaces of the unit
cell are published in [P1] for different material properties.

A composite with regular distribution of circular fibers is also studied. Fig. 4.4
shows the extracted unit cell which is further reduced to a quarter of the circular
fiber due to the symmetry of the loading condition. The imposed conventional and
higher order boundary conditions can be found in [P2] and [P3]. The same material
properties as of the previous unit cell is studied with Vf = 0.2. The study is under
generalized plane strain condition, where the longitudinal stress, Σ33, is controlled
with a constant deformation of the unit cell thickness as well as the other stress
components, Σ11 and Σ22. The numerical implementation of such a stress control is
also presented in Niordson and Tvergaard (2007).

Initial tension with subsequent compression is studied and the stress strain curves
are normalized by the initial yield stress and yield strain of the matrix, σy and
ǫy = σy/Em, respectively. In Fig. 4.5, the unit cell is loaded in the transverse
direction until E11 = 3ǫy, unloaded until a stress free state and then reloaded until
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Figure 4.2 Effect of the material length scale, L∗/h, on the macroscopic stress strain
curve of the unit cell with rectangular fibers loaded in transverse direction until E11 = 2.8ǫy
with Vf = 0.2.

a compressive macroscopic strain of E11 = 1.2ǫy is achieved. The initial yield of
the composite is postponed to 1.2σy, 1.3σy and 1.4σy corresponding to L∗/R = 0,
L∗/R = 0.2 and L∗/R = 0.4, respectively. It is concluded that the strength of
composite with rectangular fibers is slightly higher than the one with circular fibers
using the same fiber volume fraction, Vf .

A considerable amount of the enhanced hardening is seen for decreasing fiber
size, corresponding to a larger material length scale with the current theory. These
findings are consistent with experimental studies of composites by Lloyd (1994)
and Yan et al. (2007), where the material hardening of the composite is observed
to increase with decreasing particle size under a constant volume fraction of the
reinforcement. An important observation is related to the subsequent loading, where

a considerable amount of Bauschinger stress, Aij =
Σf

ij+Σsy
ij

2
(Here Σf

ij is the flow
stress at the end of loading and Σsy

ij is the subsequent yield stress), is seen for the
higher material length scale. The Bauschinger stress increases from A11 = 0.033σy

corresponding to L∗/R = 0 towards A11 = 0.62σy corresponding to L∗/R = 0.4. The
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Figure 4.3 Effective plastic strain distribution, ǫpe/ǫy, on the undeformed geometry at
the end of transverse loading until E11 = 2.8ǫy.

considerable amount of Bauschinger effect observed in the experiments conducted
by Corbin et al. (1996) and Iyera et al. (2000) cannot be captured by conventional J2
flow theory. However, the gradient dependent analysis here captures the enhanced
Bauschinger effect better.

Fig. 4.6 shows the effective plastic strain, ǫpe/ǫy, on the undeformed geometry at
the end of transverse loading shown in Fig. 4.5. A sudden jump of plastic strain
from the matrix into the fiber is seen in the conventional material, while a continuous
suppression of the plastic flow along the interface occurs in the gradient dependent
material. The local plastic strain in conventional material can be more than 6ǫy,
while in the gradient dependent material, it is around 4ǫy. Mughrabi (2001) and
Fleck et al. (2003) showed that in MMCs, dislocations can not pass from matrix
into the fiber and consequently pile up at the interface. This phenomenon leads to
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Figure 4.4 (a) Regular distribution of the circular fibers in composite. (b) Full unit cell
containing one fiber. (c) Reduced unit cell containing a quarter of the fiber.

plastic strain suppression at the interfaces, which can be taken into account by the
gradient theory.

Fig. 4.7 shows the corresponding Mises effective stress, σe/σy =
√

3
2
sijsij/σy, at

the end of transverse loading shown in Fig. 4.5. For the gradient dependent material,
Fig. 4.5b, a relatively large overall load carrying capacity is seen compared to the
conventional material, Fig. 4.5a, at the same macroscopic strain level, E11 = 3ǫy.
The concentration of stress at the interface in Fig. 4.5b is due to the suppression of
plastic strain.
Effect of the fiber volume fraction, Vf , on the distribution of the effective plastic
strain with L∗/R = 0.4 is shown in Fig. 4.8. With the higher fiber volume fraction,
more suppression of the plastic flow through the matrix is accessible. The higher
fiber volume fraction can increase the elastic modulus, postpone the onset of the
initial yield stress, enhance the load carrying capacity after the yielding and increase
the Bauschinger stress (see [P3] for more details). The details of the effect of L∗/R
and Vf on the response of the composite including the longitudinal loading are found
in [P2] and [P3].
Initial and subsequent yield surfaces are shown on the π-plane on which the macro-
scopic hydrostatic stress vanishes. In absence of the macroscopic shear stresses in
the (x1, x2) coordinate system, the stress state is thus characterized by two stress
components in the directions of ep and eq which are both perpendicular to the hy-
drostatic axis eh. With e1, e2 and e3 denoting unit vectors in the x1, x2 and x3

directions, respectively the stress state can be expressed in the two equivalent forms

Σ11e1 + Σ22e2 + Σ33e3 = Σheh + Σpep + Σqeq (4.3)
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Figure 4.5 Effect of the particle size (L∗/R) on the response of the unit cell with circular
fibers in transverse loading direction when Vf = 0.2.

where Σ11, Σ22 and Σ33 are stress components in the Cartesian system, Σh is hydro-
static stress and Σp and Σq are stress components on the π-plane. The basis vectors
on the π-plane are defined according to

eh =
1√
3
(1, 1, 1), ep =

1√
6
(−1,−1, 2), eq =

1√
2
(1,−1, 0) (4.4)

The stress Σp corresponds to loading in the x3 (longitudinal) direction with opposite
loading of half magnitude in the two perpendicular directions and Σq corresponds
to loading in the x1 (transverse) direction with opposite loading in the x2 direction.
Fig. 4.9 shows a 3D plot of the initial yield surface of composite with Vf = 0.2
and L∗/R = 0.4, using seven different planes and 80 different initial yield points
on each plane compared to the matrix yield surface. It is seen that the composite
yield surface is expanded and has an almost elliptic cross section in comparison
to the matrix yield surface. The cylindrical axis of the composite yield surface,
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Figure 4.6 Effect of the material length scale on the effective plastic strain, ǫpe/ǫy, at the
end of transverse loading shown in Fig. 4.5.
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Figure 4.7 Effect of the material length scale on the Mises effective stress, σe/σy =
√

3
2sijsij/σy, at the end of transverse loading shown in Fig. 4.5.

(Σ11,Σ22,Σ33) = (1, 1, 1.35), is also deviated from the cylindrical axis of the matrix
von Mises yield surface, (Σ11,Σ22,Σ33) = (1, 1, 1). This implies that in composites,
the hydrostatic loading along the von Mises cylindrical axis, Σ11 = Σ22 = Σ33, can
still generate the plastic flow while hitting the wall of the composite cylinder and
consequently yield the entire unit cell.

Fig. 4.10 shows the matrix yield surface, initial and subsequent yield surfaces of
the composite on the π-plane for loading along eq. The yield surface expands com-
pared to the matrix yield surface with largest strengthening effect in ep direction



4.2 MMCs under simple shear loadings [p4] 33

0 0.5 1
0

0.5

1

3.00

2.70

2.40

2.10

1.80

1.50

1.20

0.90

0.60

0.30

0.00

(a) Vf = 0.1

0 0.5 1
0

0.5

1

3.00

2.70

2.40

2.10

1.80

1.50

1.20

0.90

0.60

0.30

0.00

(b) Vf = 0.6

Figure 4.8 Effect of the fiber volume fraction, Vf , on the effective plastic strain, ǫpe/ǫy,
at the end of transverse loading when L∗/R = 0.4.

and smallest strengthening effect in eq direction. Regarding the subsequent yield
surfaces, a significant kinematic hardening with a small expansion is seen for the
gradient dependent material which is opposite to the finding for the conventional
material. A thoroughly computational study of both isotropic and kinematic hard-
ening of composite yield surfaces on the π-plane can be found in [p3].

4.2 MMCs under simple shear loadings [p4]

Studying the response of composites under simple shear loading is necessary to
build up the composite yield function. Two previously introduced unit cell contain-
ing rectangular and circular fibers are studied. The study excludes the out-of-plane
shear loadings, Σ13 = Σ23 = 0. Fig. 4.11 shows both the conventional and higher
order boundary conditions of simple shear imposed on the unit cell with rectangular
fibers. Plastic strain is set to be zero at the fiber matrix interfaces due to plastic flow
suppression shown by Mughrabi (2001). Moreover, higher order tractions vanish at
the border of the unit cell (see also Bittencourt et al., 2003; Fredriksson et al., 2009).
Below is the imposed boundary condition
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Figure 4.9 A 3D plot of the Initial Yield Surface (IYS) of the composite with Vf = 0.2
and L∗/R = 0.4 in comparison to the matrix yield surface.

u̇2 = 0, Ṫ1 = 0, on x = ±w/2, y ∈ [−h/2, h/2],

u̇1 = ∆̇3, Ṫ2 = 0, on x ∈ [−w/2, w/2], y = h/2,

u̇1 = −∆̇3, Ṫ2 = 0, on x ∈ [−w/2, w/2], y = −h/2,
ǫ̇pij = 0, at all fiber matrix interfaces

Ṁij = 0, at x = ±w/2, and y = ±h/2,

(4.5)

Note that the above boundary condition is consistent with the requirements men-
tioned in Chapter 3.

Fig. 4.12 shows the response of the unit cell with rectangular fibers under sim-
ple shear loading until E12 = 3.25γy, where γy = τy/Gm for different value of
the material length scale while Vf = 0.2. The macroscopic elastic shear modu-
lus, C12 = 1.24Gm, is higher than the matrix shear modulus and it seems to be
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Figure 4.10 Homogenized subsequent yield surface (SYS) projected on the π-plane for
two different load levels along eq (thick arrow is the loading path). (a) L∗/R = 0. (b)
L∗/R = 0.4.

unaffected by the material length scale. Initial yield stress increases from 1.08τy
corresponding to L∗/R = 0 towards 1.19τy corresponding to L∗/R = 0.4. A con-
siderable effect of the fiber size on the hardening is also noticeable. This has also
been seen by Bittencourt et al. (2003) using the nonlocal crystal plasticity theory of
Gurtin (2002). The size effect of the fiber on the effective plastic strain distribution,
ǫpe/ǫy, is shown in Fig. 4.13. A considerable amount of the plastic flow is again ob-
servable for the conventional material with concentration at the corners compared
to the gradient dependent material with smooth distribution. The periodic defor-
mation of the border is seen to be more limited for the case of gradient dependent
material than the other one.

For the regularly distributed circular fibers, a unit cell with a full circle is chosen
as shown in Fig. 4.14 [P4]. A complete detail of the imposed boundary condition is
found in [P4].

Fig. 4.15 shows the response of the unit cell under simple shear loading with
Vf = 0.2. Initial loading and subsequent reloading is studied, where the maximum
shear strain is given by E12/γy = 1.94 at which the load is reversed until a com-
pressive macroscopic shear strain of E12/γy = 0.78 is reached. As the Fig shows,
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Figure 4.11 Boundary conditions and geometry of the unit cell of composite with rect-
angular fibers under simple shear loading with w =

√
3h and hf = 2wf = 0.588h.

the stress strain curve is mainly affected after the initial yielding. The macroscopic
shear modulus is C12 = 1.28Gm and the macroscopic shear yield stress, Σy

12, has
a very slight change from 1.05τy corresponding to L∗/R = 0 towards 1.06τy corre-
sponding to L∗/R = 0.4. The overall hardening increases with smaller particle sizes
(higher material length scale). The Bauschinger stresses also increase with smaller
particle size, A12 = 0, 0.017σy and 0.12σy corresponding to L∗/R = 0, 0.2 and 0.4,
respectively. This is also observed in pure shear for strain gradient plasticity by
(Anand et al., 2005; Niordson and Legarth, 2010). Regarding the initial yielding, it
is concluded that composite with rectangular fibers has more strength than the one
with circular fibers under simple shear loading.

Fig. 4.16 shows the distribution of the effective plastic strain, ǫpe/ǫy, for Vf =
0.2 at the maximum strain loading of E12 = 1.98γy with 30 times scaling of the
displacement field. The maximum value of the effective plastic strain is higher in
the conventional analysis, Fig. 4.16a, than in the gradient dependent analysis, Fig.
4.16b. With the conventional material, the plastic strain is not suppressed at the
fiber matrix interface but with the gradient dependent material, the constraint on
the plastic flow is observed to suppress plasticity close to the elastic fiber. It is seen
that the deformation of boundaries is less wavy for the gradient dependent material
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Figure 4.12 Stress strain response of the unit cell with rectangular fiber under simple
shear loading until E12 = 3.25γy affected by the material length scale, L∗/h, with Vf = 0.2.

than the conventional case.
Fig. 4.17 shows the corresponding effective Mises stresses, where a similar stress

distribution is seen for both cases. Observing the magnitude, higher load carrying
capacity at the same macroscopic shear strain is palpable for the gradient dependent
material.

Fig. 4.18 shows the distribution of the normalized higher order stresses, (a)
m121/(L∗σy) and (b) m122/(L∗σy), for the maximum strain loading of E12/γy = 1.98
with L∗/R = 0.4. As can be seen, the higher order stress has an anti-symmetric
distribution around the fiber with the maximum absolute value at the fiber matrix
interface, where the gradients of the plastic strains are highest. Furthermore, they
are observed to vanish at some of the boundaries in accordance to the symmetries
of the problem.

Macroscopic conventional operator (elastic moduli, C) is investigated according
to Eq. (3.25). Since the material length scale does not affect the elastic response of
composite, the study is carried out under different values of the fiber volume frac-
tion, Vf , as shown in Tab. 4.1. It can be seen that with Vf = 0.001 (the composite is
very close to a homogeneous material), C11 = C22 = C33 and C12 = C13 = C23 as it
is expected. By increasing the Vf , all the components of C-moduli increase, where
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Figure 4.13 Effective plastic strain distribution, ǫpe/ǫy, on the deformed geometry with
5 times scaling at the end of simple shear loading until E12 = 3.25γy while Vf = 0.2.

it is intense for C33 corresponding to the longitudinal direction, moderate for C11

and C22 corresponding to the transverse directions and small for other components.
More details regarding the effect of the fiber volume fraction and matrix material
hardening on the plastic deformation of composite under simple shear loading is
found in [P4].

Macroscopic initial and subsequent yield surfaces are shown in Fig. 4.19 in
transverse-shear (Σ11,Σ12) coordinate system. It is seen that the composite initial
yield surface is expanded most in transverse direction compared to the shear direc-
tion. The expansion is due to the suppression of the plastic deformation close to
the fiber matrix interface, which tends to postpone the overall plasticity of the unit
cell. This is consistent with our findings in the stress strain curves (see Figs. 4.5
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Figure 4.14 (a) Regular distribution of fibers in the composite. (b) RVE containing one
fiber with traction boundary condition. (c) RVE containing one fiber with conventional
displacement boundary conditions used in numerical simulation representing combined
biaxial shear loading.
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Figure 4.15 Effect of the material length scale, L∗/R, on the homogenized stress strain
curve of the unit cell with circular fiber under simple shear with Vf = 0.2.

and 4.15). Regarding the subsequent yield surfaces, a relatively moderate expan-
sion with a considerable kinematic hardening occurs when the unit cell is loaded in
the transverse direction compared to the shear direction. Anisotropic response of
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Figure 4.16 Effective plastic strain distribution, ǫpe/ǫy, for simple shear with Vf = 0.2 at
E12 = 1.98γy.
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Figure 4.17 Effective Mises stress, σe/ǫy =
√

3
2sijsij/ǫy, for simple shear with Vf = 0.2

at E12 = 1.98γy.

the Bauschinger stress is highlighted. A thorough investigation of the initial and
subsequent yield surfaces under different loading trials is found in [P4].
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Figure 4.18 Higher order stresses, for simple shear with Vf = 0.2 at E12 = 1.98γy.
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Figure 4.19 Initial and subsequent yield surface, IYS and SYS, in transverse-shear,
(Σ11,Σ12), stress coordinate system with Vf = 0.2 and L∗/R = 0.4 (dashed-line: matrix
yield surface, solid-line: IYS, point-line: SYS). (a) SYS with simple shear loading. (b)
SYS with transverse loading.

4.3 Kinematic hardening in MMCs [p5]

The aim of this section is to establish a correlation between the trapped energy and
Bauschinger stress leading to a comprehensive evaluation of the kinematic harden-
ing in composites. The mathematical representation of the trapped energy shown
in Chapter 2 facilitates the evaluation of kinematic hardening (Bauschinger stress)
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Table 4.1 Effect of the fiber volume fraction, Vf , on the C-moduli for L∗/R = 0.4.

at the macroscopic scale for the sake of multi-scale modeling. Five different loading
trials including transverse, longitudinal, 0o in-plane shear, 45o in-plane shear and
out-of-plane shear are neccessary to impose on the unit cell in order to gather enough
data of the trapped energy and corresponding Bauschinger stresses. The unit cell
with full circular fiber is chosen for this study with the boundary condition shown
in [P5].

By imposing five different loading trials, see Fig. 3.5, P -moduli as the non-
conventional operator, Pijkl in Eqs. (2.29) and (3.28), can be computed and con-
sequently the Bauschinger stresses are obtained. As it was shown in Fig. 4.9, the
composite yield surface has an almost elliptical cross section which is expanded
compared to the matrix yield surface. It is important to note that the third eigendi-
rection of the P -moduli, vλ3 , is parallel to the cylindrical axis of the composite
yield surface and it deviates from the cylindrical (hydrostatic) axis of the matrix
von Mises yield surface. When applying stress along this third eigendirection in the
stress space, vanishing plastic strain is expected since the yield surface appears to
extend to infinity. This observation can be exploited to rewrite the yield function
in a reduced form on what we refer to as the Composite-plane (C-plane), which is
a plane perpendicular to the third eigendirection, vλ

3 . A meaningful interpretation
of the Bauschinger stress as the translation is seen on just C-plane and not out of
C-plane due to having a finite composite cylinder, see [P5]. Therefore, the macro-
scopic quantities are transformed with eigendirections of the P -moduli, Pijkl, as
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(4.6)
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Figure 4.20 Matrix yield surface (thin line), initial yield surface (thick line) and sub-
sequent yield surface (point line) on a plane with v

λ3 = 	en = (1, 1, 1.35) as the normal
vector and with Vf = 0.2 and L∗/R = 0.4 for loading in transverse direction till Σ11 = 2σy.
Cross point is the geometric center of the SYS and circle point is the computed Bauschinger
stress using Eq. (2.29).

where V is the matrix of eigendirections, vλi

j is the jth component of an eigenvector
of the P -moduli, Pijkl, in Eq. (2.24) corresponding to the ith eigenvalue, λi, and Ω
stands for any macroscopic quantity like, Σ, A and Ep.
Fig. 4.20 shows the matrix yield surface, initial yield surface and subsequent yield
surface on the C-plane with v

λ3 = �en = (1, 1, 1.35) as the normal vector and with
Vf = 0.2 and L∗/R = 0.4 for loading in transverse direction till Σ11 = 2σy. A good
estimation of the center of the SYS using Eq. (2.29) and afterwards Eq. (4.6) is
seen compared to the geometric center of the SYS. Expansion of the yield surface
accompanies the translation (kinematic hardening), which will be thoroughly inves-
tigated in the next section.
Effect of the material length scale, L∗/R, on the trapped energy computed with Eq.
(3.27) and the corresponding Bauschinger stresses is studied. Fig. 4.21 shows the
result with Vf = 0.2 for (a) transverse (x1) and (b) longitudinal (x3) loading direc-
tion. It is seen that by decreasing the particle size (increasing the material length
scale), the amount of the trapped energy increases significantly by the transverse
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loading and moderately by the longitudinal loading. Deshpande et al. (2005) also
showed that the stored energy associated with the dislocation (Trapped energy) is
enhanced by decreasing the size. For the conventional response, the trapped energy
by the transverse loading is relatively small and hardly shows a quadratic behavior,
while a quadratic function is well fitted for all other curves.
In Fig. 4.22, the corresponding Bauschinger stresses using the trapped energy in
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Figure 4.21 Effect of the material length scale, L∗/R, on the trapped energy, 2ΨT /(σyǫy),
with Vf = 0.2 for (a) transverse loading (x1). (b) longitudinal loading (x3). Solid line is
the fitting function with the parameters shown in Tab. 4.2.

Fig. 4.21 is plotted. The Fig shows that with a higher value of the material length
scale, L∗/R, the transformed Bauschinger stress, Aλi

, increases significantly by the
transverse loading and moderately by the longitudinal loading, consistent with the
behavior of the trapped energy. The solid line is the fitting function with the fitting
parameters, Pλi

, shown in Tab. 4.2 and the points are the geometric center of the
SYS.
Fig. 4.23 is plotted to show the behavior of the unit cell under 0o in-plane shear
loading with Vf = 0.2. For the conventional material, Fig. 4.23a and b, an almost
zero trapped energy is seen with a relatively large amount of plasticity. For the gra-
dient dependent material, Fig. 4.23c and d, the plastic strain is suppressed close to
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Figure 4.22 Effect of the material length scale, L∗/R, on the geometric center of the
SYS in the transformed coordinate system with Vf = 0.2 for (a) transverse loading (x1).
(b) longitudinal loading (x3). Solid line is the fitting function with the parameters shown
in Tab. 4.2 and the points are the geometric center of the SYS.

the fiber matrix interface, where the trapped energy, 2ψT/(σyǫy), is higher compared
to the other regions. The trapped energy is also available inside the fiber, where the
plastic strain is zero. A smooth transition of the plastic flow from the fiber into the
matrix is seen.
A quantitative study of Fig. 4.23 is plotted for the trapped energy in Fig. 4.24a

and the corresponding Bauschinger stress in Fig. 4.24b. The amount of trapped
energy and corresponding Bauschinger stress are almost zero for the conventional
case, while it is enhanced for the gradient dependent material with L∗/R = 0.4.
Note that due to the material symmetries assumed in the present unit cell model,
0o in-plane shear loading trial does not generate plasticity in the v

λ1 , vλ2 and v
λ3

directions. As a result, the Bauschinger stress can be conventionally defined as (see
Azizi et al., 2011b,a)

Aλ4 = A12 =
(Σf

12 + Σsy
12)

2
(4.7)

where Σf
12 is stress at the end of loading and Σsy

12 is the stress at the subsequent yield
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Figure 4.23 Trapped energy and the corresponding effective plastic strain in 0o in-plane
shear with Vf = 0.2.

point under reverse loading. In Fig. 4.24b, the circle points represent the geometric
center of the yield surface during loading. The enhanced Bauschinger stress is in
accordance with results for pure shear of a slab between rigid plates studied by
Niordson and Legarth (2010). It is emphasized that the conventional definition for
the Bauschinger stress, Eq. (4.7), in composite under multi-axial loadings can not
represent the geometrical center of the multi-dimensional yield surface, while the
definition with the current approach, Eq. (2.29), can.

As it is seen in Tab. 4.2, the material length scale does not affect the orien-
tation of the composite cylinder, while it expands the cylinder. The expansion is
represented by the eigenvalues of P -matrix and the orientation is represented by the
eigendirections of P -matrix. However, in Tab. 4.3, the fiber volume fraction, Vf , not
only expands the yield surface but also changes the orientation of it. It is seen that
for a very small Vf (close to the homogeneous material), the third eigendirection,
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Figure 4.24 0o in-plane shear with Vf = 0.2 and the effect of the material length scale,
L∗/R, on (a) Trapped energy, 2ψT /(σyǫy). (b) Bauschinger stress, Aλ4/σy. Solid line is
the fitting function with the parameters shown in Tab. 4.2.

v
λ3=( 0.57,0.57,0.57), is parallel to the von Mises hydrostatic pressure line as it is

expected. More details of the kinematic hardening in composites can be found in
[P5].

4.4 Anisotropic hardening and yield function of MMCs [p6]

As previously shown, the expansion (anisotropic hardening) accompanies the trans-
lation (kinematic hardening) of the yield surface. Knowing both types of hardening
is necessary to finally develop the composite yield function. In this section, the
anisotropic hardening is computationally investigated and Hill’s yield function, Hill
(1948), is extended to fit the numerical data (see Sec. 2.2, Chapter 2). The unit cell
is chosen as of the one in the previous section for this study.

Extension of the Hill’s anisotropic yield function is mainly based on the pressure
dependency. It has been observed that the whole unit cell is moved to the plastic
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⎥
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Table 4.2 Effect of the material length scale, L∗/R, on the P -matrix, eigenvalues of
the P -matrix (fitting parameters) and eigendirections of P -matrix (composite cylindrical
axes) for Vf = 0.2.

regime under macroscopic hydrostatic pressure loading, Σ11 = Σ22 = Σ33. To see
this, the unit cell is loaded through the hydrostatic pressure line until Σ11 = Σ22 =
Σ33 = 3σy and the effective plastic strain distribution, ǫpe/ǫy, is shown in Fig. 4.25.
The macroscopic plasticity is generated when the stress state hits the wall of the
composite cylinder shown in Fig. 4.9, while the microscopic plasticity evolves sooner
than that.

Effect of the fiber volume fraction with a constant material length scale, L∗/R =
0.4, is also seen through Figs. 4.25a, b and c. By increasing the fiber volume fraction,
the plasticity starts to grow close to the interface from a thin line distribution in
Fig. 4.25a for Vf = 0.1 to a more clustered distribution in Fig. 4.25b for Vf = 0.2
and more severe clustered distribution in Fig. 4.25c for Vf = 0.3. This behavior
reveals as the rotation of composite yield surface shown in Fig. 4.9 and Tab. 4.3. It
is concluded that pressure independence of the micro-structure in composites does
not result into the same behavior at the macroscopic scale.

The above observations require an extended version of the Hill’s anisotropic yield
function for composites. The elaborated method for this extension is found in [P6].
Here, we briefly write the composite yield function as

Φ = F λ(Σ̃λ1)
2 +Hλ(Σ̃λ2)

2 +Nλ(Σ̃λ4)
2 − 1 (4.8)
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Table 4.3 Effect of the fiber volume fraction, Vf , on the P -matrix, eigenvalues of the P -
matrix (fitting parameters) and eigendirections of P -matrix (composite cylindrical axes)
for L∗/R = 0.4.

where Σ̃λi
= Σλi

−Aλi
and F λ,Hλ and Nλ are the new anisotropic parameters. The

above function represents an elliptic cross-section of the composite’s cylindrically
ellipsoidal yield surface. Since Σλ3 is parallel to the cylindrical axis of the composite
yield surface, it is excluded from Eq. (4.8). Σλ1 and Σλ2 are the major and minor
axis of the elliptic cross-section.

As an example, Fig. 4.26 is plotted (accentuating on both Σλ1 and Σλ2 while ex-
cluding Σλ3) to show the subsequent yield surface (SYS) under longitudinal loading
until Σ33 = 3σy when L∗/R = 0.4 and Vf = 0.2. The figure also shows a cut of the
3D initial yield surface of the composite (Fig. 4.9). A considerable amount of the
kinematic hardening together with a slight expansion is observable.
To evaluate the expansion, evolution of the anisotropic parameters of the composite
yield function under longitudinal, transverse and 0o in-plane shear loading trials is
studied. Figs. 4.27 and 4.28 show the effect of the material length scale, L∗/R, on
F λ and Hλ for the longitudinal and transverse loading, respectively. They are plot-

ted versus the macroscopic plastic strain measure, Ep
e =

√

Ep
λi
Ep

λi
, while L∗/R = 0.4

and Vf = 0.2. It is seen that for the higher material length scale, the initial and
subsequent anisotropic coefficients decrease, which is a sign of both initial and sub-
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Figure 4.25 The effective plastic strain distribution, ǫpe/ǫy, with hydrostatic pressure
loading until Σ11 = Σ22 = Σ33 = 3σy with L∗/R = 0.4

sequent yield surface expansion. However, the slope of the anisotropic coefficients
(reduction rate) is different according to the loading condition and the material
length scale. For the normal loadings, the elongation of both major and minor axes
of the ellipses shown in Fig. 4.26 can be defined as

Rs =
√

Hλ
0 /H

λRs
0, Rl =

√

F λ
0 /F

λRl
0 (4.9)

where Rs
0 and Rl

0 are the initial length of the major and minor axes, respectively
and Rs and Rl are the subsequent length of the major and minor axes, respectively.
In Fig. 4.26, the minor axis is Rs = 1.06Rs

0, while the major axis is Rl = 1.05Rl
0.

By studying the composite response under transverse loading [P6], it is concluded
that the expansion of the ellipse is higher in the minor axis, vλ2 , compared to the
major axis, vλ1 , for both normal loading trials.
A thorough investigation of the anisotropic hardening in composites with all the
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Figure 4.26 Initial and subsequent yield surface of composite with longitudinal loading
until Σ33 = 3σy when L∗/R = 0.4 and Vf = 0.2.
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Figure 4.27 Effect of the material length scale on F λ for (a) Longitudinal loading until
Σ33 = 3σy. (b) Transverse loading until Σ11 = 2σy.
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required loading trials is found in [P6]. As the result of the study, the anisotropic
hardening coefficients at the macroscopic scale affected by the material length scale
are introduced. By knowing the hardening coefficients [P6] and the Bauschinger
stress and tangent operators [P5], one can use the defined anisotropic pressure de-
pendent yield function in Eq. (4.8) to model a problem at the macro scale using
hierarchical method in multi-scale modeling.

0 0.1 0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Ep
e/ǫy

H
λ
σ
2 y

0 1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Ep
e/ǫy

H
λ
σ
2 y

L∗/R = 0.4

L∗/R = 0.2

L∗/R = 0

(a) (b)

Figure 4.28 Effect of the material length scale on Hλ for (a) Longitudinal loading until
Σ33 = 3σy. (b) Transverse loading until Σ11 = 2σy.

4.5 Debonding failure in MMCs [p7]

A weak interface is analyzed under uniaxial loading in the transverse direction. The
unit cell with circular fiber is loaded until the maximum deformation of E11 = 5ǫy
is achieved.

Fig. 4.29 shows the effect of the material length scale, L∗/R, on the stress strain
curve with σmax = σy and δn = δt = δ = 0.03R. It is seen that the material length
scale does not affect the elastic modulus but it can slightly increase the yield point
and hardening as was found experimentally by Nan and Clarke (1996). The stress
drops due to the interface debonding at Σ11 = 1.27σy corresponding to L∗/R = 0,
at Σ11 = 1.39σy corresponding to L∗/R = 0.2 and at Σ11 = 1.46σy corresponding
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Figure 4.29 Effect of the material length scale, L∗/R, on the stress strain curve of
uniaxial tension with σmax = σy and δn = δt = δ = 0.03R.

to L∗/R = 0.4. After failure by debonding, the load carrying capacity is almost
constant for the conventional material, where an enhancement is seen for the strain
gradient dependent material.
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Figure 4.30 Effect of the maximum stress carried by the interface, σmax, on the stress
strain curve of the uniaxial tension with δ = 0.03R and L∗/R = 0.4.

Fig. 4.30 shows the effect of the maximum stress carried by the interface, σmax,
on the stress strain curve with δ = 0.03R and L∗/R = 0.4. Both elastic modulus
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and yield stress increase slightly. The onset of debonding is significantly postponed
from Σ11 = 1.46σy corresponding to σmax = σy towards Σ11 = 2.08σy corresponding
to σmax = 2σy. The stress-drop occurs more sudden for the higher value of σmax.
Thereafter, the hardening is seen to be the same for all the cases. Similar behavior
has been shown by Xu and Needleman (1993), Needleman et al. (2010) and Zhang
et al. (2005).
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Figure 4.31 Accumulative plastic strain, ǫpe/ǫy, for uniaxial tension with δ = 0.03R and
σmax = σy at the end of loading where E11 = 5ǫy with real deformation field.

Fig. 4.31 shows the effect of the length scale, L∗/R, on the effective plastic
strain, ǫpe/ǫy, with δ = 0.03R and σmax = σy. For the case of conventional material,
Fig. 4.31a, a significant amount of the plasticity is observable at the crack tip, see
also Ghassemieh (2002) and Zhang et al. (2005), where the suppression of the plastic
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strain at the crack tip is noticeable for the gradient dependent material, Fig. 4.31b
and c. A smooth transition of the plastic strain from the fiber towards the ma-
trix is highlighted for the gradient dependent material as it was shown by Legarth
and Niordson (2010). This smooth transition pushes the maximum plastic strain
towards the borders. For the second set of the higher order boundary conditions,
Fig. 4.31c is plotted. Suppression of the plastic strain close to the debonded void is
seen, which is not the case for the first set, Fig. 4.31b. An elaborated study of the
weak interface is found in [P7].



Chapter 5
Concluding remarks

The goal of the present work is to deliver a comprehensive dataset of composites
behavior at the large scale (macro), while knowing the material properties at the
lower scale (micro). More specifically, the study uses a gradient dependent yield
function at the micro scale, while a conventional description of the yield surface and
its evolution are developed at the macroscopic scale. Seven papers [P1]-[P7] have
been included in the thesis.
Among the gradient theories, a rate independent higher order strain gradient plas-
ticity theory proposed by Gudmundson (2004) is considered. Numerical studies are
carried out using a finite element cell model, where the components of the plas-
tic strain tensor appear as free variables in addition to the displacement variables.
The free energy has contributions from both elastic strains and plastic strain gradi-
ents. Micro-macro homogenization is used, where the Hill-Mandel energy condition
is satisfied. As a result of the homogenization, higher order boundary condition is
imposed such that macroscopic higher order energy vanishes and conventional re-
sponse is accessible.

In [P1], [P2] and [P3], elasto-plastic behavior of MMCs are studied. Two differ-
ent types of the unit cell including rectangular fiber [p1] and circular fiber [p2]-[p3]
are studied assuming a perfectly bonded interface. In [P3], since only loading with
the same symmetry planes as the geometry and the material itself are considered,
the analyses can be carried out on a reduced unit cell containing only one quarter
of a fiber. Results for different combinations of normal loading in the longitudinal
and transverse directions are presented. It is shown that the elastic modulus, yield
stress and Bauschinger effect increase in both loading directions with higher fiber
volume fraction. Furthermore, it is seen that for higher fiber volume fractions the
overall plastic flow is suppressed at a given load-level and, as a result, the initial
yield surface expands. It is concluded that Vf is the most important conventional
parameter leading to the Bauschinger effect in both loading directions.
The effect of a constitutive length scale in the matrix material is analyzed. The
results show that the length scale serves as to increase the overall hardening of the
composite. Consequently, the initial yield surface expands in all directions. The
Bauschinger effect is also found to increase with L∗/R which results in additional
kinematic hardening. It is shown that the material model is capable of accounting
for Baushinger effects under reversed loading, due to the back stresses originating
from the plastic gradient accommodated by the free energy.
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In [P4], the elasto-plastic behavior of MMCs is studied under more general load-
ing conditions including the simple shear. Such a comprehensive analysis needs to
have a unit cell with the whole fiber represented. Periodic boundary conditions are
considered for both displacement and plastic strain fields.
It is shown that the elastic modulus, yield stress and Bauschinger effect increase
for in-plane shear loading with the higher fiber volume fraction. The expansion of
the composite yield surface in shear-transverse stress coordinate system shows an
anisotropic growth, where it is significant in the transverse direction and small in
the shear direction.
The Bauschinger effect is found to be large in longitudinal direction, moderate in
the transverse direction and small in shear direction, which is almost opposite to the
finding for the expansion of the yield surface. It is also seen that the Bauschinger
stress increases with smaller particle size results in an additional kinematic harden-
ing due to the residual higher order stresses. It is concluded that the inclusion of the
constitutive material length scale results in an isotropic growth of the initial yield
surface and anisotropic expansion and translation of the subsequent yield surface
upon loading in different directions.

In [P5] different loading trials are imposed on the unit cell with one circular fiber
using generalized plain strain condition. The goal is to characterize the kinematic
hardening of the composite yield surface. The thermodynamically consistent model
at the macro scale showed a relationship between the amount of trapped energy and
the Bauschinger stress. This fact is investigated and a mathematical representation
of the numerically computed trapped energy is introduced such that the Bauschinger
stresses can be extracted. It is found that a quadratic function of plastic strains can
be considered for the trapped energy during the plastic deformation. As a result, a
linear function of plastic strains is derived for the Bauschinger stresses. The eigendi-
rections of the Bauschinger modulus (P -modulus) are found to be the cylindrical
and planar axes of the composite yield surface.
Effect of the material length scale, L∗/R, on the trapped energy, Bauschinger stress
and plastic strain is investigated. A considerable enhancement of the trapped energy
and corresponding Baushinger stress with higher L∗/R can be seen. The computed
Bauschinger stresses are also compared with the geometric center of the subsequent
yield surface and an adequate agreement with the current approach is found for all
loading trials. It is emphasized that the conventional definition for the Bauschinger
stress, Eq. (4.7), in composite under multi-axial loadings can not represent the geo-
metrical center of the multi-dimensional yield surface, while the definition with the
current approach, Eq. (2.29), can. It is highlighted that the material length scale
does not change the orientation of the composite cylinder, whereas it can expand it.
The fiber volume fraction as a conventional parameter can both expand and deviate
the orientation of composite cylinder.
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In [P6] a conventional anisotropic hydrostatic pressure dependent yield func-
tion is finally introduced. By drawing the 3D yield surface of the composite,
(Σ11,Σ22,Σ33), an elliptically cylindrical yield surface is seen. As was mentioned,
the eigendirections of the P -modulus (Pijkl), are parallel to the cylindrical axes.
Exploiting this, a transformation matrix, V , is built and all of the macroscopic
quantities including the Cauchy stress, Σij, Bauschinger stress, Aij, and plastic
strain, Ep

ij, are transformed. Using the transformed quantities, Σλi
, Aλi

and Ep
λi
,

the yield surface properties like pressure dependency, expansion and translation are
considered by extending the Hill anisotropic yield function. It is observed that by
hydrostatic pressure loading, plastic deformation evolves inside the micro structure,
which can be captured by the extended Hill anisotropic yield function.
Effect of the material length scale on the yield function is sought. It is seen that
with higher material length scale both initial and subsequent anisotropic parameters,
F λ,Hλ and Nλ, decrease with different rate which is a sign of an anisotropic expan-
sion of both initial and subsequent yield surface. Finally, the macroscopic hardening
coefficients, fi,hi and ni, needed to track the expansion of the yield surface are cal-
culated and introduced. The function is now ready to be used at the large scale.

An extra study is conducted in [P7] considering the weak interface of the fiber-
matrix interface using cohesive zone model. The effect of both critical separation
distances (work of separation per unit interface area), δn = δt = δ, and maximum
stress carried by the interface, σmax, on the stress strain curve are investigated. It is
shown that by increasing of both of those parameters, the stress-drop correspond-
ing to the onset of debonding is postponed. However, the effect of σmax is much
more intense on the strength of interface compared to the effect of δ. Comparing
to the strong interface, it is also observed that the elastic modulus for the material
with weak interface is lower than the one with strong interface. This is due to the
cohesive zone model, where traction-displacement curve is loosening the strength of
material before the onset of debonding at λ = 1/3.
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Summary. The overall properties of micron to sub-micron scale reinforced metal matrix 

composites are studied. The focus of the study is on effective yield surfaces and the overall 

hardening behavior. A recent strain gradient plasticity theory, based on energetic 

contributions due to the gradient of the plastic strain tensor, is employed to model relevant 

size-effects in the matrix material. Numerical studies are carried out using a finite element 

method, where the components of the plastic strain tensor appear as free variables in addition 

to the displacement variables. Due to the higher order nature of the theory, higher order 

boundary conditions must be imposed. These non-conventional boundary conditions give 

enhanced modeling capabilities, that are important to micron scale applications such as 

micron reinforced materials, and in the present study they are used to model dislocation 

blocking at the interface between fibers and the matrix material. The results show increased 

hardening for micron scale reinforcement, compared to that predicted by conventional 

models. The results are in accordance with experimental observations, which cannot be 

modeled by conventional scale independent plasticity theories. It is shown that the material 

model is capable of accounting for Baushinger effects under reversed loading, due to back 

stresses originating from the plastic gradient contributions to the free energy.

1 INTRODUCTION 

Size effect in metal matrix composites during plastic deformation can be modeled using 

strain gradient plasticity. Fibers in the matrix can suppress the plastic flow intensely. An 

explanation is that if a glide path of a dislocation encounter a fiber surface, the dislocation 

cannot pass the fiber. This behavior cannot be considered by conventional plasticity since no 

size effects exist. Theories of strain gradient of plasticity have the capabilities to consider this 

fact.  

Gudmundson [1] introduced a new formulation to avoid negative energy dissipation during 

plastic deformation. A full form of strain gradient plasticity with positive energy dissipation 

has been developed by Fleck [2]. A conservative way to have positive energy dissipation is to 

extract the gradient of plastic strain from elastic energy. This was done by Gudmundson and 

Fredriksson [3]. Recently, Lele and Anand developed a complete description of higher order 

theory for viscoplastic material [4]. In this paper, the energetic higher order theory of SGP 

proposed by Gudmundson[1] will be implemented for a metal matrix composite under general 
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plane strain loading. The overall behavior of the metal matrix composite will be evaluated 

based on a micro model.  

2   FORMULATIONS  

2.1 Constitute equations 

Under small strain, one can separate the plastic and elastic strain as below: 
e p

ij ij ij� � �� �� � �                                                                                                         (1) 

Free energy is assumed to have contributions from the gradient of plastic strain in addition to 

the conventional elastic strain [3]. 

2
* , ,

1 1

2 2

p pe e
ijkl ij kl ij k ij kD L G� � � � �� �                                                                                (2)                                             

where *L  is a constitutive length parameter, G is the shear modulus, and ijklD is the tensor of 

elastic moduli. 

The conventional stress and higher order stress, work conjugate to the plastic strain gradient, 

can be derived from the potential �  as follows: 

2
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The increment of plastic strain is taken to be co-rotational with a micro stress ijq .

3

2

ijp p

ij e

e

q

q
� ��� �                                                                                                       (4) 

where, 
3

2
e ij ijq q q� and

2

3

p p p
e ij ij� � ��� � �

and ijq  satisfies the higher order equilibrium equation: 

, 0,ijk k ij ijm s q� � �                                                                                              (5) 

where ijs   is the deviatoric part of the Cauchy stress. 

It can be seen that the micro stress ijq , is in general different from ijS  when higher order stress 

exist. Since the yield condition is specified in terms of eq  ( � �3 2 p
ij ij y ef q q H� �� � � ), this 

suggests that energetic strain gradient effects may lead to kinematic hardening effects for non- 

homogeneous deformation states. 

2.2 Effective strain and yield condition in composite  
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In this paper, strain based averaging has been used to evaluate the yield surface. Equations (6) 

shows the macroscopic effective strain of a composite. 
1M m

e

V

E dV
V

�� �� �                                                                                                        (6) 

In order to consider both the initial and subsequent yield surfaces, a macroscopic yield 

condition should be considered. This has been done by considering the change in macroscopic 

reloading slope as below: 

0.7i reload reloadC C C� �                                                                                               (7) 

Where, iC   is current slope and reloadC  is the elastic modulus during reloading. 

3.  RESULTS 

A metal-matrix composite has been simulated with 3w h� , 2f fw h� , and 0.588fh h�  which is 

shown in Fig.1a Normalized matrix properties are 78.6 , /18.35,YE H H�� � �

/f pH � �� 	 	  and 6.43f ME E� �  is the Young’s modulus of fibers. To compute the initial 

yield surface under overall proportional loading a method employing a linear combination of 

two deformation status has been used as shown in Fig.1b: 

                               
Figure 1: a) Metal matrix geometry                      b) Metal matrix boundary conditions

Fig.2 reveals the initial yield surface both for matrix and metal-matrix. As the figure shows, 

there is a considerable expansion of the yield surface for overall behavior of metal-matrix. 

The figure also shows that yield surface with energetic strain gradient theory of plasticity is a 

little larger than conventional plasticity which is expected due to the higher order boundary 

condition. The length parameter � �*L  has very small effect on the initial yield surface but it has 

a considerable effect on subsequent yield surface which will be shown. It can be seen that 

yield surface has deviation from mises yield surface because of the anisotropic effect of 

fibers.

                

Figure 2: Initial yield surface 
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A subsequent yield surface has been evaluated with biaxial loading with 2 1 h� � � � � , in 

which 2 1,� � are displacements in two perpendicular axes and 0.009� � . Fig.3 shows the 

subsequent yield surfaces. It can be seen that pure isotropic hardening is not completely 

satisfied when L*/h=0. This is due to the existence of fibers which increases the level of 

residual stress and acts as a kinematic hardening. By increasing the length scale value, 

significant kinematic hardening occurs. As mentioned above, this is due to the higher order 

stress which exists during loading and gives a back-stress effect. It can be seen that the stress 

states are larger for larger values of the length scale. 

+ Initial matrix yield surface.        Initial metal-matrix yield surface.              Subsequent metal-matrix yield surface 

                                         a.                                                                              b. 

Figure 3:  a) L*/h=1  b) L*/h=0 

4 CONCLUSIONS 

In this paper, energetic strain gradient plasticity was employed to model the size effects in a 

metal-matrix composite. The relationship between macro and micro for yielding has been 

discussed. A metal matrix was simulated and both initial and subsequent yield surfaces were 

computed. It was shown that the material model is capable of accounting for Baushinger 

effects under reversed loading, due to back-stresses originating from the plastic gradient 

contributions to the free energy.  
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SUMMARY

Size effects in composites are studied using a rate independent higher order strain gradient plastic-

ity theory, where strain gradient effects are incorporated in the stored energy of the material. Nu-

merical studies are carried out using a finite element method, where the components of the plastic

strain tensor appear as free variables in addition to the displacement variables. Non-conventional

boundary conditions are applied at material interfaces to model a constraint on plastic flow due to

dislocation blocking. Unit cell calculations are carried out under generalized plane strain condi-

tions. The homogenized response of a material with cylindrical reinforcing fibers is analyzed for

different values of the internal material length scale. The effect of fiber volume fraction (Vf ) and

the length scale parameter (L∗) will be shown.

Key Words: Metal matrix composite, strain gradient plasticity, unit cell

1 INTRODUCTION

Reinforcement of metals by stiff elastic fibers is used to obtain increased stiffness, strength and

creep resistance, but often on the cost of decreased ductility and fracture properties. A significant

amount of research has analyzed how geometry and material parameters affect the overall prop-

erties of the composite material. These studies are based on conventional gradient independent

plasticity models, and hence predict no effect of reinforcement size, see ([1],[2]). Conventional

theories of plasticity lack the ability to model size-effects, as no constitutive length parameters

are used. Some of the proposed strain gradient plasticity models are of lower order nature, re-

taining the structure of a conventional boundary value problem in solid mechanics, but most

of the proposed theories are of higher order nature, employing higher order stress-measures as

work-conjugates to strain gradients [3],[4]. These models demand non-conventional higher order

boundary conditions.

In this paper, size-effects on the homogenized properties of composites for which the matrix ma-

terial can be modeled by strain gradient plasticity theory is studied. The energetic higher order

strain gradient plasticity theory proposed in [4] and [5] has been implemented in a generalized

plane strain setting, and numerical finite element cell model analyses have been carried out to

study the material response under plane normal loading conditions. The results are presented in

terms of overall response curves.



2 Material model, problem formulation, and results

The fibers are assumed to be isotropic and linear elastic with Young’s modulus Ef and Possion’s

ratio νf , while the matrix material is assumed to follow a gradient enhanced isotropic elasto-plastic

material model.

The material model applied for the matrix material is the rate independent energetic strain gradient

plasticity model proposed in [4] which accounts for gradients of the full plastic strain tensor. The

theory is based on the incremental principle of virtual work on the following form

∫

V

[σ̇ijδǫ̇ij + (q̇ij − ṡij)δǫ̇
p
ij + ṁijkδǫ̇

p
ij,k]dV =

∫

S

[Ṫiδu̇i + Ṁijδǫ̇
p
ij ]dS (1)

where the increment of a given quantity is denoted by a superposed dot, ˙( ) and V is the volume

of the body analysed, while S is the surface of the body. The stress tensor is denoted by σij and

sij = σij − 1
3δijσkk is the stress deviator. The total strain, ǫij , is the sum of the elastic strain, ǫe

ij ,

and the plastic strain, ǫp
ij , while ǫp

ij,k denotes the gradients of the plastic strain tensor. The micro

stress, qij , and the higher order stress, mijk, are work conjugate stress-measures to the plastic

strain and the plastic strain gradient, respectively. The traction, Ti, and higher order traction, Mij ,

are surface quantities work-conjugate to the displacement, ui, and the plastic strain tensor, ǫp
ij ,

respectively.

The free energy per unit volume, ψ, of the strain gradient dependent material is assumed to be on

the form ψ = ψ(ǫe
ij , ǫ

p
ij,k). Hence, no free energy is stored due to the plastic strain tensor itself

and the increment of dissipation per unit volume is given by qij ǫ̇
p
ij . Following [5] we take the

following specific form of the free energy

ψ
(

ǫe
ij , ǫ

p
ij

)

=
1

2
Dijklǫ

e
ijǫ

e
kl +

1

2
L2
∗
Gǫp

ij,kǫ
p
ij,k (2)

Here, L∗ is a material length scale parameter introduced for dimensional consistency, G is the

elastic shear modulus and Dijkl is the isotropic tensor of elastic moduli, all defined in terms of

Young’s modulus, Em, and Poisson’s ratio, νm, of the matrix. By derivation of the free energy

with respect to the elastic strain and the gradient of plastic strain, the stress and the higher order

stress are found as

σij =
∂ψ

∂ǫe
ij

= Dijklǫ
e
kl , mijk =

∂ψ

∂ǫp
ij,k

= GL2
∗
ǫp
ij,k (3)

The yield condition for the matrix material is given in terms of the micro stress, qij , as

f (qij , σf ) =

√

3

2
qijqij − σf = qe − σf (4)

where yielding occurs for f = 0. The effective micro stress has been introduced as qe =
√

3
2qijqij

and the instantaneous flow stress is denoted σf . Here, linear hardening is considered with the

instantaneous flow stress given by σf = σy + Hǫp
e , where σy denotes the initial yield stress, H

denotes the hardening modulus and ǫp
e denotes the accumulated effective plastic strain, defined

incrementally through the relation ǫ̇p
e =

√

2
3 ǫ̇p

ij ǫ̇
p
ij , i.e. ǫp

e =
∫

ǫ̇p
edτ , where τ is ”time”.

The flow rule for the plastic strain is given by the relation

ǫ̇p
ij =

3

2

qij

qe
ǫ̇p
e = rij ǫ̇

p
e (5)
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Figure 1: Representative volume element with boundary conditions

which ensures normality of the plastic strain increment with respect to the yield surface. In this

expression rij = 3
2

qij

qe
is the direction of the plastic strain increment.

We model a composite with a regular distribution of long parallel cylindrical fibers of circular

cross section(see Fig. 1a). The loading is characterised by macroscopic normal loading, such that

the composite deforms under generalized plane strain conditions. Thus, a unit cell containing a

single fiber may be extracted as shown in Fig. 1b. Furthermore, since only loading with the same

symmetry planes as the geometry and the material itself are considered, the analyses can be carried

out on a reduced unit cell containing only one quarter of a fiber (Fig. 1c). At the exterior of the cell

appropriate symmetry conditions are applied. In addition to demanding that the conventional shear

traction must vanish, these symmetry conditions also imply that Mij = 0 for i = j and ǫp
ij = 0 for

i �= j at the exterior of the elastic-plastic part of the cell. Imposing this, the incremental boundary

conditions can be summarized as follows

u̇1 = 0, Ṫ2 = 0 on x1 = 0, x2 ∈ [0, h]

ǫ̇p
12 = 0, Ṁ11 = Ṁ22 = 0 on x1 = 0, x2 ∈ [R, h]

u̇1 = ∆̇1, Ṫ2 = 0 on x1 = h, x2 ∈ [0, h]

ǫ̇p
12 = 0, Ṁ11 = Ṁ22 = 0 on x1 = h, x2 ∈ [0, h]

u̇2 = 0, Ṫ1 = 0 on x1 ∈ [0, h], x2 = 0

ǫ̇p
12 = 0, Ṁ11 = Ṁ22 = 0 on x1 ∈ [R, h], x2 = 0

u̇2 = ∆̇2, Ṫ1 = 0, on x1 ∈ [0, h], x2 = h

ǫ̇p
12 = 0, Ṁ11 = Ṁ22 = 0 on x1 ∈ [0, h], x2 = h

ǫ̇p
11 = ǫ̇p

22 = ǫ̇p
12 = 0 on x2

1 + x2
2 = R2

(6)

Here, ∆̇1 and ∆̇2 are displacement increments to be determined to ensure prescribed macroscopic

stresses as described later, Ṫi = σ̇ijnj and Ṁij = ṁijknk are the increments of the traction vector

and the higher order traction, respectively, with ni denoting the outward unit normal vector.

The results presented focus on the response of the composite under different plane loading con-

ditions. Conventional material parameters used for the matrix are σy/Em = 0.004, νm = 0.3,

and H/Em=0.1. For the fibers that are considered elastic the material parameters are given by

Ef/Em = 5.7, and νf = 0.17. These parameters apply well for SiC reinforced aluminum.

In Fig. 2a homogenized stress-strain curves are shown for simple tension in the longitudinal

direction (ΣL,EL) as well as in the transverse direction (ΣT ,ET ) for three different values of the

fiber volume fraction, Vf = πR2

4h2 = 0.013, 0.08 and 0.13. The results are for a conventional matrix

material without strain gradient effects (L∗ = 0). As expected the composite has a stiffer response
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Figure 2: Stress strain relationship for simple tension

in the longitudinal direction as compared to the transverse direction, and a stiffening effect is

observed in both loading directions with increasing fiber volume fraction, Vf .

In Fig. 2b the effect of the constitutive length scale of the matrix material is analyzed. Homog-

enized response curves are shown in the transverse and in the longitudinal directions for material

length scales of L∗/h = 0 and 0.25. The results show that the length scale parameter causes an

increase on the overall hardening of the composite.

3 CONCLUSIONS

This study shows how the stiffness of micron scale reinforced composites is increased when com-

pared to conventional predictions. Furthermore, it was shown that the only conventional material

parameter that has a significant influence on both elastic response and hardening for the composites

studied here, is the fiber volume fraction, Vf , specially for loading in the longitudinal direction.
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a b s t r a c t

Size effects in heterogeneous materials are studied using a rate independent higher order

strain gradient plasticity theory, where strain gradient effects are incorporated in the free

energy of the material. Numerical studies are carried out using a finite element method,

where the components of the plastic strain tensor appear as free variables in addition to

the displacement variables. Non-conventional boundary conditions are applied at material

interfaces to model a constraint on plastic flow due to dislocation blocking. Unit cell calcu-

lations are carried out under generalized plane strain conditions. The homogenized

response of a material with cylindrical reinforcing fibers is analyzed for different values

of the internal material length scale and homogenized yield surfaces are presented. While

the main focus is on initial yield surfaces, subsequent yield surfaces are also presented. The

center of the yield surface is tracked under uniaxial loading both in the transverse and lon-

gitudinal directions and an anisotropic Bauschinger effect is shown to depend on the size of

the fibers. Results are compared to conventional predictions, and size-effects on the kine-

matic hardening are accentuated.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement of metals by stiff elastic fibers is used to obtain increased stiffness, strength and creep resistance, but often

on the cost of decreased ductility and fracture properties (see McDanels, 1985). A significant amount of research has ana-

lyzed how geometry and material parameters affect the overall properties of the composite material (see Christman

et al., 1989; Bao et al., 1991; Tvergaard, 1990, 1995; Ltissenden et al., 2000; Legarth, 2003, 2004, 2005). These studies are

based on conventional gradient independent plasticity models, and hence predict no effect of reinforcement size.

Recent interests in size-effects in metals have confirmed experimentally that ‘smaller is stronger’. This has been shown

for different materials and under different loading conditions such as bending (Stölken and Evans, 1998; Haque and Saif,

2003; Lou et al., 2005), torsion (Fleck et al., 1994), indentation and contact compression (Ma and Clarke, 1995; Swadener

et al., 2002; Wang et al., 2006). For metal matrix composites, a non-trivial size-effect was observed by Lloyd (1994) who

compared tests for two different SiC particle sizes in aluminum, 16 lm and 7.5 lm, while keeping the volume fraction con-

stant. Shu and Barlow (2000) have compared an experimentally obtained TEM map of the lattice misorientation with com-

puted deformation fields around a whisker, obtained using a strain gradient crystal plasticity model in a plane strain cell

model of the composite. It was found that a classical crystal formulation tends to over-predict deformation gradients near

whiskers, while a strain gradient crystal plasticity model predicted a more smooth field with lower gradients that correlated

better with the measurements.

Conventional theories of plasticity lack the ability to model size-effects, as no constitutive length parameters are used.

Based on the experimental evidence on size-effects in metals, various size-dependent strain gradient plasticity theories have

been proposed. Aifantis (1984) proposed one of the earliest models that accounts for size effects in the plastic regime by
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introducing gradients of the plastic strain in the yield condition. Some of the proposed strain gradient plasticity models are of

lower order nature (see Acharya and Bassani, 2000; Bassani, 2001), retaining the structure of a conventional boundary value

problem in solid mechanics, but most of the proposed theories are of higher order nature, employing higher order stress-

measures as work-conjugates to strain gradients. These models demand non-conventional higher order boundary conditions

(e.g. Fleck and Hutchinson, 1997, 2001; Gao et al., 1999; Gurtin, 2002; Gudmundson, 2004; Gurtin and Anand, 2005; Lele and

Anand, 2008; Fleck and Willis, 2009a,b). Within the context of size-effects in composites, strain gradient plasticity theories

have been used to model stiffening and damage (e.g. Niordson and Tvergaard, 2001, 2002; Niordson, 2003; Huang and Li,

2005; Borg et al., 2006; Legarth and Niordson, 2010), as well as to quantify size-effects in TRIP-steels (Mazzoni-Leduc

et al., 2008, 2010). Recently, Barai and Weng (2011) showed that with a perfect interface contact, decreasing the fiber radius

would enhance the overall stiffness and plastic strength, but with an imperfect interface the size effect is reversed.

The present paper is an initial step towards solving the complicated problem of obtaining homogenized properties of

composites when accounting for material size-effects. It is the aim to study size-effects on the homogenized properties of

composites for which the matrix material can be modeled by strain gradient plasticity theory. The energetic higher order

strain gradient plasticity theory proposed by Gudmundson (2004) and Fredriksson et al. (2009) has been implemented in

a generalized plane strain setting, and numerical finite element cell model analyses have been carried out to study the mate-

rial response under different loading conditions. The results are presented in terms of overall response curves, contour-plots

of stress quantities, as well as initial and subsequent yield surfaces.

2. Material model

The fibers are assumed to be isotropic and linear elastic with Young’s modulus Ef and Possion’s ratio mf, while the matrix

material is assumed to follow a gradient enhanced isotropic elasto-plastic material model.

The material model applied for the matrix material is the rate independent energetic strain gradient plasticity model pro-

posed by Gudmundson (2004) which accounts for gradients of the full plastic strain tensor. The theory is based on the incre-

mental principle of virtual work on the following form:
Z

V

_rijd _�ij þ ð _qij � _sijÞd _�pij þ _mijkd _�pij;k
h i

dV ¼
Z

S

_T id _ui þ _Mijd _�pij
h i

dS; ð1Þ

where the increment of a given quantity is denoted by a superposed dot, _ð Þ and V is the volume of the body analyzed, while S

is the surface of the body. The stress tensor is denoted by rij and sij ¼ rij � 1
3
dijrkk is the stress deviator. The total strain, �ij, is

the sum of the elastic strain, �eij, and the plastic strain, �pij, while �pij;k denotes the gradient of the plastic strain tensor. The micro

stress, qij, and the higher order stress, mijk, are work conjugate stress-measures to the plastic strain and the plastic strain

gradient, respectively. The traction, Ti, and higher order traction, Mij, are surface quantities work-conjugate to the displace-

ment, ui, and the plastic strain tensor, �pij, respectively.
The free energy per unit volume, w, of the strain gradient dependent material is assumed to be on the form

w ¼ w �eij; �
p
ij;k

� �

. Hence, no free energy is stored due to the plastic strain tensor itself and the increment of dissipation per unit

volume is given by qij
_�pij. Following Fredriksson et al. (2009) we take the following specific form of the free energy

w �eij; �
p
ij

� �

¼ 1

2
Dijkl�eij�

e
kl þ

1

2
L2�G�

p
ij;k�

p
ij;k: ð2Þ

Here, L
⁄
is a material length scale parameter introduced for dimensional consistency, G is the elastic shear modulus and Dijkl

is the isotropic tensor of elastic moduli, defined in terms of Young’s modulus, Em, and Poisson’s ratio, mm, for the matrix. By

derivation of the free energy with respect to the elastic strain and the gradient of plastic strain, the stresses and the higher

order stresses are found as

rij ¼
@w

@�eij
¼ Dijkl�ekl; mijk ¼

@w

@�pij;k
¼ GL2��

p
ij;k: ð3Þ

The yield condition for the matrix material is given in terms of the micro stress, qij, as

f ðqij;rf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
qijqij

r

� rf ¼ qe � rf ; ð4Þ

where yielding occurs for f = 0. The effective micro stress has been introduced as qe ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

3
2
qijqij

q

and the instantaneous flow

stress is denoted rf. Here, linear hardening is considered with the instantaneous flow stress given by rf ¼ ry þ H�pe , where

ry denotes the initial yield stress, H denotes the hardening modulus and �pe denotes the accumulated effective plastic strain,

defined incrementally through the relation _�pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2
3

_�pij _�
p
ij

q

, i.e. �pe ¼
R

_�peds, where s is ‘‘pseudo-time’’.

The flow rule is given by the relation

_�pij ¼
3

2

qij

qe

_�pe ¼ rij _�pe ; ð5Þ
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which ensures normality of the plastic strain increment with respect to the yield surface. In this expression rij ¼ 3
2

qij
qe
is the

direction of the plastic strain increment.

The constitutive equation for the micro stress, qij, can be written on the incremental form

_qij ¼
_

2

3
qerij ¼

2

3
_qerij þ qe

_rij
� �

: ð6Þ

At the point of yielding, where f = 0, Eq. (4) gives qe ¼ rf ¼ ry þ H�pe , i.e. _qe ¼ H _�pe , and we may rewrite Eq. (6) to obtain

_qij ¼
2

3

2

3
Hrijrkl _�

p
kl þ qe

_rij

� �

; ð7Þ

where the identity rklrkl ¼ 3
2
has been used. Following Fredriksson et al. (2009) this equation is reformulated using a penalty

method ensuring normality of the plastic flow

_qij ¼
2

3

2

3
ðH � E0Þrijrkl þ E0dikdjl

� �

_�pkl: ð8Þ

Here, the penalty factor, E0, must be large compared to the hardening modulus, H, but small enough to ensure a well-con-

ditioned system of equations.

3. Problem formulation

Assume that the composite can be modeled by a regular distribution of long parallel cylindrical fibers of circular cross

section, see Fig. 1a. The loading is characterized by macroscopic tri-axial loading, such that the composite deforms under

generalized plane strain conditions. Thus, a unit cell containing a single fiber may be extracted as shown in Fig. 1b. Further-

more, since only loading with the same symmetry planes as the geometry and the material itself are considered (we do not

consider shear in the (x1,x2) coordinate system), the analyses can be carried out on a reduced unit cell containing only one

quarter of a fiber, Fig. 1c. At the center of the fiber a reference right-hand Cartesian coordinate system, xi, is located and

aligned with the sides of the cell. The positive direction of the third axis, x3 (not shown), points in the out-of-plane direction

normal to the (x1,x2)-plane. As tri-axial loading is studied with only normal strains imposed along the coordinate axes, the

cell sides will remain straight during the deformation. The dimensions of the reduced unit cell is specified by the length of

the sides, h, and the radius of the fiber, R, according to Fig. 1c. The fibers are modeled as linear elastic, whereas the matrix

material is modeled using the energetic strain gradient plasticity theory described in the previous section. The higher order

material model for the matrix material needs higher order boundary conditions on either the plastic flow or on the higher

order traction. Since dislocations are assumed not to pass from the matrix into the fiber and consequently pile up at the

interface, plastic flow is suppressed by specifying �pij ¼ 0 at the interface, see also Hutchinson (2000). Macroscopic homoge-

neous deformations are considered such that an appropriate symmetry conditions are applied at the exterior of the cell. In

addition to demanding that the conventional shear traction must vanish, these symmetry conditions also imply that Mij = 0

for i = j and �pij ¼ 0 for i– j at the exterior of the elastic–plastic part of the cell (see also Legarth and Niordson, 2010). The

incremental boundary conditions can be summarized as follows:

_u1 ¼ 0; _T2 ¼ 0; on x1 ¼ 0; x2 2 ½0;h�;
_�p12 ¼ 0; _M11 ¼ _M22 ¼ 0; on x1 ¼ 0; x2 2 ½R;h�;
_u1 ¼ _D1; _T2 ¼ 0; on x1 ¼ h; x2 2 ½0;h�;
_�p12 ¼ 0; _M11 ¼ _M22 ¼ 0; on x1 ¼ h; x2 2 ½0;h�;
_u2 ¼ 0; _T1 ¼ 0; on x1 2 ½0;h�; x2 ¼ 0;

_�p12 ¼ 0; _M11 ¼ _M22 ¼ 0; on x1 2 ½R; h�; x2 ¼ 0;

_u2 ¼ _D2; _T1 ¼ 0; on x1 2 ½0;h�; x2 ¼ h;

_�p12 ¼ 0; _M11 ¼ _M22 ¼ 0; on x1 2 ½0;h�; x2 ¼ h;

_�p11 ¼ _�p22 ¼ _�p12 ¼ 0; on x21 þ x22 ¼ R2;

ð9Þ

Here, _D1 and _D2 are displacement increments to be determined to give prescribed macroscopic stresses as described later,

and _T i ¼ _rijnj and _Mij ¼ _mijknk are the increments of traction vector and higher order traction, respectively, with ni denoting

the outward unit normal vector. The out-of-plane plastic strain, �p33, is given in terms of in-plane plastic strain components

by plastic incompressibility, �pii ¼ 0. Similarly, M33 is given in terms of the in-plane components M11 and M22, where Mii = -

miiknk = 0. Finally, out-of-plane deformation is controlled by specifying a constant out-of-plane normal strain increment,
_�33 ¼ _D3=t, with t denoting the reference thickness of the computational unit cell. Here, one side of the unit-cell is fixed

on the (x1,x2)-plane, while the other side has the prescribed displacement increment, _D3. It is emphasized that this general-

ized plane strain problem formulation only includes a single out-of-plane degree of freedom, namely the displacement _u3.
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4. Homogenization and macroscopic yield criterion

4.1. Homogenization

The overall macroscopic behavior of the analyzed composite depends on the micro-structural response of the unit cell. It

is obtained by appropriate volume averaging of stress and strain data at the unit cell scale (see, e.g. Terada et al., 2000; Drago

and Pindera, 2007; Alfaro, 2008). The overall macroscopic stress increment, _Rij, is then evaluated as

_Rij ¼
1

V

Z

V

_rijdV ; ð10Þ

while the overall macroscopic strain increment for perfect bonding between fiber and matrix is evaluated similarly by

_Eij ¼
1

V

Z

V

_�ijdV : ð11Þ

By applying the divergence theorem and using the conventional equilibrium equation, rij,i = 0, one can obtain

_Rij ¼
1

V

Z

S

_riknkxjdS; ð12Þ

where, nk is the outward unit normal vector, xj is the position vector and S is the boundary surface of unit cell. It is empha-

sized that since only one quarter of a fiber is investigated, see Fig. 1c, the volume averaging in Eq. (12) will result in non-

vanishing in-plane shear components which is canceled by the mirrored quarter unit-cells. On the other hand, when mod-

eling the full fiber, see Fig. 1b, the volume averaging would deliver zero in-plane shear components as expected for the load-

ing considered here.

4.2. Macroscopic yield criterion

In order to establish initial and subsequent yield surfaces for the composite material, a macroscopic yield condition will

be defined. At the level of the unit cell, the yield surface is of von Mises type, see Eq. (4), given in terms of the micro stress, qij.

On the macroscopic scale, however, the overall higher order stress will average out, due to the symmetries of the problem.

Hence, the macroscopic yield condition should be stated in terms of the conventional macroscopic stress, Rij, and strain, Eij,

quantities alone. Here, a strain based macroscopic yield condition is defined as the point where the overall effective plastic

strain has exceeded some threshold value, �t, according to the inequality

Eij � C�1
ijklRkl � Eres

ij

	

	

	

	

	

	P �t: ð13Þ

The overall macroscopic tensor of elastic moduli, Cijkl, for the composite is defined according to the numerical differentiation

of the macroscopic quantities as

Cijkl ¼
@Rij

@Ekl

¼
Rtþ1

ij � Rt
ij

Etþ1
kl � Et

kl

; ð14Þ

where t is the load increment and Eres
ij is the macroscopic residual strains defined as the components of the plastic strain after

unloading. Note that the residual strain is zero for initial yielding and that the 2-norm is used in Eq. (13).

4.3. Macroscopic yield surface

In order to be able to determine yield surfaces for any combination of normal stresses with respect to the Cartesian ref-

erence coordinate system, xi in Fig. 1c, a generalized plane strain analysis has been carried out. This allows for control of the

∆

∆

Fig. 1. (a) Regular distribution of fibers in the composite. (b) Full unit cell containing one fiber. (c) Reduced unit cell containing a quarter of a fiber.
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out-of-plane stress so that analyses of the yield surface at different values of the overall stress state can be considered. In

terms of the overall stress quantities the yield condition can generally be stated as F = 0, with

F ¼ F R11;R22;R33;R
T
f ;R

L
f

� �

; ð15Þ

where RT
f and RL

f are composite yield strengths in the transverse and longitudinal direction, respectively. It is emphasized,

that this study excludes the macroscopic shear stress, i.e. R12 = 0. Proportionality of the macroscopic stresses, R11, R22 and

R33, is imposed such that

j1 ¼ R22

R11

and j2 ¼ R33

R11

ð16Þ

are constants for any single analysis. The method used to prescribe these ratios is based on constructing the solution as a

linear combination of the three different trial-solutions shown in Fig. 2, while imposing the conditions in Eq. (16) (see Niord-

son and Tvergaard, 2007). The higher order boundary conditions for these three trial-solutions are identical to what is stated

in Eq. (9). However the conventional boundary conditions have to be revised according to

Fig: 2ðaÞ _u1ð0; x2; x3Þ ¼ 0; _u1ðh; x2; x3Þ ¼ _D1;

_u2ðx1;0; x3Þ ¼ 0; _u2ðx1;h; x3Þ ¼ 0;

_u3ðx1; x2;0Þ ¼ 0; _u3ðx1; x2; tÞ ¼ 0;

Fig: 2ðbÞ _u1ð0; x2; x3Þ ¼ 0; _u1ðh; x2; x3Þ ¼ 0;

_u2ðx1;0; x3Þ ¼ 0; _u2ðx1;h; x3Þ ¼ _D2;

_u3ðx1; x2;0Þ ¼ 0; _u3ðx1; x2; tÞ ¼ 0;

Fig: 2ðcÞ _u1ð0; x2; x3Þ ¼ 0; _u1ðh; x2; x3Þ ¼ 0;

_u2ðx1;0; x3Þ ¼ 0; _u2ðx1;h; x3Þ ¼ 0;

_u3ðx1; x2;0Þ ¼ 0; _u3ðx1; x2; tÞ ¼ _D3;

ð17Þ

where t is the thickness of the unit cell and _Di are the prescribed displacement increments. The homogenized macroscopic

stress increments for each trial-solution _RA
ij;

_RB
ij and

_RC
ij

� �

are used to express the combined homogenized stress increments

as the following linear combination

_Rij ¼ _RA
ij þ C1

_RB
ij þ C2

_RC
ij ; ð18Þ

which together with the prescribed stress ratios, Eq. (16), allows for the solution of C1 and C2. With C1 and C2 known, any kind

of incremental stress, strain or displacement data, _K, may be calculated as a similar linear combination

_K ¼ _KA þ C1
_KB þ C2

_KC : ð19Þ

5. Numerical implementation

The incremental version of virtual work stated in Eq. (1) is used as a basis for the finite element method as outlined by

Fredriksson et al. (2009). In the present context a generalized plane strain numerical solution method is treated. Quadrilat-

eral elements with eight nodes have been used for in-plane displacement interpolation generating functions for total strains

of second order. Since comparable orders of interpolation is desirable for both total and plastic strains (and consequently for

elastic strains), bilinear four node elements are used to interpolate the plastic strain components. For the plastic strain inter-

polation, three unknowns are treated, _�p11; _�p22 and _�p12, and the out-of-plane component is calculated by plastic incompress-

ibility as _�p33 ¼ �ð _�p11 þ _�p22Þ. For the displacement degrees of freedom (DOF), two in-plane displacements are used at all nodes

in the model, and a single extra DOF for the entire finite element model is used to control the out-of-plane strain, which is

Fig. 2. The unit cell with applied boundary conditions for the three different trial cases.
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constant throughout the computational domain. Hence, in total five local DOFs are used at corner nodes and two at non-cor-

ner nodes, in addition to one extra out-of-plane DOF for the entire finite element model.

Nodal interpolation is stated as follows:

_ui ¼
X

2k

n¼1

Nn
i

_Un; _�pij ¼
X

3l

m¼1

Pm
ij

_�pm; ð20Þ

where Nn
i and Pm

ij are shape function matrices for the displacements and plastic strain components, respectively, and k = 8

and l = 4 are the number of nodes used for the different interpolation schemes. The nodal unknowns are arranged in the vec-

tors _Un and _�pm. The relevant derivatives of the displacement field and the plastic strain field can be expressed as

_�ij ¼
X

2k

n¼1

Bn
ij

_Un; _�pij;k ¼
X

3l

m¼1

Qm
ijk

_�pm; ð21Þ

where, Bn
ij ¼ ðNn

i;j þ Nn
j;iÞ=2 and Qm

ijk ¼ Pm
ij;k contain appropriate spatial derivatives of the shape functions. The discretized sys-

tem of equations can then be expressed in the matrix form

Ku �Kup

�KT
up �Kp

2

6

4

3

7

5

_U

_�
p

" #

¼
_f u
_f p

" #

; ð22Þ

where _f u ¼
R

S
NT _TdS is the incremental nodal force vector and _f p ¼

R

S
PT _MdS is the incremental higher order nodal force vec-

tor. The element matrices are given by

Ku ¼
Z

v

BTDeBdV ; ð23Þ

Kp ¼
Z

v

PTðDe þ DpÞP þ Q TDhQ
h i

dV ; ð24Þ

Kup ¼
Z

v

BTDePdV ; ð25Þ

where De is the isotropic elastic stiffness matrix, Dp contains the plastic moduli, and Dh contains the higher order moduli.

Thus,

De ¼
E

ð1þ tÞð1� 2tÞ

1� t t t 0

t 1� t t 0

t t 1� t 0

0 0 0 1�2t
2

2

6

6

6

4

3

7

7

7

5

ð26Þ

Dp ¼
2

3

2

3
ðH � E0ÞrrT þ E0Ip

� �

ð27Þ

Dh ¼ GL2� I ð28Þ

Fig. 3. An example of finite element mesh used in the numerical computations.

1822 R. Azizi et al. / International Journal of Plasticity 27 (2011) 1817–1832



where E0 is the penalty factor introduced to ensure normality of the plastic flow, r = (r11,r22,r33,r12)
T, Ip = diag(1,1,1,1/2), and

I is the 8 � 8 identity matrix. In Eq. (26) E and m is taken as the fiber or matrix moduli in the corresponding elements.

Fig. 3 shows an example of a finite element mesh with 1148 elements used in the numerical computations. Load integra-

tion is performed using the forward Euler method with a large number of small load increments. In the elastic regime, the

plastic stiffness matrix suppresses plastic deformation, since a large value of the hardening modulus is used. In the limit of

conventional plasticity this would lead to an artificial boundary layer effect with a width scaling with the element size.

Hence, when using the computational method in the conventional limit, the plastic stiffness matrix has instead been defined

by Kp = 10�8EI12�12 (with E being either Em or Ef) and the coupling matrix Kup = 0 for elastic integration points, while plastic

strain quantities are only updated in integration points that are in the plastic regime.

6. Results

The first part of the results focuses on the response of the composite under uniaxial loading in the fiber direction (x3-

direction; longitudinal) and perpendicular to the fiber direction (x1-direction; transverse). The second part focuses on the

yield surface of the composite.

Conventional material parameters used for the matrix are ry/Em = 0.004, mm = 0.3, with the two different values of the

hardening modulus H/Em = 0.01 and 0.1. For the fibers that are considered elastic the material parameters are given by Ef/

Em = 5.7 and mf = 0.17. These parameters apply well for SiC reinforced aluminum. The penalty factor is taken to be

Eo = 100H for the results presented. The number of load increments is chosen to be 900 giving a good solution convergence.

Higher numbers of load increments have been tried and it is found that is costly and hardly affects the solution.

Fig. 4. Effect of the particle size (L
⁄
/R) in uniaxial loading in both transverse and longitudinal directions with H/Em = 0.1 and Vf = 0.2.

Table 1

Bauschinger stress in the composite for the two different loading directions (transverse, AT, and longitudinal, AL, see Fig. 4) with H/Em = 0.1 and Vf = 0.2.

L
⁄
/R = 0 L

⁄
/R = 0.2 L

⁄
/R = 0.4

AT/ry 0.033 0.29 0.62

AL/ry 1.49 1.55 1.85
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Lloyd (1994) showed that the response of composites with the same volume fraction of SiC particles depends on the size

of the particles. Investigations by a number of authors, e.g. Hutchinson (2000) have shown that for specimens with sizes fall-

ing in the range from roughly a fraction of a micron to ten microns a size-effect exists which cannot be captured by

Fig. 5. Effect of the fiber volume fraction for uniaxial loading with L
⁄
/R = 0.4 and H/Em = 0.1. (a) Transverse loading. (b) Longitudinal loading.

Fig. 6. Effect of the hardening in uniaxial loading in both transverse and longitudinal direction with L
⁄
/R = 0.4 and Vf = 0.2.
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conventional plasticity. Furthermore, it was argued that the material length scale for metals is in the range 0.25–1 lm for a

slightly different but related model. For a micron scale length parameter of L
⁄
= 1 lm in the present model, we analyse cases

for L
⁄
/R = 0, L

⁄
/R = 0.2 and 0.4 which corresponds to large fibers, fibers with R = 5 lm and R = 2.5 lm, respectively.

6.1. Uniaxial loading

Fig. 4 shows the effect of the particle size for a fiber volume fraction of Vf = (pR2)/(4h2) = 0.2 and H/Em = 0.1. Homogenized

stress–strain curves are shown in the transverse, (RT,ET), and in the longitudinal, (RL,EL), directions for different particle size

of L
⁄
/R = 0, 0.2 and 0.4. Initial tension with subsequent compression is studied and the stress–strain curves are normalized by

the initial yield stress and yield strain of the matrix, ry and �y = ry/Em, respectively. The composite is seen to have a stiffer

response in the longitudinal direction as compared to the transverse direction. The results also show that the length scale in

Table 2

Bauschinger stress in the composite for two different loading directions (transverse, AT, and longitudinal, AL, see Fig. 6) with L
⁄
/R = 0.4 and Vf = 0.2.

H/Em = 0.01 H/Em = 0.1

AT/ry 0.74 0.62

AL/ry 1.85 1.59

Table 3

The qualitative impact of the different material parameters on the Bauschinger effect of the composite in the two different loading directions considered

(transverse and longitudinal).

Fig. 4 Fig. 5 Fig. 6

Effect of L
⁄
on Bauschinger effect (with Vf > 0) Effect of Vf on Bauschinger effect Effect of H on Bauschinger effect (with Vf > 0)

Transverse Large Large Small

Longitudinal Small Large Small

Fig. 7. Effective plastic strain distribution ð�pe=�yÞ for Vf = 0.2 and H/Em = 0.1 at the end of uniaxial tension. (a) Transverse direction (x1) with L
⁄
/R = 0. (b)

Longitudinal direction (x3) with L
⁄
/R = 0. (c) Transverse direction with L

⁄
/R = 0.4. (d) Longitudinal direction with L

⁄
/R = 0.4.
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the present strain gradient formulation serves as to increase the overall hardening of the composite while the particle size is

decreasing in accordance with earlier studies using strain gradient plasticity (Anand et al., 2005; Legarth and Niordson,

2010). These findings are consistent with experimental studies of composites by Yan et al. (2007) and Lloyd (1994) where

material hardening of the composite is observed to increase with decreasing particle size under a constant volume fraction of

the reinforcement. The maximum strain in Fig. 4 is given by three times the yield strain in uniaxial tension for the matrix

material at which the load is reversed until a compressive macroscopic strain of 1.2�y is reached in the direction of the load.

Defining the Bauschinger stress by

A ¼ Rf þ RY
syp

� �.

2; ð29Þ

where Rf is stress at the end of loading and RY
syp is subsequent yield stress, Table 1 shows the value of the Bauschinger stress

for different particle sizes in both transverse and longitudinal directions. Upon load reversal, the Bauschinger stress is ob-

served from Fig. 4 and Table 1 to be higher in the longitudinal direction than in the transverse direction for all fiber sizes

considered. However, the relative increase of the Bauschinger stress with increasing L
⁄
/R is higher in the transverse than

in the longitudinal direction. In Fig. 5 homogenized stress–strain curves are shown for uniaxial loading in the transverse

direction (Fig. 5a) and longitudinal direction (Fig. 5b) for four different values of the fiber volume fraction, Vf = 0.1, 0.2,

0.4 and 0.6. The results are for strain gradient dependent materials with L
⁄
/R = 0.4. A stiffening effect is observed in both

loading directions with increasing fiber volume fraction, Vf, as also observed experimentally by Corbin et al. (1996) for

SiC/A356. This behavior has also been seen by Barai and Weng (2011) which was compared with experimental data of

Kim et al. (2006). The considerable amount of Bauschinger effect observed in the experiments conducted by Corbin et al.

(1996) and Lissenden (2010) cannot be captured by conventional J2 flow theory. However, the gradient dependent analysis

here captures the enhanced Bauschinger effect better. Fig. 5 shows a moderate Bauschinger effect in the transverse direction,

whereas a significant Bauschinger effect is noted when loading in the longitudinal direction. For Vf = 0.6, the responses are

basically linear especially for longitudinal loading (Fig. 5b). The higher Bauschinger stress with higher fiber volume fraction

has also been shown by Brassart et al. (2010) in the transverse direction.

The effect of the matrix material hardening is analyzed in Fig. 6 where homogenized stress–strain curves are shown in

both the longitudinal and transverse loading directions for the hardening moduli H/Em = 0.01 and 0.1 when L
⁄
/R = 0.4 and

Fig. 8. Higher order stress distribution for L
⁄
/R = 0.4, Vf = 0.2 and H/Em = 0.1 at the end of uniaxial tension, see Fig. 7c and d. (a) m111/(L⁄ry) in transverse

direction (x1). (b) m112/(L⁄ry) in transverse direction (x1). (c) m331/(L⁄ry) in longitudinal direction (x3). (d) m332/(L⁄ry) in longitudinal direction (x3).

1826 R. Azizi et al. / International Journal of Plasticity 27 (2011) 1817–1832



Vf = 0.2. For both levels of the matrix material hardening a Bauschinger effect is observed which again is larger in the longi-

tudinal direction. Furthermore, Fig. 6 and the corresponding quantitative data in Table 2 show that the Bauschinger effect

decreases with increasing matrix material hardening.

The main findings on the influence of the different material parameters on the Bauschinger effect are qualitatively sum-

marized in Table 3. We conclude that the only conventional material parameter that has a significant influence on the

Bauschinger effect is the fiber volume fraction, Vf, and most so in the longitudinal direction. However, the non-standard ener-

getic material length parameter, L
⁄
, has a significant influence on the Bauschinger effect in the transverse direction.

Fig. 7 shows the effective plastic strain distribution at the maximum level of deformation studied in Fig. 4. Conventional

results (L
⁄
/R = 0) for loading in the transverse and longitudinal direction are shown in Fig. 7 a and b, respectively. Fig. 7 c and

d shows corresponding results for a size-dependent material with L
⁄
/R = 0.4. The constraint on the plastic flow is observed to

suppress plasticity close to the elastic fiber. Shu and Barlow (2000) used a finite-deformation strain gradient crystal plasticity

formulation together with a classical crystal formulation to characterize the deformation of the matrix in a unit cell. They

found that while a classical crystal formulation tends to over-predict the spatial gradient of the deformation, the strain gra-

dient formulation is able to predict a more smooth field consistent with experimental finding. This is confirmed in Fig. 7

where the gradient dependent material has a smooth transition from zero plastic flow in the fiber in contrast to the conven-

tional material which has an abrupt change.

The distribution of the appropriate higher order stress is seen in Fig. 8 where the components m111 (Fig. 8a) and m112

(Fig. 8b) are shown at the maximum tensile load in the transverse direction and m331 (Fig. 8c) and m332 (Fig. 8d) for tension

at the maximum tensile load in the longitudinal direction. As can be seen, the higher order stresses are significant at the

fiber–matrix interface where the gradients of the plastic strains are higher and vanish on the surface. The existence of the

higher order stresses leads to an increased Bauschinger effect due to the higher order equilibrium equation that must be sat-

isfied (see Gudmundson, 2004)

sij ¼ qij �mijk;k; ð30Þ

From this relation it is observed that the divergence of the higher order stress has the role of a back stress, which leads to an

increased Bauschinger effect when higher order stresses arise. This is also observed in pure shear for energetic strain gradi-

ent plasticity by Anand et al. (2005) and Niordson and Legarth (2010).

6.2. Yield surface

Eighty points on the yield surface for different value ofj1 are computed using �t = 0.002 in Eq. (13). Yield surfaces are shown

on the p plane onwhich themacroscopic hydrostatic stress vanishes, so that j1 + j2 = �1. In absence of themacroscopic shear

Fig. 9. Effect of the length scale (L
⁄
/R) on homogenized initial yield surface (IYS) projected on the p-plane with Vf = 0.2, H/Em = 0.1 and Rh = 0.
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Fig. 10. Effect of the fiber volume fraction, Vf, on homogenized initial yield surface (IYS) projected on the p-plane with L
⁄
/R = 0.4 and H/Em = 0.1.

Fig. 11. Homogenized subsequent yield surface (SYS) projected on the p-plane for two different load levels along ep with H/Em = 0.1 (Thick arrow is the

loading path). (a) L
⁄
/R = 0. (b) L

⁄
/R = 0.4.
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stresses in the (x1,x2) coordinate system shown in Fig. 1c, the stress state is thus characterized by two stress components in the

directions of ep and eqwhich are both perpendicular to the hydrostatic axis eh.With e1, e2 and e3 denoting unit vectors in the x1,

x2 and x3 directions, respectively the stress state can be expressed in the two equivalent forms

R11e1 þ R22e2 þ R33e3 ¼ Rheh þ Rpep þ Rqeq; ð31Þ

whereR11,R22 andR33 are stress components in the Cartesian system,Rh is hydrostatic stress andRp andRq are stress com-

ponents on the p plane. The base vectors in the p-plane are defined according to

eh ¼ 1
ffiffiffi

3
p ð1;1;1Þ; ep ¼

1
ffiffiffi

6
p ð�1;�1;2Þ; eq ¼

1
ffiffiffi

2
p ð1;�1;0Þ: ð32Þ

With these definitions the stress Rp corresponds to loading in the x3 (longitudinal) direction with opposite loading of half

magnitude in the two perpendicular directions and Rq corresponds to loading in the x1 (transverse) direction with opposite

loading in the x2 direction.

The effect of the material length scale on the initial yield surface (IYS) is shown in Fig. 9 with Vf = 0.2, H/Em = 0.1 and

Rh = 0. For comparison the isotropic Mises yield surface for the matrix material is included in the figure. It is seen that a

Fig. 12. Homogenized subsequent yield surface (SYS) projected on the p-plane for two different load levels along eq with H/Em = 0.1 (thick arrow is the

loading path). (a) L
⁄
/R = 0. (b) L

⁄
/R = 0.4.

Fig. 13. Bauschinger stress for H/Em = 0.1 and Vf = 0.2 for both transverse (x1) and longitudinal (x3) directions.

R. Azizi et al. / International Journal of Plasticity 27 (2011) 1817–1832 1829



homogeneous expansion in all directions occurs which increases with decreasing particle size. It is also noted that the yield

surface of the composite material exceeds that of the pure matrix material.

Fig. 10 shows the IYS for Rh = 0 and different values of the fiber volume fraction, Vf, with L
⁄
/R = 0.4. It is seen that the yield

surface expands with increasing fiber volume fraction. The largest strengthening effects are observed when Rq = 0 corre-

sponding to loading in the longitudinal direction with opposite loading of half magnitude in the two perpendicular direc-

tions. On the other hand, the smallest strengthening effect is observed for Rp = 0, which corresponds to macroscopic in-

plane loading in the (x1,x2)-plane with equal and opposite loading in the x1 and x2 transverse directions. The conventional

results are in agreement with findings of Seifert and Schmidt (2009).

In Fig. 11a and b multiple subsequent yield surfaces (SYS) are shown for uniaxial loading along ep with Vf = 0.2 and when

L
⁄
/R = 0 and L

⁄
/R = 0.4, respectively. The yield surface of the pure matrix material is also presented. First the load is increased

to the amount of 3.6ry and 4.65ry for L⁄/R = 0 and 4.5ry and 5ry for L⁄/R = 0.4 then decreased to half the amount of loading.

From this point the yield surface is probed in 80 different directions. A moderate isotropic expansion of the yield surface is

observed with a significant kinematic hardening. Fig. 12 a and b show the corresponding yield surface for loading along eq
when L

⁄
/R = 0 and L

⁄
/R = 0.4, respectively. For this case, a significant isotropic expansion of the yield surface is observed, to-

gether with some kinematic hardening. It is seen that the Bauschinger effect is clearly anisotropic in the composites.

In Fig. 13 the Bauschinger stress (the center of yield surfaces according to Eq. (29)) is plotted as a function of the mac-

roscopic plastic strain, Ep
T and Ep

L evaluated by Eq. (13), for both loading directions (transverse and longitudinal) when

Vf = 0.2 and H/Em = 0.1. It can be seen that the Bauschinger stress increases linearly with the macroscopic plastic strain for

both loading cases. Note that the linear behavior of the Bauschinger stress versus plastic strain cannot be inferred for small

levels of plastic deformation ð EP
ij

	

	

	

	

	

	 ffi �tÞ.

Fig. 14. Bauschinger stress for H/Em = 0.1 and L
⁄
/R = 0.4 in transverse direction (x1).

Fig. 15. Macroscopic yield stress with H/Em = 0.1, Vf = 0.2 and �t = 0.001. (a) Transverse (x1) direction. (b) Longitudinal (x3) direction.
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Fig. 14 shows the effect of the fiber volume fraction, Vf, on Bauschinger stress with L
⁄
/R = 0.4 in transverse direction. A

significant effect of Vf on the Bauschinger stress is observed as discussed in connection with Table 3.

Expansion of the yield surface of the composite accompanies the kinematic hardening as it was seen in Figs. 11 and 12.

Fig. 15 is plotted to show the amount of the macroscopic yield stress in both transverse and longitudinal directions as a func-

tion of the macroscopic plastic strain during the loading. The macroscopic yield stress is defined as

RY ¼
jRf j þ jRY

sypj
2

: ð33Þ

It is seen from the figure that the macroscopic yield stress increases almost linearly in both directions independent of the

fiber size and that the increase is higher for the small particles.

7. Conclusion

In this paper, a rate independent higher order strain gradient plasticity theory has been used to investigate the overall

behavior of heterogeneous materials under generalized plane strain condition. The elasto-plastic behavior of metal matrix

composites has been studied and compared using both conventional and strain gradient plasticity theories. A unit cell con-

taining one quarter of a circular fiber has been used for numerical investigations. Results for different combinations of nor-

mal loading in the longitudinal and transverse directions have been presented.

It is shown that the elastic modulus, yield stress and Bauschinger effect increase in both loading directions with higher

fiber volume fraction. Furthermore, it is seen that for higher fiber volume fractions the overall plastic flow is suppressed at a

given load-level and, as a result, the initial yield surface on the p-plane expands. It is concluded that Vf is the most important

conventional parameter leading to a Bauschinger effect in both loading directions.

The effect of a constitutive length scale in the matrix material has been analyzed. The results show that the length scale,

which is included energetically in the present strain gradient formulation, serves as to increase the overall hardening of the

composite. Mainly, this occurs due to the fact that the gradient dependent material has a smooth transition from zero plastic

flow at the fiber interface in contrast to the conventional material which has an abrupt change. As a result, the initial yield

surface expands in all directions. The Bauschinger effect is also found to increase with L
⁄
/R which results in additional kine-

matic hardening. It is concluded that the Bauschinger stress is significantly anisotropic in the composite.
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1. Introduction

Metal Matrix Composites (MMC) comprised of hard elastic fibers in a duc-
tile metal matrix introduce a class of materials which are desirable in many
applications. High termostability and high stiffness with low weight are rec-
ognized characters of MMC together with deficiencies like low ductility and
fracture toughness (see McDanels, 1985).

A conventional modeling approach for evaluating the mechanical behavior
of MMC has been considered by several authors including Tvergaard (1990),
Bao et al. (1991), Tvergaard (1995), Legarth (2003) and Legarth and Kuroda
(2004). Research on the intrinsic size-effect in MMC with micron scale fibers
has been carried out starting with the experimental study by Lloyd (1994),
who showed that the response of composites, with the same volume fraction of
SiC particles, depends on the size of the particles, with smaller being stiffer.
Mughrabi (2001), Fleck et al. (2003) and Gao and Huang (2003) showed
that in MMC, dislocations can not pass from the matrix into the fiber and
consequently pile up at the interface leading to plastic strain suppression at
the interfaces. Investigations by a number of authors, e.g. Hutchinson (2000)
have shown in some generality, that for problems with lengths falling in the
range from roughly a fraction of a micron to tens of microns a size-effect
exists which conventional plasticity cannot capture.

Strain gradient plasticity theories have been developed to model such size-
effects, through incorporation of constitutive material length parameters and
even use of non-conventional stress and strain terms. While some of these
are of lower-order nature retaining the structure of conventional boundary
value problems (see Acharya and Bassani, 2000; Bassani, 2001), most of
the proposed theories are of higher order nature, employing higher order
stress-measures as work-conjugates to strain gradients, thus demanding non-
conventional higher order boundary conditions (e.g. Fleck and Hutchinson,
1997, 2001; Gao et al., 1999; Gurtin, 2002; Gudmundson, 2004; Gurtin and
Anand, 2005; Lele and Anand, 2008; Fleck and Willis, 2009a,b).

In this paper, the energetic higher order strain gradient plasticity pro-
posed by Gudmundson (2004) is used at the micro scale while a conventional
homogenized response at the macro scale is sought. Different homogenization
techniques have been proposed to estimate the overall macroscopic proper-
ties like effective medium approximation by Eshelby (1957) and Budiansky
(1965), the self consistent method by Hill (1965) and variational bounding
methods by Hashin (1983). Here, a computational unit cell method is em-
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ployed. Within this context several homogenization approaches have been
proposed (see Hashin and Shtrikman, 1963; Suquet, 1985; Keller et al., 1990;
Ghosh et al., 1995; Terada et al., 2000; Wieckowski, 2000; Kouznetsova et al.,
2001). Niordson and Tvergaard (2001), Niordson and Tvergaard (2002) and
Niordson (2003) used strain gradient plasticity theory to model the matrix
material in order to predict the particle size dependent overall properties of
metal matrix composites. Kouznetsova et al. (2004) developed second order
computational homogenization, where the higher order stress conjugate to
the full strain gradient tensor is available at the macro scale, while using a
conventional model at the micro scale.

In the present paper, a study of a metallic matrix with long parallel fibers
is presented. The Hill-Mandel energy condition (Hill, 1963) is considered
under the assumption that the material at the micro scale is gradient depen-
dent, while at the macro scale it is conventional. This restricts considerations
to macroscopically homogeneous deformation with periodic boundary condi-
tions imposed on the unit cell for both the displacements and the plastic
strain fields.

Our previous work, Azizi et al. (2011), is extended now also modeling the
macroscopic simple shear in addition to transverse and longitudinal loading.
Results on the overall response curves as well as energy apportionment in
elastic, plastic and higher order parts are shown in addition to plastic strain
and higher order stress distributions. Using an engineering definition for the
onset of macro plasticity, the shapes of the macroscopic initial and subsequent
yield surfaces are investigated for the strain gradient plasticity model as well
as a conventional plasticity model. It is shown that the material length scale
and fiber volume fraction tend to expand the macroscopic initial yield surface
and increase the macroscopic kinematic hardening.

2. Material model

The fibers are modeled as isotropic elastic with Young’s modulus, Ef , and
Poisson’s ratio, νf . The matrix is governed by a rate independent isotropic
gradient enhanced elasto-plastic material model, in which gradient contri-
butions to the free energy are accounted for, as laid out by Gudmundson
(2004). The internal virtual work for the volume of the unit cell containing
fiber-matrix interfaces is written as

3



δwi =

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij + mijkδǫ

p
ij,k]dv +

∫

sI

M I
ijδ(ǫ

p
ij)

IdsI (1)

where v is the volume of the unit cell, sI is the surface of the fiber-matrix
interfaces, σij is the Cauchy stress tensor with sij = σij − 1

3
δijσkk denoting

the stress deviator. The total strain, ǫij, is the summation of the plastic
strain, ǫp

ij, and elastic strain, ǫe
ij, and ǫp

ij,k is the gradient of plastic strain.
The micro stress, qij, and the higher order stress, mijk, are work conjugate to
the plastic strain and the gradient of plastic strain, respectively. The higher
order traction at the interface, M I

ij, is work-conjugate to the plastic strain
at the interface, (ǫp

ij)
I . By application of Gauss’ theorem we obtain

δwi =

∫

s

[σijnjδui + mijknkδǫ
p
ij]ds +

∫

sI

M I
ijδ(ǫ

p
ij)

IdsI − (2)
∫

v

[σij,jδui + (mijk,k + sij − qij)δǫ
p
ij]dv

where s is the surface of the unit cell, n is the outward unit vector normal
to the surface, s. The conventional traction, Ti = σijnj, is work-conjugate
to the displacement, ui. From Eq. (2) two sets of equilibrium equation and
a surface condition can be extracted as

σij,j = 0, in v (3)

mijk,k + sij − qij = 0, in v

M I
ij + mijkpk = 0 on sI

where pk denotes the outward unit normal to the fiber-matrix interfaces, sI .
The free energy in the present formulation, ψ = ψ(ǫe

ij, ǫ
p
ij,k), is assumed

to depend on the elastic strain and the plastic strain gradient. This implies
that the work due to the plastic strain gradients, mijkǫ̇

p
ij,k, is stored and

the dissipation rate is given by qij ǫ̇
p
ij. The free energy is taken according to

Fredriksson et al. (2009) as

ψ
(

ǫe
ij, ǫ

p
ij

)

=
1

2
Dijklǫ

e
ijǫ

e
kl +

1

2
GL2

∗
ǫp
ij,kǫ

p
ij,k (4)

where L∗ is a material length scale parameter, G is the elastic shear mod-
ulus and Dijkl is the isotropic tensor of elastic moduli, defined in terms of
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Young’s modulus, Em, and Poisson’s ratio, νm, of the matrix. The Cauchy
and moment stresses can be extracted by derivation of the free energy with
respect to the elastic strain and the gradient of plastic strain,

σij =
∂ψ

∂ǫe
ij

= Dijklǫ
e
kl, mijk =

∂ψ

∂ǫp
ij,k

= GL2
∗
ǫp
ij,k (5)

The yield surface, f , depends on the micro stress, qij, through

f (qij, σf ) =

√

3

2
qijqij − σf = 0 (6)

where the flow stress is given by the linear hardening relation, σf = σy +Hǫp
e,

with σy denoting the initial yield stress, H denoting the hardening modulus
and ǫp

e denoting the accumulated effective plastic strain defined as ǫp
e =

∫

ǫ̇p
edτ

where τ is ”pseudo-time” and ǫ̇p
e =

√

2
3
ǫ̇p
ij ǫ̇

p
ij.

The flow rule which enforces normality of the plastic strain increment to
the flow surface is given by

ǫ̇p
ij = λ̇

∂f

∂qij

=
3

2

qij

qe

ǫ̇p
e = rij ǫ̇

p
e (7)

where λ̇ is the plastic multiplier, qe =
√

3
2
qijqij is the effective micro stress,

and rij = 3
2

qij

qe
is the direction of the plastic strain increment. For the numer-

ical implementation, an expression for q̇ij ensuring the coaxiality between qij

and ǫ̇p
ij has to be established. The evolution law for the micro stress is ob-

tained by considering rij = 3
2

qij

qe
or equivalently qij = 2

3
qerij. The incremental

micro stress can be written as

q̇ij =
˙2

3
qerij =

2

3
(q̇erij + qeṙij) (8)

where q̇e = Hǫ̇p
e. Using ǫ̇p

e = 2
3
rij ǫ̇

p
ij and inserting into Eq. (8), we get

q̇ij =
2

3
(q̇erij + qeṙij) =

2

3

(

2

3
Hrijrklǫ̇

p
kl + qeṙij

)

(9)

The last term on the right hand side of the above equation depends on q̇ij

through ṙij. Since this relation does not give q̇ij explicitly, it can not be
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readily used in the constitutive framework. The last term defines the part
of q̇ij tangent to the yield surface, and the first term defines the part of q̇ij

normal to the yield surface. The correct magnitude of ǫ̇p
ij is obtained from

the first term alone and the second term has the sole function of ensuring
co-coaxiality between qij and ǫ̇p

ij. Therefore, the second term is removed and
replaced by a penalty term ensuring normality of the plastic strain increment
to the yield surface as proposed by Fredriksson et al. (2009). The penalty
term is expressed as

E0

(

ǫ̇p
ij −

2

3
rijrklǫ̇

p
kl

)

(10)

where the penalty factor, E0, has to be large compared to the hardening
modulus, H. Hence, the flow rule for the micro stress can be rewritten as

q̇ij =
2

3

(

2

3
(H − E0)rijrkl + E0δikδjl

)

ǫ̇p
kl (11)

thus, penalizing any component of the plastic strain increment tangent to the
yield surface. Fig. 1 shows a schematic plot of the current and subsequent
yield surfaces including the directions.

qτ
ij

qτ+∆τ
ij

q̇ij

rτ+∆τ
ij

rτ+∆τ
ij

Current Yield Surface

Subsequent Yield
Surface

rτ
ij

ṙij

Figure 1: A schematic plot of the current and subsequent yield surfaces.

The incremental version of the constitutive equations is completed by
considering the incremental Cauchy stress and higher order stress as

σ̇ij = Dijklǫ̇
e
kl (12)
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ṁijk = GL2
∗
ǫ̇p
ij,k (13)

3. Homogenization and macroscopic yield criterion

At the micro scale, the matrix material is governed by strain gradient
plasticity, while at the macro scale conventional material response is sought.
To link the scales, micro-macro homogenization is established based on the
Hill-Mandel energy condition, which ensures that the work expended at the
micro scale equals that of the macro scale, see Hill (1963) and Suquet (1985).
It will be shown that this reduction of the strain gradient dependent material
at the micro scale to the conventional response at the macro scale sets limits
to the kind of boundary conditions that must be imposed on the unit cell.

Kinematic variables representing the deformation at the various scales
are now introduced. The displacement of a material point, Xi, in the unde-
formed state to a point, xi, in the deformed state is defined as xi = Xi + Ui,
where Ui is the macroscopic displacement vector. Considering a macroscopic
homogeneous deformation state, the displacement field can be expressed by
the first term in the Taylor expansion about any point, X0

i , as

Ui = (Ui)X0
i

+

(

∂Ui

∂Xj

)

X0
i

(Xj − X0
j ) (14)

where ∂Ui

∂Xj
is the macroscopic displacement gradient. The microscopic dis-

placement, ui, is then defined in terms of the macroscopic displacement, Ui,
and a microstructural fluctuation field, wi, as follows

ui = Ui + wi (15)

Introducing the macroscopic strain tensor, Eij = 1
2

(

∂Ui

∂Xj
+

∂Uj

∂Xi

)

X0
i

, and ro-

tation tensor, Rij = 1
2

(

∂Ui

∂Xj
− ∂Uj

∂Xi

)

X0
i

, Eq. (15) can be expressed as

ui = (Ui)X0
i

+ (Eij + Rij) (Xj − X0
j ) + wi (16)

Defining the microscopic strain tensor by ǫij = 1
2

(

∂ui

∂Xj
+

∂uj

∂Xi

)

and evaluating

the volume average, we obtain

1

v

∫

v

ǫijdv = Eij +
1

2v

∫

v

(

∂wi

∂Xj

+
∂wj

∂Xi

)

dv (17)
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Under the assumption of periodic displacement boundary conditions, the last
term in Eq. (17) vanishes upon application of Gauss’ theorem. Hence, we
conclude that the macroscopic strain equals the volume average of micro-
scopic strain as

Eij =
1

v

∫

v

ǫijdv (18)

The Hill-Mandel energy condition is used to extract the appropriate macro-
scopic work-conjugate to the macroscopic strain. The microscopic volume
average of the variation of the work performed on the unit cell is assumed to
be equal to the variation of the internal work at the macro scale as expressed
by

1

v

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij + mijkδǫ

p
ij,k]dv +

1

v

∫

sI

M I
ijδ(ǫ

p
ij)

IdsI = ΣijδEij

(19)
Using Gauss theorem and the equilibrium equations, Eq. (3), we obtain

1

v

∫

s

[σijnjδui + mijknkδǫ
p
ij]ds +

1

v

∫

sI

M I
ijδ(ǫ

p
ij)

IdsI = ΣijδEij (20)

Taking the variation of Eq. (16), δui = (δEij + δRij) Xj + δwi, and inserting
it in Eq. (20), we get

1

v

∫

s

σijnjXkdsδEik +
1

v

∫

s

σijnjXkdsδRik +
1

v

∫

s

σijnjδwids +

1

v

∫

s

mijknkδǫ
p
ijds +

1

v

∫

sI

M I
ijδǫ

pI
ij dsI = ΣijδEij (21)

The second term of the above equation vanishes upon application of Gauss’
theorem and equilibrium, since Rik is skew-symmetric. Under the assumption
of periodic boundary conditions for the unit cell, the third and fourth term
vanish:

1

v

∫

s

σijnjδwids = 1
v

∫

s
Tiδwids = 0 (22)

1

v

∫

s

mijknkδǫ
p
ijds = 1

v

∫

s
Mijδǫ

p
ijds = 0 (23)

where Ti = σijnj and Mij = mijknk are traction and higher order traction
on the surface of the unit cell. Assuming that we have no plasticity on the
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fiber matrix interface (ǫpI
ij = 0), the fifth term also disappears.

1

v

∫

sI

M I
ijδǫ

pI
ij dsI = 0 (24)

Hence, the macroscopic stress which is work conjugate to Eij, is obtained
from

[

1

v

∫

s

σijnjXkds

]

δEik = ΣikδEik (25)

Using Gauss’ theorem and the equilibrium, we can express the macroscopic
stress as the volume average of microscopic stress

Σij =
1

v

∫

v

σijdv (26)

A strain based yield criterion at the macro scale is used where an overall
effective plastic strain (here calculated as the 2-norm) exceeds some threshold
value, ǫt, according to

∣

∣Eij − C−1
ijklΣkl − Eres

ij

∣

∣ ≥ ǫt (27)

where the overall macroscopic tensor of elastic moduli, Cijkl, is defined ac-
cording to the numerical differentiation of the macroscopic quantities as

Cijkl =
∂Σij

∂Ekl

=
Στ+∆τ

ij − Στ
ij

Eτ+∆τ
kl − Eτ

kl

(28)

Here, τ is the pseudo time when the entire unit cell is in the elastic regime
and Eres

ij is the macroscopic residual strains. Note that the residual strain is
zero for initial yielding.

Macroscopic yield surfaces will be presented in (Σ11, Σ22), (Σ11, Σ33) and
(Σ11, Σ12) stress coordinate systems. To find the yield surfaces, proportion-
ality of the macroscopic stresses is imposed such that

κ1 =
Σ22

Σ11

, κ2 =
Σ33

Σ11

and κ3 =
Σ12

Σ11

(29)

are constant for any single analysis. Details on the numerical implementation
are found in Azizi et al. (2011).

9



4. Problem Formulation

MMC with parallel circular fibers distributed through the entire structure
has been considered (see Fig. 2a). Loading including both macroscopic tri-
axial normal stress under generalized plane strain condition and in-plane
shear stress (excluding out-of-plane shear stresses) are studied. A unit cell
is extracted as shown in Fig. 2(b), where both macroscopic normal stresses
and in-plane shear stress are indicated. At the left-bottom corner of the unit
cell a reference Cartesian coordinate system, xi, is located and aligned with
the sides of the cell. The positive direction of the third axis, x3, points out
of (x1, x2)-plane. Fig. 2(c) shows the displacement boundary conditions
and the dimensions of the unit cell. The radius of the fibers is denoted by
r, the dimensions of the unit cell in the direction of the coordinate axes
(perpendicular to the fiber direction) are denoted by a and b, while the
thickness of the unit cell is denoted by t.

a

b

r

Δ̇2

Δ̇1

Δ̇3

Δ̇4

x1

x2

x3

t

Σ11Σ12

Σ22

Σ33

x1

x2

(a) (b) (c)

Figure 2: (a) Regular distribution of fibers in the composite. (b) Unit cell
containing one fiber with traction boundary condition. (c) Unit
cell containing one fiber with conventional displacement boundary
conditions used in numerical simulation representing combined
biaxial shear loading as shown in (b).

Fibers are considered to be purely elastic whereas the matrix exhibits an
elasto-plastic behavior with gradients effects as described in Section 2. Since
plastic strain-gradients are of higher order nature, higher-order boundary
conditions must be prescribed in addition to the conventional conditions on
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displacements and surface tractions. At the exterior of the cell periodic
boundary conditions are used, see also Borg et al. (see 2008); Hussein et al.
(see 2008),

u̇b
1 = u̇t

1 and u̇b
2 = u̇t

2 − [Δ̇3 − Δ̇2]

Ṫ b
1 = −Ṫ t

1 and Ṫ b
2 = −Ṫ t

2

u̇l
1 = u̇r

1 − Δ̇1 and u̇l
2 = u̇r

2 − Δ̇2

Ṫ r
1 = −Ṫ l

1 and Ṫ r
2 = −Ṫ l

2

Ṁ b
ij = −Ṁ t

ij and Ṁ r
ij = −Ṁ l

ij

[ǫ̇p
ij]

b = [ǫ̇p
ij]

t and [ǫ̇p
ij]

r = [ǫ̇p
ij]

l

(30)

In the above equations the super-scripts b, t, l and r refer to bottom, top, left
and right of the unit cell, respectively. In addition to the periodic boundary
condition on the displacements, tractions, plastic strains and higher order
tractions, the following conditions are also imposed

u̇1 = u̇2 = 0, at (x1, x2) = (0, 0)

u̇2 = Δ̇2, at (x1, x2) = (a, 0)

u̇1 = Δ̇1, u̇2 = Δ̇3, at (x1, x2) = (a, b)
u̇3 = 0 at x3 = 0

u̇3 = Δ̇4 at x3 = t
ǫ̇p
ij = 0, at (x2

1 + x2
2 = r2)

(31)

where Δ̇1, Δ̇2, Δ̇3 and Δ̇4 are prescribed displacement increment quantities.
The out-of-plane plastic strain, ǫp

33, is given in terms of in-plane plastic strain
components by plastic incompressibility, ǫp

ii = 0. Similarly, M33 is given in
terms of the in-plane components M11 and M22 where Mii = 0. Finally,
out-of-plane deformation is controlled by specifying a constant out-of-plane
normal strain increment, ǫ̇33 = Δ̇4/t, with t denoting the reference thickness
of the unit cell. In summary, the problem in its general form has one material
length parameter, L∗, and four geometrical length parameters, [a, b, r, t] in
addition to the conventional material parameters.

5. Numerical implementation

For the purpose of numerical implementation, the incremental version of the
principle of virtual work is used as
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∫

v

[σ̇ijδǫ̇ij + (q̇ij − ṡij)δǫ̇
p
ij + ṁijkδǫ̇

p
ij,k]dv+

∫

sI

Ṁ I
ijδ(ǫ̇

p
ij)

IdsI =

∫

s

[Ṫiδu̇i + Ṁijδǫ̇
p
ij]ds,

(32)
where Ṫi and Ṁij are traction increments and moment traction increments,
respectively. Quadrilateral elements with eight nodes are used for in-plane
displacement interpolation, while bilinear four node elements are used to in-
terpolate the plastic strain components. Considering both elements at the
same time, each corner node has five degrees of freedom (two for displace-
ments and three for plastic strains) and each middle node has two degrees
of freedom for displacement. Moreover, an extra degree of freedom is added
for the entire elements to control the thickness of the unit cell. Nodal inter-
polation is defined according to

u̇i =
2k
∑

n=1

Nn
i U̇n, ǫ̇p

ij =
3l
∑

m=1

Pm
ij ǫ̇p

m (33)

where Nn
i and Pm

ij are shape functions for the displacements and plastic strain
components, respectively, and k and l are the number of nodes used for the
different interpolation schemes, see Appendix. A. The appropriate deriva-
tives of the displacement field and the plastic strain field can be expressed
as

ǫ̇ij =
2k
∑

n=1

Bn
ijU̇n, ǫ̇p

ij,k =
3l
∑

m=1

Qm
ijkǫ̇

p
m (34)

where, Bn
ij = (Nn

i,j + Nn
j,1)/2 and Qm

ijk = Pm
ij,k, (see Appendix A). The

discretized equation obtained from the principle of virtual work is

[

Ku −Kup

−KT
up Kp

] [

U̇

ǫ̇
p

]

=

[

ḟu

ḟp

]

(35)

where ḟu =
∫

s
NT Ṫds is incremental nodal force vector and ḟp =

∫

s
PTṀds

is the incremental higher order nodal force. Stiffness matrices are given by

Ku =

∫

v

BTDeBdv (36)

Kp =

∫

v

[PT (De + Dp)P + QTDhQ]dv (37)
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Kup =

∫

v

BTDePdv (38)

where De is the isotropic elastic moduli, Dp is the plastic moduli and Dh is
higher order moduli defined by

De =
E

(1 + υ)(1 − 2υ)

⎡

⎢

⎢

⎣

1 − υ υ υ 0
υ 1 − υ υ 0
υ υ 1 − υ 0
0 0 0 1−2υ

2

⎤

⎥

⎥

⎦

(39)

Dp =
2

3

(

2

3
(H − E0)rr

T + E0Ip

)

(40)

Dh = GL2
∗
I (41)

where E0 is the penalty factor, G is the shear modulus, I(8×8) is the identity

matrix, Ip=diag(1 1 1 1/2) and r = (r11, r22, r33, r12)
T . The values of

Young’s modulus and Poisson’s ratio are taken as the relevant values for the
fiber or matrix in the corresponding elements.

Figure 3: An example of finite element mesh used in the numerical compu-
tation.

Fig. 3 shows an example of the finite element mesh with 1408 elements
used in numerical computations. Numerical integration is performed using
the forward Euler method with sufficiently small load increments, so that
convergence is assured. To avoid plastic flow in the elastic regime, the plas-
tic stiffness is chosen to be large as suggested by Fredriksson et al. (2009).
However, in the limit of conventional plasticity this would lead to an artifi-
cial boundary layer effect with a width scaling with the element size. Hence,
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when using the computational method in the conventional limit, the plastic
stiffness matrix has instead been defined by Kp = 10−8EmI(12×12) and the
coupling matrix Kup = 0 for elastic integration points. Plastic strain quan-
tities are only updated in integration points that are in the plastic regime.

6. Results

The conventional material parameters used for the matrix are H/Em = 0.01
and 0.1, ǫy = σy/Em = 0.004, υm = 0.3, and for the fibers, Ef = 5.7Em

and υf = 0.17. The penalty factor is taken to be E0 = 1000H for the case
of simple shear and E0 = 100H for the case of uniaxial loadings due to
numerical stability. The unit cell is taken to be quadratic (a = b). For both
loading and reloading, Δ̇i = h

2
ǫyΓ̇ is considered in which Γ̇ = 0.02. Each

numerical computation includes 1408 elements with 300 increments at each
step of loading, unloading and reloading.

Lloyd (1994) showed that the response of composites with the same vol-
ume fraction of SiC particles depends on the size of the particles. Investi-
gations by a number of authors, e.g. Hutchinson (2000) have shown that
for problems with lengths falling in the range from roughly a fraction of a
micron to ten microns a size-effect exists but conventional plasticity cannot
capture it, and it was shown that the material length scale for metals is in
the range of 0.25μm to 1μm for a slightly different but related model. For a
micron scale length parameter of L = 1μm in the present model, we analyze
cases for L∗/r = 0, L∗/r = 0.2 and L∗/r = 0.4 which corresponds to large
fibers, fibers with r = 5μm and r = 2.5μm, respectively.

6.1. Simple shear

For simple shear, all values of κ is set to zero except for κ3 = 1000. This
value ensures that the macro shear stress, Σ12, is large compared to Σ11 and
other components of the macro stresses are small such that it is very close
to pure shear loading.

L∗/r = 0 L∗/r = 0.2 L∗/r = 0.4
A12/σy 0.007 0.017 0.120

Table 1: Bauschinger stress in the composite for simple shear loading, κ1 =
κ2 = 0 and κ3 = 1000, with Vf = 0.2 and H/Em = 0.1, see Fig. 4.

14



−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

E12/γy

Σ
1
2
/
τ y

L∗/r = 0.4

L∗/r = 0.2

L∗/r = 0

Figure 4: Effect of the material length scale, L∗/r, on the homogenized
stress strain curve for simple shear, κ1 = κ2 = 0 and κ3 = 1000,
with Vf = 0.2 and H/Em = 0.1.

Fig. 4 shows the effect of the constitutive length scale of the matrix
material, L∗/r, on the homogenized stress-strain curve with Vf = πr2

a2 =
0.2 and H/Em = 0.1. Initial loading and subsequent reloading is studied
where the maximum shear strain is given by E12/γy = 1.94, γy = τy/G with
τy = σy/

√
3, at which the load is reversed until a compressive macroscopic

shear strain of E12/γy = 0.78 is reached. The result shows that the overall
hardening of the composite increases with smaller particle sizes (higher length
scale). Bauschinger stress is defined according to, (see Taya et al., 1990),

Aij = (Σf
ij + Σsyp

ij )/2 (42)

where Σf
ij is the stress at the end of loading and Σsyp

ij is subsequent yield stress
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during the reloading. Tab. 1 shows the values of the Bauschinger stress for
different particle sizes. As can be seen, the Bauschinger stress increases with
decreasing particle size. A similar trend is observed in pure shear between
rigid platens by Anand et al. (2005) and Niordson and Legarth (2010).
In Fig. 5 the effect of the fiber volume fraction, Vf , on the homogenized
stress-strain curve with L∗/r = 0.4 and H/Em = 0.1 is shown. It is seen that
higher fiber volume fraction increases the shear modulus significantly and the
yield point moderately in accordance to findings by Choi and Jang (2011).
After yielding, a significant enhancement of the hardening is observed. Upon
load reversal, the Bauschinger stress is calculated and presented in Tab. 2,
from which it is seen that the Bauschinger stress increases with the higher
fiber volume fraction. This behavior has also been reported by Barai and
Weng (2011), where it was found to be in accordance with experimental data
of Kim et al. (2006).

Vf = 0.1 Vf = 0.2 Vf = 0.4 Vf = 0.6
A12/σy 0.016 0.120 0.692 1.081

Table 2: Bauschinger stress in the composite for simple shear loading, κ1 =
κ2 = 0 and κ3 = 1000, with L∗/r = 0.4 and H/Em = 0.1, see Fig.
5.

The effect of the matrix material hardening for simple shear is analyzed
in Fig. 6 for L∗/r = 0.4 and Vf = 0.2 using two different hardening moduli
specified by H/Em = 0.01 and H/Em = 0.1. Tab. 3 shows the Bauschinger
stress for the two hardening moduli, where it is smaller for the case of higher
hardening.

H/Em = 0.01 H/Em = 0.1
A12/σy 0.182 0.120

Table 3: Bauschinger stress in the composite for simple shear loading, κ1 =
κ2 = 0 and κ3 = 1000, with L∗/r = 0.4 and Vf = 0.2, see Fig. 6.

The distribution of the normalized effective plastic strain, ǫp
e/ǫy, is shown

in the contour plots of Fig. 7, for Vf = 0.2 and H/E = 0.1 at the maximum
deformation of E12/γy = 1.98. Fig. 7(a) shows contours for a conventional

16



−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

E12/γy

Σ
1
2
/
τ y

Vf = 0.6

Vf = 0.4

Vf = 0.2

Vf = 0.1

Figure 5: Effect of the fiber volume fraction, Vf , on the homogenized stress
strain curve for simple shear, κ1 = κ2 = 0 and κ3 = 1000, with
L∗/r = 0.4 and H/Em = 0.1.

material, while Fig. 7(b) shows results for the gradient dependent mate-
rial with L∗/r = 0.4 and thirty times scaling of the displacement field. The
maximum value of the effective plastic strain is significantly higher in the con-
ventional analysis, Fig. 7(a), compared to the gradient dependent analysis,
Fig. 7(b). This is due to a general suppression of plastic strain through-
out the unit cell due to the constraint on plastic strain at the fiber-matrix
interface.

Fig. 8 shows the distribution of the normalized higher order stresses,
(a) m121/(L∗σy) and (b) m122/(L∗σy), for the maximum strain loading of
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Figure 6: Effect of the matrix hardening, H, on the homogenized stress-
strain curve for simple shear, κ1 = κ2 = 0 and κ3 = 1000, with
L∗/r = 0.4 and Vf = 0.2.

E12/γy = 1.98 with L∗/r = 0.4 and H/Em = 0.1. As can be seen, the higher
order stress has an anti-symmetric distribution around the fiber with the
maximum absolute value at the fiber matrix interface, where the gradients
of the plastic strains are highest. Furthermore, they are observed to vanish
at some of the boundaries in accordance to the symmetries of the problem.

Through the loading history including loading, unloading and reloading,
the total energy density, W , supplied to the system can be split into three
parts; a part is stored as elastic energy and a part as higher order energy,
while the rest is dissipated. Fig. 9 shows the exchange of the energy through-
out the loading history. The elastic energy is denoted by Ψ, the higher order
energy is denoted by O and the dissipation by D. Loading until E12/γy = 1.98
(τ = 300) is followed by unloading until zero macroscopic stress (τ = 600).
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Figure 7: Effective plastic strain distribution, ǫp
e/ǫy, for simple shear, κ1 =

κ2 = 0 and κ3 = 1000, with Vf = 0.2 and H/Em = 0.1. (a)
L∗/r = 0. (b) L∗/r = 0.4. see Fig. 4 at E12/γy = 1.98.
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Figure 8: Higher order stress distribution for simple shear, κ1 = κ2 = 0 and
κ3 = 1000, with Vf = 0.2 and H/E = 0.1. (a) m121/(L∗σy). (b)
m122/(L∗σy). see Fig. 4 at E12/γy = 1.98.

Finally, the unit cell is loaded in reverse until the macroscopic shear strain
of E12/γy = −0.78 (τ = 900). The material parameters used are Vf = 0.2,
H/Em = 0.1 and L∗/r = 0.4. The figure shows that the higher order energy
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Figure 9: Densities of elastic energy, 2Ψ/(σyǫy), dissipation, 2D/(σyǫy),
higher order energy, 2O/(σyǫy), and total energy, 2W/(σyǫy),
during the loading, unloading and reloading for simple shear,
κ1 = κ2 = 0 and κ3 = 1000, with Vf = 0.2, H/Em = 0.1 and
L∗/r = 0.4, see Fig. 4.

starts to increase close to the macroscopic initial yield point along with the
dissipation. During the unloading, the elastic energy decreases to a small
value, while both the dissipation and higher order energy remain constant.
During reverse loading, the higher order energy which was stored in the
present setting is partially recovered.

6.2. Uniaxial loading

Uniaxial loading in both the transverse and longitudinal directions is now
analyzed. For transverse uniaxial loading, all of the values of κ are set to
zero, κ1 = κ2 = κ3 = 0, which results in just one non-zero stress compo-
nent, Σ11. For longitudinal loading, κ1 = 1, k2 = 1000 and κ3 = 0 ensure a
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non-zero value for Σ33, while suppressing all other stress components in the
solution.
Fig. 10 shows the distribution of normalized effective plastic strain, ǫp

e/ǫy,
on the deformed unit cell with thirty times scaling of the displacement, at
the maximum macroscopic tensile strain of 3ǫy, with the material specified
by Vf = 0.2 and H/Em = 0.1. For the conventional material loaded in both
the transverse direction (a) and the longitudinal direction (b), a considerable
amount of the plastic deformation takes place at the fiber matrix interface,
whereas in the gradient dependent material (c) and (d) the plastic deforma-
tion is suppressed. Shu and Barlow (2000) used a finite-deformation strain
gradient crystal plasticity formulation together with a classical crystal for-
mulation to characterize the deformation of the matrix in the unit cell. They
found that while a classical crystal formulation tends to over-predict the spa-
tial gradient of the deformation, the strain gradient formulation is able to
predict a more smooth field consistent with experimental findings. This is
confirmed in Fig. 10, where the gradient dependent material has a smooth
transition from zero plastic flow in the fiber-matrix interface compared to
the conventional material with an abrupt change in plastic flow across the
fiber-matrix interface. Note that the periodic boundary conditions imposed
lead to straight unit cell boundaries in accordance with the symmetries of
the present problem.

For uniaxial transverse loading, Fig. 11 shows a breakup plot of the
energy density in the system as was presented for pure shear in Fig. 9. At
first the unit cell is loaded to the macroscopic tensile strain of E11/ǫy = 3
(τ = 300), after which it is unloaded until zero macroscopic tensile stress (τ =
600). Finally, reverse loading takes place until the macroscopic compressive
strain of E11/ǫy = −1.64. The material parameters employed are Vf = 0.2,
H/Em = 0.1 and L∗/r = 0.4. As fore pure shear, both the higher order
energy and dissipation start to increase before the initial macroscopic yield
point, defined according to Eq. 27. During unloading the higher order energy
and the dissipation remain constant, until the elastic energy descends to
a minimum value at zero macroscopic strain. During reverse loading, the
trapped elastic energy speed up the onset of the subsequent yield point and
gives rise to the Bauschinger effect in the composite. The higher order energy
is seen to be released with the reversed loading, close to the macro subsequent
yield point. An important difference when comparing with Fig. 9 is that the
free energy at the end of unloading (trapped energy) is relatively higher for
the case of transverse loading than for pure shear.
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Figure 10: Effective plastic strain distribution, ǫp
e/ǫy, for in-plane tension

at the maximum macroscopic tensile strain of 3ǫy with Vf = 0.2
and H/Em = 0.1. (a) L∗/r = 0 in transverse direction (x1).
(b) L∗/r = 0 in longitudinal direction (x3). (c) L∗/r = 0.4
in transverse direction (x1). (d) L∗/r = 0.4 in longitudinal
direction (x3).

6.3. Yield surfaces

In order to study the effect of different parameters on the composite yield
surface, macroscopic initial and subsequent yield surfaces are plotted in dif-
ferent stress coordinate systems as done by Lissenden and Arnold (1998) for
conventional materials. The present study includes the effect of the mate-
rial length scale, L∗/r, and fiber volume fraction, Vf , on the three following
representations of the yield surfaces:

• Transverse-Transverse (Σ11,Σ22) by varying κ1 while setting κ2 = κ3 =
0

• Transverse-Longitudinal (Σ11,Σ33) by varying κ2 while setting κ1 =
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Figure 11: Densities of elastic energy, 2Ψ/(σyǫy), dissipation, 2D/(σyǫy),
higher order energy, 2O/(σyǫy), and total energy, 2W/(σyǫy),
during the uniaxial loading, unloading and reloading in trans-
verse direction, κ1 = κ2 = κ3 = 0, with Vf = 0.2, H/Em = 0.1
and L∗/r = 0.4, see Fig. 10.

κ3 = 0

• Transverse-Shear (Σ11,Σ12) by varying κ3 while setting κ1 = κ2 = 0

Similar probings of the yield surfaces on the π-plane are presented in Azizi
et al. (2011). The yield tolerance in Eq. (27) is set to ǫt = 0.002 for the
subsequent analyzes.

The effect of the material length scale on the initial yield surfaces with
Vf = 0.2 and H/Em = 0.1 are plotted in Figs. 12, 13 and 14 on the stress co-
ordinate system of Transverse-Transverse (Σ11,Σ22), Transverse-Longitudinal
(Σ11,Σ33) and Transverse-Shear (Σ11,Σ12), respectively. It can be seen that
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Figure 12: Effect of the material length scale on initial yield surface in
Transverse-Transverse, (Σ11, Σ22), stress coordinate system with
Vf = 0.2 and H/Em = 0.1.

the effect of the material length scale is to expand the corresponding ini-
tial yield surface computed for the conventional case in all directions. This
can be explained by the suppression of the plastic deformation close to the
fiber matrix interface (Figs. 7 and 10), which tends to postpone the overall
plasticity of the unit cell at the macro scale. This is consistent with the
experimental investigation by Yan et al. (2007), where an enhancement of
the yield stress of composite is observed with decreasing particle size.
Figs. 15, 16 and 17 show the effect of the fiber volume fraction, Vf , on
the initial yield surfaces for a gradient dependent material with L∗/r =
0.4 and H/Em = 0.1 on the Transverse-Transverse (Σ11,Σ22), Transverse-
Longitudinal (Σ11,Σ33) and Transverse-Shear (Σ11,Σ12) stress coordinate sys-
tems, respectively. It is seen that the effect of Vf on the initial yield surfaces
is a significant expansion. In Fig. 15, the maximum expansion takes place
when Σ11 = Σ22 and the minimum expansion takes place when Σ11 = −Σ22.
Fig. 16 shows that when Vf is increased, the major axis of the yield surface
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Figure 13: Effect of the material length scale on initial yield surface in
Transverse-Longitudinal, (Σ11, Σ33), stress coordinate system
with Vf = 0.2 and H/Em = 0.1.

starts to increase and rotate toward the longitudinal direction. Thereby, the
unit cell is significantly stiffer in the longitudinal direction than in the trans-
verse direction. Similar results have been reported by Lissenden and Arnold
(1998) for conventional material behavior. In Fig. 17, Transverse-Shear
(Σ11,Σ12) yield surfaces are shown, where the expansion is significant in the
transverse direction but limited in the shear direction which is in agreement
with the results reported in Fig. 5.

Subsequent yield surfaces are now analyzed in order to investigate the
kinematic hardening (Bauschinger effect) as well as the anisotropic hard-
ening (subsequent expansion). For the material parameters L∗/r = 0.4,
Vf = 0.2 and H/Em = 0.1 initial and subsequent yield surfaces are plotted
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Figure 14: Effect of the material length scale on initial yield surface in
Transverse-Shear, (Σ11, Σ12), stress coordinate system with Vf =
0.2 and H/Em = 0.1.

in Fig. 18 in the Transverse-Transverse coordinate system (Σ11,Σ22). Figs.
18(a) and (b) show the subsequent yield surface upon transverse loading in
the x1- and the x2-directions, respectively. Fig. 18(c) shows subsequent
yield surfaces upon in-plane equi-biaxial loading. The effect of loading in
the x1- and the x2-directions are observed to be identical in accordance with
the material symmetries. It is seen that a moderate anisotropic harden-
ing (subsequent expansion) and kinematic hardening (translation) occur for
loadings in both x1- and x2-directions, while a small anisotropic hardening
(subsequent expansion) and large kinematic hardening (translation) occur in
in-plane equi-biaxial loading.

For the same material, the initial and subsequent yield surfaces are shown
in Fig. 19 in the Transverse-Longitudinal coordinate system (Σ11,Σ33). Fig.
19(a) shows results for transverse loading, while Fig. 19(b) shows results for
longitudinal loading. Fig. 19(c) shows results for out-of-plane equi-biaxial
loading (Σ11 = Σ33). As can be seen in Figs. 19(a) and (b), the Bauschinger
stress (translation) is higher when loading in the longitudinal direction com-
pared to loading in the transverse direction. For the out-of-plane equi-biaxial
loading, Bauschinger stress is also considerable, and for all three loading cases
there is a moderate anisotropic hardening (subsequent expansion).

In Fig. 19 initial and subsequent yield surfaces are shown in the Transverse-
Shear coordinate system (Σ11,Σ12). A relatively moderate anisotropic hard-
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Figure 15: Effect of the fiber volume fraction on initial yield surface in
Transverse-Transverse, (Σ11, Σ22), stress coordinate system with
L∗/r = 0.4 and H/Em = 0.1.

Fig. 18 Fig. 18 Fig. 19 Fig. 20
Transverse Transverse Longitudinal Shear

Loadings κ2 = κ3 = 0 κ2 = κ3 = 0 κ1 = 1, κ3 = 0 κ1 = κ2 = 0
κ1 = 0 κ1 = 1 κ2 = 1000 κ3 = 1000

Anisotropic hardening Moderate Small Small Large
Kinematic hardening Moderate Large Large Small

Table 4: Qualitative comparison of both the kinematic and anisotropic
hardening in the composite (Figs. 18, 19 and 20).

ening with a considerable kinematic hardening occurs when the unit cell is
loaded in the transverse direction, which is opposite to the finding in the
shear direction. As a result of Figs. 18, 19 and 20, the Bauschinger stress
shows a significant anisotropic growth. Tab. 4 summarizes qualitatively the
amount of both kinematic and anisotropic hardening based on different types
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Figure 16: Effect of the fiber volume fraction on the initial yield surface
in Transverse-Longitudinal, (Σ11, Σ33), stress coordinate system
with L∗/r = 0.4 and H/Em = 0.1.

of the loading discussed above.

7. Conclusion

The macroscopic response of metal matrix composites with long circular
unidirectional fibers is studied, using a rate independent higher order strain
gradient plasticity theory for the matrix and an elastic model for the fiber.
The macroscopic elasto-plastic behavior of composite is compared with con-
ventional predictions. Micro-macro homogenization is carried out under the
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Figure 18: Subsequent yield surface in Transverse-Transverse, (Σ11, Σ22),
stress coordinate system with Vf = 0.2, L∗/r = 0.4 and H/Em =
0.1 (Dashed-line: Matrix yield surface, Solid-line: Initial yield
surface, point-line: Subsequent yield surface). (a) κ1 = κ2 =
κ3 = 0 (Transverse loading). (b) κ2 = κ3 = 0 and κ1 = 1000
(Transverse loading). (c) κ2 = κ3 = 0 and κ1 = 1 (In-plane
equi-biaxial loading).

assumption of macroscopically homogeneous loading such that the macro-
scopic material model employed is of conventional nature. Analyzes have
been carried out for simple shear and uniaxial loading in the transverse and
longitudinal direction under generalized plane strain condition.

29



−2 −1 0 1 2 3

−4

−2

0

2

4

6

Σ11/σy

Σ
3
3
/
σ

y

−2 −1 0 1 2 3

−4

−2

0

2

4

6

Σ11/σy

Σ
3
3
/
σ

y

−2 −1 0 1 2 3

−4

−2

0

2

4

6

Σ11/σy
Σ

3
3
/
σ

y
(a) (b) (c)

Figure 19: Subsequent yield surface in Transverse-Longitudinal, (Σ11, Σ33),
stress coordinate system with Vf = 0.2, L∗/r = 0.4 and H/Em =
0.1 (Dashed-line: Matrix yield surface, Solid-line: Initial yield
surface, point-line: Subsequent yield surface). (a) κ1 = κ2 =
κ3 = 0 (Transverse loading). (b) κ1 = 1, κ3 = 0 and κ2 = 1000
(Longitudinal loading). (c) κ1 = κ3 = 0 and κ2 = 1 (Out-of-
plane Biaxial loading).

It is shown that the elastic modulus, the yield stress and the Bauschinger
effect increase for simple shear loading with higher fiber volume fraction.
Furthermore, it is seen that for increasing fiber volume fraction, the overall
plastic flow is suppressed and, as a result, the initial yield surface expands.
The expansion exhibits anisotropic growth, where it is large in the longi-
tudinal direction and small in the shear direction. It is concluded that Vf

is the most important conventional parameter leading to expansion of the
initial yield surface as well as anisotropic hardening (subsequent expansion)
and kinematic hardening (translation) of the subsequent yield surface in all
loading directions.
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Figure 20: Subsequent yield surface in Transverse-Shear, (Σ11, Σ12), stress
coordinate system with Vf = 0.2, L∗/r = 0.4 and H/Em =
0.1 (Dashed-line: Matrix yield surface, Solid-line: Initial yield
surface, point-line: Subsequent yield surface). (a) κ1 = κ2 = 0
and κ3 = 1000 (Simple shear loading). (b) κ1 = κ2 = κ3 = 0
(Transverse loading).

The effect of fiber size has also been analyzed. The results show that the
material length scale, which is included energetically in the present strain
gradient formulation, serves as to expand the initial yield surface and increase
the overall hardening of the composite, due to storage of free energy in the
material through plastic strain gradients. Furthermore, it is shown that
the Bauschinger stress increases with decreasing particle size, meaning that
more kinematic hardening is observed for micron scale fibers than for large
fibers. The study of subsequent yield surfaces shows that the Bauschinger
effect (translation) is largest in the longitudinal direction (as well as in in-
plane equi-biaxial), moderate in the transverse direction and small in the
shear direction, and conversely for the anisotropic hardening (subsequent
expansion). It is concluded that the inclusion of the constitutive material
length scale in the present model results in an isotropic growth of the initial
yield surface and anisotropic expansion and translation of the subsequent
yield surface upon loading in different directions.

31



Acknowledgment

This work was supported by the Danish Research Council for Technology
and Production Sciences in a project entitled Plasticity Across the Scales.
The computational resources have been provided by a hardware grant from
the Danish Center of Scientific Computing (DCSC).

32



A. Appendix. Matrices in Finite element method

In this section, the numerical method is described. Eight node quadri-
lateral elements with two degrees of freedom for the displacement field at
each node and four node quadrilateral elements with three degrees of free-
dom for plastic strains at each node are used. The generalized plane strain
assumption requires an additional degree of freedom for the displacement in
the longitudinal (out-of-plane) direction, W , and is common for all elements.
Within each element, the displacement field , U̇n, and the plastic strain field,
ǫ̇

p
m, shown in Eq. (33), are expressed in an array

U̇n =
[

U̇1 V̇1 ... U̇8 V̇8 Ẇ
]T

(A.1)

ǫ̇
p
m =

[

ǫ̇p1
11 ǫ̇p1

22 γ̇p1
12 ... ǫ̇p4

11 ǫ̇p4
22 γ̇p4

12

]T
(A.2)

where U̇I , V̇I and Ẇ are displacement increments at node I in the X1, X2

and X3 directions, respectively, and ǫ̇pI
ij is plastic strain increments at node

I. Note that γ̇pI
12 = 2ǫ̇pI

12.
The interpolation functions for displacement, Nn, and plastic strain field,

Pm, is written as

Nn =

⎡

⎣

N1 0 N2 0 ... N8 0 0
0 N1 0 N2 ... 0 N8 0
0 0 0 0 ... 0 0 1

⎤

⎦

(3×17)

(A.3)

Pm =

⎡

⎢

⎢

⎣

P1 0 0 ... P4 0 0
0 P1 0 ... 0 P4 0

−P1 −P1 0 ... −P4 −P4 0
0 0 P1 ... 0 0 P4

⎤

⎥

⎥

⎦

(4×12)

(A.4)

where plastic incompressibility, ǫ̇p
ii = 0, is used in Pm. Nodal interpolation

is obtained from

⎡

⎣

u̇1

u̇2

ẇ

⎤

⎦

(3×1)

=

⎡

⎣

N1 0 N2 0 ... N8 0 0
0 N1 0 N2 ... 0 N8 0
0 0 0 0 ... 0 0 1

⎤

⎦

(3×17)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

U̇1

V̇1

.

.

.

U̇8

V̇8

Ẇ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17×1)

(A.5)
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where ẇ is the longitudinal length increase of the domain. Similarly,

⎡

⎢

⎢

⎣

ǫ̇p
11

ǫ̇p
22

ǫ̇p
33

γ̇p
12

⎤

⎥

⎥

⎦

(4×1)

=

⎡

⎢

⎢

⎣

P1 0 0 ... P4 0 0
0 P1 0 ... 0 P4 0

−P1 −P1 0 ... −P4 −P4 0
0 0 P1 ... 0 0 P4
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⎥
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(A.6)
Strain and plastic strain gradients are computed by the appropriate deriva-

tives of the displacement and plastic strain fields according to

Bn =

⎡

⎢

⎢

⎣

N1,1 0 N2,1 0 ... N8,1 0 0
0 N1,2 0 N2,2 ... 0 N8,2 0
0 0 0 0 0 0 0 1

t

N1,2 N1,1 N2,2 N2,1 ... N8,2 N8,1 0

⎤

⎥

⎥

⎦

4×17

(A.7)

where t is the thickness (in the out-of-plane x3-direction) of the unit cell.

Qm =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P1,1 0 0 ... P4,1 0 0
P1,2 0 0 ... P4,2 0 0
0 P1,1 0 ... 0 P4,1 0
0 P1,2 0 ... 0 P4,2 0

−P1,1 −P1,1 0 ... −P4,1 −P4,1 0
−P1,2 −P1,2 0 ... −P4,2 −P4,2 0

0 0 P1,1 ... 0 0 P4,1

0 0 P1,2 ... 0 0 P4,2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

8×12

(A.8)

Also here, plastic incompressibility ǫ̇p
ii,k = 0 is exploited.

The interpolated strain and plastic strain gradient can be shown as
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where γ̇ij = 2ǫ̇ij. Similarly,
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The stress increment, σ̇ij, the micro stress increment, q̇ij, and the higher

order stress increment, ṁijk, are evaluated according to

⎡

⎢

⎢

⎣

σ̇11

σ̇22

σ̇33

σ̇12

⎤

⎥

⎥

⎦

4×1

=
E

(1 + υ)(1 − 2υ)

⎡

⎢

⎢

⎣

1 − υ υ υ 0
υ 1 − υ υ 0
υ υ 1 − υ 0
0 0 0 1−2υ

2

⎤

⎥

⎥

⎦

4×4

×

⎡

⎢

⎢

⎣

ǫ̇11

ǫ̇22

ǫ̇33

γ̇12

⎤

⎥

⎥

⎦

4×1

(A.11)

35



⎡

⎢

⎢

⎣

q̇11

q̇22

q̇33

q̇12

⎤

⎥

⎥

⎦

4×1

=

{

4

9
(H − E0)

⎡

⎢

⎢

⎣

r2
11 r11r22 r11r33 r11r12

r11r22 r2
22 r22r33 r22r12

r11r33 r22r33 r2
33 r12r33

r11r12 r22r12 r33r12 r2
12

⎤

⎥

⎥

⎦

4×4

+

2

3
E0

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/2

⎤

⎥

⎥

⎦

4×4

}

×

⎡

⎢

⎢

⎣

ǫ̇p
11

ǫ̇p
22

ǫ̇p
33

γ̇p
12

⎤

⎥

⎥

⎦

4×1

(A.12)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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The Bauschinger effect in Metal Matrix Composites (MMCs) is studied using
a thermodynamically consistent model of energetic higher order strain gradi-
ent plasticity, for a reinforcement size ranging from the micron scale and up.
Micro-macro homogenization is employed subject to the Hill-Mandel energy
condition. As the result, a conventional constitutive model for the macro-
scopic response is obtained. The study is carried out using a unit cell method
of a single cylindrical fiber with periodic boundary conditions under gener-
alized plane strain conditions. The interrelation between the Baushinger
effect and the trapped free energy due to residual stresses and higher order
stresses is quantified using five different loading paths, including transverse
and longitudinal loading as well as in-plane shears and out-of-plane shear. A
mathematical representation of the numerically computed trapped energy is
introduced, through which the kinematic hardening can be quantified at the
macroscopic level. The results are presented in the form of a trapped energy
and a Bauschinger stress versus the related plastic strain. The computed
Bauschinger stress is compared with the displaced geometric center of the
subsequent yield surfaces and a good agreement is found.
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1. Introduction

Materials like Metal Matrix Composites (MMCs) present enhanced prop-
erties like thermostability and stiffness yet at the price of having poor ductil-
ity. Generally, these materials contain an elasto-plastic metallic matrix with
embedded elastic fibers like Carbon Nano Tubes (CNTs). More details of the
properties can be found in McDanels (1985), where aluminum matrix com-
posites are evaluated containing discontinuous silicon carbide reinforcement.

When MMCs are deformed, a portion of the imposed energy related to
the plastic deformation, Wp, is dissipated as heat in the micro structure.
The rest of this energy, known as the stored energy or trapped energy, ΨT ,
remains available. Knowing the accurate portion of the total work which is
dissipated as heat in the microstructure is important for evaluation of prop-
erties like thermal softening, which promotes mechanical instabilities, e.g.,
necking and shear banding. Since the trapped energy is associated with an
internal stress state, there is a direct connection with the Bauschinger effect.
Therefore, the partitioning of the plastic working, Wp, into heat generation,
D, and trapped energy, ΨT , is of general interest. There have been several
experimental attempts to measure the trapped energy of different materials
during plastic deformation, e.g., Oliferuk et al. (1996) and Kapoor and Ne-
mat Nasser (1998). Kuhlmann-Wilsdorf (1970) compared two different types
of calorimetric evaluation of the trapped energy implemented by Wolfenden
(1970). She asserts that the results of two different experimental measure-
ments affect maximum and minimum values.

Continuum frameworks with internal variables also incorporate the trapped
energy (e.g. Rice, 1971; Rosakis et al., 2000; Benzerga et al., 2005). They
confirmed a relationship between the trapped energy and Bauschinger stress
by presenting the trapped energy as a function of internal parameters like
plastic strain, ΨT = ΨT (E

p
ij). Chaboche (1993b) used the experimental data

of stored energy and considered the constitutive equations in a framework of
time-independent thermoplasticity, where he determined the response ana-
lytically in the case of uniaxial tension-compression. Benzerga et al. (2005)
outlined a theoretical calculation of the trapped energy for planar single
crystals under tensile loading with plastic deformation occurring through
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dislocation glide. Oliferuk and Maj (2009) compared the experimentally de-
termined stored energy during tensile deformation of austenitic steels and
titanium with the part calculated from the stress strain curve.

The aim of the present work is to establish a correlation between the
trapped energy and Bauschinger stress in MMCs. The mathematical repre-
sentation of the trapped energy facilitates the evaluation of kinematic hard-
ening at the macroscopic scale. Studying the size effect of the fiber on the
Bauschinger stress is also of interest in this work. Lloyd (1994) showed that
the response of composites with the same volume fraction of SiC particles
depends on the size of the particles. Further investigations on the elasto-
plastic behavior of MMCs by Hutchinson (2000), Mughrabi (2001), Fleck
et al. (2003) and Gao and Huang (2003) showed that dislocations can not
pass from the matrix into the fiber (plastic strain suppression at the fiber-
matrix interface) and consequently pile up at the interface.

Non-local plasticity has the capability to reproduce these effects, since it
can capture observed size-effects and incorporate non-conventional boundary
conditions. Several non local plasticity theories have been developed to face
these issues. While some of these are of lower-order nature (see Acharya and
Bassani, 2000; Bassani, 2001), most of the proposed theories are of higher
order nature, employing higher order stress-measures as work-conjugates to
strain gradients, demanding non-conventional higher order boundary condi-
tions (e.g. Fleck and Hutchinson, 1997, 2001; Gao et al., 1999; Gurtin, 2002;
Gudmundson, 2004; Gurtin and Anand, 2005; Lele and Anand, 2008; Fleck
and Willis, 2009a,b).

In this paper, the energetic higher order strain gradient plasticity the-
ory proposed by Gudmundson (2004) is considered for the matrix material,
while a macroscopically conventional response is desirable. For such a con-
nection between the scales, the Hill-Mandel energy condition (Hill, 1963) is
considered for the homogenization, where periodic boundary conditions are
assumed on the unit cell.

A unit cell is chosen and a finite element cell model under generalized
plane strain condition is investigated. The macroscopic trapped energy
is evaluated and analyzed during the plastic deformation. Five different
loading paths including transverse, longitudinal, 0o in-plane shear, 45o in-
plane shear and out-of-plane shear are necessary to be considered in order to
gather enough data on the trapped energy and the corresponding Bauschinger
stresses. A comprehensive fitting function is introduced to represent the nu-
merical data of the trapped energy, which can further be used to evaluate
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the Bauschinger stress. The computed Bauschinger stress is also compared
with the displaced geometric center of the subsequent yield surfaces.

2. Material models

The matrix material is described by a strain gradient plasticity theory at
the micro scale with embedded elastic fibers, while a conventional material
model augmented by a free energy depending on the macroscopic plastic
strain, is considered at the macro scale.

2.1. Material model at the micro scale

For the matrix, the rate independent energetic strain-gradient plasticity
theory proposed by Gudmundson (2004) is used, while the fibers are taken
purely elastic. Strong interface is considered for the fiber-matrix interface.
For the isothermal problem studied here, the first law of the thermodynamics
can be expressed by

ẇ = ḋ+ ψ̇ (1)

where ẇ is the rate of total work, ḋ is the dissipation rate and ψ̇ is the rate
of the free energy. The second law of thermodynamics states that dissipation
must be non-negative;

ḋ = ẇ − ψ̇ ≥ 0 (2)

At the microscopic scale the variation of the internal virtual work, δwI ,
is assumed to be

δwI =

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij +mijkδǫ

p
ij,k]dv (3)

where v is the volume and ǫij is the total strain, defined as the sum of
the elastic strain, ǫeij, and the plastic strain, ǫpij. The Cauchy stress, the
deviatoric part of the Cauchy stress, the micro stress (work conjugate to the
plastic strain) and the higher order stress (work conjugate to the plastic strain
gradients) are denoted by σij, sij, qij and mijk, respectively. By application
of Gauss’ theorem we obtain

δwI =

∫

s

[σijnjδui +mijknkδǫ
p
ij]ds− (4)

∫

v

[σij,jδui + (mijk,k + sij − qij)δǫ
p
ij]dv
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where ni is the unit vector, normal to surface, s, of the volume considered,
and ui is the displacement vector. Assuming that the first term of the right
hand side of Eq. (4) equals the external virtual work, δwE, and using the
principle of virtual work, δwI = δwE, the last integral must vanish and two
sets of equilibrium equations are obtained as

σij,j = 0, in v (5)

mijk,k + sij − qij = 0, in v

Adopting the weak form of the internal work, ẇI , in the second law of the
thermodynamics, Eq. (2), and using σij ǫ̇

p
ij = sij ǫ̇

p
ij, we obtain

(

σij −
∂ψ

∂ǫeij

)

ǫ̇eij +

(

qij −
∂ψ

∂ǫpij

)

ǫ̇pij +

(

mijk −
∂ψ

∂ǫpij,k

)

ǫ̇pij,k ≥ 0 (6)

It is assumed that the free energy, ψ, is stored due to both elastic strains and
plastic strain gradients (see Fredriksson et al., 2009) according to

ψ
(

ǫeij, ǫ
p
ij,k

)

=
1

2
cijklǫ

e
ijǫ

e
kl +

1

2
GL2

∗
ǫpij,kǫ

p
ij,k (7)

where L∗ is a material length scale parameter, G is the elastic shear modulus
and cijkl is the isotropic tensor of elastic moduli, defined in terms of Young’s
modulus, E, and Poisson’s ratio, ν. Assuming that both the Cauchy stress
and the higher order stress are purely energetic, two constitutive equations
are extracted as

σij =
∂ψ

∂ǫeij
= cijklǫ

e
kl, mijk =

∂ψ

∂ǫpij,k
= GL2

∗
ǫpij,k (8)

The second law of thermodynamics, Eq. (6), then reads

qij ǫ̇
p
ij ≥ 0 (9)

In order to ensure that the dissipation is always non-negative according to the
above inequality, a dissipation potential function, f ∗ = f ∗(qij), is introduced
and a flow rule is defined as

ǫ̇pij = λ̇
∂f ∗

∂qij
(10)
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where λ̇ is a microscopic plastic multiplier. The above equation implies that
the plastic strain increment is normal to the dissipation potential function,
and it satisfies positive dissipation if the dissipation potential is convex. We
now assume an associated flow rule, where the plastic potential function can
be substituted by the yield surface, f , (see Lubliner, 1990), according to

f ∗(qij) = f(qij) (11)

The microscopic yield surface, f , is defined as

f =

√

3

2
qijqij − σf = 0 (12)

and a linearly hardening material behaviour is assumed with the flow stress
given by σf = σy+hǫpe. Here, σy denotes the initial yield stress, h denotes the
hardening modulus and ǫpe denotes the accumulated effective plastic strain

defined as ǫpe =
∫

ǫ̇pedτ where τ is ”pseudo-time” and ǫ̇pe =
√

2
3
ǫ̇pij ǫ̇

p
ij. Then

the flow rule, which ensures the normality of the plastic strain increment to
the yield surface, is obtained by

ǫ̇pij = λ̇
∂f

∂qij
=

3

2

qij
qe

ǫ̇pe = rij ǫ̇
p
e (13)

where qe =
√

3
2
qijqij is the effective micro stress and rij = 3

2

qij
qe

is the di-

rection of the plastic strain increment. For the numerical implementation,
a constitutive relation between the micro stress, q̇ij, and the plastic strain
must be specified. By considering rij =

3
2

qij
qe

or equivalently qij =
2
3
qerij, we

obtain

q̇ij =
˙2

3
qerij =

2

3
(q̇erij + qeṙij) (14)

from which the increment of the micro stress is defined implicitly. The last
term on the right hand side of the above equation depends on q̇ij through ṙij.
Since this relation does not give q̇ij explicitly, it can not be readily used in
the constitutive framework. The last term defines the part of q̇ij tangent to
the yield surface, and the first term defines the part of q̇ij normal to the yield
surface. The correct magnitude of ǫ̇pij is obtained from the first term alone
and the second term has the sole function of ensuring co-coaxiality between
qij and ǫ̇pij. Therefore, the second term is removed and replaced by a penalty
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term ensuring normality of the plastic strain increment to the yield surface
as proposed by Fredriksson et al. (2009). The penalty term is expressed as

E0

(

ǫ̇pij −
2

3
rijrklǫ̇

p
kl

)

(15)

where the penalty factor, E0, has to be large compared to the hardening
modulus, h. Hence, the flow rule for the micro stress can be rewritten as

q̇ij =
2

3

(

2

3
(h− E0)rijrkl + E0δikδjl

)

ǫ̇pkl (16)

thus, penalizing any component of the plastic strain increment tangent to the
yield surface. Fig. 1 shows a schematic plot of the current and subsequent
yield surfaces including the directions.

qτij

qτ+∆τ
ij

q̇ij

rτ+∆τ
ij

rτ+∆τ
ij

Current Yield Surface

Subsequent Yield
Surface

rτij

ṙij

Figure 1: A schematic plot of the current and subsequent yield surfaces.

The incremental version of the constitutive equations is completed by
considering the incremental Cauchy stress and higher order stress as

σ̇ij = Dijklǫ̇
e
kl (17)

ṁijk = GL2
∗
ǫ̇pij,k (18)

7



2.2. Material model at the macro scale

At the macroscopic scale, the first law of thermodynamics is expressed as

Ẇ = Ḋ + Ψ̇ (19)

where Ẇ is the total work rate, Ḋ is the dissipation rate and Ψ̇ is the rate of
the free energy. Non-negative dissipation (see also Coleman and Noll, 1963;
Lubliner, 1972; Chaboche, 1993b) is expressed by

Ḋ = Ẇ − Ψ̇ ≥ 0 (20)

The macroscopic plastic strain is defined by

Ep
ij = Eij − C−1

ijklΣkl (21)

where Eij is the total macroscopic strain, Σkl is the macroscopic stress and
Cijkl is the macroscopic tensor of elastic moduli. The rate of total work in
the conventional macroscopic setting is defined by

Ẇ = ΣijĖij (22)

As explained by Benzerga et al. (2005), a part of the total work may be
trapped as unrecoverable stored energy even upon unloading. This trapped
energy can be represented by an internal state variable like plastic strain
as shown by Rice (1971) and Rosakis et al. (2000). Here, the macroscopic
plastic strain tensor is used as an internal variable through which the free
energy is stored;

Ψ =
1

2
CijklE

e
ijE

e
kl +

1

2
PijklE

p
ijE

p
kl (23)

Here, Pijkl is a tensor of moduli which defines how plastic strain contributes
to the free energy. The first term on the right hand side represents the
conventional elastic energy, and the second term represents trapped energy
on the microscopic level, which is due to residual stresses as well as residual
higher order stresses. Inserting Eqs. (22) and (23) into Eq. (20) gives

ΣijĖij −
∂Ψ

∂Ee
ij

Ėe
ij −

∂Ψ

∂Ep
ij

Ėp
ij ≥ 0 (24)

and considering the macroscopic elastic strain increment as Ėe
ij = Ėij − Ėp

ij,
one can have

(Σij −
∂Ψ

∂Ee
ij

)Ėij + (
∂Ψ

∂Ee
ij

− ∂Ψ

∂Ep
ij

)Ėp
ij ≥ 0 (25)
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Since Ėij can be chosen arbitrarily, the first term must vanish as a conserva-
tive choice. This means that the macroscopic stress can be derived from the
free energy as follows

Σij =
∂Ψ

∂Ee
ij

= CijklE
e
kl (26)

Benzerga et al. (2005) showed that in the presence of trapped energy, a
Bauschinger effect is expected. A Bauschinger stress, Aij, is now defined
as the derivative of free energy with respect to plastic strain (see also Rice,
1971; Chaboche, 1993b,a; Rosakis et al., 2000) as follows

Aij =
∂Ψ

∂Ep
ij

= PijklE
p
kl (27)

The dissipation inequality, Eq. (25), can now be rewritten as

(Σij − Aij)Ė
p
ij ≥ 0 (28)

In order to ensure non-negative dissipation, the plastic strain rate is derived
from a convex dissipation potential, Φ∗ = Φ∗(Σij − Aij), according to

Ėp
ij = Λ̇

∂Φ∗(Σ̃ij)

∂Σ̃ij

= Λ̇
∂Φ∗(Σ̃ij)

∂Σij

(29)

where Σ̃ij = Σij−Aij and Λ̇ is a macroscopic plastic multiplier. Adopting the
principle of maximum plastic dissipation (see Lubliner, 1990), implies: (I) the
dissipation potential function is convex; and (II) the plastic strain is normal
to the dissipation potential function. Incorporating Drucker’s postulates (see
Drucker, 1951), as a non-thermodynamical approach for the plastic work
definition, the yield surface itself is a plastic potential. Hence, normality is
associated with the yield criterion or in other words an associative flow rule
is obtained as

Φ∗(Σ̃ij) = Φ(Σ̃ij) (30)

where Φ(Σ̃ij) is the macroscopic yield function. It will be shown that a
modification of the Hill anisotropic yield function (Hill, 1948) is applicable to
the material system analyzed. The first modification is that the Bauschinger
stress, Aij, determines the geometrical center of the yield surface. Due to
the assumption of having long unidirectional fiber, the shear terms Σ13 and
Σ23 are ignored where we may express the yield function as

Φ = F (Σ̃11 − Σ̃33)
2 +G(Σ̃22 − Σ̃33)

2 +H(Σ̃11 − Σ̃22)
2 + 2NΣ̃2

12 − 1 (31)
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where F , G, H and N are the anisotropic parameters. While the above func-
tion is pressure independent, it will be shown that the yield surface for the
material system considered here is not independent of pressure, but instead
independent of some other linear combination of the normal components of
Σ̃ij, depending on the fiber volume fraction. Incorporating this into the yield
function, Eq. (31), results in

Φ = F λ(Σ̃λ1)
2 +Hλ(Σ̃λ2)

2 +NλΣ̃2
λ4

− 1 (32)

where F λ, Hλ and Nλ are new anisotropic parameters and Σ̃λ4 = Σ12 −A12.
The remaining Σ̃λi

(i = 1, 2, 3) are linearly independent combinations of the
normal components of Σ̃ij. In the above expression, it is assumed that the
yield function is independent of Σ̃λ3 , hence it is not included in the yield
function.

In Tab. 1 an overview of the corresponding equations at the micro and
macro scales is given.

3. Homogenization

The matrix material is governed by strain gradient plasticity at the micro
scale, while a conventional material response is to be recovered at the macro
scale. The micro-macro homogenization is based on the Hill-Mandel energy
condition, which ensures that the work per unit of volume expended at the
micro scale equals that of the macro scale, see Hill (1963) and Suquet (1985).

Kinematic variables representing the deformation at the various scales are
now introduced. The displacement of a material point, Xi, in the undeformed
state to a point, Yi, in the deformed state is defined as Yi = Xi + Ui, where
Ui is the macroscopic displacement vector. Considering a macroscopically
homogeneous deformation state, the displacement field can be expressed by
the first term in the Taylor expansion about any point, X0

i , as

Ui = (Ui)X0
i
+

(

∂Ui

∂Xj

)

X0
i

(Xj −X0
j ) (33)

where ∂Ui

∂Xj
is the macroscopic displacement gradient. The microscopic dis-

placement, ui, is then defined in terms of the macroscopic displacement, Ui,
and a microstructural fluctuation field, wi, as follows

ui = Ui + wi (34)
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Equation Micro scale Macro scale

1st law of TD ẇ = ḋ + ψ̇ Ẇ = Ḋ + Ψ̇

2nd law of TD ḋ = ẇ − ψ̇ ≥ 0 Ḋ = Ẇ − Ψ̇ ≥ 0

Internal work ẇ = σij ǫ̇
e
ij + qij ǫ̇

p
ij

+ mijk ǫ̇
p
ij,k

Ẇ = ΣijĖij

Free energy ψ = 1
2
cijklǫ

e
ijǫ

e
kl + 1

2
GL2

∗
ǫ
p
ij,k

ǫ
p
ij,k

Ψ = 1
2
CijklE

e
ijE

e
kl + 1

2
PijklE

p
ij

E
p
kl

Dissipation inequality 1

(

σij −
∂ψ
∂ǫe

ij

)

ǫ̇eij +

(

qij −
∂ψ

∂ǫ
p
ij

)

ǫ̇
p
ij

+ (Σij − ∂Ψ
∂Ee

ij
)Ėij + ( ∂Ψ

∂Ee
ij

− ∂Ψ
∂E

p
ij

)Ė
p
ij

≥ 0

(

mijk −
∂ψ

∂ǫ
p
ij,k

)

ǫ̇
p
ij,k

≥ 0

Conventional stress σij = ∂ψ
∂ǫe

ij
= cijklǫ

e
kl Σij = ∂Ψ

∂Ee
ij

= CijklE
e
kl

Nonconventional stress mijk = ∂ψ

∂ǫ
p
ij,k

= GL2
∗
ǫ
p
ij,k

Aij = ∂Ψ
∂E

p
ij

= PijklE
p
kl

Dissipation inequality 2 qij ǫ̇
p
ij

≥ 0
(

Σij − Aij

)

Ė
p
ij

≥ 0

Flow potential ǫ̇
p
ij

= λ̇
∂f∗(qij)

∂qij
Ė

p
ij

= Λ̇
∂Φ∗(Σij−Aij)

∂Σij

General yield surface f(qij) = f∗(qij) Φ
(

Σij − Aij

)

= Φ∗
(

Σij − Aij

)

Specific yield surface 1 f =
√

3
2
qijqij − σf Φ = Fλ(Σ̃λ1

)2 + Hλ(Σ̃λ2
)2 + NλΣ̃2

λ4
− 1

Table 1: Material models at the micro- and macroscales.

Introducing the macroscopic strain tensor, Eij = 1
2

(

∂Ui

∂Xj
+

∂Uj

∂Xi

)

X0
i

, and ro-

tation tensor, Rij =
1
2

(

∂Ui

∂Xj
− ∂Uj

∂Xi

)

X0
i

, Eq. (34) can be expressed as

ui = (Ui)X0
i
+ (Eij +Rij) (Xj −X0

j ) + wi (35)

Defining the microscopic strain tensor by ǫij =
1
2

(

∂ui

∂Xj
+

∂uj

∂Xi

)

and evaluating

the volume average, we obtain

1

v

∫

v

ǫijdv = Eij +
1

2v

∫

v

(

∂wi

∂Xj

+
∂wj

∂Xi

)

dv (36)

Under the assumption of periodic displacement boundary conditions, the last
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term in Eq. (36) vanishes upon application of Gauss’ theorem as

1

2v

∫

v

(

∂wi

∂Xj

+
∂wj

∂Xi

)

dv =
1

v

∫

s

winjds = 0 (37)

A sufficient condition for the above equation to hold is

wA
i (Γ)n

A
j (Γ) + wB

i (Γ)n
B
j (Γ) = 0 (38)

where Γ is a local coordinate on opposite sides of the unit cell, A and B,
for which periodicity is enforced. It is now seen that the periodicity assump-
tion, wA

i (Γ) = wB
i (Γ) and nA

j (Γ) = −nB
j (Γ), fulfills Eq. (38). Hence, the

macroscopic strain equals the volume average of microscopic strain as

Eij =
1

v

∫

v

ǫijdv (39)

The Hill-Mandel energy condition is used to extract the appropriate macro-
scopic work-conjugate to the macroscopic strain. The microscopic volume
average of the variation of the work performed on the unit cell is assumed
to be equal to the variation of the internal work per unit of volume at the
macro scale as expressed by

1

v

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij +mijkδǫ

p
ij,k]dv = ΣijδEij (40)

Using Gauss theorem and the equilibrium equations, Eq. (5), we obtain

1

v

∫

s

[σijnjδui +mijknkδǫ
p
ij]ds = ΣijδEij (41)

Taking the variation of Eq. (35), δui = (δEij + δRij)Xj + δwi, and inserting
it in Eq. (41), we get

1

v

∫

s

σijnjXkdsδEik +
1

v

∫

s

σijnjXkdsδRik +
1

v

∫

s

σijnjδwids+

1

v

∫

s

mijknkδǫ
p
ijds = ΣijδEij (42)

The second term of the above equation vanishes upon application of Gauss’
theorem and equilibrium, since Rik is skew-symmetric. Under the assumption
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of periodic boundary conditions for the unit cell, the third and fourth term
vanish:

1

v

∫

s

σijnjδwids =
1
v

∫

s
Tiδwids = 0 (43)

1

v

∫

s

mijknkδǫ
p
ijds =

1
v

∫

s
Mijδǫ

p
ijds = 0 (44)

where Ti = σijnj and Mij = mijknk are the traction and higher order traction
on the surface of the unit cell. Hence, the macroscopic stress which is work
conjugate to Eij, is obtained from

[

1

v

∫

s

σijnjXkds

]

δEik = ΣikδEik (45)

Using Gauss’ theorem and the equilibrium, we can express the macroscopic
stress as the volume average of microscopic stress

Σij =
1

v

∫

v

σijdv (46)

Tab. 2 summarizes the connection between the scales.

13



Micro scale Macro scale Connection

Displacement ui Ui ui = Ui + wi

Conventional strain ǫij Eij Eij =
1
v

∫

v
ǫijdv

Non-conventional strain ǫpij,k Not Available Not Available

Conventional stress σij Σij Σij =
1
v

∫

v
σijdv

Non-conventional stress mijk Aij Not Applicable

Free energy ψ Ψ Ψ = 1
v

∫

v
ψdv

Internal work w W W = 1
v

∫

v
wdv

Conventional operator cijkl Cijkl Ψe =
1
2
CijklE

e
ijE

e
kl

Ψe =
1
v

∫

v
ψedv

Non conventional operator GL2
∗

Pijkl ΨT = 1
2
PijklE

p
ijE

p
kl

ΨT = 1
v

∫

v
ψTdv

Table 2: Connection between the scales.
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4. Unit cell problem formulation

A MMC with parallel circular fibers distributed regularly through the ma-
terial is considered (see Fig. 2a). Loading paths studied are macroscopic
tri-axial normal stress under a generalized plane strain condition and in-
plane shear (excluding out-of-plane shear stresses, Σ13 and Σ23). A unit cell
is extracted as shown in Fig. 2(b), where both macroscopic normal stresses
and in-plane shear stress are indicated. At the left-bottom corner of the unit
cell, a reference Cartesian coordinate system, xi, is located and aligned with
the sides of the cell. The positive direction of the third axis, x3, points in the
direction of the fibers. Fig. 2(c) shows the displacement boundary conditions
and dimensions of the unit cell. The radius of the fibers is denoted by r, the
dimensions of the unit cell in the direction of the coordinate axes (perpen-
dicular to the fiber direction) are denoted by a and b, while the thickness of
the unit cell is denoted by t.

b

a

r

∆̇2

∆̇1

∆̇3

∆̇4

x1

x2

x3

t

Σ11Σ12

Σ22

Σ33

x1

x2

(a) (b) (c)

Figure 2: (a) Regular distribution of fibers in the MMC. (b) Unit cell con-
taining one fiber with traction boundary condition. (c) Unit cell
containing one fiber with conventional displacement boundary
conditions used in numerical simulation representing combined
biaxial shear loading as shown in (b).

Fibers are considered to be purely elastic, whereas the matrix exhibits an
elasto-plastic behavior with gradient effects as described in Section 2. Since
plastic strain-gradients are of higher order nature, higher-order boundary
conditions must be prescribed in addition to the conventional conditions on
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displacements and surface tractions. At the exterior of the cell, periodic
boundary conditions are used (see Borg et al., 2008; Hussein et al., 2008;
Azizi et al., 2011a),

u̇b
1 = u̇t

1 and u̇b
2 = u̇t

2 − [∆̇3 − ∆̇2]

Ṫ b
1 = −Ṫ t

1 and Ṫ b
2 = −Ṫ t

2

u̇l
1 = u̇r

1 − ∆̇1 and u̇l
2 = u̇r

2 − ∆̇2

Ṫ l
1 = −Ṫ r

1 and Ṫ l
2 = −Ṫ r

2

Ṁ b
ij = −Ṁ t

ij and Ṁ l
ij = −Ṁ r

ij

[ǫ̇pij]
b = [ǫ̇pij]

t and [ǫ̇pij]
l = [ǫ̇pij]

r

(47)

In the above equations, the super-scripts b, t, l and r refer to bottom, top,
left and right of the unit cell, respectively. Note that in the above conditions,
displacements and plastic strains are enforced while the tractions and higher
order tractions are obtained. In addition to periodic boundary conditions for
the displacements and plastic strains, the following conditions are imposed

u̇1 = u̇2 = 0, at (x1, x2) = (0, 0)

u̇2 = ∆̇2, at (x1, x2) = (a, 0)

u̇1 = ∆̇1, u̇2 = ∆̇3, at (x1, x2) = (a, b)
u̇3 = 0 at x3 = 0

u̇3 = ∆̇4 at x3 = t
ǫ̇pij = 0, at (x2

1 + x2
2 = r2)

(48)

where ∆̇1, ∆̇2, ∆̇3 and ∆̇4 are prescribed displacement rate quantities. The
out-of-plane plastic strain, ǫp33, depends on the in-plane plastic strain compo-
nents by plastic incompressibility, ǫpii = 0. Similarly, M33 is given in terms of
the in-plane components M11 and M22, where Mii = 0. Finally, out-of-plane
deformation is controlled by specifying a constant out-of-plane normal strain
increment, ǫ̇33 = ∆̇4/t, with t denoting the reference thickness of the unit
cell. In summary, the problem in its general form has one material length
parameter, L∗, and four geometrical length parameters, a, b, r, t, in addition
to the conventional material parameters.

A strain based yield criterion at the macro scale is used where an overall
effective plastic strain (here calculated as the 2-norm) exceeds some threshold
value, ǫt, according to
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∣

∣Eij − C−1
ijklΣkl − Eres

ij

∣

∣ ≥ ǫt (49)

Proportionality of the macroscopic stresses is imposed such that

κ1 =
Σ22

Σ11

, κ2 =
Σ33

Σ11

and κ3 =
Σ12

Σ11

(50)

are constants within a proportional loading. Details on the numerical imple-
mentation can be found in Azizi et al. (2011b).

5. Numerical solution

5.1. Finite element method

Numerical solutions are obtained using the finite element method based
on the rate of the principle of virtual work (Gudmundson, 2004)

∫

v

[σ̇ijδǫ̇ij + (q̇ij − ṡij)δǫ̇
p
ij + ṁijkδǫ̇

p
ij,k]dv =

∫

s

[Ṫiδu̇i + Ṁijδǫ̇
p
ij]ds, (51)

where Ṫi and Ṁij are traction rate and moment traction rate, respectively.
An eight-node quadrilateral element is used for the in-plane displacement in-
terpolation, while a four-node quadrilateral element is used to interpolate the
plastic strain components. This choice provides a similar order of interpola-
tion for both plastic strain and the total strain. Additionally, an extra degree
of freedom is added for the entire mesh to represent the thickness change of
the unit cell (accommodating the generalized plane strain condition). Nodal
interpolation is used according to

u̇i =
2k
∑

n=1

Nn
u ḋ

n
i , ǫ̇pij =

3l
∑

m=1

Om
p ė

m
ij (52)

where Nn
u and Om

p are shape functions for the displacement and plastic strain
components, respectively and k = 8 and l = 4 are the number of nodes used
for the different interpolation schemes. ḋni and ėmij are nodal values at node
n for displacements and at node m for plastic strains, respectively. The
appropriate derivatives of the displacement field and the plastic strain field
can be expressed as

ǫ̇ij =
2k
∑

n=1

1

2

(

Bn
uj ḋ

n
i +Bn

uiḋ
n
j

)

, ǫ̇pij,k =
3l
∑

m=1

Qm
pkė

m
ij (53)
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where Bn
ij = (Nn

i,j+Nn
j,i)/2 and Qm

pk = Om
p,k are appropriate spatial derivatives

of the shape functions. The discretized equations obtained from the principle
of virtual work can be expressed by

[

Ku −Kup

−KT
up Kp

] [

U̇
ǫ̇
p

]

=

[

ḟu
ḟp

]

(54)

where ḟu =
∫

s
NT Ṫds is the nodal force vector and ḟp =

∫

s
OTṀds is the

higher order nodal force vector. The system matrices are given by

Ku =

∫

v

BTDeBdv (55)

Kp =

∫

v

[OT (De +Dp)O+QTDhQ]dv (56)

Kup =

∫

v

BTDePdv (57)

where De is the isotropic elastic constitutive matrix, Dp is the matrix of
plastic moduli and Dh is the matrix of higher order moduli. Further details
can be found in Fredriksson et al. (2009) and (Azizi et al., 2011b,a).

Figure 3: An example of finite element mesh used in the numerical compu-
tations.

Fig. 3 shows an example of finite element mesh, with 1408 elements
as used in the numerical computations. Numerical integration is performed
using the forward Euler method with small load increments. More details on
the numerical issues are found in Azizi et al. (2011b).
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5.2. Numerical calculation of elastic moduli (Cijkl)
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Figure 4: The five loading paths used to obtain both the elastic moduli,
Cijkl, and Bauschinger moduli, Pijkl.

It is important to mention that the macroscopic conventional constitu-
tive behavior, Σij = CijklE

e
kl, has not been identified as a priori during the

homogenization. Therefore, the macroscopic elastic operator, Cijkl, can be
determined numerically from the relation between variation of the macro-
scopic free energy and variation of the macroscopic deformation at any point
in the elastic regime. For the five loading paths, shown in Fig. 4 (transverse
and longitudinal loading, 0o and 45o in-plane shear and out-of-plane shear),
see Tab. 3 for the κ-values, the microscopic elastic energy is evaluated at
pseudo-time τ as

κ1 κ2 κ3

Transverse 0 0 0
Longitudinal 1 1000 0

0o-shear 0 0 1000
45o-shear −1 0 0

Out-of-plane shear 0 −1 0

Table 3: κ-values for the five different loading paths.

Ψτ+∆τ
e = Ψτ

e +
1

v

∫

v

στm
ij ǫ̇eijdv ·∆τ (58)

where τm = 2τ+∆τ
2

and ∆τ is pseudo-time increment. The components of
the macroscopic elastic operator, Cijkl, are solved using the relation, Ψe =
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1
2
CijklE

e
ijE

e
kl. Exploiting the material symmetries for the present problem,

all moduli can be solved from the following system of equations:
⎡

⎢

⎢

⎢

⎢

⎣

Ψ1
e

Ψ2
e

Ψ3
e

Ψ4
e

Ψ5
e

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢
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where for each of the five loading paths, the constants are defined according
to a = 1

2
(Ee

11)
2 + 1

2
(Ee

22)
2, b = Ee

11E
e
22, c = (Ee

11 + Ee
22)E

e
33, d = 1

2
(Ee

33)
2 and

e = 1
2
(Ee

12)
2. Using a reduced index notation according to 1 ≈ 11, 2 ≈ 22,

3 ≈ 33 and 4 ≈ 12, a matrix of elastic moduli is defined as

C =

⎡

⎢

⎢

⎣

C11 C12 C13 0
C12 C11 C13 0
C13 C13 C33 0
0 0 0 C44

⎤

⎥

⎥

⎦

(60)

where the decoupling between the shear component and the normal com-
ponents arises due to the material symmetries. Assuming the transversely
isotropic with a = b, results in C11 = C22 and C13 = C23.

5.3. Numerical calculation of Bauschinger moduli (Pijkl)

The main goal is to quantify the composite Bauschinger moduli, Pijkl (Eq.
27), which can be used to represent the trapped energy and the correspond-
ing Bauschinger stress at the macro scale. The details of the computational
scheme for evaluating the Bauschinger moduli is described below:

1. For the five loading paths, shown in Fig. 4 (transverse and longitudinal
loading, 0o and 45o in-plane shear and out-of-plane shear), the microscopic
trapped energy is evaluated, see Tab. 3.

The trapped energy at the pseudo-time τ is evaluated as conventionally
suggested by Benzerga et al. (2005) according to

Ψτ+∆τ
T = Ψτ

T +
1

v

∫

v

[στm
ij ǫ̇eij +mτm

ijk ǫ̇
p
ij,k]dv ·∆τ − 1

2
Στm

ij SijklΣ
τm
kl (61)

where Sijkl = C−1
ijkl is the macroscopic compliance tensor and τm = 2τ+∆τ

2
.
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2. The components of the tensor of Bauschinger moduli, Pijkl, are solved
for the maximum load using the relation, ΨT = 1

2
PijklE

p
ijE

p
kl. Exploiting the

material symmetries for the present problem, all moduli can be solved from
the following system of equations:

⎡
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⎢
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Ψ1
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⎥

⎥

⎥
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=

⎡

⎢

⎢

⎢

⎢

⎣

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

⎤

⎥
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⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

P1111
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⎤

⎥

⎥

⎥

⎥
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where for each of the five loading paths, the constants are defined according
to a = 1

2
(Ep

11)
2 + 1

2
(Ep

22)
2, b = Ep

11E
p
22, c = (Ep

11 + Ep
22)E

p
33, d = 1

2
(Ep

33)
2 and

e = 1
2
(Ep

12)
2. Using a reduced index notation according to 1 ≈ 11, 2 ≈ 22,

3 ≈ 33 and 4 ≈ 12, a matrix of Baushinger moduli is defined as, see Eq.
(60),

P =

⎡

⎢

⎢

⎣

P11 P12 P13 0
P12 P11 P13 0
P13 P13 P33 0
0 0 0 P44

⎤

⎥

⎥

⎦

(63)

where the decoupling between the shear component and the normal compo-
nents arises due to the material symmetries.

3. The four eigenvalues, Pλi
(i=1,. . .,4), and the corresponding unit eigen-

vectors, vλi , of P are then found and written as

P λ =
[

Pλ1 Pλ2 Pλ3 Pλ4

]

(64)

V =

⎡

⎢

⎢
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vλ1
1 vλ2

1 vλ3
1 vλ4

1

vλ1
2 vλ2

2 vλ3
2 vλ4

2

vλ1
3 vλ2

3 vλ3
3 vλ4

3

vλ1
4 vλ2

4 vλ3
4 vλ4

4

⎤

⎥

⎥

⎦

(65)

where vλi

j is the jth component of an eigenvector corresponding to the ith
eigenvalue.
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4. The plastic strain components are then transformed using the transfor-
mation matrix of unit eigenvectors according to

⎡

⎢

⎢

⎣

EP
λ1

EP
λ2

EP
λ3

EP
λ4

⎤

⎥

⎥

⎦

= V
T

⎡

⎢

⎢

⎣

EP
11

EP
22

EP
33

EP
12

⎤

⎥

⎥

⎦

(66)

where EP
λi

is the transformed plastic strain. Note that this is not a transfor-
mation of the plastic strain tensor itself, but rather a tranformation of the
vector of plastic strain components.

5. This transformation enables a diagonalized expression for the trapped
energy as

ΨT =
4

∑

i=1

1

2
Pλi

(

Ep
λi

)2
(67)

6. In the transformed plastic strain coordinate system, the Bauschinger stress
is calculated according to

Aλi
=

∂ΨT

∂Ep
λi

= Pλi
Ep

λi
(68)

where Aλi
is the transformed Bauschinger stress. To have a consistent anal-

ysis, the Cauchy stress, Σij, is also transformed according to
⎡

⎢

⎢
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Σλ1

Σλ2
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Σλ4
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Σ22

Σ33

Σ12

⎤

⎥

⎥

⎦

(69)

Due to the decoupling of the shear component and the normal components,
this is energetically consistent as ΣijE

p
ij =

∑3
i=1 Σλi

Ep
λi
+ 2Σλ4E

p
λ4
. Without

this decoupling, a careful consideration must be taken to transform stresses,
while maintaining the work-conjugacy.

It is noted that the above procedure results into the evaluation of the
Bauschinger stress, Aij, as the geometrical center of a multi dimensional yield
surface. Fig. 5 shows a flowchart, summarizing the described computational
procedure.
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6. Results

The conventional material parameters used for the matrix are h/Em =
0.1, σy/Em = 0.004, τy = σy/

√
3, νm = 0.3, and for the fibers, Ef = 5.7Em

and νf = 0.17. The dimension of the unit cell is defined by a = b, and
each numerical computation includes 1408 elements with 500 increments for
each sequence of loading, unloading and reloading. For a micron scale length
parameter of L∗ = 1μm in the present model, we analyze cases for L∗/r = 0,
L∗/r = 0.2 and L∗/r = 0.4, which corresponds to large fibers, fibers with
r = 5μm and r = 2.5μm, respectively.

The eigendirections, vλi , of the P -matrix, which are used to transform
the Bauschinger stress and plastic strain are plotted in Fig. 6 for a compos-
ite with Vf = 0.2 and L∗/r = 0.4. The initial yield surface of the composite
is shown at a number of different hydrostatic stress states, together with
the isotropic von Mises yield surface of the matrix material. The yield con-
dition for the composite yield surface is defined as in Azizi et al. (2011a),
with some threshold value for the two-norm of the plastic strain according to
|Ep

ij| ≥ 0.001. As can be seen, the composite yield surface has an almost el-
liptical cross section which is expanded compared to the matrix yield surface.
It is important to note that the third eigendirection of the P -matrix, vλ3 , is
parallel to the cylinder axis of the composite yield surface and it deviates from
the cylinder axis (the hydrostatic direction) of the matrix von Mises yield
surface. When applying stress along this third eigendirection in the stress
space, vanishing plastic strain is expected since the yield surface appears to
extend to infinity. The matrix of Bauschinger moduli, P , together with the
eigenvalues and eigendirections are shown in Tab. 5. The eigendirections
corresponding to the two smallest eigenvalues (numbers two and four) de-
fine in-plane shear loadings, whereas the eigendirection corresponding to the
first eigenvector defines an equi-biaxial loading. These observations can be
exploited to rewrite the yield function in a reduced form on what we refer to
as the Composite-plane (C-plane), which is the plane perpendicular to the
third eigendirection, vλ

3 . This is consistent with the expression for the yield
surface proposed in Eq. (32). Note that the material length scale does not
seem to affect the orientation of the C-plane.

In Fig. 7, the initial yield surface of the composite is shown on the
(vλ1 ,vλ2) stress coordinate system for two different material length scales.
This means that the yield surfaces are projected on the composite plane (C-
plane) passing the origin with the normal vector v

λ3 ∝ (1, 1, 1.35). As can
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be seen from Fig. 7, the assumption of expressing the yield surface as an
ellipse with the major axis in the Σλ1 stress-direction and minor axis in the
Σλ2 stress-direction according to Eq.(32) is reasonable. It is observed that
the expansion of the initial yield surface for the gradient dependent material
compared to the conventional material is considerable as also discussed by
(Azizi et al., 2011b,a).

Fig. 8 shows the scaled amount of trapped energy, 2ψT/(σyǫy), and effec-
tive plastic strain, ǫep/ǫy, during the loading in longitudinal (a,b), transverse
(c,d), 45o in-plane shear (e,f) and out-of-plane shear (g,h) directions with
Vf = 0.2 and L∗/r = 0. Significant plasticity with a relatively small trapped
energy is observed for 45o in-plane shear, out-of-plane shear and transverse
loading, which is opposite to the finding for the longitudinal case. For all
the loading paths, an abrupt change in the plastic strain at the fiber matrix
interface is seen, where the plastic strain on the matrix side of the interface
is non-zero and vanishes on the fiber side of the interface.

Similar contour plots are presented in Fig. 9 for a gradient dependent
material with L∗/r = 0.4 and Vf = 0.2. A relatively limited amount of
plasticity together with an enhanced trapped energy are noticed for all the
loading paths. An inhomogeneous distribution of the trapped energy for the
gradient dependent material is observed, when compared to the conventional
material. On the other hand, a smooth transition of the plastic strain from
zero level in the elastic fiber to the matrix occurs for the gradient dependent
material, which is not the case for the conventional material. This is in
accordance to the finding by Shu and Barlow (2000), where they found that
while a classical crystal formulation tends to over-predict the spatial gradient
of the deformation, the strain gradient formulation is able to predict a more
smooth field consistent with the experimental finding.

The trapped energy density is shown in Fig. 10 as a function of (a)
Ep

λ1
and (b) Ep

λ2
, for the gradient dependent material with L∗/r = 0.4 and

Vf = 0.2 under four different loading conditions discussed in relation to Fig.
9. The points represent computational results, and the solid lines represent
the macro scale approximation according to Eq. 67, which is observed to
give a rather close fit. As very little Ep

λ3
develops (consistent with the fact

that the third eigendirection, vλ3 , is along the composite cylindrical axis),
corresponding plots as a function of Ep

λ3
are omitted. Eigenvalues as the

fitting parameters are Pλ1 = 2.02Em, Pλ2 = 0.37Em and Pλ3 = 4901Em.
Tab. 4 shows further computational data of the loading paths imposed on
the unit cell to obtain these results.
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The geometric center of the subsequent yield surface is now compared
with the Bauschinger stress defined according to Eq. 68. The solid lines
in Fig. 11 show the Bauschinger stress on the C-plane for both transverse
(x1 direction) and longitudinal (x3 direction) loading with Vf = 0.2 and
L∗/r = 0.4. It is seen that transverse loading (Fig. 11a) generates a rela-
tively large Bauschinger stress and small plastic strain in the v

λ1-direction
compared to the v

λ2-direction. Under longitudinal loading (Fig. 11b), the
Bauschinger stress is only significant in the vλ1 direction as it vanishes in the
other directions (vλ2 and v

λ3). The fact that it vanishes in the vλ2-direction is
because v

λ2 represents in-plane shearing and this cannot be activated under
longitudinal loading due to the material symmetries. The markers repre-
sent the geometric centers of the yield surfaces. A good agreement with the
Bauschinger stress using the current approach, Eq. (68), is seen.

Fig. 12 shows the intersection of the C-plane, with v
λ3 = (1, 1, 1.35) as

the normal vector, with the matrix yield surface, initial yield surface and
a subsequent yield surface, for Vf = 0.2 and L∗/r = 0.4. Fig. 12a shows
results for loading along the transverse direction until the overall load defined
by Σ11 = 2σy and Fig. 12b shows results for longitudinal loading until
Σ33 = 4σy. As can be seen, for the longitudinal loading, kinematic hardening
dominates over anisotropic hardening (yield surface expansion), while for
transverse loading, both kinematic hardening and anisotropic hardening are
comparable. Comparing the Bauschinger stress according to Eq. 68 (circle-
markers), with the geometric center of the subsequent yield surface (cross-
markers), a good agreement is observed.

Fig. 13 shows corresponding results for (a) 45o in-plane shear direction
until the overall load Σ11 = −Σ22 = σy and (b) out-of-plane shear direction
until the overall load Σ11 = −Σ33 = 2σy. Anisotropic hardening is observed
to dominate for the 45o in-plane shear loading, while kinematic hardening
dominates for out-of-plane shear loading. Also here, good agreement is ob-
served between the Bauschinger stress (circle-markers), and the geometric
center of the subsequent yield surface (cross-markers).

The effect of the material length scale, L∗/r, on the trapped energy is
studied in Fig. 14 for a fiber volume fraction of Vf = 0.2 under (a) trans-
verse loading and (b) longitudinal loading. By decreasing the particle size and
the distance between the particles for the sake of constant Vf (or conversely
increasing the material length scale), the amount of the trapped energy in-
creases significantly under transverse loading and moderately under longitu-
dinal loading. This enhancement of the trapped energy for small fiber sizes is
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consistent with findings by Deshpande et al. (2005), where they showed that
the stored energy associated with the dislocations is enhanced by decreasing
the reinforcement size. The trapped energy for the conventional response
by the transverse loading is relatively small and hardly shows a quadratic
behavior, while the quadratic function is well suited for the other curves.

In Fig. 15, the Bauschinger stresses corresponding to the results in Fig.
14, Aλi

are plotted. The Figure shows that with higher values of the material
length scale, L∗/r, the Bauschinger stresses, Aλi

, increase significantly un-
der transverse loading and moderately under longitudinal loading consistent
with the behavior of the trapped energy. The solid lines are the calculated
Bauschinger stresses based on the values of Pλi

, shown in Tab. 5 and the
points are the geometric centers of the subsequent yield surfaces. The con-
siderable amount of the Bauschinger effect observed in the experiments con-
ducted by Corbin et al. (1996) and Taya et al. (1990) can not be captured by
conventional J2 flow theory. However, the gradient dependent analysis here
captures the enhanced Bauschinger effect better.

Figs. 16 and 17 show the effect of the material length scale, L∗/r, on
the subsequent yield surface for normal and shear loadings, respectively on
the C-plane for Vf = 0.2. The initial yield surfaces of the composite and
the matrix are also shown as references. For the conventional response with
L∗/r = 0, anisotropic hardening is significant for both transverse (Fig. 16a)
and 450 in-plane shear loading (Fig. 17a). This is opposite to the finding for
longitudinal (Fig. 16b) and out-of-plane shear (Fig. 17b) loadings, where
kinematic hardening dominates. For the gradient dependent material, all of
the loading paths show a significant amount of the kinematic hardening due
to the residual higher order stresses. The geometric center of the subsequent
yield surface and the Bauschinger stress using the current energy approach
agree adequately.

Fig. 18 shows the trapped energy in the unit cell under 0o in-plane shear
loading with Vf = 0.2 for both conventional (a,b) and gradient dependent
(c,d) material behavior. The overall loading is Σ12 = 1.74τy. A limited
amount of the trapped energy, 2ψT/(σyǫy), is observed for the conventional
material (Fig. 18a), even in the presence of a relatively high plastic strain,
ǫep/ǫy (Fig. 18b). On the other hand, a considerable amount of energy is
trapped for the gradient dependent material (Fig. 18c) even under limited
plastic deformations (Fig. 18d). The deformation of the unit cell is here
shown with 30 times enlarged, demonstrating that for the gradient dependent
material, the unit cells boundaries are less curved due to restricted plasticity.
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A quantitative study of the trapped energy is shown in Fig. 19(a) and
the corresponding Bauschinger stress in Fig. 19(b), for 0o in-plane loading.
The solid lines are calculated based on the fitted value, Pλ4 = 0.12Em as
shown in Tab. 5. The amount of trapped energy and the corresponding
Bauschinger stress almost vanish for the conventional case, while for the
gradient dependent material with L∗/r = 0.4 a significant amount of trapped
energy is stored leading to a significant Bauschinger stress. Note that due to
the material symmetries assumed in the present unit cell model, the 0o in-
plane shear loading trial does not generate plasticity in the vλ1 , vλ2 and v

λ3

directions. As a result, the Bauschinger stress can be conventionally defined
as (see Azizi et al., 2011b,a)

Aλ4 = A12 =
(Σf

12 + Σsy
12)

2
(70)

where Σf
12 is stress at the end of loading and Σsy

12 is the stress at the sub-
sequent yield point under reverse loading. In Fig. 19(b), the circles repre-
sent the geometric center of the yield surface during loading. The enhanced
Bauschinger stress is in accordance with results for pure shear of a slab be-
tween rigid plates studied by Niordson and Legarth (2010). It is emphasized
that the conventional definition for the Bauschinger stress, Eq. (70), in the
composite under multi axial loadings can not represent the geometrical center
of the multi dimensional yield surface, while the definition with the current
approach, Eq. (68), can.

As it was seen, the material length scale does not affect the orientation of
the composite cylinder while it expands. However, the fiber volume fraction,
Vf , not only expands the yield surface but also changes the orientation of it.
This is shown in Tab. 6, where the expansion is represented by the eigen-
values of P -matrix and the orientation is represented by the eigendirections
of P -matrix. It is seen that for a very small Vf (close to the homogeneous
material), the third eigendirection, vλ3=( 0.57,0.57,0.57), is parallel to the
von Mises hydrostatic pressure line as expected.

7. Conclusion

A general modeling approach for the Bauschinger stress in Metal Matrix
Composites has been presented, while the intrinsic size-effect due to rein-
forcement size is modeled using an energetic higher order strain gradient
plasticity theory at the micro scale. Homogenization is carried out subject
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to the Hill-Mandel energy condition and a conventional plasticity model with
kinematic hardening is obtained, where the Bauschinger stress develops due
to trapped energy under macroscopic plastic straining. The numerical data
is obtained from unit cell studies of a single fiber using five loading paths un-
der generalized plain strain conditions; 1) transverse loading, 2) longitudinal
loading, 3) 0o in-plane shear, 4) 45o in-plane shear and 5) out-of-plane shear.
The thermodynamically consistent models at the micro and macro scales lead
to a relationship between the trapped energy (due to residual stresses and
residual higher order stresses) and the macroscopic plastic strain state that
was approximated by a quadratic relationship. The ensuing linear relation-
ship between the Bauschinger stress and the macroscopic plastic strain was
shown to agree well with comparisons of the displaced geometric center of
the yield surfaces calculated from unit cell studies.

The eigendirections of the Bauschinger moduli (P -matrix) were found
to be the cylindrical and planar axes of the composite yield surface. This
was exploited to reduce the expression for the yield function whereby the
Bauschinger stress was studied on the composite plane (C-plane) perpendic-
ular to the eigendirection corresponding to the largest eigenvalue.

The effect of the reinforcement size on the trapped energy, the Bauschinger
stress and the plastic strain level has been investigated. A considerable in-
crease of the trapped energy and the corresponding Bauschinger stress with
decreasing fiber size is found, as well as significant suppression of the plastic
strain at the fiber-matrix interface. It is concluded that the length scale in
the present strain gradient formulation increases the overall hardening of the
composite, with decreasing particle size.

It is highlighted that the material length scale does not change the orien-
tation of the composite cylinder, but can expand it. The fiber volume fraction
as a conventional parameter can both expand and deviate the orientation of
the composite cylinder.
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Loading direction L∗/r Maximum loading Ep
11
/ǫy Ep

22
/ǫy Ep

33
/ǫy 2ΨT/(σyǫy)

Longitudinal 0.4 Σ33 = 3σy -0.143 -0.143 0.21 0.284
Longitudinal 0 Σ33 = 3σy -0.197 -0.197 0.3 0.329
Transverse 0.4 Σ11 = 2σy 1.08 -0.854 -0.172 0.812
Transverse 0 Σ11 = 1.6σy 3.749 -3.291 -0.330 0.399

45o in-plane shear 0.4 Σ11 = −Σ22 = σy 0.929 -0.929 0 0.644
45o in-plane shear 0 Σ11 = −Σ22 = 0.8σy 3.45 -3.45 0 0.048
Out-of-plane shear 0.4 Σ11 = −Σ33 = 2σy 1.38 -0.715 -0.497 1.827
Out-of-plane shear 0 Σ11 = −Σ33 = 1.6σy 2.339 -1.53 -0.593 1.104

Table 4: Computational results of the imposed loading paths on the unit
cell with Vf = 0.2.

L∗/r = 0 L∗/r = 0.2 L∗/r = 0.4

1

Em
P

⎡

⎢

⎢

⎣

206.9 206.9 282.9 0

206.9 206.9 282.9 0

282.9 282.9 390.1 0

0 0 0 0.004

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

2420.9 2420.8 3261.7 0

2420.8 2420.9 3261.7 0

3261.7 3261.7 4398.3 0

0 0 0 0.031

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1307.4 1307.0 1728.3 0

1307.0 1307.4 1728.3 0

1728.3 1728.3 2288.9 0

0 0 0 0.123

⎤

⎥

⎥

⎦

1

Em
P λi

[

1.59 0.002 802.2 0.004
] [

1.966 0.126 9238 0.030
] [

2.020 0.373 4901 0.123
]

V

⎡

⎢

⎢

⎣

0.49 0.70 0.50 0.00
0.49 −0.70 0.50 0.00
−0.71 0.00 0.69 0.00
0.00 0.00 0.00 1.00

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.49 0.70 0.51 0.00
0.49 −0.70 0.51 0.00
−0.72 0.00 0.69 0.00
0.00 0.00 0.00 1.00

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.48 0.70 0.51 0.00
0.48 −0.70 0.51 0.00
−0.73 0.00 0.68 0.00
0.00 0.00 0.00 1.00

⎤

⎥

⎥

⎦

Table 5: Effect of the material length scale, L∗/r, on the P -matrix, eigen-
values of the P -matrix (fitting parameters) and eigendirections of
P -matrix (composite cylindrical axes) for Vf = 0.2.
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Vf = 0.001 Vf = 0.1 Vf = 0.3

1

Em
P

⎡

⎢

⎢

⎣

27.97 27.97 27.99 0

27.97 27.97 27.99 0

27.99 27.99 28.03 0

0 0 0 0.0001

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1075.1 1074.9 1260.9 0

1074.9 1075.1 1260.9 0

1260.9 1260.9 1480.0 0

0 0 0 0.032

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1143.8 1142.3 1749.0 0

1142.3 1143.8 1749.0 0

1749.0 1749.0 2685.1 0

0 0 0 0.40

⎤

⎥

⎥

⎦

1

Em
P λi

[

0.004 0.0002 83.96 0.0001
] [

0.585 0.147 3629 0.032
] [

4.19 1.51 4967 0.40
]

V

⎡

⎢

⎢

⎣

0.41 0.70 0.57 0.00

0.41 −0.70 0.57 0.00

−0.81 0.00 0.57 0.00

0.00 0.00 0.00 1.00

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.45 0.70 0.54 0.00

0.45 −0.70 0.54 0.00

−0.77 0.00 0.64 0.00

0.00 0.00 0.00 1.00

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.52 0.70 0.48 0.00

0.52 −0.70 0.48 0.00

−0.68 0.00 0.73 0.00

0.00 0.00 0.00 1.00

⎤

⎥

⎥

⎦

Table 6: Effect of the fiber volume fraction, Vf , on the P -matrix, eigen-
values of the P -matrix (fitting parameters) and eigendirections of
P -matrix (composite cylindrical axes) for L∗/r = 0.4.
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Figure 5: The computational procedure for identifying the material model’s

parameters at the macro scale.
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Figure 8: Contours of microscopic trapped energy, 2ψT/(σyǫy), (a,c,e,g) and
the corresponding effective plastic strain, ǫep/ǫy, (b,d,f,h) with
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Figure 9: Trapped energy, 2ψT/(σyǫy), (a,c,e,g) and the corresponding ef-
fective plastic strain, ǫep/ǫy, (b,d,f,h) with Vf = 0.2 and L∗/r = 0.4
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(g,h) out-of-plane shear.
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Figure 12: Matrix yield surface (thin solid line), initial yield surface (thick
solid line) and subsequent yield surface (dot-line) on the C-plane
with v

λ3 = �en = (1, 1, 1.35) as normal vector and with Vf = 0.2
and L∗/r = 0.4 for loading in (a) transverse direction until Σ11 =
2σy. (b) longitudinal direction until Σ33 = 4σy. Cross point is
the geometric center of the SYS and circle point is the computed
Bauschinger stress, given by Eq. 68.



0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

Σ11/σyΣ22/σy

Σ
3
3
/
σ
y

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

Σ11/σyΣ22/σy

Σ
3
3
/
σ
y

(a) (b)

Figure 13: Matrix yield surface (thin solid line), initial yield surface (thick
solid line) and subsequent yield surface (dot-line) on the C-plane
with v

λ3 = �en = (1, 1, 1.35) as normal vector and with Vf = 0.2
and L∗/r = 0.4 for loading in (a) 45o in-plane shear direction
till Σ11 = σy. (b) out-of-plane shear direction till Σ11 = 2σy.
Cross point is the geometric center of the SYS and circle point
is the computed Bauschinger stress, Eq. 68.
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imation with the parameters shown in Tab. 5.
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Figure 15: Effect of the material length scale, L∗/r, on the geometric cen-
ter of the subsequent yield surface in the transformed coordinate
system with Vf = 0.2 for (a) transverse loading (x1). (b) longitu-
dinal loading (x3). Solid line is the macroscopic approximation
with the parameters shown in Tab. 5 and the points are the
geometric center of the SYS.
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Figure 16: Effect of the material length scale, L∗/r, on the matrix yield
surface (thin solid line), initial yield surface (thick solid line)
and subsequent yield surface (dot-line) on a plane with v

λ3 =
(1, 1, 1.35) as the normal vector and with Vf = 0.2 for (a) trans-
verse loading. (b) longitudinal loading. Cross point is the geo-
metric center of the SYS and circle point is the computed center
of the SYS using Eq. 68.
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Figure 17: Effect of the material length scale, L∗/r, on the matrix yield
surface (thin solid line), initial yield surface (thick solid line)
and subsequent yield surface (dot-line) on a plane with v

λ3 =
(1, 1, 1.35) as the normal vector and with Vf = 0.2 and L∗/r =
0.4 for (a) 45o in-plane shear loading. (b) out-of-plane shear
loading. Cross point is the geometric center of the SYS and
circle point is the computed center of the SYS using Eq. 68.
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Figure 18: Trapped energy, 2ψT/(σyǫy), (a,c) and corresponding effective
plastic strain, ǫep/ǫy, (b,d) in 0o in-plane shear with Vf = 0.2.
(a) and (b) L∗/r = 0. (c) and (d) L∗/r = 0.4. (Deformation is
30 times scaled)
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1. Introduction

Metal Matrix Composites (MMCs) are widely used due to their improved
properties, e.g. high stiffness, low density, good damping capabilities, high
wear and corrosion resistance. However, disadvantages like poor ductility
and fracture properties also occur (see McDanels, 1985).

Even though both the pure matrix material and the reinforcing fiber ma-
terial are isotropic at the micro scale, MMC at the macro scale behaves as a
heterogeneous media. Thus, the heterogeneity changes the phenomenological
behavior at the macroscopic scale in terms of the yield surface, the flow rule
and the hardening. Experimental results show a distinctive change of the
shape of yield surfaces depending on loading conditions and load paths, (see
Phillips and Juh-Ling, 1972; Gupta and H.A., 1983; Kowalsky et al., 1999).

To capture such experimental observations different hardening rules were
proposed in the past to specify the evolution of the yield surface during plas-
tic deformation, see Jansson (1992, 1995); Iyer et al. (2000); Lee et al. (2004);
Suprun (2006); Chung and Ryou (2009); Lissenden (2010). The models try
to capture both anisotropic hardening (expansion) and kinematic harden-
ing (translation). Even for pure homogeneous materials subjected to a large
deformation, anisotropic hardening may occur due to the rotation and elon-
gation of the grains. Such phenomena have been investigated by specifying
an evolution law for the coefficients of anisotropy in the anisotropic yield
function by Hill (1948), see for instance Kuroda (1997). For an anisotropic
non-local material model, anisotropic hardening has also been considered
when analyzing necking (Legarth, 2008).

An interesting result obtained by micromechanical finite element analyses
is that the overall response of a MMC is not necessarily pressure indepen-
dent even if the response for the elastic fibers and the inelastic metal matrix
are pressure independent, see Dvorak et al. (1973). This is associated with
the constraint provided by the fibers and the large difference between the
local stress field compared to the overall stress. Aboudi (1990) derived a
somewhat general micromechanical theory for predicting the overall behav-
ior of MMCs. Both initial and subsequent yield surfaces under a variety of
mechanical loadings and anisothermal conditions were found. Drucker and
Prager (1952), Liu et al. (1997), Deshpande et al. (2001) improved previous
proposed yield criteria of Hill (1948) and Barlat et al. (1991) to consider the
hydrostatic pressure dependency. Voyiadjis and Thiagarajan (1995) devel-
oped a pressure dependent yield function which can be reduced to an existing
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conventional anisotropic yield function.

Hutchinson (2000) have shown that for problems with lengths falling in
the range from roughly a fraction of a micron to tens of microns a size-
effect exists which conventional plasticity cannot capture. Keeping the fiber
volume fraction of SiC reinforcement constant, Lloyd (1994) showed that
the response of the composite, depends on whether the reinforcement size
was 16 μm or only 7.5 μm. Thus, composite materials exhibit a size-effect.
The macroscopic yield function of MMCs should also include such intrinsic
size-effect of the fibers. Furthermore, Mughrabi (2001), Fleck et al. (2003)
and Gao and Huang (2003) showed that for composite materials, disloca-
tions cannot pass from matrix into the fiber and consequently pile up at the
fiber/matrix interface. This behavior cannot be modeled by conventional
plasticity since no size effects exist in the model. Theories of strain gradient
plasticity have such capabilities to consider constraints on the plastic flow,
(e.g. Aifantis, 1984; Fleck and Hutchinson, 1997; Bassani, 2001; Gurtin, 2004;
Gudmundson, 2004; Lele and Anand, 2008; Fleck and Willis, 2009a,b), and
this has been investigated by several authors, see Borg et al. (2006); Legarth
and Niordson (2010). The anisotropic property of MMCs incorporating the
gradient theories have also been investigated. Legarth (2007) generalized
the isotropic single-parameter strain-gradient plasticity model of Fleck and
Hutchinson (2001) in order to account for plastic anisotropy in a finite strain
elastic viscoplastic formulation. Feng et al. (2010) investigated the pressure
sensitivity of the yield surface using strain gradient plasticity theory and
Drucker Prager yield function.

In this paper, MMC consisting of regular distributed elastic fibers em-
bedded in an elasto-plastic material is analyzed by a finite element unit cell
model under generalized plane strain conditions. At the micro scale, the
matrix is governed by the strain gradient plasticity theory proposed by Gud-
mundson (2004), while a conventional plasticity theory is desirable at the
macro scale. The relationship between local flow in the matrix and overall
flow of the composite is explored. The classical anisotropic Hill yield function,
Hill (1948), is extended such that the pressure dependency, the Bauschinger
stress and the size effects are considered. It will be shown, that depending
on the fiber volume fraction, the anisotropic yield surface of the MMC is
inclined compared to the standard isotropic Mises yield surface. Both initial
and subsequent yield surfaces are studied and the corresponding coefficients
of anisotropy and the Bauschinger stresses are extracted.
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2. Material Model

2.1. Material model at the micro scale

The material model inside the micro structure is the rate independent en-
ergetic strain-gradient plasticity theory proposed by Gudmundson (2004),
which accounts for the gradients of the full plastic strain tensor. The first
and second law of thermodynamics in the incremental form are written as,
Chaboche (1993)

ẇ = ḋ + ψ̇ (1)

ḋ = ẇ − ψ̇ ≥ 0

where ẇ is the rate of total work, ḋ is the dissipation rate and ψ̇ is the
rate of the free energy. In a more general thermodynamic framework Eq.
(1) would contain additional heat flux and entropy production terms but
the purely mechanical calculations here provide no basis for including these
contributions. The variation of the internal virtual work, δwI , is considered
as

δwI =

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij + mijkδǫ

p
ij,k]dv (2)

where v is the micro volume and ǫij is the total strain given as the summation
of elastic strain, ǫe

ij, and plastic strain, ǫp
ij, i.e. ǫij = ǫe

ij + ǫp
ij. The Cauchy

stress, the deviatoric part of the Cauchy stress, the micro stress (work conju-
gate to the plastic strain) and the higher order stress (work conjugate to the
plastic strain gradients) are denoted by σij, sij, qij and mijk, respectively.
By application of the Gauss theorem on Eq. (2), one finds

δwI =

∫

s

[σijnjδui + mijknkδǫ
p
ij]ds (3)

−
∫

v

[σij,jδui + (mijk,k + sij − qij)δǫ
p
ij]dv

where ni is the outward unit normal vector to the surface of the micro volume,
s, and ui is the displacement vector. For arbitrary variations of displacements
and plastic strains, the last term has to vanish and two sets of equilibrium
equations are obtained as

σij,j = 0 in v (4)

mijk,k + sij − qij = 0 in v
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Eq. (3) may then be rewritten as
∫

s

[σijnjδui + mijknkδǫ
p
ij]ds =

∫

s

[Tiδui + Mijδǫ
p
ij]ds (5)

where Ti = σijnj and Mij = mijknk are traction and moment traction, re-
spectively. This surface integral may be identified as the external work, δwE,
done on the volume, v. The principle of virtual work can then be written as
δwI = δwE, or

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij + mijkδǫ

p
ij,k]dv =

∫

s

[Tiδui + Mijδǫ
p
ij]ds (6)

or in the incremental form
∫

v

[σ̇ijδǫ̇ij + (q̇ij − ṡij)δǫ̇
p
ij + ṁijkδǫ̇

p
ij,k]dv =

∫

s

[Ṫiδu̇i + Ṁijδǫ̇
p
ij]ds (7)

which will be used for the finite element formulation.
By imposing the incremental version of the work, ẇ = ẇI = ẇE, from

Eq. (2), on the second law of the thermodynamics, Eq. (1)b, and using
σij ǫ̇

p
ij = sij ǫ̇

p
ij, one can have

(

σij −
∂ψ

∂ǫe
ij

)

ǫ̇e
ij +

(

qij −
∂ψ

∂ǫp
ij

)

ǫ̇p
ij +

(

mijk −
∂ψ

∂ǫp
ij,k

)

ǫ̇p
ij,k ≥ 0 (8)

where the free energy, ψ, may in general depend on the elastic strain as
well as the plastic strain and its gradients. However, here the free energy is
assumed to depend only on the elastic strains and plastic strain gradients,
see Fredriksson et al. (2009), as

ψ
(

ǫe
ij, ǫ

p
ij,k

)

=
1

2
cijklǫ

e
ijǫ

e
kl +

1

2
GL2

∗
ǫp
ij,kǫ

p
ij,k (9)

Here, cijkl is the isotropic tensor of the elastic moduli, defined in terms of
Young’s modulus, E, and Poisson’s ratio, ν, L∗ is a material length scale pa-
rameter and G is the elastic shear modulus. Assuming that both the Cauchy
stress and the higher order stress are purely energetic, two constitutive equa-
tions are extracted as

σij =
∂ψ

∂ǫe
ij

= cijklǫ
e
kl, mijk =

∂ψ

∂ǫp
ij,k

= GL2
∗
ǫp
ij,k (10)
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The second law of thermodynamics, Eq. (8), then reads

qij ǫ̇
p
ij ≥ 0 (11)

as ∂ψ

∂ǫ
p
ij

= 0. In order to fulfill this inequality, and thereby ensure non-negative

dissipation, a dissipation potential function, f ∗ = f ∗(qij), is defined as

ǫ̇p
ij = λ̇

∂f ∗

∂qij

(12)

where λ̇ is a microscopic scalar plastic multiplier and f ∗ is a convex function.
Moreover, Eq. (12) implies that the plastic strain increment is normal to
the dissipation potential function. Associative plastic flow is assumed, such
that plastic potential function can be substituted by the yield surface, f , see
Lubliner (1990)

f ∗(qij) = f(qij) (13)

The microscopic yield surface, f , is then defined as

f =

√

3

2
qijqij − σf = 0 (14)

where the instantaneous flow stress is given by σf = σy +hǫp
e, with σy denot-

ing the initial yield stress, h denoting the linear hardening modulus and ǫp
e

denoting the accumulated effective plastic strain, i.e. ǫp
e =

∫

ǫ̇p
edτ in which

τ is ”pseudo-time” and ǫ̇p
e =

√

2
3
ǫ̇p
ij ǫ̇

p
ij. Then the flow rule which ensures the

normality of the plastic strain increment to the yield surface is obtained by

ǫ̇p
ij = λ̇

∂f

∂qij

=
3

2

qij

qe

ǫ̇p
e = rij ǫ̇

p
e (15)

where qe =
√

3
2
qijqij is the effective micro stress and rij = 3

2

qij

qe
is the direc-

tion of the plastic strain increment.

For the numerical implementation, the evolution law of the micro stress,
q̇ij, needs to be extracted. By considering rij = 3

2

qij

qe
, or equivalently qij =

2
3
qerij, one finds

q̇ij =
˙2

3
qerij =

2

3
(q̇erij + qeṙij) (16)

More discussion on the computational implementation of the above material
model can be found in Fredriksson et al. (2009) and Azizi et al. (2011c).
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2.2. Material model at the macro scale

At the macroscopic scale, a conventional plasticity is considered where the
first and second law of thermodynamics are satisfied, see also Lubliner (1972)
and Chaboche (1993). Capital symbols are used to represent macroscopic
quantities. Thus

Ẇ = Ḋ + Ψ̇ (17)

Ḋ = Ẇ − Ψ̇ ≥ 0

where Ẇ is the rate of total energy, Ḋ is the dissipation rate, and Ψ̇ is the
rate of the free energy. Again, heat flux and entropy production terms are
ignored. The rate of the total energy is considered as

Ẇ = ΣijĖij (18)

where Ėij = Ėe
ij + Ėp

ij is the rate of total strain given as the sum of the
elastic and plastic parts. An engineering definition for the macroscopic plastic
strain, Ep

ij, is considered as

Ep
ij = Eij − C−1

ijklΣkl (19)

where Σij is the Cauchy stress and Cijkl is the tensor of the elastic moduli
for the composite defined according to the numerical differentiation of the

macroscopic quantities in the elastic regime as Cijkl =
∂Σij

∂Ekl
=

Στ+∆τ
ij −Στ

ij

Eτ+∆τ
kl

−Eτ
kl

where Δτ is the ”pseudo-time” increment, see also Miehe (1996).
Due to the assumption that no plastic strain gradient effects occur at the
macroscale, the macroscopic free energy is taken to depend on the macro-
scopic elastic and plastic strains, Ψ = Ψ(Ee

ij, E
p
ij), and not on the gradients

of the macroscopic plastic strains. Thus, the specific form adopted here is,
see also Rice (1971) and Rosakis et al. (2000)

Ψ(Ee
ij, E

p
ij) =

1

2
CijklE

e
ijE

e
kl +

1

2
PijklE

p
ijE

p
kl (20)

with

Ψ̇(Ee
ij, E

p
ij) =

∂Ψ

∂Ee
ij

Ėe
ij +

∂Ψ

∂Ep
ij

Ėp
ij (21)

where Pijkl are the moduli providing the plastic strain contribution to the
free energy. Upon using Ėij = Ėe

ij + Ėp
ij and imposing Eqs. (18) and (21)
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on the macroscopic second law of thermodynamics, Eq. (17)b, the inequality
reads

(

Σij −
∂Ψ

∂Ee
ij

)

Ėij +

(

∂Ψ

∂Ee
ij

− ∂Ψ

∂Ep
ij

)

Ėp
ij ≥ 0 (22)

Since Ėij can be chosen arbitrarily, one way to ensure that the first term of
Eq. (22) is always non-negative, is to enforce that

Σij =
∂Ψ

∂Ee
ij

= CijklE
e
kl (23)

It is seen that the Cauchy stress, Σij, is work conjugate to the elastic strains,
Ee

ij.

The second term of Eq. (22) depends on the internal variable Ėp
ij, which

cannot be chosen arbitrarily. Hence, to fulfill the inequality of Eq. (22) the
Bauschinger stress, Aij, is defined as, see also Rice (1971), Chaboche (1993)
and Rosakis et al. (2000)

Aij =
∂Ψ

∂Ep
ij

= PijklE
p
kl (24)

Then the dissipation rate, Eq. (22), is rewritten as

(Σij − Aij)Ė
p
ij ≥ 0 (25)

also known as Drucker’s postulate, Drucker (1951). For the above equation to
be always non-negative, a dissipation potential function, Φ∗ = Φ∗(Σij −Aij),
is defined as

Ėp
ij = Λ̇

∂Φ∗(Σij − Aij)

∂(Σij − Aij)
= Λ̇

∂Φ∗(Σij − Aij)

∂Σij

(26)

where Λ̇ is a macroscopic scalar plastic multiplier and the last equality are
justified due to the fact that the Bauschinger stress, Aij, is constant within
each increment. In view of the principle of maximum plastic resistance,
Lubliner (1990), this approach is a mathematical statement of two ideas:
(I) The dissipation potential function is convex, and (II) the plastic strain
is normal to the dissipation potential function. Incorporating the Drucker’s
postulate, Drucker (1951), as a non-thermodynamical approach for the plas-
tic work definition, it is obtained that the yield surface is itself a plastic
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potential. Hence, normality is associated with the yield criterion or in other
words an associative flow rule is considered as

Φ∗(Σij − Aij) = Φ(Σij − Aij) (27)

where Φ(Σij −Aij) is the macroscopic yield function and Aij is the center of
the yield surface.

The macroscopic yield function, Φ(Σij −Aij), for a composite material is
generally anisotropic and pressure dependent. Therefore, we here choose to
extend the classical anisotropic pressure independent yield function by Hill,
Hill (1948), to have pressure dependency and to account for the Bauschinger
stress, Aij, as the center of the yield surface, see also Kuroda (1999). The
two out-of-plane shear components, Σ13 and Σ23, are ignored, such that only
four stress components enter, namely Σ11, Σ22, Σ33 and Σ12. Following the
ideas of Azizi et al. (2011a) for the pressure dependency, the four eigenvalues,
Pλi

, and the corresponding eigenvectors, �v (Pλi
), i = 1 . . . 4, of the P -modulus,

Pijkl, are calculated and written as

Pλ =
[

Pλ1
Pλ2

Pλ3
Pλ4

]

(28)

V =

⎡

⎢

⎢

⎢

⎢

⎣

v
(Pλ1

)

1 v
(Pλ2

)

1 v
(Pλ3

)

1 v
(Pλ4

)

1

v
(Pλ1

)

2 v
(Pλ2

)

2 v
(Pλ3

)

2 v
(Pλ4

)

2

v
(Pλ1

)

3 v
(Pλ2

)

3 v
(Pλ3

)

3 v
(Pλ4

)

3

v
(Pλ1

)

4 v
(Pλ2

)

4 v
(Pλ3

)

4 v
(Pλ4

)

4

⎤

⎥

⎥

⎥

⎥

⎦

(29)

where v
(Pλi

)

j is the j−th component of an eigenvector corresponding to the
i−th eigenvalue. The Cauchy stress, Σij, and the Bauschinger stress, Aij,
are then transformed as

⎡

⎢

⎢

⎣

Σλ1

Σλ2

Σλ3

Σλ4

⎤

⎥

⎥

⎦

= VT

⎡

⎢

⎢

⎣

Σ11

Σ22

Σ33

Σ12

⎤

⎥

⎥

⎦

(30)

⎡

⎢

⎢

⎣

Aλ1

Aλ2

Aλ3

Aλ4

⎤

⎥

⎥

⎦

= VT

⎡

⎢

⎢

⎣

A11

A22

A33

A12

⎤

⎥

⎥

⎦

(31)
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where Σλi
and Aλi

are the transformed Cauchy stress and Bauschinger stress,
respectively, see also Karafillis and Boyce (1993). It is emphasized that the
transformation in Eqs. (30) and (31) is a change of basis in which the same
four stress components exist, but labelled with the subscript λi. Fig. 1
shows the new components of the Cauchy stresses as compared to the nor-
mal stresses in the Cartesian coordinate system.

Σ11

Σ22

Hydrostatic
pressure line

Σλ3

Σ33

Σλ2

Σλ1

Composite cylinderical axis

Figure 1: Stress, Σij, and transformed stress, Σλi
, used to define the pres-

sure dependent composite yield surface.

The stress component Σλ3
is parallel to the composite yield surface axis.

This implies that infinite large loading by Σλ3
alone yields zero plastic de-

formations. Or in other words, an infinite large Σλ3
-loading of the com-

posite is similar to infinite large loading along the hydrostatic pressure line,
(Σ11, Σ22, Σ33) = (1, 1, 1), on an isotropic material. Hence, Σλ3

may be ex-
cluded from the formulation of anisotropic yield function here. Thus, three
stress components remain, namely Σλ1

, Σλ2
and Σλ4

. Furthermore, Σλ1
and

Σλ2
are the major and minor axes of the elliptic cross section of the composite

yield surface cylinder, yielding a reduced expression of the composite yield
function as

Φ = F λΣ̃2
λ1

+ HλΣ̃2
λ2

+ NλΣ̃2
λ4

− 1 (32)
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where Σ̃λi
= Σλi

−Aλi
and F λ, Hλ and Nλ are the coefficients of anisotropy

having units of [MPa−2]. For plastic deformations to happen, the stress state
must not leave the flow surface, and a consistency relation has to be fulfilled
as

Φ̇ =
∂Φ

∂Σ̃λ1

˙̃Σλ1
+

∂Φ

∂Σ̃λ2

˙̃Σλ2
+

∂Φ

∂Σ̃λ4

˙̃Σλ4
+ (33)

∂Φ

∂F λ
Ḟ λ +

∂Φ

∂Hλ
Ḣλ +

∂Φ

∂Nλ
Ṅλ = 0

Kinematic hardening is considered by the evolution of Aλi
and anisotropic

hardening is accounted for through the evolution of F λ, Hλ and Nλ.
The anisotropic parameters are assumed to be defined as a linear function of
the transformed plastic strains, EP

λi
, as

F λ = F λ
0 (1 + f1E

P
λ1

+ f2E
P
λ2

+ f4E
P
λ4

) (34)

Hλ = Hλ
0 (1 + h1E

P
λ1

+ h2E
P
λ2

+ h4E
P
λ4

)

Nλ = Nλ
0 (1 + n1E

P
λ1

+ n2E
P
λ2

+ n4E
P
λ4

)

where F λ
0 , Hλ

0 and Nλ
0 are parameters of the initial anisotropic yield surface

and fi, hi and ni are anisotropic hardening coefficients. The transformed plas-
tic strain, EP

λ3
, does not enter Eq. (34) due to the same argument excluding

Σλ3
from the yield function, Eq. (32). The initial anisotropic parameters,

F λ
0 , Hλ

0 and Nλ
0 , are determined by three numerically calculated stress points

at the initial composite yield surface,
(

Σ2
λ1

)

i
,
(

Σ2
λ2

)

i
and

(

Σ2
λ4

)

i
for i = 1, 2, 3

(that is nine data values). Imposing the initial conditions, EP
λi

= Aλi
= 0,

on Eq. (32) results into the following linear system of equation to be solved

⎡

⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤

⎦

⎡

⎣

F λ
0

Hλ
0

Nλ
0

⎤

⎦ =

⎡

⎣

1
1
1

⎤

⎦ (35)

where ai =
(

Σ2
λ1

)

i
, bi =

(

Σ2
λ2

)

i
, ci =

(

Σ2
λ4

)

i
and i = 1, 3 are the three chosen

stress points on the initial composite yield surfaces.

During subsequent loading expansion of the composite yield surface has to
be considered. Having nine unknowns, hi, fi and ni where i = 1, 2, and
4, see Eq. (34), sufficient numerical data have to be generated. Therefore,
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Figure 2: Three loading trials for computation of the anisotropic hardening
coefficients, hi, fi and ni, see Eq. (34).

three different loading trials including longitudinal, transverse and 0o in-plane
shear are considered as shown in Fig. 2.
The subsequent anisotropic coefficients are then calculated similar to the
initial coefficients, Eq. (35), as

⎡

⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤

⎦

i ⎡

⎣

F λ

Hλ

Nλ

⎤

⎦

i

=

⎡

⎣

1
1
1

⎤

⎦ (36)

where aj = (Σ̃2
λ1

)j, bj = (Σ̃2
λ2

)j, cj = (Σ̃2
λ4

)j, j = 1, 2, 3 are three chosen
points on each subsequent yield surface and i = I, II, III are the three
imposed loading trials shown in Fig. 2.
Knowing the parameters of anisotropy, F λ,Hλ and Nλ, Eq. (34) is rewritten
as

F λ

F λ
0

− 1 = Ḟ λ/F λ
0 = f1E

P
λ1

+ f2E
P
λ2

+ f4E
P
λ4

(37)

Hλ

Hλ
0

− 1 = Ḣλ/Hλ
0 = h1E

P
λ1

+ h2E
P
λ2

+ h4E
P
λ4

Nλ

Nλ
0

− 1 = Ṅλ/Nλ
0 = n1E

P
λ1

+ n2E
P
λ2

+ n4E
P
λ4

Incorporating the plastic strains, EP
λi

, computed by the three loading tri-
als, one has to solve the following linear system of equations to find the
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anisotropic hardening coefficients
⎡

⎣

Ḟ λ
I /F λ

0

Ḟ λ
II/F

λ
0

Ḟ λ
III/F

λ
0

⎤

⎦ =

⎡

⎣

aI bI cI

aII bII cII

aIII bIII cIII

⎤

⎦

⎡

⎣

f1

f2

f4

⎤

⎦ (38)

⎡

⎣

Ḣλ
I /Hλ

0

Ḣλ
II/H

λ
0

Ḣλ
III/H

λ
0

⎤

⎦ =

⎡

⎣

aI bI cI

aII bII cII

aIII bIII cIII

⎤

⎦

⎡

⎣

h1

h2

h4

⎤

⎦

⎡

⎣

Ṅλ
I /Nλ

0

Ṅλ
II/N

λ
0

Ṅλ
III/N

λ
0

⎤

⎦ =

⎡

⎣

aI bI cI

aII bII cII

aIII bIII cIII

⎤

⎦

⎡

⎣

n1

n2

n4

⎤

⎦

where ai = (EP
λ1

)i, bi = (EP
λ2

)i and ci = (EP
λ4

)i where i = I, II, III are three
imposed loading trials shown in Fig. 2.

Finally, Tab. 1 comparatively summarizes the defined material models at
both micro and macro scale. Furthermore, Fig. 3 shows, in a flowchart,
the computational procedure for calculating the necessary coefficients of
anisotropy.

3. Problem Formulation

A metal matrix composite (MMC) with long, regularly distributed, parallel
fibers of circular cross-sections is considered, see Fig. 4a. Uniaxial loading
in transverse (Σ11 or Σ22) and longitudinal (Σ33) direction, 0o in-plane shear
(Σ12) and hydrostatic pressure loading are considered (Σ11 = Σ22 = Σ33).
A unit cell is extracted as shown in Fig. 4b, where the macroscopic nor-
mal stresses and shear stress are indicated. Fig. 4c shows the displacement
boundary conditions and dimensions. At the lower left corner of the unit
cell, a reference Cartesian coordinate system, xi, is located and aligned with
the sides of the cell. The positive direction of the third axis, x3, points out
of the (x1, x2)-plane.
Fibers are considered to be purely elastic, whereas the matrix exhibits an
elasto-plastic behavior with gradient effects as described in section, 2.1. Since
plastic strain gradients are of higher order nature, higher-order boundary
conditions must be prescribed in addition to the conventional boundary con-
ditions in displacements and surface tractions. At the exterior of the cell
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Micro scale Macro scale

ẇ = ḋ + ψ̇ Ẇ = Ḋ + Ψ̇

ḋ = ẇ − ψ̇ ≥ 0 Ḋ = Ẇ − Ψ̇ ≥ 0

ẇ = σij ǫ̇
e
ij + qij ǫ̇

p
ij + mijkǫ̇

p
ij,k Ẇ = ΣijĖij

ψ = 1
2
cijklǫ

e
ijǫ

e
kl + 1

2
GL2

∗
ǫp
ij,kǫ

p
ij,k Ψ = 1

2
CijklE

e
ijE

e
kl + 1

2
PijklE

p
ijE

p
kl

(

σij − ∂ψ

∂ǫe
ij

)

ǫ̇e
ij +

(

qij − ∂ψ

∂ǫ
p
ij

)

ǫ̇p
ij+ (Σij − ∂Ψ

∂Ee
ij

)Ėij + ( ∂Ψ
∂Ee

ij

− ∂Ψ
∂E

p
ij

)Ėp
ij ≥ 0

(

mijk − ∂ψ

∂ǫ
p

ij,k

)

ǫ̇p
ij,k ≥ 0

σij = ∂ψ

∂ǫe
ij

= cijklǫ
e
kl Σij = ∂Ψ

∂Ee
ij

= CijklE
e
kl

mijk = ∂ψ

∂ǫ
p

ij,k

= GL2
∗
ǫp
ij,k Aij = ∂Ψ

∂E
p
ij

= PijklE
p
kl

qij ǫ̇
p
ij ≥ 0 (Σij − Aij) Ėp

ij ≥ 0

ǫ̇p
ij = λ̇

∂f∗(qij)

∂qij
Ėp

ij = Λ̇
∂Φ∗(Σij−Aij)

∂Σij

f ∗(qij) = f(qij) Φ∗ (Σij − Aij) = Φ (Σij − Aij)

f =
√

3
2
qijqij − σf Φ = F λ(Σ̃λ1

)2 + Hλ(Σ̃λ2
)2 + NλΣ̃2

λ4
− 1

F λ = F λ
0 (1 + f1E

P
λ1

+ f2E
P
λ2

+ f4E
P
λ4

)
σf = σy + hǫp

e Hλ = Hλ
0 (1 + h1E

P
λ1

+ h2E
P
λ2

+ h4E
P
λ4

)
Nλ = Nλ

0 (1 + n1E
P
λ1

+ n2E
P
λ2

+ n4E
P
λ4

)

ḟ = 3
2

qij

qe
q̇ij − σ̇f = 0 Φ̇ = ∂Φ

∂Σ̃λ1

˙̃Σλ1
+ ∂Φ

∂Σ̃λ2

˙̃Σλ2
+ ∂Φ

∂Σ̃λ4

˙̃Σλ4
+

∂Φ
∂F λ Ḟ λ + ∂Φ

∂Hλ Ḣλ + ∂Φ
∂Nλ Ṅλ = 0

Ḟ λ/F λ
0 = f1Ė

P
λ1

+ f2Ė
P
λ2

+ f4Ė
P
λ4

σ̇f = hǫ̇p
e Ḣλ/Hλ

0 = h1Ė
P
λ1

+ h2Ė
P
λ2

+ h4Ė
P
λ4

Ṅλ/Nλ
0 = n1Ė

P
λ1

+ n2Ė
P
λ2

+ n4Ė
P
λ4

Table 1: Material model at both micro and macro scale.
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Initial Yield Surface

Point 1: Σλi
Point 2: Σλi

Point 3: Σλi

Φ0 = Fλ
0 Σ̃2

λ1
+

Hλ
0 Σ̃2

λ2
+ Nλ

0 Σ̃2
λ4

− 1 =
0, Eq. (32)

Fλ
0 , Hλ

0 , Nλ
0

Subsequent loadings

(I) Transverse (II) Longitudinal (III) Simple shear

Aλi
, Ep

λi
Aλi

, Ep
λi

Aλi
, Ep

λi

Point 1: Σλi
Point 2: Σλi

Point 3: Σλi

ΦI = Fλ
I Σ̃2

λ1
+

Hλ
I Σ̃2

λ2
+ Nλ

I Σ̃2
λ4

− 1 =
0

ΦII =
Fλ

IIΣ̃
2
λ1

+ Hλ
IIΣ̃

2
λ2

+

Nλ
IIΣ̃

2
λ4

− 1 = 0

ΦIII =
Fλ

IIIΣ̃
2
λ1

+ Hλ
IIIΣ̃

2
λ2

+

Nλ
IIIΣ̃

2
λ4

− 1 = 0

Fλ
I , Hλ

I , Nλ
I Fλ

II , Hλ
II , Nλ

II Fλ
III , Hλ

III , Nλ
III

Ḟλ/Fλ
0 =

∑4
i=1 fiE

P
λi

Ḣλ/Hλ
0 =

∑4
i=1 hiE

P
λi

Ṅλ/Nλ
0 =

∑4
i=1 niE

P
λi

, Eq. (37)

fi, hi, ni, (i = 1, 2, 4)

Figure 3: The computational procedure for calculation of the anisotropic
coefficients.
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the periodic boundary conditions are considered as (see Borg et al., 2008;
Hussein et al., 2008; Azizi et al., 2011b)

u̇b
1 = u̇t

1 and u̇b
2 = u̇t

2 − [Δ̇3 − Δ̇2]

Ṫ b
1 = −Ṫ t

1 and Ṫ b
2 = −Ṫ t

2

u̇l
1 = u̇r

1 − Δ̇1 and u̇l
2 = u̇r

2 − Δ̇2

Ṫ l
1 = −Ṫ r

1 and Ṫ l
2 = −Ṫ r

2

Ṁ b
ij = −Ṁ t

ij and Ṁ l
ij = −Ṁ r

ij

[ǫ̇p
ij]

b = [ǫ̇p
ij]

t and [ǫ̇p
ij]

l = [ǫ̇p
ij]

r

(39)

where l, r, b and t are left, right, bottom and top of the unit cell borders,
respectively. In addition to standard periodic boundary conditions for the
displacements, tractions, plastic strains and higher order tractions the fol-
lowing conditions are imposed

u̇1 = u̇2 = 0, (x1, x2) = (0, 0)

u̇2 = Δ̇2, (x1, x2) = (L, 0)

u̇1 = Δ̇1, u̇2 = Δ̇3, (x1, x2) = (L, h)

u̇3 = Δ̇4 x3 = t
ǫ̇p
ij = 0, (x2

1 + x2
2 = R2)

(40)

The out-of-plane plastic strain, ǫp
33, is given in terms of in-plane plastic strain

components by plastic incompressibility, ǫp
ii = 0. Similarly, M33 is given in

terms of the in-plane components M11 and M22, where Mii = 0. The out-of-
plane deformation is controlled by specifying a constant out-of-plane normal
strain increment, ǫ̇33 = Δ̇4/t, with t denoting the reference thickness of the
unit cell. The prescribed displacement incremental quantities are denoted
Δ̇1, Δ̇2, Δ̇3, and Δ̇4. They are calculated such that the ratio of macroscopic
stress rates (Σ̇11, Σ̇22, Σ̇33 and Σ̇12) remain fixed, see Azizi et al. (2011c), as

Σ̇22

Σ̇11

= K1,
Σ̇33

Σ̇11

= K2,
Σ̇12

Σ̇11

= K3 (41)

These stresses are calculated as

Σ̇11 =
1

b

∫ b

0

[Ṫ1]dx2; at x1 = a (42)

Σ̇22 =
1

a

∫ a

0

[Ṫ2]dx1; at x2 = b

Σ̇12 =
1

b

∫ b

0

[Ṫ2]dx2; at x1 = a
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b

a

R

Δ̇2

Δ̇1

Δ̇3

Δ̇4

x1

x2

x3

t

Σ11Σ12

Σ22

Σ33

x1

x2

(a) (b) (c)

Figure 4: (a) Regular distribution of fibers in the composite. (b) A unit
cell containing one fiber with traction boundary condition. (c)
A unit cell containing one fiber with conventional displacement
boundary conditions used in numerical simulation representing
combined normal and shear loading as shown in (b).

and the strains are considered as

Ė11 =
Δ̇1

a
(43)

Ė22 =
Δ̇3 − Δ̇2

b

Ė12 =
Δ̇2

a

After calculating these stresses and strains, the composite yield surface is
found by the strain based condition

∥

∥Eij − C−1
ijklΣkl − Eres

ij

∥

∥ ≥ ǫt (44)

where ǫt is the threshold value and Eres
ij is the macroscopic residual strains

defined as the components of the plastic strain after unloading. Note that
the residual strain is zero for initial yielding.

The K-values for all load cases are summarized in Tab. 2.
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K1 K2 K3

Transverse loading (Σ11 �= 0) 0 0 0
Longitudinal loading (Σ33 �= 0) 1 1000 0

Simple shear (Σ12 �= 0) 0 0 1000
Hydrostatic pressure (Σ11 = Σ22 = Σ33 �= 0) 1 1 0

Table 2: K-values ensuring the stress proportionality.

4. Computational method

Eight-node quadrilateral elements are considered for the in-plane displace-
ment interpolation, while four-node quadrilateral elements are considered to
interpolate the plastic strain components. Additionally, an extra degree of
freedom is added to represent the unique change of unit cell thickness. Nodal
interpolation is performed according to

u̇i =
2k
∑

n=1

Nn
i U̇n, ǫ̇p

ij =
3l
∑

m=1

Pm
ij ǫ̇p

m (45)

where Nn
i and Pm

ij are shape functions for the displacement and plastic strain
components, respectively, and k and l are the number of nodes used for dif-
ferent interpolation schemes. Hence, k = 8 and l = 4. The appropriate
derivatives of the displacement field and the plastic strain field can be ex-
pressed as

ǫ̇ij =
2k
∑

n=1

Bn
ijU̇n, ǫ̇p

ij,k =
3l
∑

m=1

Qm
ijkǫ̇

p
m (46)

where, Bn
ij = (Nn

i,j + Nn
j,i)/2 and Qm

ijk = Pm
ij,k are spatial derivatives of both

interpolation functions. Inserting into the incremental form of the principle
of virtual work, Eq. (7), the following matrix form arises

[

Ku −Kup

−KT
up Kp

] [

U̇

ǫ̇
p

]

=

[

ḟu

ḟp

]

(47)

where ḟu =
∫

s
NT Ṫds is nodal force and ḟp =

∫

s
PTṀds is nodal higher order

force. Stiffness matrices are given by

Ku =

∫

v

BTDeBdv (48)
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Kp =

∫

v

[PT (De + Dp)P + QTDhQ]dv (49)

Kup =

∫

v

BTDePdv (50)

where De is the microscopic isotropic constitutive matrix, Dp is the micro-
scopic plastic moduli and Dh is microscopic higher order moduli. Further
details can be found in Fredriksson et al. (2009) and Azizi et al. (2011c).

Finally, Fig. 5 shows the mesh used for the computations presented in the
paper. The elastic fiber consists of 576 elements, whereas the elastic-plastic
matrix is modeled using 832 element.

Figure 5: Mesh used for the finite element discretization.

5. Results

The conventional material parameters used for the matrix are h/Em = 0.1,
σy/Em = 0.004, τy = σy/

√
3, υm = 0.3, and for the fibers, Ef = 5.7Em

and υf = 0.17. The dimension of the unit cell is defined by a/b = 1. The
fiber volume fraction, Vf , is given by Vf = (πR2)/(ab). Each numerical
computation includes 1408 elements with 1000 increments at each step of
loading, unloading and reloading. For a micron scale length parameter of
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L∗ = 1μm in the present model, we analyze cases for L∗/R = 0, L∗/R = 0.2
and 0.4 which corresponds to large fibers, fibers with R = 5μm and R =
2.5μm, respectively. The threshold value defining the initial yield surface, ǫt

in Eq. (44), is taken to be ǫt = 0.001 .
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Σ
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Hydrostatic
pressure line

Σ11/σy

Composite
cylindrical axis

Composite yield surface

θ

Mises. Ref

Figure 6: Plot of the initial yield surface of the composite with Vf = 0.2
and L∗/R = 0.4 using seven different planes each consisting of 80
points. The Mises yield surface for the pure matrix material is
also shown.

For Vf = 0.2 and L∗/R = 0.4, the initial yield surface of composite in the
conventional 3D stress coordinate system, (Σ11, Σ22, Σ33), is shown in Fig.
6. Seven different planes, on which Σλ3

is constant, are plotted where each
plane consists of 80 points. The Mises yield surface for the pure matrix
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material is also shown. Compared to the Mises yield surface, the compos-
ite yield surface is expanded and has a non-circular cross section unlike the
Mises yield surface. The cross section of the composite yield surface is al-
most elliptic. In addition, the axis of the composite yield surface, is given by
(Σ11, Σ22, Σ33) = (1, 1, 1.35), and it deviates from the axis of the Mises yield
surface, (Σ11, Σ22, Σ33) = (1, 1, 1). Depending on the fiber volume fraction,
the angle, θ, between the two axes of the yield surfaces changes. Tab. 3 shows
the angle for different fiber volume fractions. It is seen that with higher fiber
volume fraction, Vf , the angle increases. This implies that for a composite
material, hydrostatic loading along the Mises axis, Σ11 = Σ22 = Σ33, eventu-
ally cause macroscopic plastic flow. On the other hand, zero plastic straining
is expected when purely Σλ3

loading is applied. In conclusion, the pressure
independency of fiber and matrix at the micro scale, does in fact result into
a pressure dependency at the macroscopic scale. This is now further investi-
gated in details for different material length scales, L∗/R, and fiber volume
fractions, Vf .

Vf = 0.0 Vf = 0.1 Vf = 0.2 Vf = 0.3
θ [degrees] 0.000 2.790 9.150 12.650

Table 3: Effect of the fiber volume fraction, Vf , on the angle between the
axes of the composite yield surface and the Mises yield surface, see
Fig 6, when L∗/R = 0.4.

Mughrabi (2001), Fleck et al. (2003) and Gao and Huang (2003) showed that
for composite materials, dislocations cannot pass from matrix into the fiber
and consequently pile up at the fiber/matrix interface. This leads to the
plastic strain suppression at the interfaces as stated in Eq. (40). Defining
the uniaxial yield strain, ǫy = σy/Em, Fig. 7 shows the normalized effective
plastic strain distribution, ǫp

e/ǫy, when the unit cell is loaded through the
hydrostatic pressure line until Σ11 = Σ22 = Σ33 = 3σy and Σ12 = 0. It
is seen that plastic flow has occurred for all cases. The maximum value of
the effective plastic strain is higher in the conventional analysis, Fig. 7a,
compared to the corresponding gradient dependent analysis, Fig. 7b. With
the conventional material model, the plastic strain is not suppressed at the
fiber/matrix interface, whereas the constraint on the plastic flow considered
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Figure 7: The effective plastic strain distribution, ǫp
e/ǫy, with hydrostatic

pressure loading until Σ11 = Σ22 = Σ33 = 3σy

in the gradient dependent material is observed to suppress plasticity close to
the elastic fiber, Fig. 7b, consistent with the findings by Mughrabi (2001),
Fleck et al. (2003) and Gao and Huang (2003). Effect of the fiber volume
fraction with a constant material length scale, L∗/R = 0.4, is also studied
through Figs. 7b, c and d. By increasing the fiber volume fraction, the plas-
ticity starts to grow close to the interface from a thin line distribution in Fig.
7c for Vf = 0.1 to a more clustered distribution in Fig. 7b for Vf = 0.2 and
more severe clustered distribution in Fig. 7d for Vf = 0.3. This behavior
reveals as the rotation of composite yield surface shown in Fig. 6 and Tab.
3.

The corresponding normalized effective Mises stress,
√

3
2
sijsij/σy, under

same hydrostatic pressure loading is shown in Fig. 8. A marginal increase
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Figure 8: The effective stress distribution,
√

3
2
sijsij/σy, under hydrostatic

pressure loading until Σ11 = Σ22 = Σ33 = 3σy

of the Mises stress occurs in the gradient dependent material, Fig. 8b, com-
pared to the conventional material, Fig. 8a. Higher fiber volume fraction
results in a larger Mises stress as observed from Fig. 8d and lower fiber vol-
ume fraction suppresses the Mises stress as observed from Fig. 8c. Generally,
it is concluded that higher fiber volume fractions of composites give rise to
earlier onset of plasticity when loaded by a hydrostatic pressure.

For L∗/R = 0.4 and Vf = 0.2, a two-dimensional projection of the yield
surfaces, Fig. 6, on the (Σλ1

, Σλ2
)-plane for Σλ3

= 0 is depicted in Fig. 9. It
is seen that the assumption of having an elliptic shape with major axis in Σλ1

direction and minor axis in Σλ2
direction is reasonable, see Eq. (32). Note
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Figure 9: Initial (IYS) and subsequent (SYS) yield surface of composite
with longitudinal loading until Σ33 = 3σy when L∗/R = 0.4 and
Vf = 0.2.

L∗/R = 0 L∗/R = 0.2 L∗/R = 0.4
F λ

0 σ2
y 0.29 0.27 0.25

Hλ
0 σ2

y 1.41 1.29 1.18

Nλ
0 σ2

y 2.53 2.33 2.15

Table 4: Effect of the material length scale, L∗/R, on the initial parameters
of anisotropy for Vf = 0.2.

that using this projection, the matrix Mises yield surface is not completely
circular. A subsequent yield surface (SYS) is also shown under longitudinal
loading until Σ33 = 3σy, where a considerable amount of kinematic hardening
as well as a slight expansion is noticeable. Still, the assumption of having an
elliptic shape of the SYS with major axis in Σλ1

direction and minor axis in
Σλ2

direction is acceptable. The geometric center of the SYS is extracted as
the Bauschinger stress, Aλi

, used to calculate the anisotropic parameters in
Eq. (36).

Fig. 10 shows the SYS of composite with transverse loading until Σ11 =
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Figure 10: Initial (IYS) and subsequent (SYS) yield surface of composite
with transverse loading until Σ11 = 2σy while L∗/R = 0.4 and
Vf = 0.2 (the dashed line related to SYS is the extrapolated
part of the surface).

2σy while L∗/R = 0.4 and Vf = 0.2. As in Fig. 9, the Mises yield surface
and the initial yield surface are also shown. The SYS shows a considerable
amount of both kinematic hardening (translation) and anisotropic hardening
(expansion), see also Azizi et al. (2011c). Again, the assumed elliptic shape
with the major axis in Σλ1

direction and the minor axis in Σλ2
direction

seems fulfilled.

Choosing three points of the initial yield surface shown in Figs. 9 and
using Eq. (35), one can compute the initial anisotropic parameters, F λ

0 , Hλ
0

and Nλ
0 , see also section 2.2 and Fig. 3. For various material length scale pa-

rameters, L∗/R, Tab. 4 summarizes the estimated coefficients of anisotropy.
Increasing the material length scale, the initial coefficients decrease corre-
sponding to an expansion of the initial yield surface. This is explained by
the suppression of the plastic deformation close to the fiber/matrix interface,
Fig. 7, which tends to postpone the overall plasticity of the unit cell at the
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macroscopic scale. This is consistent with the experimental investigation by
Yan et al. (2007) where the enhancement of the composite yield stress is ob-
servable with smaller particle size (here equivalent to higher material length
scale parameters).

Evolution of the anisotropic parameters in Eq. (36) which tracks the
expansion of the composite yield surface under three loading trials shown in
Fig. 2 is now studied. The anisotropic hardening coefficients, Eq. (38), are
computed using three loading trials in Fig. 2. Tab. 5 shows the effect of
L∗/R on the hardening coefficients, fi, hi and ni, i = 1, 2, 4.

L∗/R = 0 L∗/R = 0.2 L∗/R = 0.4

⎡

⎣

f1 h1 n1

f2 h2 n2

f4 h4 n4

⎤

⎦

⎡

⎣

30 76 158
−28 −39 −30
−30 −37 −29

⎤

⎦

⎡

⎣

5 85 173
−37 −54 −59
−49 −75 −45

⎤

⎦

⎡

⎣

66 85 156
−47 −69 −100
−74 −132 −42

⎤

⎦

Table 5: Effect of the material length scale, L∗/R, on the anisotropic hard-
ening coefficients when Vf = 0.2.

Defining the macroscopic plastic strain as Ep
e =

√

Ep
λi

Ep
λi

, Figs. 11, 12

and 13 show the effect of the material length scale, L∗/R, on F λ, Hλ and
Nλ, respectively. As can be seen, for increasing material length scale, all the
initial and subsequent anisotropic coefficients decrease, which indicates that
both initial and subsequent yield surface undergo expansion. However, the
reduction rate of the anisotropic coefficients (the slope) is different depending
on the loading condition and the material length scale. Hence, for longitu-
dinal loading the variation in F λ, Hλ and Nλ is rather small, whereas the
other loadings result in a quite strong dependency upon the plastic strain.
The small variation of anisotropic parameters for longitudinal loading justi-
fies the limited amount of expansion observed in Fig. 9.

For the normal loadings, the elongation of both minor and major axes of
the yield surfaces shown in Figs. 9 and 10 can be defined as

Rs =
√

Hλ
0 /HλRs

0, Rl =
√

F λ
0 /F λRl

0 (51)
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Figure 11: Effect of the material length scale on F λ when Vf = 0.2 for (a)
Longitudinal loading until Σ33 = 3σy. (b) Transverse loading
until Σ11 = 2σy. (c) 00 in-plane shear loading until Σ12 = 0.8σy.
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Figure 12: Effect of the material length scale on Hλ when Vf = 0.2 for (a)
Longitudinal loading until Σ33 = 3σy. (b) Transverse loading
until Σ11 = 2σy. (c) 00 in-plane shear loading until Σ12 = 0.8σy.

where Rs
0 and Rl

0 are the initial length of the minor and major axes, respec-
tively and Rs and Rl are the subsequent length of the minor and major axes,
respectively. Note that due to the transformation of the stresses, see Fig. 1,
these lengths are not directly interpretable as uniaxial yield stresses. In Figs.
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Figure 13: Effect of the material length scale on Nλ when Vf = 0.2 for (a)
Longitudinal loading until Σ33 = 3σy. (b) Transverse loading
until Σ11 = 2σy. (c) 00 in-plane shear loading until Σ12 = 0.8σy.

9 (longitudinal) and 10 (transverse), the minor axes are Rs = 1.06Rs
0 and

Rs = 1.20Rs
0 while the major axes are Rl = 1.05Rl

0 and Rl = 1.13Rl
0 corre-

sponding to longitudinal and transverse loading, respectively. It is concluded
that the expansion of yield surface is higher along the minor axis compared
to the major axis for both normal loadings. This is most clearly seen in Fig.
10. For L∗/R = 0.4 and Vf = 0.2, Tab. 6 shows both geometric center
(kinematic hardening, Aλi

/σy) and anisotropic hardening (expansion) of the
subsequent yield surfaces under normal loadings.

Loading direction Maximum loading Aλ1
/σy Aλ2

/σy Rs/Rs
0 Rl/Rl

0

Longitudinal Σ33 = 3σy 0.67 0 1.06 1.05
Transverse Σ11 = 2σy -0.50 0.43 1.2 1.13

Table 6: Hardening results including both geometric center (kinematic
hardening) and expansion (anisotropic hardening) of the subse-
quent yield surfaces under normal loadings with L∗/R = 0.4 and
Vf = 0.2.

Tab. 7 shows in more details the results for the 0o in-plane shear loading
until maximum loading of Σ12 = 1.4τy. With larger material length scale
parameter, L∗/R = 0.2, the initial yield stress, ΣIY

12 , enhances, the kinematic
hardening, A12, increases and the plasticity is suppressed. This has also been
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Figure 14: Initial and subsequent yield surface in transverse-shear,
(Σ11, Σ12), stress coordinate system with Vf = 0.2, L∗/R = 0.4.

observed in pure shear for homogeneous materials (Anand et al., 2005; Niord-
son and Legarth, 2010).

Fig. 14 shows both initial and subsequent yield surfaces at Σ12 = 1.4τy

in transverse-shear stress coordinate system, (Σ11, Σ12), with Vf = 0.2 and
L∗/R = 0.4. For the pure matrix material, the Mises yield surface is circular
whereas the composite yield surface tends to be an elliptic-like shaped surface
with the major axis in transverse direction, Σ11/σy, and minor axis in-plane
direction, Σ12/τy. Finally, both kinematic and anisotropic hardening are ob-
servable during the subsequent loading in 0o in-plane shear, see also (Sung
et al., 2011; Voyiadjis and Thiagarajan, 1995). A precise track of the yield
surface expansion due to the 0o in-plane shear is seen in Figs. 11c, 12c and
13c.
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L∗/R 0.0 0.2 0.4
ΣIY

12 /τy 1.09 1.14 1.18
A12/τy 0.0 0.028 0.18
Ep

12/γy 2.13 1.09 0.6

Table 7: Numerical results of the 00 in-plane shear loading until Σλ4
= 1.4τy

with Vf = 0.2.

6. Conclusion

The aim of this work is to define a conventional anisotropic plasticity model
in which the yield function depends on the hydrostatic pressure. The ap-
plication of the model is illustrated through a study of the deformations of
a metal matrix composite (MMC) with long isotropic elastic aligned fibers.
It is assumed the matrix of the composite obeys an isotropic strain gradient
enhanced plasticity model. It has been shown that such materials exhibit
plastic deformations when subjected to hydrostatic loading. In addition,
three loading trials including longitudinal, transverse and 0o in-plane shear
are imposed on the unit cell under the generalized plane strain condition.

Upon calculating and drawing the 3D yield surface (Σ11, Σ22, Σ33) of the
composite, a cylindrical yield surface of elliptical cross section is seen, Fig.
6. It was found that the yield surface axis was inclined relatively to the hy-
drostatic pressure line and that the inclination increases for increasing fiber
volume fractions. The yield surface axes are identified as the eigendirections
of the introduced P -modulus in the expression for the macroscopic free en-
ergy. A procedure for numerical investigation of both initial and subsequent
yield surfaces are described. Then, by exploiting the minor and major axes
of the elliptical cross section together with the axis of the yield surface, all
of the macroscopic quantities including the Cauchy stress, Σij, Bauschinger
stress, Aij, and plastic strain, Ep

ij are transformed to the new directions.
Expressed in the new quantities, the yield surface properties like pressure
dependency, anisotropic hardening (expansion), kinematic hardening (trans-
lation) and size-effects are considered by extending the classical anisotropic
Hill yield functions, see Hill (1948). The geometric center of the subsequent
yield surface is extracted as the Bauschinger stress, Aλi

, and used as the
kinematic hardening in Eq. (32). The results show that with higher material
length scale parameter, both initial and subsequent anisotropic parameters,
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F λ, Hλ and Nλ, decrease which indicates an expansion of the yield surface.
Finally, the macroscopic hardening coefficients, fi,hi and ni, affected by the
L∗/R are introduced.

In conclusion, by knowing the anisotropic hardening coefficients and the
Bauschinger stress, one can use the newly defined anisotropic pressure de-
pendent yield function, Eq. (32), to solve a rather general problem involving
aligned fiber composites using conventional plasticity.
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Abstract

Damage evolution at the fiber matrix interface in Metal Matrix Composites
(MMCs) is studied using strain gradient theory of plasticity. The study in-
cludes the rate independent formulation of energetic strain gradient plasticity
for the matrix, purely elastic model for the fiber and cohesive zone model
for the fiber-matrix interface. Inside the micro structure, free energy holds
both elastic strains and plastic strain gradients which demands to consider
the higher order boundary conditions. A unit cell with a circular elastic
fiber is studied by the numerical finite element cell model under simple shear
and transverse uniaxial tension using plane strain and periodic boundary
conditions. The result of the overall response curve, effective plastic strain,
effective stress and higher order stress distributions are shown. The effect
of the material length scale, maximum stress carried by the interface, the
work of separation per unit interface area and the fiber volume fraction on
the composites overall behavior are investigated. The results are compared
with strong interface.

Keywords: Damage, cohesive zone model, metal matrix composite, strain
gradient plasticity

1. Introduction

The increasing application of reinforced metal matrix composites (MMCs)
is due to the improved properties like high stiffness, high tensile strength,
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creep resistance, wear resistance, low density and damping capabilities. These
useful properties are accessible with the cost of poor ductility and frac-
ture properties. Therefore, a comprehensive knowledge of all types of the
properties is necessary, which requires an understanding of both constitu-
tive and failure behaviors. Several works have studied the perfectly bonded
reinforced metal matrix composites, (e.g. Teply and Dvorak, 1988; Brocken-
broughi et al., 1991; Niordson and Tvergaard, 2001; Niordson, 2003; Azizi
et al., 2011b,a). However, experimental evidences show the availability of
damage upon deformation in composites by debonding at the fiber-matrix
interface, particle fracture and void growth in the matrix, (e.g. Cornwell and
Schapery, 1975; Christman et al., 1989; Vratsanos and Farris, 1993; Park and
Schapery, 1997). Interfacial debonding can be a major failure in composites
with certain constituent as shown by Perng et al. (1993). One of the widely
used method in the literature for simulation of the interfacial debonding in
composites is the cohesive zone model. The idea for the cohesive model is
based on the consideration that the damage analysis knows the existence of
the crack in advance. In MMCs, fiber-matrix interface appears to be a critical
region for the damage and a reasonable presuppose for the cohesive elements
as was shown by Niordson and Tvergaard (2002) and Legarth and Niordson
(2010). Several cohesive zone models have been developed to face different
type of crack propagation, (e.g. Dugdale, 1960; Tvergaard, 1990; Tvergaard
and Hutchinson, 1992; Xu and Needleman, 1994; Geubelle and Baylor, 1998).
Xu and Needleman (1994) used polynomial and exponential types of traction
separation equations to study the void nucleation at the interface of parti-
cle and matrix metal. Tvergaard (1990) extended the Needleman (1987)
model of pure normal separation to both normal and tangential separation.
Tvergaard and Hutchinson (1992) used a trapezoidal shape of the traction
separation model to calculate the crack growth resistance in elasto-plastic
materials.

Recent experiments have shown that the macroscopic behavior of MMCs
depends on not only the volume fraction but also the size of reinforcing par-
ticles or fibers. Lloyd (1994) showed that the response of composites with
the same volume fraction of SiC particles depends on the size of the particles.
Further investigations by Hutchinson (2000), Mughrabi (2001), Fleck et al.
(2003) and Gao and Huang (2003) showed that dislocations can not pass
from matrix into the fiber (plastic strain suppression at the fiber-matrix in-
terface) and consequently pile up at the interface. Strain gradient plasticity
has capability to consider this fact since they can capture observed size-effects
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and non-conventional boundary conditions. Several non local plasticity the-
ories have been developed to face these issues. While some of these are of
lower-order nature (see Acharya and Bassani, 2000; Bassani, 2001), most
of the proposed theories are of higher order nature, employing higher order
stress-measures as work-conjugates to strain gradients, thus demanding non-
conventional higher order boundary conditions (e.g. Fleck and Hutchinson,
1997, 2001; Gao et al., 1999; Gurtin, 2002; Gudmundson, 2004; Gurtin and
Anand, 2005; Lele and Anand, 2008; Fleck and Willis, 2009a,b).

Two competing mechanisms in MMCs affect the overall behavior, where
the interfacial debonding reduces the strength and smaller particle size en-
hances the strength. Several works have been done to model the damage like
Carrere et al. (2004), Moraleda et al. (2009) and Totry et al. (2010), while
others considered the stiffening and damage, (e.g. Niordson and Tvergaard,
2002; Huang and Li, 2005; Borg et al., 2006). Zhang et al. (2005) studied
the effect of interface damage on the rate-dependent constitutive behavior of
MMCs. Legarth and Niordson (2010) studied the interfacial damage using a
visco-plastic version of strain gradient plasticity. Recently, Yao and Huang
(2011) considered a new analytical method to determine the cohesive law in
the framework of nonlocal continuum mechanics.

In the present study, our previous works, Azizi et al. (2011b) and Azizi
et al. (2011a), are extended such that the mentioned competing mechanisms
in the strength of the MMCs can be investigated using the thermodynami-
cally consistent model of the energetic higher order strain gradient plasticity
proposed by Gudmundson (2004) and later elaborated by Fredriksson et al.
(2009). The cohesive zone model developed by Needleman (1987) and im-
proved by Tvergaard (1990) is considered for the damage failure. The macro-
scopic simple shear in addition to the transverse tension are imposed on a
unit cell with full circular fiber considering plane strain and periodic bound-
ary conditions. The result of the overall response curve, plastic strain, stress
and higher order stress distributions are shown. The effect of the material
length scale, maximum stress carried by the interface, the work of separa-
tion per unit interface area and the fiber volume fraction on the composites
behavior are investigated and compared with the strong interface bonding.
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2. Material model

2.1. Rate independent strain gradient model

The matrix is considered to be a gradient enhanced isotropic elasto-plastic
material governed by the rate independent energetic strain-gradient plasticity
theory proposed by Gudmundson (2004), while the fibers are purely elastic
and never yield. The material model accounts for gradients of the full plas-
tic strain tensor. The internal virtual work for the volume of the unit cell
containing fiber-matrix interfaces is written as

δwi =

∫

v

[σijδǫij + (qij − sij)δǫ
p
ij + mijkδǫ

p
ij,k]dv+

∫

sI

(

T I
nδuI

n + T I
t δuI

t + M I
ijδǫ

pI
ij

)

dsI

(1)
where v is the volume of the unit cell, sI is the surface of the fiber-matrix
interfaces, uI

n and uI
t are the normal and tangential displacements of the

interface, respectively and σij is the Cauchy stress tensor with sij = σij −
1
3
δijσkk denoting the stress deviator. The total strain, ǫij, is the summation

of the plastic strain, ǫp
ij, and the elastic strain, ǫe

ij and ǫp
ij,k and ǫpI

ij are the
gradient of plastic strain and plastic strain at the fiber-matrix interface,
respectively. The micro stress, qij, and the higher order stress, mijk, are work
conjugate to the plastic strain and the gradient of plastic strain, respectively.
The interface normal and tangential tractions, T I

n and T I
t and the higher order

traction, M I
ij, are surface quantities work-conjugate to the displacements, uI

n

and uI
t , and the plastic strain tensor, ǫpI

ij , respectively.
The free energy in the present formulation, ψ = ψ(ǫe

ij, ǫ
p
ij,k), is assumed

to depend on the elastic strains and plastic strain gradients which is taken
according to Fredriksson et al. (2009) as

ψ
(

ǫe
ij, ǫ

p
ij

)

=
1

2
Dijklǫ

e
ijǫ

e
kl +

1

2
GL2

∗
ǫp
ij,kǫ

p
ij,k (2)

where L∗ is a material length scale parameter, G is the elastic shear mod-
ulus and Dijkl is the isotropic tensor of elastic moduli, defined in terms of
Young’s modulus, Em, and Poisson’s ratio, νm, of the matrix. The Cauchy
and moment stresses can be derived as

σij =
∂ψ

∂ǫe
ij

= Dijklǫ
e
kl, mijk =

∂ψ

∂ǫp
ij,k

= GL2
∗
ǫp
ij,k (3)
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The yield surface, f , depends on the micro stress, qij, through

f (qij, σf ) =

√

3

2
qijqij − σf = 0 (4)

where the flow stress is given by σf = σy + Hǫp
e, with σy denoting the initial

yield stress, H denoting the hardening modulus and ǫp
e denoting the accu-

mulated effective plastic strain as ǫp
e =

∫

ǫ̇p
edτ in which τ is a ”pseudo-time”

and ǫ̇p
e =

√

2
3
ǫ̇p
ij ǫ̇

p
ij.

The flow rule which ensures normality of the plastic strain increment to the
flow surface is given by

ǫ̇p
ij = γ̇

∂f

∂qij

=
3

2

qij

qe

ǫ̇p
e = rij ǫ̇

p
e (5)

where γ̇ is the plastic multiplier, qe =
√

3
2
qijqij is the effective micro stress

and rij = 3
2

qij

qe
is the direction of the plastic strain increment. More details

on the incremental implementation of the above formulations can be found
in Fredriksson et al. (2009) and Azizi et al. (2011b).

2.2. Cohesive zone model

The cohesive zone model proposed by Tvergaard (1990) accounting on
both normal and tangential separation at the interface is considered. This
model uses a polynomial relation between the traction and the separation. A
non-dimensional parameter, λ, describing the separation of matrix material
from the fiber is defined as

λ =

√

(un/δn)2 + (ut/δt)
2 (6)

where un and ut are normal and tangential separation, respectively. δn and
δt are the corresponding maximum separations at which the total decohesion
occurs. A function F (λ) is considered as

F (λ) =
27

4
σmax(λ

2 − 2λ + 1), 0 ≤ λ ≤ 1 (7)

from which the normal traction, Tn, and the tangential traction, Tt, are
calculated according to

Tn =
un

δn

F (λ) (8)

Tt = α
ut

δt

F (λ)
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In pure normal separation, ut = 0, the maximum stress is σmax at λ = un

δn
= 1

3
.

Similarly, in pure tangential separation, un = 0, the maximum stress is ασmax

at λ = ut

δt
= 1

3
. Generally, total debonding occurs when λ = 1. The model

requires four damage parameters including δn, δt, σmax and α. More details
on the rate form of the above equations is found in Tvergaard (1990).

3. Problem Formulation

Metal Matrix Composite with parallel circular fibers distributed through the
entire structure is considered, see Fig. 1a. A unit cell is extracted, Fig. 1b,
where both uniaxial normal stress under plane strain condition and simple
shear are imposed. Fig. 1c. shows the displacement boundary conditions,
coordinate system and dimensions. At the left-bottom corner of the unit
cell, a reference right-hand Cartesian coordinate system, xi, is located and
aligned with the sides of the cell. Fibers are considered to be purely elastic
whereas the matrix exhibits an elasto-plastic behavior with gradients effects.
Throughout the deformation of the cell, two constant stress ratios, K1 =
Σ̇22/Σ̇11 and K2 = Σ̇12/Σ̇11, are prescribed such that the stress proportion-
ality is ensured, see Azizi et al. (2011b). The stresses are computed as

Σ̇11 =
1

h

∫ h

0

[Ṫ1]dx2; at x1 = L (9)

Σ̇22 =
1

L

∫ L

0

[Ṫ2]dx1; at x2 = h

Σ̇12 =
1

h

∫ h

0

[Ṫ2]dx2; at x1 = L

and the strains are considered as

Ė11 =
Δ̇1

L
(10)

Ė22 =
Δ̇3 − Δ̇2

h

Ė12 =
Δ̇2

L

and Ė33 = 0 due to the plane strain assumption.
Since plastic strain-gradient is of higher order nature, higher-order boundary
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conditions must be prescribed in addition to the conventional BCs. At the
exterior of the cell the periodic boundary conditions are (see Borg et al.,
2008; Hussein et al., 2008),

u̇b

1 = u̇t

1 and u̇b

2 = u̇t

2 − [Δ̇3 − Δ̇2]

Ṫb

1 = −Ṫ t

1 and Ṫb

2 = −Ṫ t

2

u̇l

1 = u̇r

1 − Δ̇1 and u̇l

2 = u̇r

2 − Δ̇2

Ṫ l

1 = −Ṫ r

1 and Ṫ l

2 = −Ṫ r

2

Ṁb

ij = −Ṁ t

ij and Ṁ l

ij = −Ṁ r

ij

[ǫ̇p
ij]

b = [ǫ̇p
ij]

t and [ǫ̇p
ij]

l = [ǫ̇p
ij]

r

(11)

where l, r,b and t stand for left, right, bottom and top of the unit cell bor-
ders, respectively. In addition to the standard periodic boundary conditions,
displacement BC and two different sets of the higher order BCs at the fiber-
matrix interface are considered as

u̇1 = u̇2 = 0, (x1, x2) = (0, 0)

u̇2 = Δ̇2, (x1, x2) = (L, 0)

u̇1 = Δ̇1, u̇2 = Δ̇3, (x1, x2) = (L, h)

set I: ǫ̇p
ij = 0, on sI(bonded)

Ṁij = 0, on sI(debonded)

set II: ǫ̇p
ij = 0, on sI

(12)

where Δ̇1, Δ̇2 and Δ̇3 are prescribed displacement increment quantities,
sI(bonded) is the surface of interface without decohesion and sI(debonded)
is the surface of interface with total decohesion. The out-of-plane plastic
strain, ǫ̇p

33, is given in terms of in-plane plastic strain components by plastic
incompressibility, ǫ̇p

ii = 0. Similarly, Ṁ33 is given in terms of the in-plane
components Ṁ11 and Ṁ22, where Ṁii = 0. In summary, the problem in
its general form has one material length parameter, L∗, and three geometri-
cal length parameters, h, R, L in addition to both conventional and damage
parameters.
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Figure 1: (a) Regular distribution of fibers in the composite. (b) A unit
cell containing one fiber with traction boundary condition. (c)
A unit cell containing one fiber with conventional displacement
boundary conditions used in numerical simulation.

4. Numerical method

For the purpose of numerical implementation, the incremental version of the
principle of virtual work is written as

∫

v

[σ̇ijδǫ̇ij + (q̇ij − ṡij)δǫ̇
p
ij + ṁijkδǫ̇

p
ij,k]dv +

∫

sI

(

Ṫ I
nδu̇I

n + Ṫ I
t δu̇I

t + Ṁ I
ijδǫ̇

pI
ij

)

dsI = (13)
∫

s

[Ṫiδu̇i + Ṁijδǫ̇
p
ij]ds,

where s is the surface of the unit cell and Ṫi and Ṁij are traction increments
and moment traction increments, respectively. Quadrilateral elements with
eight nodes are used for in-plane displacement interpolation, while bilinear
four node elements are used to interpolate the plastic strain components.
Considering both elements at the same time, each corner node has five de-
grees of freedom (two for displacements and three for plastic strains) and
each middle node has two degrees of freedom for displacement. Nodal inter-
polation is used according to
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u̇i =
2k
∑

N=1

NN
i U̇N , ǫ̇p

ij =
3l
∑

M=1

PM
ij ǫ̇p

M (14)

u̇n =
2k
∑

N=1

[

NN
i pn

i

]

U̇N , u̇t =
2k
∑

N=1

[

NN
i pt

i

]

U̇N (15)

where pn and pt are the normal and tangential unit vectors at the fiber-matrix
interface, NN

i and PM
ij are shape functions for the displacement and plastic

strain components, respectively, and k and l are the number of nodes used
for the different interpolation schemes. The derivatives of both displacement
and plastic strain fields are expressed as

ǫ̇ij =
2k
∑

N=1

BN
ij U̇N , ǫ̇p

ij,k =
3l
∑

M=1

QM
ijkǫ̇

p
M (16)

where, BN
ij = (NN

i,j + NN
j,1)/2 and QM

ijk = PM
ij,k are spatial derivatives of both

interpolation functions. The discretized equation obtained from the incre-
mental version of the principle of virtual work, Eq. (14), is written as

[

Ku −Kup

−KT
up Kp

] [

Ḋ

ǫ̇
p

]

=

[

ḟu

ḟp

]

(17)

where ḟu =
∫

s
NT Ṫds is nodal force and ḟp =

∫

s
PTṀds is the nodal higher

order force. Stiffness matrices are given by

Ku =

∫

v

BTDeBdv +

∫

sI

NTRTaRNdsI (18)

Kp =

∫

v

[PT (De + Dp)P + QTDhQ]dv (19)

Kup =

∫

v

BTDePdv (20)

where R is the rotation matrix, De is the isotropic elastic moduli, Dp is the
plastic moduli and Dh is higher order moduli as

De =
E

(1 + υ)(1 − 2υ)

⎡

⎢

⎢

⎣

1 − υ υ υ 0
υ 1 − υ υ 0
υ υ 1 − υ 0
0 0 0 1−2υ

2

⎤

⎥

⎥

⎦

(21)
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Dp =
2

3

(

2

3
(H − E0)rr

T + E0I p

)

(22)

Dh = GL2
∗
I (23)

R =

[

pn
1 pn

2

pt
1 pt

2

]

(24)

where E and ν are taken as the fiber or matrix moduli in the corresponding
elements, pn

1 , pn
2 , pt

1 and pt
2 are the components of the normal and tangential

vector at the interface, E0 is the penalty factor, G is the shear modulus, I(8×8)

is the identity matrix, Ip=diag(1 1 1 1/2) and r = (r11, r22, r33, r12)
T .

The cohesive modulus, a =

[

a11 a12

a21 a22

]

, relates the traction to the separation

in the cohesive elements as
[

Ṫn

Ṫt

]

=

[

a11 a12

a21 a22

]

×
[

u̇n

u̇t

]

(25)

where a11, a12, a21 and a22 are determined from cohesive zone model.
Fig. 2 shows an example of the finite element mesh with 1408 elements
used in numerical computations. Numerical integration is performed using
forward Euler method with small load increments. To avoid plastic flow in
the elastic regime, the plastic stiffness is chosen to be large as suggested by
Fredriksson et al. (2009). However, in the limit of conventional plasticity
this would lead to an artificial boundary layer effect with a width scaling
with the element size. Hence, when using the computational method in the
conventional limit, the plastic stiffness matrix has instead been defined by
Kp = 10−8EI(12×12) (with E being either Em or Ef ) and the coupling matrix
Kup = 0 for elastic integration points, while plastic strain quantities are only
updated in integration points that are in the plastic regime.

5. Results

The conventional material parameters used for the matrix are H/Em = 0.1,
ǫy = σy/Em = 0.004, υm = 0.3, and for the fibers, Ef = 5.7Em and υf = 0.17.
The penalty factor is taken to be E0 = 1000H for the case of simple shear
and E0 = 100H for the case of uniaxial transverse tension due to the nu-
merical stability. The dimension of the unit cell is defined by L = h = 1.
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Figure 2: An example of finite element mesh used in the numerical compu-
tation.

A reinforcement volume fraction of Vf = 0.2, α = 1 and the first set of the
higher order BC are assumed unless else is stated. Each numerical compu-
tation includes 1408 elements with 300 increments. Primary attention will
be given to the overall average stress strain response, (Σ11, E11) for uniaxial
tension and (Σ12, E12) for simple shear, of the micro-reinforced composite.
Investigations by a number of authors, e.g. Hutchinson (2000) have shown
that for problems with lengths falling in the range from roughly a fraction of
a micron to ten microns a size-effect exists that conventional plasticity cannot
capture. Furthermore, it was argued that the material length scale for metals
is in the range of 0.25μm to 1μm for a slightly different but related model.
For a micron scale length parameter of L∗ = 1μm in the present model, we
analyze cases for L∗/R = 0, L∗/R = 0.2 and 0.4 which corresponds to large
fibers, fibers with R = 5μm and R = 2.5μm, respectively.

5.1. Simple shear

Simple shear is imposed on the unit cell, where K1 = 1 and K2 = 1000.
These values ensure that the macro shear stress, Σ12, is sufficiently large
compared to Σ11 and Σ22. The unit cell is loaded until the macroscopic shear
strain of E12 = 2γy is achieved.

Fig. 3 shows the effect of the material length scale, L∗/R, on the stress
strain curve with σmax = 0.52τy and δn = δt = δ = 0.012R. The load
carrying capacity enhances with higher material length scale corresponding
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Figure 3: Effect of the material length scale, L∗/R, on the stress strain curve
of simple shear with σmax = 0.52τy and δn = δt = δ = 0.012R.

to the smaller fiber size. For the conventional material, the stress drops at
Σ12 = 0.88τy where debonding initiates. The corresponding point for the
gradient dependent material (L∗/R = 0.2) is Σ12 = 0.95τy. The stress for
the case of L∗/R = 0.4 never drops although the debonding initiates at
Σ12 = 0.98τy and continues with an almost constant load carrying capacity
until the end of total possible decohesion at the interface. For all the cases,
a gradual enhancement of the hardening is observable after the interface
decohesion.

Fig. 4 shows the effect of the critical separation distances (work of sepa-
ration per unit interface area), δn = δt = δ, on the stress strain curve with
σmax = 0.52τy and L∗/R = 0.2. The result for the strong interface bonding
is also plotted. As can be seen, the material with weak interface bonding has
smaller shear modulus compared to the strong interface bonding. This is ex-
plained by the cohesive zone model, where a limited amount of fiber-matrix
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Figure 4: Effect of the critical separation distances, δn = δt = δ, on the
stress strain curve of simple shear with σmax = 0.52τy and L∗/R =
0.2.

separation initiates before the stress reaches the maximum stress carried by
the interface, σmax. By increasing the critical separation distances, δ, the
debonding is postponed from Σ12 = 0.88τy corresponding to δ = 0.01R to-
wards Σ12 = 0.99τy corresponding to δ = 0.014R. For all the values of the
δ, the hardening enhances after the total possible debonding of the interface
and the enhancement rate is higher for the lower δ. For all cases, the load
carrying capacities seem to converge with subsequent loading after the total
decohesion.

Fig. 5 shows the effect of the maximum stress carried by the interface,
σmax, on the stress strain curve with δ = 0.012R and L∗/R = 0.2. As can be
seen, the stress-drop is significantly postponed from Σ12 = 0.95τy correspond-
ing to σmax = 0.52τy towards Σ12 = 1.14τy corresponding to σmax = 0.87τy.
It is also seen that with higher σmax, the overall elastic shear modulus gets
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Figure 5: Effect of the maximum stress carried by the interface, σmax, on the
stress strain curve of simple shear with δ = 0.012R and L∗/R =
0.2.

closer to the shear modulus of the strong interface. It is concluded that
debonding behavior is more sensitive to the maximum stress carried by the
interface compared to the work of separation per unit interface area. Similar
behavior has been shown by Totry et al. (2010).

The contour plots of the accumulative plastic strain, ǫp
e/ǫy, at the end of

loading where E12 = 2γy with δ = 0.012R and σmax = 0.52τy is shown in
Fig. 6 with 5 times scaling of the deformation field. As can be seen, for the
conventional material, a large amount of the plastic strain is concentrated at
the tip of the crack. The amount of the plastic strain decreases significantly
at the crack tip of the conventional material (Fig. 6a) to somewhere inside
the matrix of the gradient dependent material (Fig. 6b). The conventional
result is in agreement to the finding by Hinz et al. (2007) using Ansys. The
size of the void is seen to be smaller in the gradient dependent material
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Figure 6: Effective plastic strain, ǫp
e/ǫy, for simple shear with δ = 0.012R

and σmax = 0.52τy at the end of loading where E12 = 2γy with 5
times scaling of the deformation field.

compared to the conventional material. The effect of two sets of the higher
order BC on the ǫe

p is also shown. Fig. 6c shows the result for the second
set of the higher order BC, Eq. (12), where the plastic strain is entirely
suppressed at both bonded and debonded part of the interface. This does
not occur for the first set of the higher order BC (Fig. 6b).

Fig. 7 shows the corresponding effective stress, σe/σy =
√

3
2
sijsij/σy, at

the end of loading where E12 = 2γy with δ = 0.012R and σmax = 0.52τy.
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Figure 7: Effective stress, σe/σy, for simple shear with δ = 0.012R and
σmax = 0.52τy at the end of loading where E12 = 2γy with 5
times scaling of the deformation field.

For both cases, the stress concentration is seen to be close to the crack tip,
where it is higher for the gradient dependent material, Fig. 7b, compared
to the conventional material, Fig. 7a. This is due to the suppression of the
plasticity at the crack tip for the gradient dependent material.

The corresponding higher order stresses are plotted in Fig. 8 where Fig.
8a shows m121/(L∗σy) and Fig. 8b shows m122/(L∗σy). The higher order
stress is mainly observable at the interface, where the plastic strain gradients
are significant. Using the first set of the higher order BC, an almost zero
higher order stress is seen close to the point, where complete separation is
noticed.

As it was shown in the boundary condition, two different sets of higher
order BCs are considered, Eq. (12). Fig. 9 shows the effect of the material

length scale, L∗/R, on the relative load carrying capacity, Σ
(ǫ̇p

ij=0onsI)

12 /Σ
(ǫ̇p

ij=0onsI(bonded))

12 .
For the conventional material, the higher order BC does not play any role
while for the gradient dependent material the load carrying capacity enhances
slightly from 0.58% corresponding to L∗/R = 0.2 towards 0.97% correspond-
ing to L∗/R = 0.4 at the end of loading where E12 = 2γy. However, in
the beginning of the plastic deformation, the lower material length scale has
higher load carrying capacity. This agrees with the fact that a large value
of L∗ suppresses plastic deformations such that higher-order boundary con-
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Figure 8: Higher order stress for simple shear with L∗/R = 0.2, δ = 0.012R
and σmax = 0.52τy at the end of loading where E12 = 2γy with 5
times scaling of the deformation field.

ditions prescribing zero plastic strain becomes less important.
The effect of fiber volume fraction, Vf , on the response of the unit cell

under simple shear loading is also studied. Fig. 10 shows the effect of Vf on
the stress strain curve with L∗/R = 0.2, δ = 0.012R and σmax = 0.52τy. As
can be seen, the higher Vf has a small effect on the elastic shear modulus
and the yield stress of the weak interface compared to the ones by strong
interface. The stress-drop is postponed slightly and the hardening shows a
small enhancement. Generally, it is concluded that the fiber volume fraction
of the unit cell, Vf , does not play an important role on the strength of the
material under simple shear loading.

Fig. 11 shows the effect of the fiber volume fraction, Vf , on the effective
plastic strain, ǫp

e/ǫy, with L∗/R = 0.2, δ = 0.012R and σmax = 0.52τy. It
is seen that the void nucleation increases with the higher fiber volume frac-
tion proportional to the length of the fiber-matrix interface. The maximum
amount of the plastic strain is almost unaffected with the higher fiber volume
fraction, while it dominates the matrix for the higher Vf .

5.2. Uniaxial tension

Uniaxial loading in transverse direction is analysed by using K1 = K2 = 0.
These K-values ensure a non-zero macroscopic transverse stress, Σ11, while
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Figure 9: Effect of the material length scale, L∗/R, on the relative load

carrying capacity, Σ
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12 , with two sets of
higher order boundary condition as shown in Eq. (12).

suppressing other stress components as Σ22 = Σ12 = 0. The unit cell is
loaded until the maximum deformation of E11 = 5ǫy is achieved.

Fig. 12 shows the effect of the material length scale, L∗/R, on the stress
strain curve with σmax = σy and δn = δt = δ = 0.03R. It is seen that the
material length scale does not affect the elastic modulus but it slightly in-
creases the yield point and hardening as it was investigated experimentally
by Nan and Clarke (1996). The stress-drops, due to the interface debonding,
are Σ11 = 1.27σy corresponding to L∗/R = 0, Σ11 = 1.39σy corresponding to
L∗/R = 0.2 and Σ11 = 1.46σy corresponding to L∗/R = 0.4. A similar behav-
ior is reported by Legarth and Niordson (2010). After failure by debonding,
the load carrying capacity is almost constant for the conventional material,
where an enhancement is seen for the gradient dependent material.

Fig. 13 shows the effect of the critical separation distances (work of
separation per unit interface area), δn = δt = δ, on the stress strain curve
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Figure 10: Effect of the fiber volume fraction, Vf , on the stress strain curve
of simple shear with L∗/R = 0.2, δ = 0.012R and σmax = 0.52τy.

of the uniaxial tension with σmax = σy and L∗/R = 0.4. It is seen that a
little more elastic modulus is obtainable with lower δ. However, the elastic
modulus of the strong interface is still higher compared to the weak interfaces.
This is due to the cohesive zone model, where the traction-displacement curve
before the onset of debonding, λ = 1/3, is loosening the strength of material,
see also Arnold et al. (1996), Zhang et al. (2005) and Segurado and LLorca
(2005). A considerable delay in debonding is observable with the higher
value of δ from Σ11 = 1.32σy corresponding to δ = 0.02R until Σ11 = 1.63σy

corresponding to δ = 0.04R, see also Tvergaard (1990). The hardening after
total decohesion is as same as the one before it.

Fig. 14 shows the effect of the maximum stress carried by the interface,
σmax, on the stress strain curve with δ = 0.03R and L∗/R = 0.4. Both
elastic modulus and yield stress increase slightly. The onset of debonding
is significantly postponed from Σ11 = 1.46σy corresponding to σmax = σy

towards Σ11 = 2.08σy corresponding to σmax = 2σy. The stress-drop occurs
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Figure 11: Effect of the fiber volume fraction, Vf , on the effective plastic
strain, ǫp

e/ǫy, for simple shear with L∗/R = 0.2, δ = 0.012R and
σmax = 0.52τy at the end of loading where E12 = 2γy with 5
times scaling of the deformation field.
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Figure 12: Effect of the material length scale, L∗/R, on the stress strain
curve of uniaxial tension with σmax = σy and δn = δt = δ =
0.03R.

more suddenly for the higher value of σmax. Thereafter, the hardening is seen
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Figure 13: Effect of the critical separation distances, δn = δt = δ, on the
stress strain curve of the uniaxial tension with σmax = σy and
L∗/R = 0.4.

to be the same for all the cases. A similar behavior is reported by Xu and
Needleman (1993), Needleman et al. (2010) and Zhang et al. (2005).

Fig. 15 shows the effect of the length scale, L∗/R, on the effective plastic
strain, ǫp

e/ǫy, with δ = 0.03R and σmax = σy. For the case of conventional
material (Fig. 15a), a significant amount of plasticity is observable at the
crack tip, see also Ghassemieh (2002) and Zhang et al. (2005), where the
suppression of the plastic strain at the crack tip is noticeable for the gradient
dependent material (Fig. 15b). A smooth transition of the plastic strain from
fiber towards the matrix is highlighted for the gradient dependent material as
it was shown by Legarth and Niordson (2010). This smooth transition pushes
the maximum plastic strain towards the borders. For the second set of the
higher order boundary conditions, Eq. (12), Fig. 15c is plotted. Suppression
of the plastic strain close to the debonded void is seen, which is not the case
for the first set, Fig. 15b. Due to the debonding failure, straight deformation
of the unit cell borders is not guaranteed as also shown by Legarth (2004).
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Figure 14: Effect of the maximum stress carried by the interface, σmax, on
the stress strain curve of the uniaxial tension with δ = 0.03R
and L∗/R = 0.4.

Fig. 16 shows the corresponding effective stress, σe/σy, for both con-
ventional, Fig. 16a, and gradient dependent material, Fig. 16b. Stress
concentration close to the crack tip is seen for both cases, where it is much
more higher for the gradient dependent material compared to the conven-
tional one. Comparing with the effective plastic strain in Fig. 15, higher
stress with lower plastic strain is seen for the gradient dependent material
which is opposite to the finding for the conventional material. For both cases,
the load carrying capacity is significantly lower close to the totally debonded
point compared to the other points inside the matrix. The corresponding
higher order stresses are also plotted in Fig. 17a, m111/(L∗σy), and 17b,
m112/(L∗σy), for L∗/R = 0.4. As can be seen, the higher order stresses are
concentrated close to the interface, where a considerable amount of plastic
strain gradients is available. However, vanishing higher order stress at the
totally debonded point is observable due to the first set of the imposed higher
order BC, Eq. (12).

Regarding the implementation of the two sets of higher order BC, Fig.
18 is plotted to highlight the effect of the material length scale, L∗/R, on
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Figure 15: Effective plastic strain, ǫp
e/ǫy, for uniaxial tension with δ =

0.03R and σmax = σy at the end of loading where E11 = 5ǫy

with real deformation field.

the relative load carrying capacity, Σ
(ǫ̇p

ij=0onsI)

11 /Σ
(ǫ̇p

ij=0onsI(bonded))

11 . As can be
seen, with higher value of the material length scale, L∗/R, the load carrying
capacity increases from 1.07% to 1.014% corresponding to L∗/R = 0.2 and
L∗/R = 0.4, respectively.

Fig. 19 shows the effect of the fiber volume fraction, Vf , on the stress
strain curve with L∗/R = 0.4, δ = 0.03R and σmax = σy. Both elastic
modulus and hardening enhance with higher fiber volume fraction, which is
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Figure 16: Effective stress, σe/σy, for the uniaxial tension with δ = 0.03R
and σmax = σy at the end of loading where E11 = 5ǫy with real
deformation field.
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Figure 17: Higher order stress for uniaxial tension with L∗/R = 0.4, δ =
0.03R and σmax = σy at the end of loading where E11 = 5ǫy

with real deformation field.

much more intense for the strong interface compared to the weak interface,
see also Suh et al. (2009). For the weak interface, the stress-drop occurs at
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11 , for two sets of
the higher order boundary condition, Eq. (12).

Σ11 = 1.32σy, 1.46σy and 1.49σy corresponding to Vf = 0.1, Vf = 0.2 and
Vf = 0.3, respectively. After the total decohesion, the hardening is mainly
equal to the one before the onset of decohesion.

The corresponding effective plastic strain is shown in Fig. 20 with L∗/R =
0.4, δ = 0.03R and σmax = σy. To precisely observe the deformation, the
Fig is plotted with 5 times scaling of the displacement field. As can be seen,
having higher fiber volume fraction, the plastic strain decreases moderately
while the void evolves significantly. Wavy deformation of the unit cell borders
is larger for the higher Vf .

6. Conclusion

The elastic plastic response of metal matrix composites considering the
failure has been studied. The study includes the rate independent formula-
tion of energetic strain gradient plasticity for the matrix, purely elastic model
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Figure 19: Effect of the fiber volume fraction, Vf , on the stress strain curve
of uniaxial tension with L∗/R = 0.4, δ = 0.03R and σmax = σy.

for the fiber and cohesive zone model for the fiber-matrix interface. A unit
cell, containing a circular fiber is analyzed under both simple shear and uni-
axial transverse tension using plane strain and periodic boundary conditions.

It is shown that the material length scale, L∗/R, does not affect the elas-
tic modulus but it enhances the hardening. Mainly, hardening enhancement
occurs due to the fact that gradient dependent material has a smooth transi-
tion of plasticity from zero plastic strain at the interface towards the matrix
compared to the conventional material which has an abrupt change. As a
result, the yield stress is enhanced. Regarding the damage, with the higher
L∗/R, the plastic strain is significantly suppressed at the crack tip results
into a later decohesion of the fiber-matrix interface. Thereafter, the void
evolves slowly for the gradient dependent material compared to the conven-
tional one.
The effect of both critical separation distances (work of separation per unit
interface area), δn = δt = δ, and maximum stress carried by the interface,
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Figure 20: Effect of the fiber volume fraction, Vf , on the effective plastc
strain, ǫp

e/ǫy, for uniaxial tension with L∗/R = 0.4, δ = 0.03R
and σmax = σy at the end of loading where E11 = 5ǫy with 5
times scaling of the displacement field.

σmax, on the stress strain curve has been investigated. It was shown that by
increasing of both of those parameters, the stress-drop corresponding to the
onset of debonding is postponed. However, the effect of σmax is stronger on
the strength of the interface compared to the effect of δ. Comparing the weak
and strong interfaces, it was observed that the elastic modulus for the mate-
rial with weak interface is lower compared to the one with strong interface.
This is due to the cohesive zone model, where the traction-displacement curve
is loosening the material strength before the onset of debonding at λ = 1/3.
The results of two different sets of higher order boundary condition have
been compared. It was shown that zero higher order stress after debonding
(first set of the higher order BC) has lower load carrying capacity compared
to the second set of higher order BC. This is expected since for the second
set, plastic suppression at the interface even after total debonding enhances
the load carrying capacity.
A significant concentration of the higher order stress at the interface was
seen, where the plastic strain gradient is significant. Studying the effect of
fiber volume fraction, Vf , on the material response with weak fiber-matrix in-
terface, a small effect on the onset of debonding was seen while the void grows
faster with higher Vf . With higher fiber volume fraction, an enhancement of
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the hardening was seen for both loading trials.
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