
Multi-Scale Modeling of Tissues Using CompuCell3D

Maciej H. Swat*, Gilberto L. Thomas*,†, Julio M. Belmonte*, Abbas Shirinifard*, Dimitrij
Hmeljak*, and James A. Glazier*

*Department of Physics, Biocomplexity Institute, Indiana University, Bloomington, Indiana, USA

†Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, Porto Alegre, Brazil

Abstract

The study of how cells interact to produce tissue development, homeostasis, or diseases was, until

recently, almost purely experimental. Now, multi-cell computer simulation methods, ranging from

relatively simple cellular automata to complex immersed-boundary and finite-element mechanistic

models, allow in silico study of multi-cell phenomena at the tissue scale based on biologically

observed cell behaviors and interactions such as movement, adhesion, growth, death, mitosis,

secretion of chemicals, chemotaxis, etc. This tutorial introduces the lattice-based Glazier–Graner–

Hogeweg (GGH) Monte Carlo multi-cell modeling and the open-source GGH-based

CompuCell3D simulation environment that allows rapid and intuitive modeling and simulation of

cellular and multi-cellular behaviors in the context of tissue formation and subsequent dynamics.

We also present a walkthrough of four biological models and their associated simulations that

demonstrate the capabilities of the GGH and CompuCell3D.

I. Introduction

A key challenge in modern biology is to understand how molecular-scale machinery leads to

complex functional structures at the scale of tissues, organs, and organisms. While

experiments provide the ultimate verification of biological hypotheses, models and

subsequent computer simulations are increasingly useful in suggesting both hypotheses and

experiments to test them. Identifying and quantifying the cell-level interactions that play

vital roles in pattern formation will aid the search for treatments for developmental diseases

like cancer and for techniques to develop novel cellular structures.

Unlike experiments, models are fast to develop, do not require costly apparatus, and are easy

to modify. However, abstracting the complexity of living cells or tissues into a relatively

simple mathematical/computational formalism is difficult. Creating mathematical models of

cells and cell–cell interactions that can be implemented efficiently in software requires

drastic simplifications: no complete model could be solved within a reasonable time period.

Consequently, the quality and reliability of mathematical models depend on how well

complex cell behaviors can be represented using simplified mathematical approaches.

Tissue-scale models explain how local interactions within and between cells lead to complex

biological patterning. The two main approaches to tissue modeling are (1) Continuum

models, which use cell-density fields and partial differential equations (PDEs) to model cell

interactions without explicit representations of cells, and (2) Agent-based models, which

represent individual cells and interactions explicitly. Agent-based in silico experiments are

Copyright 2012, Elsevier Inc. All rights reserved.

NIH Public Access
Author Manuscript
Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

Published in final edited form as:

Methods Cell Biol. 2012 ; 110: 325–366. doi:10.1016/B978-0-12-388403-9.00013-8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



gaining popularity because they allow control of the level of detail with which individual

cells are represented.

II. Glazier-Graner-Hogeweg (GGH)Modeling

The GGH model (Glazier and Graner, 1992; Graner and Glazier, 1993) provides an intuitive

mathematical formalism to map observed cell behaviors and interactions onto a relatively

small set of model parameters – making it attractive both to wet-lab and computational

biologists.

Like all models, the GGH technique has a typical application domain: modeling soft tissues

with motile cells at single-cell resolution. The GGH has been continuously and successfully

applied to model biological and biomedical processes, including Tumor growth (Dormann et

al., 2001; dos Reis et al., 2003; Drasdo et al., 2003; Holm et al., 1991; Turner and Sherratt,

2002), Gastrulation (Drasdo and Forgacs, 2000; Drasdo et al., 1995; Longo et al., 2004),

Skin pigmentation (Collier et al., 1996; Honda et al., 2002; Wearing et al., 2000),

Neurospheres (Zhdanov and Kasemo, 2004a,b), Angiogenesis (Ambrosi et al., 2004;

Ambrosi et al., 2005; Gamba et al., 2003; Merks et al., 2008; Merks and Glazier, 2006;

Murray, 2003; Pierce et al., 2004; Serini et al., 2003), the Immune system (Kesmir and de

Boer, 2003; Meyer-Hermann et al., 2001), Yeast colony growth (Nguyen et al., 2004;

Walther et al., 2004), Myxobacteria (Alber et al., 2006; Arlotti et al., 2004; Börner et al.,

2002; Bussemaker et al., 1997; Dormann et al., 2001), Stem cell differentiation (Knewitz

and Mombach, 2006; Zhdanov and Kasemo, 2004a,b), Dictyostelium discoideum (Marée

and Hogeweg, 2001, 2002; Marée et al., 1999a,b; Savill and Hogeweg, 1997), Simulated

evolution (Groenenboom and Hogeweg, 2002; Groenenboom et al., 2005; Hogeweg, 2000;

Johnston, 1998; Kesmir et al., 2003; Pagie and Mochizuki, 2002), General developmental

patterning (Honda and Mochizuki, 2002; Zhang et al., 2011), Convergent extension (Zajac,

2002; Zajac et al., 2002; Zajac et al., 2003), Epidermal formation (Savill and Sherratt, 2003)

Hydra regeneration (Mombach et al., 2001; Rieu et al., 2000), Plant growth, (Grieneisen et

al., 2007), Retinal patterning (Mochizuki, 2002; Takesue et al., 1998), Wound healing

(Dallon et al., 2000; Maini et al., 2002; Savill and Sherratt, 2003), Biofilms (Kreft et al.,

2001; Picioreanu et al., 2001; Poplawski et al., 2008; Van Loosdrecht et al., 2002), Limb

bud development (Chaturvedi et al., 2004; Poplawski et al., 2007), somite segmentation

(Glazier et al., 2008; Hester et al., 2011), vascular system development (Merks and Glazier,

2006), choroidal neovascularization, lumen formation, cellular intercalation (Zajac et al.,

2000, 2003), etc.….

The GGH model represents a single region in space by multiple regular lattices (the cell

lattice and optional field lattices). Most GGH model objects live on one of these lattices. The

most fundamental GGH object, a generalized cell, may represent a biological cell, a

subcellular compartment, a cluster of cells, or a piece of non-cellular material or surrounding

medium. Each generalized cell is an extended domain of lattice pixels in the cell lattice that

share a common index (referred to as the cell index σ). A biological cell can be composed of

one or more generalized cells. In the latter case, the biological cell is defined as a cluster of

generalized cells called subcells, which can describe cell compartments, complex cell

shapes, cell polarity, etc.…. For details on subcells, see Walther et al., 2004; Borner et al.,

2002; Glazier et al., 2007; Walther et al., 2005.

Each generalized cell has an associated list of attributes, e.g., cell type, surface area and

volume, and more complex attributes describing its state, biochemical networks, etc.….

Interaction descriptions and dynamics define how GGH objects behave.

The effective energy (H) Eq. (1) implements most cell properties, behaviors and interactions

via constraint terms in H (Glazier et al., 1998; Glazier and Graner, 1993; Glazier, 1993,

Swat et al. Page 2

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



1996; Glazier et al., 1995; Graner and Glazier, 1992; Mombach et al., 1995; Mombach and

Glazier, 1996). Since the terminology has led to some confusion in the past, we emphasize

that the effective energy is simply a way to produce a desired set of cell behaviors and does

not represent the physical energy of the cells.

In a typical GGH model, cells have defined volumes area, and interact via contact adhesion,

so H is:

(1)

The first sum, over all pairs of neighboring lattice sites i ⃑and j,⃑ calculates the boundary or

contactenergy between neighboring cells to implement adhesive interactions. J(τ(σi⃑),

τ(σi⃑))is the boundary energy per unit contact area for a pair of cells, with σi ⃑ of type τ(σi)⃑

occupying cell-lattice site i⃑ and σi⃑ of type τ(σi ⃑) occupying cell-lattice site j ⃑. The delta

function restricts the contact-energy contribution to cell-cell interfaces. We specify J(τ(σi)⃑,

τ(σi⃑)) as a matrix indexed by the cell types. In practice, the range of cell types - τ(σi)⃑-is

quite limited, whereas the range of cell indexes σi⃑ can be quite large, since σ enumerates all

generalized cells in the simulation. Higher contact energies between cells result in greater

repulsion between cells and lower contact energies result in greater adhesion between cells.

The second sum in (1), over all generalized cells, calculates the effective energy due to the

volume constraint. Deviations of the volume area of cell σ from its target value (Vt(σ)),

increase the effective energy, penalizing these deviations. On average, a cell will occupy a

number of pixels slightly smaller than its target volume due to surface tension from the

contact energies (J). The parameter λvol behaves like a Young’ s modulus, or inverse

compressibility, with higher values reducing fluctuations of a cell’s volume about its target

value. The volume constraint defines P = 2λvol(σ)(v(σ) − (Vt(σ)) as the pressure inside the

cell. In similar fashion we can implement a constraint on cell’s surface or membrane area.

Cell dynamics in the GGH model provide a simplified representation of cytoskeletally-

driven cell motility using a stochastic modified Metropolis algorithm (Cipra, 1987)

consisting of a series of index-copy attempts (see Figs. 1 and 2). Before each attempt, the

algorithm randomly selects a target site in the cell lattice, i⃑, and a neighboring source site i⃑′.
If different generalized cells occupy these sites, the algorithm sets σi⃑ = σi⃑′ with probability

P(σi ⃑ → σi⃑′), given by the Boltzmann acceptance function (Metropolis et al., 1953):

(2)

where ΔH is the change in the effective energy if the copy occurs and Tm is a parameter

describing the amplitude of cell-membrane fluctuations. Tm can be specified globally or be

cell specific or cell-type specific.

The average value of the ratio ΔH/Tm for a given generalized cell determines the amplitude

of fluctuations of the cell boundaries. High ΔH/Tm results in rigid, barely- or non-motile

cells and little cell rearrangement. For low ΔH/Tm, large fluctuations allow a high degree of

cell motility and rearrangement. For extremely low ΔH/Tm, cells may fragment in the

absence of a constraint sufficient to maintain the integrity of the borders between them.

Because ΔH/Tm is a ratio, we can achieve appropriate cell motilities by varying either Tm or

ΔH. Varying Tm allows us to explore the impact of global changes in cytoskeletal activity.

Swat et al. Page 3

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Varying ΔH allows us to control the relative motility of the cell types or of individual cells

by varying, for example, cells’ inverse compressibility (λvol), the target volume (Vt) or the

contact energies (J).

An index copy that increases the effective energy, e.g., by increasing deviations from target

values for cell volume or surface area or juxtaposing mutually repulsive cells, is improbable.

Thus, the cell pattern evolves in a manner consistent with the biologically-relevant

“guidelines” incorporated in the effective energy: cells maintain volumes close to their

target values, mutually adhesive cells stick together, mutually repulsive cells separate, etc.

…. The Metropolis algorithm evolves the cell-lattice configuration to simultaneously satisfy

the constraints, to the extent to which they are compatible, with perfect damping (i.e.,

average velocities are proportional to applied forces). Thus, the average time-evolution of

the cell lattice corresponds to that achievable deterministically using finite-element or

center-model methodologies with perfect damping.

A Monte Carlo Step (MCS) is defined as N index-copy attempts, where N is the number of

sites in the cell lattice, and sets the natural unit of time in the model. The conversion

between MCS and experimental time depends on the average value of ΔH/Tm. In

biologically-meaningful situations, MCS and experimental time are proportional (Alber et

al., 2002, 2004; Novak et al., 1999; Cickovski et al., 2007).

In addition to generalized cells, a GGH model may contain other objects such as chemical

fields and biochemical networks as well as auxiliary equations to describe behaviors like cell

growth, division and rule-based differentiation. Fields evolve due to secretion, absorption,

diffusion, reaction and decay according to appropriate PDEs. While complex coupled-PDEs

are possible, most models require only secretion, absorption, diffusion and decay.

Subcellular biochemical networks are usually described by ordinary differential equations

(ODEs) inside individual generalized cells.

Extracellular chemical fields and subcellular networks affect generalized-cell behaviors by

modifying the effective energy (e.g., changes in cell target volume due to chemical

absorption, chemotaxis in response to a field gradient or cell differentiation based on the

internal state of a genetic network).

From a modeler’s viewpoint the GGH technique has significant advantages compared to

other methods. A single processor can run a GGH simulation of tens to hundreds of

thousands of cells on lattices of up to 10243 sites. Because of the regular lattice, GGH

simulations are often much faster than equivalent adaptive-mesh finite element simulations

operating at the same spatial granularity and level of modeling detail. For smaller

simulations, the speed of the GGH allows fine-grained sweeps to explore the effects of

parameters, initial conditions, or details of biological models. Adding biological

mechanisms to the GGH is as simple as adding new terms to the effective energy. GGH

solutions are usually structurally stable, so accuracy degrades gracefully as resolution is

reduced. The ability to model cells as deformable entities allows modelers to explore

phenomena such as apical constriction leading to invagination, which are much harder to

model using, for example, center models. However, the lattice-based representation of cells

has also some drawbacks. The cell surface is pixelated, complicating measurements of

surface area and curvature. The fixed discretization makes explicit modeling of fibers or

membranes expensive, since the lattice constant must be set to the smallest scale to be

explicitly represented. Cell membrane fluctuations are also caricatured as a result of the

fixed spatial resolution. However, the latest versions of CC3D support a layer of finite-

element links which have length but zero diameter. These can be used to represent fibers or

membranes, allowing a simulation to combine the advantages of both methods at the cost of

Swat et al. Page 4

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



increased model complexity. In addition, the maximum speed with which cells can move on

the cell lattice is approx. 0.1 pixel per MCS, which often fixes a finer time resolution than

needed for other processes in a simulation. A more fundamental issue is that CC3D

generalized cells move by destroying pixels and creating pixels, so rigid-body motion and

advection are absent unless they are implemented explicitly. CC3D provides tools for both.

The rigid-body simulators in CC3D are increasingly popular, but the advection solvers have

so far been little used.

The canonical formulation of the GGH is derived from statistical physics. Consequently

some of its terminology and concepts may initially seem unnatural to wet-lab biologist. To

connect experimentally measured quantities to simulation parameters we employ a set of

experimental and analysis techniques to extract parameter values. For example, even though

the GGH intrinsic cell motility is not accessible in an experiment, the diffusion constant of

cells in aggregates can be measured in both simulation and experiments. We can then adjust

the GGH motility to make the diffusion constants match. Similarly, we can determine the

effective form and strength of a cell’s chemotaxis behavior from experimental dose response

curves of net cell migration in response to net concentration gradients of particular

chemoattractant. For example, if a cell of given type in a given gradient in a given

environment moves with a given velocity, we can then fit the GGH chemotaxis parameters

so the simulated cells reproduce that velocity. The GGH contact energies between cells can

also be set to provide the experimentally accessible surface tensions between tissues

(Glazier and Graner, 1992; Graner and Glazier, 1993; Glazier et al., 2008; Steinberg, 2007).

When experimental parameter values are not available, we perform a series of simulations

varying the unknown parameter(s) and fit to match a macroscopic dynamic pattern which we

can determine experimentally.

To speed execution, CompuCell3D models often reduce 3D simulations to their 2D analogs.

While moving from 3D to 2D or vice versa is much easier in CC3D than in an adaptive

mesh finite element simulation, the GGH formalism still requires rescaling of most model

parameters. At the moment, such rescaling must be done by hand. E.g. in 2D, a pixel on a

regular square lattice has 4 nearest neighbors, while in 3D it has 6 nearest neighbors.

Therefore all parameters which involve areas surface (e.g. the surface area constraint, or

contact energies) have to be rescaled. To simplify diffusion calculations, we often assume

that diffusion takes place uniformly everywhere in space, with cells secreting or taking up

chemicals at their centers of mass. This approach caricatures real diffusion, where chemicals

are secreted through cell membranes and diffuse primarily in the extracellular space, which

may itself have anisotropic or hindered diffusion. Since most CC3D simulations neglect

intercellular spaces smaller than one or two microns, we connect to real extracellular

diffusion by choosing the CC3D diffusion coefficient so that the effective diffusion length in

the simulation corresponds to that measured in the experiment.

Overall, despite these issues, the mathematical elegance and simplicity of the GGH

formalism has led to substantial popularity.

III. CompuCell3D

CC3D allows users to build sophisticated models more easily and quickly than does

specialized custom code. It also facilitates model reuse and sharing.

A CC3D model consists of CC3DML scripts (an XML-based format), Python scripts, and

files specifying the initial configurations of the cell lattice and of any fields. The CC3DML

script specifies basic GGH parameters such as lattice dimensions, cell types, biological

mechanisms, and auxiliary information, such as file paths. Python scripts primarily monitor

Swat et al. Page 5

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



the state of the simulation and implement changes in cell behaviors, for example, changing

the type of a cell depending on the oxygen partial pressure in a simulated tumor.

CC3D is modular, loading only the modules needed for a particular model. Modules that

calculate effective energy terms or monitor events on the cell lattice are called plugins.

Effective-energy calculations are invoked every pixel-copy attempt, while cell-lattice

monitoring plugins run whenever an index copy occurs. Because plugins are the most

frequently called modules in CC3D, most are coded in C++ for speed.

Modules called steppables usually perform operations on cells, not on pixels. Steppables are

called at fixed intervals measured in MCS. Steppables have three main uses: (1) to adjust

cell parameters in response to simulation events,1 (2) to solve PDEs, (3) to load simulation

initial conditions or save simulation results. Most steppables are implemented in Python.

Much of the flexibility of CC3D comes from user-defined Python steppables.

The CC3D kernel supports parallel computation in shared-memory architectures (via

OpenMP), providing substantial speedups on multi-core computers.

Besides the computational kernel of CC3D, the main components of the CC3D environment

are (1) Twedit++-CC3D – a model editor and code generator, (2) CellDraw – a graphical

tool for configuring the initial cell lattice, (3) CC3D Player – a graphical tool for running,

replaying, and analyzing simulations.

Twedit++-CC3D provides a Simulation Wizard that generates draft CC3D model code

based on high-level specification of simulation objects such as cell types and their

behaviors, fields and interactions. Currently, the user must adjust default parameters in the

autogenerated draft code, but later versions will provide interfaces for parameter

specification. Twedit++-CC3D also provides a Python code-snippet generator, which

simplifies coding Python CC3D modules.

CellDraw (Fig. 3) allows users to draw regions that it fills with cells of user-specified types.

It also imports microscope images for manual segmentation, and automates the conversion

of segmented regions – from TIFF sequences generated by 3rd party tools such as Fiji/

ImageJ/TrakEM2 – for importing into CC3D.

CC3D Player is a graphical interface that loads and executes CC3D models. It allows users

to change model parameters during execution (steering), define multiple 2D and 3D

visualizations of the cell lattice and fields and conduct real-time simulation analysis. CC3D

Player also supports batch mode execution on clusters.

IV. Building CC3D Models

This section presents some typical applications of GGH and CC3D. We use Twedit++-

CC3D code generation and explain how to turn automatically generated draft code into

executable models. All of the parameters appearing in the autogenerated simulation scripts

are set to their default values.

A. Cell-Sorting Model

Cell sorting due to differential adhesion between cells of different types is one of the basic

mechanisms creating tissue domains during development and wound healing and in

1We will use the word model to describe the specification of a particular biological system and simulation to refer to a specific
instance of the execution of such a model.

Swat et al. Page 6

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



maintaining domains in homeostasis. In a classic in vitro cell sorting experiment to

determine relative cell adhesivities in embryonic tissues, mesenchymal cells of different

types are dissociated, then randomly mixed and reaggregated. Their motility and differential

adhesivities then lead them to rearrange to reestablish coherent homogenous domains with

the most cohesive cell type surrounded by the less-cohesive cell types (Armstrong and

Armstrong, 1984; Armstrong and Parenti, 1972). The simulation of the sorting of two cell

types was the original motivation for the development of GGH methods. Such simple

simulations show that the final configuration depends only on the hierarchy of adhesivities,

whereas the sorting dynamics depends on the ratio of the adhesive energies to the amplitude

of cell fluctuations.

To invoke the simulation wizard to create a simulation, we click CC3DProject → New

CC3D Project in the Twedit++-CC3D menu bar (see Fig. 4). In the initial screen, we specify

the name of the model (cellsorting), its storage directory (C:\CC3DProjects), and whether

we will store the model as pure CC3DML, Python, and CC3DML or pure Python. This

tutorial will use Python and CC3DML.

On the next page of the Wizard (see Fig. 5), we specify GGH global parameters, including

cell-lattice dimensions, the cell-membrane fluctuation amplitude, the duration of the

simulation in MCS and the initial cell-lattice configuration.

In this example, we specify a 100 × 100 × 1 cell lattice, that is, a 2D model, a fluctuation

amplitude of 10, a simulation duration of 10,000 MCS, and a pixel-copy range of 2.

BlobInitializer initializes the simulation with a disk of cells of specified size.

On the next Wizard page (see Fig. 6), we name the cell types in the model. We will use two

cell types: Condensing (more cohesive) and NonCondensing (less cohesive). CC3D by

default includes a special generalized cell type, Medium, with unconstrained volume that

fills otherwise unspecified space in the cell lattice.

We skip the Chemical Field page of the Wizard and move to the Cell Behaviors and

Properties page (see Fig. 7). Here, we select the biological behaviors we will include in our

model. Objects in CC3D (for example, cells) have no properties or behaviors unless we

specify then explicitly. Since cell sorting depends on differential adhesion between cells, we

select the Contact Adhesion module from the Adhesion section (1) and give the cells a

defined volume using the Volume Flex module from Constraints and Forces section.

We skip the next page related to Python scripting, after which Twedit++-CC3D generates

the draft simulation code. Double-clicking on cellsorting.cc3d opens both the CC3DML

(cellsorting.xml) and Python scripts for the model. Because the CC3DML file contains the

complete model in this example, we postpone discussion of the Python script. A CC3DML

file has three distinct sections. The first, the Lattice Section (lines 2–7) specifies global

parameters like the cell-lattice size. The Plugin Section (lines 8–30) lists all the plugins

used, for example, CellType and Contact. The Steppable Section (lines 32–39) lists all

steppables; here we use only BlobInitializer.

All parameters appearing in the autogenerated CC3DML script have default values inserted

by Simulation Wizard. We must edit the parameters in the draft CC3DML script to build a

functional cell-sorting model (Listing 1). The CellType plugin (lines 9–13) already provides

three generalized cell types: Condensing (C), NonCondensing (N), and Medium (M), so we

need not change it.

However, the boundary-energy (contact energy) matrix in the Contact plugin (lines 22–30)

is initially filled with identical values, which prevents sorting. For cell sorting, Condensing

Swat et al. Page 7

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



cells must adhere strongly to each other (so we set JCC=2), Condensing and NonCondensing

cells must adhere more weakly (here, we set JCN=11), and all other adhesions must be very

weak (we set JNN=JCM=JNM=16), as discussed in Section III. The value of JMM = 0 is

irrelevant, since the Medium generalized cell does not contact itself.

To reduce artifacts due to the anisotropy of the square cell lattice we increase the neighbor

order range in the contact energy to 2 so the contact energy sum in Eq. (1) will include

nearest and second-nearest neighbors (line 29).

In the Volume plugin, which calculates the volume-constraint energy given in Eq. (1) the

attributes CellType, LambdaVolume, and TargetVolume inside the

<VolumeEnergyParameters> tags specify λ(τ) and Vt(τ) for each cell type. In our

simulations, we set Vt(τ) = 25 and λ(τ) = 2.0 for both cell types.

We initialize the cell lattice using the BlobInitializer, which creates one or more disks (solid

spheres in 3D) of cells. Each disk (sphere) created is enclosed between <Region> tags. The

<Center> tag with syntax <Center x= “x_position” y= “y_position” z= “z_position”/>

specifies the position of the center of the disk. The <Width> tag specifies the size of the

initial square (cubical in 3D) generalized cells and the <Gap> tag creates space between

neighboring cells. The <Types> tag lists the cell types to fill the disk. Here, we change the

Radius in the draft BlobInitializer specification to 40. These few changes produce a working

cell-sorting simulation.

To run the simulation, we right click cellsorting.cc3d in the left panel and choose the Open

In Player option. We can also run the simulation by opening CompuCellPlayer and selecting

cellsorting.cc3d from the File-> Open Simulation File dialog.

Fig. 8 shows snapshots of a simulation of the cell-sorting model. The less-cohesive

NonCondensing cells engulf the more cohesive Condensing cells, which cluster and form a

single central domain. By changing the boundary energies we can produce other cell-sorting

patterns (Glazier and Graner, 1993; Graner and Glazier, 1992). In particular, if we reduce

the contact energy between the Condensing cell type and the Medium, we can force inverted

cell sorting, where the Condensing cells surround the NonCondensing cells. If we set the

heterotypic contact energy to be less than either of the homotypic contact energies, the cells

of the two types will mix rather than sort. If we set the cell-medium contact energy to be

very small for one cell type, the cells of that type will disperse into the medium, as in cancer

invasion. With minor modifications, we can also simulate the scenarios for three or more

cell types, for situations in which the cells of a given type vary in volume, motility or

adhesivity, or in which the initial condition contains coherent clusters of cells rather than

randomly mixed cells (engulfment).

B. Angiogenesis Model

Vascular development is central to both development and cancer progression. We present a

simplified model of the earliest phases of capillary network assembly by endothelial cells

based on cell adhesion and contact-inhibited chemotaxis. This model does a good job of

reproducing the patterning and dynamics which occur if we culture human umbilical vein

endothelial cells (HUVEC) on matrigel in a quasi-2D in vitro experiment (Merks and

Glazier, 2006; Merks et al., 2006, 2008). In addition to generalized cells modeling the

HUVEC, we will need a diffusing chemical object, here, vascular endothelial growth factor

(VEGF), cell secretion of VEGF, and cell-contact-inhibited chemotaxis to VEGF.

Swat et al. Page 8

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



We will use a 3D voxel (pixel) with a side of 4 μm, that is, a volume of 64 μm3. Since the

experimental HUVEC speed is about 0.4 μm/min and cells in this simulation move at an

average speed of 0.1 pixel/MCS, one MCS represents 1 min.

In the Simulation Wizard, we name the model ANGIOGENESIS, set the cell- and field-

lattice dimensions to 50 × 50 × 50, the membrane fluctuation amplitude to 20, the pixel-

copy range to 3, the number of MCS to 10,000, and select BlobFieldInitializer to produce

the initial cell-lattice configuration. We have only one cell type – Endothelial.

In the Chemical Fields page (see Fig. 9), we create the VEGF field and select

FlexibleDiffusionSolverFE from the Solver pull-down list.

Next, on the CellPropertiesandBehaviors page (see Fig. 10), we select the Contact module

from the Adhesion-behavior group and add Secretion, Chemotaxis, and Volume-constraint

behaviors by checking the appropriate boxes.

Because we have invoked Secretion and Chemotaxis, the Simulation Wizard opens their

configuration screens. On the Secretion page (see Fig. 11), from the pull-down list, we select

the chemical to secrete by selecting VEGF in the Field pull-down menu and the cell type

secreting the chemical (Endothelial), and enter the rate of 0.013 (50 pg/(cell h) = 0.013 pg/

(voxel MCS), compare to Leith and Michelson, 1995). We leave the Secretion Type entry

set to Uniform, so each pixel of an endothelial cell secretes the same amount of VEGF at the

same rate. Uniform volumetric secretion or secretion at the cell’s center of mass may be

most appropriate in 2D simulations of planar geometries (e.g., cells on a petri dish or agar)

where the biological cells are actually secreting up or down into a medium that carries the

diffusant. CC3D also supplies a secrete-on-contact option to secrete outward from the cell

boundaries and allows specification of which boundaries can secrete, which is more realistic

in 3D. However, users are free to employ any of these methods in either 2D or 3D,

depending on their interpretation of their specific biological situation. CC3D does not have

intrinsic units for fields, so the amount of a chemical can be interpreted in units of moles,

number of molecules, or grams. We click the Add Entry button to add the secretion

information, then proceed to the next page to define the cells’ chemotaxis properties.

On the Chemotaxis page, we select VEGF from the Field pull-down list and Endothelial for

the cell type, entering a value for Lambda of 5000. When the chemotaxis type is regular, the

cell’s response to the field is linear; that is the effective strength of chemotaxis depends on

the product of Lambda and the secretion rate of VEGF, for example, a Lambda of 5000 and

a secretion rate of 0.013 has the same effective chemotactic strength as a Lambda of 500 and

a secretion rate of 0.13. Since endothelial cells do not chemotax at surfaces where they

contact other endothelial cells (contact inhibition), we select Medium from the pull-down

menu next to the Chemotax Towards button and click this button to add Medium to the list

of generalized cell types whose interfaces with Endothelial cells support chemotaxis. We

click the Add Entry button to add the chemotaxis information, then proceed to the final

Simulation Wizard page Fig. 12.

Next, we adjust the parameters of the draft model. Pressure from chemotaxis to VEGF

reduces the average endothelial cell volume by about 10 voxels from the target volume. So,

in the Volume plugin, we set TargetVolume to 74 (64+10) and LambdaVolume to 20.0.

In experiments, in the absence of chemotaxis no capillary network forms and cells adhere to

each other to form clusters. We therefore set JMM=0, JEM=12, and JEE=5 in the Contact

plugin (M: Medium, E: Endothelial). We also set the NeighborOrder for the Contact energy

calculations to 4.

Swat et al. Page 9

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The diffusion equation that governs VEGF (V(x⃗)) field evolution is

(3)

where δ(τ(σ(x⃗)), EC) = 1 inside Endothelial cells and 0 elsewhere and δ(τ(σ(x⃗)), M) = 1

inside Medium and 0 elsewhere. We set the diffusion constant DVEGF = 0.042 μm2/s (0.16

voxel2/MCS, about two orders of magnitude smaller than experimental values),4 the decay

coefficient γVEGF =1 h−1 [130,131] (0.016 MCS−1) for Medium pixels and γVEGF = 0

inside Endothelial cells, and the secretion rate SEC = 0.013 pg/(voxel MCS).

In the CC3DML script, describing FlexibleDiffusionSolverFE (Listing 2, lines 38–47) we

set the values of the <DiffusionConstant> and <DecayConstant> tags to 0.16 and 0.016,

respectively. To prevent chemical decay inside endothelial cells, we add the line

<DoNotDecayIn>Endothelial</DoNotDecayIn> inside the <DiffusionData> tag pair.

Finally, we edit BlobInitializer (lines 49–56) to start with a solid sphere 10 pixels in radius

centered at x = 25, y = 25, z = 25 with initial cell width 4, as in Listing 2.

The main behavior that drives vascular patterning is contact-inhibited chemotaxis (Listing 2,

lines 26–30). VEGF diffuses away from cells and decays in Medium, creating a steep

concentration gradient at the interface between Endothelial cells and Medium. Because

Endothelial cells chemotax up the concentration gradient only at the interface with Medium,

the Endothelial cells at the surface of the cluster compress the cluster of cells into vascular

branches and maintain branch integrity.

We show screenshots of a simulation of the angiogenesis model in Fig. 13 (Merks et al.,

2008; Shirinifard et al., 2009). We can reproduce either 2D or 3D primary capillary network

formation and the rearrangements of the network agree with experimentally observed

dynamics. If we eliminate the contact inhibition, the cells do not form a branched structure

(as observed in chick allantois experiments, Merks et al., 2008). We can also study the

effects of surface tension, external growth factors, and changes in motility and diffusion

constants on the pattern and its dynamics. However, this simple model does not include the

strong junctions HUVEC cells make with each other at their ends after a period of prolonged

contact. It also does not attempt to model the vacuolation and linking of vacuoles that leads

to a connected network of tubes.

Since real endothelial cells are elongated, we can include the Cell-elongation plugin in the

Simulation Wizard to better reproduce individual cell morphology. However, excessive cell

elongation causes cell fragmentation. Adding either the Global or Fast Connectivity

Constraint plugin prevents cell fragmentation.

C. Overview of Python Scripting in CompuCell3D

In the models we presented above, all cells had parameter values fixed in time. To allow cell

behaviors to change, we need to be able to adjust cell properties during a simulation. CC3D

can execute Python scripts (CC3D supports Python versions 2.x) to modify the properties of

cells in response to events occurring during a simulation, such as the concentration of a

nutrient dropping below a threshold level, a cell reaching a doubling volume, or a cell

changing its neighbors. Most such Python scripts have a simple structure based on print

4FlexibleDiffusionSolverFE becomes unstable for values of DVEGF > 0.16 voxel2/MCS. For larger diffusion constants, we must call
the algorithm multiple times per MCS (See the Three-Dimensional Vascular Solid Tumor Growth section).

Swat et al. Page 10

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



statements, if-elif-else statements, for loops, lists, and simple classes and do not require in-

depth knowledge of Python to create.

This section briefly introduces the main features of Python in the CC3D context. For a more

formal introduction to Python, see Lutz (2011) and http://www.python.org.

Python defines blocks of code, such as those appearing inside if statements or for loops (in

general after “:”), by an increased level of indentation. This chapter uses two spaces per

indentation level. For example, in Listing 3, we indent the body of the if statement by two

spaces and the body of the inner for loop by additional two spaces. The for loop is executed

inside the if statement, which checks if we are in the second MCS of the simulation. The

command pixelOffset=10 assigns to the variable pixelOffset a value of 10. The for loop

assigns to the variable x values ranging from 0 through self.dim.x-1, where self.dim.x is a

CC3D internal variable containing the size of the cell lattice in the x-direction. When

executed, Listing 3 prints consecutive integers from 10 to 10+self.dim.x-1.

One of the advantages of Python compared to older languages like Fortran is that it can also

iterate over members of a Python list, a container for grouping objects. Listing 4 executes a

for loop over a list containing all cells in the simulation and prints the type of each cell.

Lists can combine objects of any type, including integers, strings, complex numbers, lists,

and, in this case, CC3D cells. CC3D uses lists extensively to keep track of cells, cell

neighbors, cell pixels, etc.

CC3D allows users to construct custom Python code as independent modules called

steppables, which are represented as classes. Listing 5 shows a typical CC3D Python

steppable class. The first line declares the class name together with an argument

(SteppableBasePy) inside the parenthesis, which makes the main CC3D objects, including

cells, lattice properties, etc., available inside the class. The def

__init__(self,_simulator,_frequency=1): declares the initializing function __init__ which is

called automatically during class object instantiation. After initializing the class and

inheriting CC3D objects, we declare three main functions called at different times during the

simulation: start is called before the simulation starts; step is called at specified intervals in

MCS throughout the simulation; and finish is called at the end of the simulation. The start

function iterates over all cells, setting their target volume and inverse compressibility to 25

and 5, respectively. Generically, we use the start function to define model initial conditions.

The step function increases the target volumes of all cells by 0.001 after the tenth MCS, a

typical way to implement cell growth in CC3D. The finish function prints the cell volumes

at the end of the simulation.

The start, step, and finish functions have default implementations in the base class

SteppableBasePy. Therefore, we only need to provide definition of those functions that we

want to override. In addition, we can add our own functions to the class.

The next section uses Python scripting to build a complex CC3D model.

D. Three-Dimensional Vascular Tumor Growth Model

The development of a primary solid tumor starts from a single cell that proliferates in an

inappropriate manner, dividing repeatedly to form a cluster of tumor cells. Nutrient and

waste diffusion limits the diameter of such avascular tumor spheroids to about 1 mm. The

central region of the growing spheroid becomes necrotic, with a surrounding layer of cells

whose hypoxia triggers VEGF-mediated signaling events that initiate tumor

neovascularization by promoting growth and extension (neoangiogenesis) of nearby blood

Swat et al. Page 11

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.python.org


vessels. Vascularized tumors are able to grow much larger than avascular spheroids and are

more likely to metastasize.

Here, we present a simplified 3D model of a generic vascular tumor that can be easily

extended to describe specific vascular tumor types and host tissues. We begin with a cluster

of proliferating tumor cells, P, and normal vasculature. Initially, tumor cells proliferate as

they take up diffusing glucose from the field, GLU, which the preexisting vasculature

supplies (in this model, we neglect possible changes in concentration along the blood vessels

in the direction of flow and set the secretion parameters uniformly over all blood-vessel

surfaces). We assume that the tumor cells (both in the initial cluster and later) are always

hypoxic and secrete a long-diffusing isoform of VEGF-A, L_VEGF. When GLU drops

below a threshold, tumor cells become necrotic, gradually shrink and finally disappear. The

initial tumor cluster grows and reaches a maximum diameter characteristic of an avascular

tumor spheroid. To reduce execution time in our demonstration, we choose our model

parameters so that the maximum spheroid diameter will be about 10 times smaller than in

experiments. A few preselected neovascular endothelial cells, NV, in the preexisting

vasculature respond both by chemotaxing toward higher concentrations of proangiogenic

factors and by forming new blood vessels via neoangiogenesis. The tumor-induced

vasculature increases the growth rate of the resulting vascularized solid tumor compared to

an avascular tumor, allowing the tumor to grow beyond the spheroid’s maximum diameter.

Despite our rescaling of the tumor size, the model produces a range of biologically

reasonable morphologies that allow study of how tumor-induced angiogenesis affects the

growth rate, size, and morphology of tumors.

We use the basic angiogenesis simulation from the previous section to simulate both

preexisting vasculature and tumor-induced angiogenesis, adding a set of finite-element links

between the endothelial cells to model the strong junctions that form between endothelial

cells in vivo. We denote the short-diffusing isoform of VEGF-A, S_VEGF. Both endothelial

cells and neovascular endothelial cells chemotax up gradients of S_VEGF, but only

neovascular endothelial cells chemotax up gradients of L_VEGF.

In the Simulation Wizard, we name the model TumorVascularization, set the cell- and field-

lattice dimensions to 50 × 50 × 80, the membrane fluctuation amplitude to 20, the pixel-

copy range to 3, the number of MCS to 10,000, and choose UniformInitializer to produce

the initial tumor and vascular cells, since it automatically creates a mixture of cell types. We

specify four cell types: P: proliferating tumor cells; N: necrotic cells; EC: endothelial cells;

and NV: neovascular endothelial cells.

On the Chemical Fields page (see Fig. 14), we create the S_VEGF and L_VEGF fields and

select FlexibleDiffusionSolverFE for both from the Solver pull-down list. We also check

Enable multiple calls of PDE solvers to work around the numerical instabilities of the PDE

solvers for large diffusion constants.

On the Cell Behavior and Properties page (see Fig. 15) we select both the Contact and

FocalPointPlasticity modules from the Adhesion group, and add Chemotaxis, Growth, and

Mitosis, Volume Constraint, and GlobalConnectivity by checking the appropriate boxes. We

also track the Center-of-Mass (to access field concentrations) and Cell Neighbors (to

implement contact-inhibited growth). Unlike in our angiogenesis simulation, we will

implement secretion as a part of the FlexibleDiffusionSolverFE syntax.

In the Chemotaxis page (see Fig. 16), for each cell-type/chemical-field pair we click the Add

Entry button to add the relevant chemotaxis information, for example, we select S_VEGF

from the Field pull-down list and EC and NV from the cell-type list and set Lambda to 5000.

To enable contact inhibition of EC and NV chemotaxis, we select Medium from the pull-

Swat et al. Page 12

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



down menu next to the Chemotax Towards button and click the button to add Medium to the

list. We repeat this process for the T and N cell types, so that NV cells chemotax up

gradients of L_VEGF. We then proceed to the final Simulation Wizard page.

Twedit++ generates three simulation files – a CC3DML file specifying the energy terms,

diffusion solvers, and initial cell layout, a main Python file that loads the CC3DMLfile, sets

up the CompuCell environment and executes the Python steppables and a Python steppables

file. The main Python file is typically constructed by modifying the standard template in

Listing 6. Lines 1–12 set up the CC3D simulation environment and load the simulation.

Lines 14–20 create instances of two steppables – MitosisSteppable and

VolumeParamSteppable – and register them with the CC3D kernel. Line 22 starts the main

CC3D loop, which executes MCSs and periodically calls the steppables.

Next, we edit the draft autogenerated simulation CC3DML file in Listing 7.

In Listing 7, in the Contact plugin (lines 36–53), we set JMM=0, JEM=12, and JEE=5 (M:

Medium, E: EC) and the NeighborOrder to 4. The FocalPointPlasticity plugin (lines 57–80)

represents adhesion junctions by mechanically connecting the centers-of-mass of cells using

a breakable linear spring (see Shirinifard et al., 2009). EC–EC links are stronger than EC–

NV links, which are, in turn, stronger than NV–NV links (see the CC3D manual for details).

Since the Simulation Wizard creates code to implement links between all cell-type pairs in

the model, we must delete most of them, keeping only the links between EC–EC, EC–NV,

and NV–NV cell types.

We assume that L_VEGF diffuses 10 times faster than S_VEGF, so DL_VEGF=0.42 μm2/s

(1.6 voxel2/MCS). This large diffusion constant would make the diffusion solver unstable.

Therefore, in the CC3DML file (Listing 7, lines 108–114), we set the values of the

<DiffusionConstant> and <DecayConstant> tags of the L_VEGF field to 0.16 and 0.0016,

respectively, and use nine extra calls per MCS to achieve a diffusion constant equivalent to

1.6 (lines 87–89). We instruct P cells to secrete (line 116) into the L_VEGF field at a rate of

0.001 (3.85 pg/(cell h) = 0.001 pg/(voxel MCS)). Both EC and NV absorb L_VEGF. To

simulate this uptake, we use the <SecretionData> tag pair (lines 117, 118).

Since the same diffusion solver will be called 10 times per MCS to solve S_VEGF, we must

reduce the diffusion constant of S_VEGF by a factor of 10, setting the <DiffusionConstant>

and <DecayConstant> tags of S_VEGF field to 0.016 and 0.0016, respectively. To prevent

S_VEGF decay inside EC and NV cells, we add <DoNotDecayIn>EC</DoNotDecayIn>

and <DoNotDecayIn>NV</DoNotDecayIn> inside the <DiffusionData> tag pair (lines 99,

100). We define S_VEGF to be secreted (lines 102–105) by both the EC and NV cells types

at a rate of 0.013 per voxel per MCS (50 pg/(cell h) = 0.013 pg/(voxel MCS), compared to

Leith and Michelson (1995).

The experimental glucose diffusion constant is about 600 μm2/s. We convert the glucose

diffusion constant by multiplying by appropriate spatial and temporal conversion factors:

600 μm2/s × (voxel/4 μm)2 × (60 s/MCS)=2250 voxel2/MCS. To keep our simulation times

short for this example, we use a simulated glucose diffusion constant 1500 smaller, resulting

in much steeper glucose gradients and smaller maximum tumor diameters. We could use the

steady-state diffusion solver for the glucose field to be more realistic.

Experimental GLU uptake by P cells is ~0.3 μmol/g/min. We assume that stromal cells

(represented here without individual cell boundaries by Medium) take up GLU at a slower

rate of 0.1 μmol/g/min. A gram of tumor tissue has about 108 tumor cells, so the glucose

uptake per tumor cell is 0.003 pmol/MCS/cell or about 0.1 fmol/MCS/voxel. We assume

that (at homeostasis) the preexisting vasculature supplies all the required GLU to Medium,

Swat et al. Page 13

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



which has a total mass of 1.28 × 10−5 grams and consumes GLU at a rate of 0.1 fmol/MCS/

voxel, so the total GLU uptake (in the absence of a tumor) is 1.28 pmol/MCS. For this

glucose to be supplied by 24 EC cells, their GLU secretion rate must be 0.8 fmol/MCS/

voxel. We distribute the total GLU uptake (in the absence of a tumor) over all the Medium

voxels, so the uptake rate is ~1.28 pmol/MCS/(~20,000 Medium voxels)=6.4 × 10−3 fmol/

MCS/voxel.

We specify the uptake of GLU by Medium and P cells in lines 131 and 132 and instruct NV

and EC cells to secrete GLU at the rate 0.4 and 0.8 pg/(voxel MCS), respectively (lines 129,

130).

We use UniformInitializer (lines 137–170) to initialize the tumor cell cluster and two

crossing vascular cords. We also add two NV cells to each vascular cord, 25 pixels apart.

In the Python Steppable script in Listing 8, we set the initial target volume of both EC and

NV cells to 74 (64 + 10) voxels and the initial target volume of tumor cells to 32 voxels

(lines 14–21). All λvol are 20.0.

To model tumor cell growth, we increase the tumor cells’ target volumes (lines 38–47)

according to:

(4)

where GLU(x⃗) is the GLU concentration at the cell’s center-of-mass and GLU0 is the

concentration at which the growth rate is half its maximum. We assume that the fastest cell

cycle time is 24 h, so Gmax is 32 voxels/24 h = 0.022 voxel/MCS.

To account for contact-inhibited growth of NV cells, when their common surface area with

other EC and NV cells is less than a threshold, we increase their target volume according to:

(5)

where L_VEGF(x⃗) is the concentration of L_VEGF at the cell’s center-of-mass, L_VEGF0

is the concentration at which the growth rate is half its maximum, and Gmax is the maximum

growth rate for NV cells. We calculate the common surface area between each NV cell and

its neighboring NV or EC cells in lines 32–35. If the common surface area is smaller than

45, then we increase its target volume (lines 36, 37). When the volume of NVand P cells

reaches a doubling volume (here, twice their initial target volumes), we divide them along a

random axis, as shown in the MitosisSteppable (Listing 8, lines 54–75). The snapshots of the

simulation are presented in Fig. 17

With this simple model we can easily explore the effects of changes in cell adhesion,

nutrient availability, cell motility, sensitivity to starvation or dosing with chemotherapeutics

or antiangiogenics on the growth and morphology of the simulated tumor.

E. Subcellular Simulations Using BionetSolver

While our vascular tumor model showed how to change cell-level parameters like target

volume, we have not yet linked macroscopic cell behaviors to intracellular molecular

concentrations. Signaling, regulatory, and metabolic pathways all steer the behaviors of

biological cells by modulating their biochemical machinery. CC3D allows us to add and

solve subcellular reaction-kinetic pathway models inside each generalized cell, specified

Swat et al. Page 14

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



using the SBML format (Hucka et al., 2003), and to use such models (e.g., of their levels of

gene expression) to control cell-level behaviors like adhesion or growth (Hester et al., 2011).

We can use the same SBML framework to implement classic physics-based

pharmacokinetic (PBPK) models of supercellular chemical flows between organs or tissues.

The ability to explicitly model such subcellular and supercellular pathways adds greatly to

the range of hypotheses CC3D models can represent and test. In addition, the original

formulation of SBML primarily focused on the behaviors of biochemical networks within a

single cell, whereas real signaling networks often involve the coupling of networks between

cells. BionetSolver supports such coupling, allowing exploration of the very complex

feedback resulting from intercell interactions linking intracellular networks, in an

environment where the couplings change continuously due to cell growth, cell movement,

and changes in cell properties.

As an example of such interaction between signaling networks and cell behaviors, we will

develop a multi-cellular implementation of Delta–Notch mutual inhibitory coupling. In this

juxtacrine signaling process, a cell’s level of membrane-bound Delta depends on its

intracellular level of activated Notch, which in turn depends on the average level of

membrane-bound Delta of its neighbors. In such a situation, the Delta–Notch dynamics of

the cells in a tissue sheet will depend on the rate of cell rearrangement and the fluctuations it

induces. Although the example does not explore the wide variety of tissue properties due to

the coupling of subcellular networks with intercellular networks and cell behaviors, it

already shows how different such behaviors can be from those of their non-spatial

simplifications. We begin with the ODE Delta–Notch patterning model of Collier et al.

(1996) in which juxtacrine signaling controls the internal levels of the cells’ Delta and Notch

proteins. The base model neglects the complexity of the interaction due to changing spatial

relationships in a real tissue:

(6)

(7)

where D and N are the concentrations of activated Delta and Notch proteins inside a cell, D̄

is the average concentration of activated Delta protein at the surface of the cell’s neighbors,

a and b are saturation constants, h and k are Hill coefficients, and v is a constant that gives

the relative lifetimes of Delta and Notch proteins.

Notch activity increases with the levels of Delta in neighboring cells, whereas Delta activity

decreases with increasing Notch activity inside a cell (Fig. 18). When the parameters in the

ODE model are chosen correctly, each cell assumes one of two exclusive states: a primary

fate, in which the cell has a high level of Delta and a low level of Notch activity; and a

secondary fate, in which the cell has a low level of Delta and a high level of Notch.

To build this model in CC3D, we assign a separate copy of the ODE model (6–7) to each

cell and allow each cell to see the Delta concentrations of its neighbors. We use CC3D’s

BionetSolver library to manage and solve the ODEs, which are stored using the SBML

standard.

The three files that specify the Delta–Notch model are included in the CC3D installation and

can be found at <CC3D-installation-dir>/DemosBionetSolver/DeltaNotch: the main Python

Swat et al. Page 15

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



file (DeltaNotch.py) sets the parameters and initial conditions; the Python steppable file

(DeltaNotch_Step.py) calls the subcellular models; and the SBML file (DN_Collier.sbml)

contains the description of the ODE model. The first two files can be generated and edited

using Twedit++, the last can be generated and edited using an SBML editor like Jarnac or

JDesigner (both are open source). Listing 9 shows the SBML file viewed using Jarnac and

can be downloaded from http://sys-bio.org.

The main Python file (DeltaNotch.py) includes lines to define a steppable class

(DeltaNotchClass) to include the ODE model and its interactions with the CC3D generalized

cells (Listing 10).

The Python steppable file (Listing 11, DeltaNotch_Step.py) imports the BionetSolver library

(line 1), then defines the class, and initializes the solver inside it (lines 2–5).

The first lines in the start function (Listing 11, lines 9–12) specify the name of the model, its

nickname (for easier reference), the path to the location where the SBML model is stored,

and the time-step of the ODE integrator, which fixes the relation between MCS and the time

units of the ODE model (here, 1 MCS corresponds to 0.2 ODE model time units). In line 13,

we use the defined names, path and time-step parameter to load the SBML model.

In Listing 11, line 15 associates the subcellular model with the CC3D cells, creating an

instance of the ODE solver (described by the SBML model) for each cell of type TypeA.

Line 16 initializes the loaded subcellular models.

To set the initial levels of Delta (D) and Notch (N) in each cell, we visit all cells and assign

random initial concentrations between 0.9 and 1.0 (Listing 11, lines 18–26). Line 18 imports

the intrinsic Python random number generator. Lines 22 and 23 pass these values to the

subcellular models in each cell. The first argument specifies the ODE model parameter to

change with a string containing the nickname of the model, here DN, followed by an

underscore and the name of the parameter as defined in the SBML file. The second

argument specifies the value to assign to the parameter, and the last argument specifies the

cell id. For visualization purposes, we also store the values of D and N in a dictionary

attached to each cell (lines 25, 26).

Listing 12 defines a step function of the class, which is called by every MCS, to read the

Delta concentrations of each cell’s neighbors to determine the value of D (the average Delta

concentration around the cell). The first three lines in Listing 12 iterate over all cells. Inside

the loop, we first set the variables D and nn to zero. They will store the total Delta

concentration of the cell’s neighbors and the number of neighbors, respectively. Next, we

get a list of the cell’s neighbors and iterate over them. Line 9 reads the Delta concentration

of each neighbor (the first argument is the name of the parameter and the second is the id of

the neighboring cell) summing the total Delta and counting the number of neighbors. Note

the += syntax (e.g., nn+=1 is equivalent to nn=nn+1). Lines 3 and 7 skip Medium (Medium

has a value 0, so if (Medium) is false).

After looping over the cell’s neighbors, we update the variable D̄, which in the SBML code

has the name Davg, to the average neighboring Delta (D) concentration, ensuing that the

denominator, nn, is not zero (Listing 12, lines 10–12).

The remaining lines (Listing 12, lines 13–15) access the cell dictionary and store the cell’s

current Delta and Notch concentrations. Line 16 then calls BionetSolver and tells it to

integrate the ODE model with the new parameters for one integration step (0.2 time units in

this case).

Swat et al. Page 16

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://sys-bio.org


Fig. 19 shows a typical cell configurations and states for the simulation. The random initial

values gradually converge to a pattern with cells with low levels of Notch (primary fate)

surrounded by cells with high levels of Notch (secondary fate).

In Listing 13, lines 2–4 define two new visualization fields in the main Python file

(DeltaNotch.py) to visualize the Delta and Notch concentrations in CompuCell Player. To

fill the fields with the Delta and Notch concentrations, we call the steppable class,

ExtraFields (Listing 13, lines 6–9). This code is very similar to our previous steppable calls,

with the exception of line 8, which uses the function setScalarFields()to reference the

visualization Fields.

In the steppable file (Listing 14, DeltaNotch_Step.py) we use setScalarFields() to set the

variables self.scalarField1 and self. scalarField2 to point to the fields DeltaField and

NotchField, respectively. Lines 10 and 11 of the step function clear the two fields using

clearScalarValueCellLevel(). Line 12 loops over all cells, line 13 accesses a cell’s

dictionary, and lines 14 and 15 use the D and N entries to fill in the respective visualization

fields, where the first argument specifies the visualization field, the second the cell to be

filled, and the third the value to use.

The two fields can be visualized in CompuCell Player using the Field-selector button of the

Main Graphics Window menu (second-to-last button, Fig. 19).

As we illustrate in Fig. 20, the result is a roughly hexagonal pattern of activity with one cell

of low-Notch activity for every two cells with high Notch activity. In the presence of a high

level of cell motility, the identity of high and low Notch cells can change when the pattern

rearranges. We could easily explore the effects of Delta–Notch signaling on tissue structure

by linking the Delta–Notch pathway to one of its known downstream targets. For example,

if we wished to simulate embryonic feather-bud primordial in chicken skin or the formation

of colonic crypts, we could start with an epithelial sheet of cells in 3D on a rigid support,

and couple the growth of the cells to their level of Notch activity by having Notch inhibit

cell growth. The result would be clusters of cell growth around the initial low-Notch cells,

leading to a patterned 3D buckling of the epithelial tissue. Such mechanisms are capable of

extremely complex and subtle patterning, as observed in vivo.

V. Conclusion

Multi-cell modeling, especially when combined with subcell (or supercell) modeling of

biochemical networks, allows the creation and testing of hypotheses concerning many key

aspects of embryonic development, homeostasis, and developmental disease. Until now,

such modeling has been out of reach to all but experienced software developers. CC3D

makes the development of such models much easier, though it still does involve a minimal

level of hand editing. We hope the examples we have shown will convince readers to

evaluate the suitability of CC3D for their research.

Furthermore, CC3D directly addresses the current difficulty researchers face in reusing,

testing, or adapting both their own and published models. Most published multi-cell, multi-

scale models exist in the form of Fortran/C/C++ code, which is often of little practical value

to other potential users. Reusing such code involves digging into large code bases, inferring

their function, extracting the relevant code, and trying to paste it into a new context. CC3D

improves this status quo in at least three ways: (1) it is fully open source; (2) CC3D models

can be executed cross-platform and do not require compilation; (3) CC3D models are

modular, compact, and shareable. Because Python-based CC3D models require much less

effort to develop than does custom code programming: simulations are fast and easy to

develop and refine. Even with these convenience features, CC3D 3.6 often runs as fast or

Swat et al. Page 17

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



faster than custom code solving the same model. Current CC3D development focuses on

adding GPU-based PDE solvers, MPI parallelization, and additional cell behaviors. We are

also developing a high-level cell-behavior model description language that will compile into

executable Python, removing the last need for model builders to learn programming

techniques.

All examples presented in this chapter are included in the CC3D binary distribution and will

be curated to ensure their correctness and compatibility with future versions of CC3D.

Acknowledgments

We gratefully acknowledge support from the National Institutes of Health, National Institute of General Medical

Sciences grants R01 GM077138 and R01 GM076692, the Environmental Protection Agency, and the Office of

Vice President for Research, the College of Arts and Sciences, the Pervasive Technologies Laboratories, and the

Biocomplexity Institute at Indiana University. GLT acknowledges support from the Brazilian agencies Conselho

Nacional de Pesquisa e Desenvolvimento (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande

do Sul (FAPERGS) under the grant PRONEX-10/0008-0. Indiana University’s University Information Technology

Services provided time on their BigRed cluster for simulation execution. Early versions of CompuCell and

CompuCell3D were developed at the University of Notre Dame by JAG, Dr. Mark Alber, and Dr. Jesus Izaguirre,

and collaborators with the support of National Science Foundation, Division of Integrative Biology, grant

IBN-00836563. Since the primary home of CompuCell3D moved to Indiana University in 2004, the Notre Dame

team have continued to provide important support for its development. We especially would like to thank our

current collaborators, Herbert Sauro and Ryan Roper, from University of Washington for developing the subcellular

reaction kinetics model simulator BionetSolver.

References

Alber MS, Jiang Y, Kiskowski MA. Lattice gas cellular automation model for rippling and aggregation

in myxobacteria. Physica D. 2004; 191:343–358.

Alber, MS.; Kiskowski, MA.; Glazier, JA.; Jiang, Y. On cellular automation approaches to modeling

biological cells. In: Rosenthal, J.; Gilliam, DS., editors. Mathematical Systems Theory in Biology,

Communication and Finance. Springer-Verlag; New York: 2002. p. 1-40.

Alber M, Chen N, Glimm T, Lushnikov P. Multiscale dynamics of biological cells with chemotactic

interactions: from a discrete stochastic model to a continuous description. Phys Rev E. 2006;

73:051901.

Armstrong PB, Armstrong MT. A role for fibronectin in cell sorting out. J Cell Sci. 1984; 69:179–197.

[PubMed: 6386836]

Armstrong PB, Parenti D. Cell sorting in the presence of cytochalasin B. J Cell Biol. 1972; 55:542–

553. [PubMed: 4676368]

Chaturvedi R, Huang C, Izaguirre JA, Newman SA, Glazier JA, Alber MS. A hybrid discrete-

continuum model for 3-D skeletogenesis of the vertebrate limb. Lect Notes Comput Sci. 2004;

3305:543–552.

Cickovski T, Aras K, Alber MS, Izaguirre JA, Swat M, Glazier JA, Merks RMH, Glimm T, Hentschel

HGE, Newman SA. From genes to organisms via the cell: a problem-solving environment for

multicellular development. Comput Sci Eng. 2007; 9:50. [PubMed: 19526065]

Cipra BA. An introduction to the Ising-model. Amer Math Monthly. 1987; 94:937–959.

Collier JR, Monk NAM, Maini PK, Lewis JH. Pattern formation by lateral inhibition with feedback: a

mathematical model of Delta–Notch intercellular signaling. J Theor Biol. 1996; 183:429–446.

[PubMed: 9015458]

Dallon J, Sherratt J, Maini PK, Ferguson M. Biological implications of a discrete mathematical model

for collagen deposition and alignment in dermal wound repair. IMA J Math Appl Med Biol. 2000;

17:379–393. [PubMed: 11270750]

Drasdo D, Kree R, McCaskill JS. Monte-Carlo approach to tissue-cell populations. Phys Rev E. 1995;

52:6635–6657.

Glazier JA. Cellular patterns. Bussei Kenkyu. 1993; 58:608–612.

Glazier JA. Thermodynamics of cell sorting. Bussei Kenkyu. 1996; 65:691–700.

Swat et al. Page 18

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Glazier JA, Graner F. Simulation of biological cell sorting using a two-dimensional extended Potts

model. Phys Rev Lett. 1992; 69:2013–2016. [PubMed: 10046374]

Glazier JA, Graner F. Simulation of the differential adhesion driven rearrangement of biological cells.

Phys Rev E. 1993; 47:2128–2154.

Glazier, JA.; Raphael, RC.; Graner, F.; Sawada, Y. The energetics of cell sorting in three dimensions.

In: Beysens, D.; Forgacs, G.; Gaill, F., editors. Interplay of Genetic and Physical Processes in the

Development of Biological Form. World Scientific Publishing Company; Singapore: 1995. p.

54-66.

Glazier, JA.; Balter, A.; Poplawski, N. Magnetization to morphogenesis: a brief history of the Glazier–

Graner–Hogeweg model. In: Anderson, ARA.; Chaplain, MAJ.; Rejniak, KA., editors. Single-

Cell-Based Models in Biology and Medicine. Birkhauser Verlag; Basel, Switzerland: 2007. p.

79-106.

Glazier JA, Zhang Y, Swat M, Zaitlen B, Schnell S. Coordinated action of N-CAM, N-cadherin,

EphA4, and ephrinB2 translates genetic prepatterns into structure during somitogenesis in chick.

Curr Top Dev Biol. 2008; 81:205–247. [PubMed: 18023729]

Graner F, Glazier JA. Simulation of biological cell sorting using a 2-dimensional extended Potts

model. Phys Rev Lett. 1992; 69:2013–2016. [PubMed: 10046374]

Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Schere B. Auxin transport is sufficient to generate a

maximum and gradient guiding root growth. Nature. 2007; 449:1008–1013. [PubMed: 17960234]

Groenenboom MA, Hogeweg P. Space and the persistence of male-killing endosymbionts in insect

populations. Proc Biol Sci. 2002; 269:2509–2518. [PubMed: 12573064]

Groenenboom MA, Maree AFM, Hogeweg P. The RNA silencing pathway: the bits and pieces that

matter. PLoS Comput Biol. 2005; 1:55–165.

Hester SD, Belmonte JM, Gens JS, Clendenon SG, Glazier JA. A Multi-cell, Multi-scale Model of

Vertebrate Segmentation and Somite Formation. PLoS Comput Biol. 2011; 7:e1002155. [PubMed:

21998560]

Hogeweg P. Evolving mechanisms of morphogenesis: on the interplay between differential adhesion

and cell differentiation. J Theor Biol. 2000; 203:317–333. [PubMed: 10736211]

Holm EA, Glazier JA, Srolovitz DJ, Grest GS. Effects of lattice anisotropy and temperature on domain

growth in the two-dimensional Potts model. Phys Rev A. 1991; 43:2662–2669. [PubMed:

9905332]

Honda H, Mochizuki A. Formation and maintenance of distinctive cell patterns by coexpression of

membrane-bound ligands and their receptors. Dev Dynamics. 2002; 223:180–192.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D,

Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ,

Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le

Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR,

Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K,

Tomita M, Wagner J, Wang J. The Systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics. 2003; 19:524–531.

[PubMed: 12611808]

Johnston DA. Thin animals. J Phys A. 1998; 31:9405–9417.

Kesmir C, de Boer RJ. A spatial model of germinal center reactions: cellular adhesion based sorting of

B cells results in efficient affinity maturation. J Theor Biol. 2003; 222:9–22. [PubMed: 12699731]

Kesmir C, van Noort V, de Boer RJ, Hogeweg P. Bioinformatic analysis of functional differences

between the immunoproteasome and the constitutive proteasome. Immunogenetics. 2003; 55:437–

449. [PubMed: 12955356]

Knewitz MA, Mombach JCM. Computer simulation of the influence of cellular adhesion on the

morphology of the interface between tissues of proliferating and quiescent cells. Comput Biol

Med. 2006; 36:59–69. [PubMed: 16324909]

Leith JT, Michelson S. Secretion rates and levels of vascular endothelial growth factor in clone A or

HCT-8 human colon tumour cells as a function of oxygen concentration. Cell Prolif. 1995;

28:415–430. [PubMed: 7548442]

Swat et al. Page 19

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Longo D, Peirce SM, Skalak TC, Davidson L, Marsden M, Dzamba B. Multicellular computer

simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis.

Dev Biol. 2004; 271:210–222. [PubMed: 15196962]

Lutz, M. Programming Python. O’Reilly & Associates, Inc; Sebastopol, CA: 2011.

Maini PK, Olsen L, Sherratt JA. Mathematical models for cell-matrix interactions during dermal

wound healing. Int J Bifurcation Chaos. 2002; 12:2021–2029.

Marée AFM, Hogeweg P. How amoeboids self-organize into a fruiting body: multicellular

coordination in Dictyostelium discoideum. Proc Natl Acad Sci USA. 2001; 98:3879–3883.

[PubMed: 11274408]

Marée AFM, Hogeweg P. Modelling Dictyostelium discoideum morphogenesis: the culmination. Bull

Math Biol. 2002; 64:327–353. [PubMed: 11926120]

Marée AFM, Panfilov AV, Hogeweg P. Migration and thermotaxis of Dictyostelium discoideum slugs,

a model study. J Theor Biol. 1999a; 199:297–309. [PubMed: 10433894]

Marée AFM, Panfilov AV, Hogeweg P. Phototaxis during the slug stage of Dictyostelium discoideum:

a model study. Proc Royal Soc Lond Ser B. 1999b; 266:1351–1360.

Merks RM, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA. Cell elongation is key to in silico

replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol. 2006; 289:44–54.

[PubMed: 16325173]

Merks RM, Glazier JA. Dynamic mechanisms of blood vessel growth. Nonlinearity. 2006; 19:C1–

C10. [PubMed: 19526066]

Merks RM, Perryn ED, Shirinifard A, Glazier JA. Contact-inhibited chemotactic motility can drive

both vasculogenesis and sprouting angiogenesis. PLoS Comput Biol. 2008; 4:e1000163. [PubMed:

18802455]

Metropolis N, Rosenbluth A, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by

fast computing machines. J Chem Phys. 1953; 21:1087–1092.

Meyer-Hermann M, Deutsch A, Or-Guil M. Recycling probability and dynamical properties of

germinal center reactions. J Theor Biol. 2001; 210:265–285. [PubMed: 11397129]

Mochizuki A. Pattern formation of the cone mosaic in the zebrafish retina: A cell rearrangement

model. J Theor Biol. 2002; 215:345–361. [PubMed: 12054842]

Mombach JCM, Glazier JA. Single cell motion in aggregates of embryonic cells. Phys Rev Lett. 1996;

76:3032–3035. [PubMed: 10060853]

Mombach JCM, de Almeida RMC, Thomas GL, Upadhyaya A, Glazier JA. Bursts and cavity

formation in Hydra cells aggregates: experiments and simulations. Physica A. 2001; 297:495–508.

Mombach JCM, Glazier JA, Raphael RC, Zajac M. Quantitative comparison between differential

adhesion models and cell sorting in the presence and absence of fluctuations. Phys Rev Lett. 1995;

75:2244–2247. [PubMed: 10059250]

Nguyen B, Upadhyaya A, van Oudenaarden A, Brenner MP. Elastic instability in growing yeast

colonies. Biophys J. 2004; 86:2740–2747. [PubMed: 15111392]

Novak B, Toth A, Csikasz-Nagy A, Gyorffy B, Tyson JA, Nasmyth K. Finishing the cell cycle. J

Theor Biol. 1999; 199:223–233. [PubMed: 10395816]

Popławski NJ, Shirinifard A, Swat M, Glazier JA. Simulation of single-species bacterial-biofilm

growth using the Glazier–Graner–Hogeweg model and the CompuCell3D modeling environment.

Math Biosci Eng. 2008; 5:355–388. [PubMed: 18613738]

Popławski NJ, Swat M, Gens JS, Glazier JA. Adhesion between cells diffusion of growth factors and

elasticity of the AER produce the paddle shape of the chick limb. Physica A. 2007; 373:C521–

C532.

Rieu JP, Upadhyaya A, Glazier JA, Ouchi NB, Sawada Y. Diffusion and deformations of single hydra

cells in cellular aggregates. Biophys J. 2000; 79:1903–1914. [PubMed: 11023896]

Savill NJ, Hogeweg P. Modelling morphogenesis: from single cells to crawling slugs. J Theor Biol.

1997; 184:229–235.

Savill NJ, Sherratt JA. Control of epidermal stem cell clusters by Notch-mediated lateral induction.

Dev Biol. 2003; 258:141–153. [PubMed: 12781689]

Swat et al. Page 20

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Steinberg MS. Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev. 2007;

17(4):281–286. [PubMed: 17624758]

Shirinifard A, Gens JS, Zaitlen BL, Poplawski NJ, Swat MH, Glazier JA. 3D multi-cell simulation of

tumor growth and angiogenesis. PLoS ONE. 2009; 4:e7190. [PubMed: 19834621]

Takesue A, Mochizuki A, Iwasa Y. Cell-differentiation rules that generate regular mosaic patterns:

modelling motivated by cone mosaic formation in fish retina. J Theor Biol. 1998; 194:575–586.

[PubMed: 9790831]

Turner S, Sherratt JA. Intercellular adhesion and cancer invasion: a discrete simulation using the

extended Potts model. J Theor Biol. 2002; 216:85–100. [PubMed: 12076130]

Walther T, Reinsch H, Grosse A, Ostermann K, Deutsch A, Bley T. Mathematical modeling of

regulatory mechanisms in yeast colony development. J Theor Biol. 2004; 229:327–338. [PubMed:

15234200]

Walther T, Reinsch H, Ostermann K, Deutsch A, Bley T. Coordinated growth of yeast colonies:

experimental and mathematical analysis of possible regulatory mechanisms. Eng Life Sci. 2005;

5:115–133.

Wearing HJ, Owen MR, Sherratt JA. Mathematical modelling of juxtacrine patterning. Bull Math Biol.

2000; 62:293–320. [PubMed: 10824431]

Zajac, M. PhD thesis. University of Notre Dame; 2002. Modeling convergent extension by way of

anisotropic differential adhesion.

Zajac M, Jones GL, Glazier JA. Model of convergent extension in animal morphogenesis. Phys Rev

Lett. 2000; 85:2022–2025. [PubMed: 10970673]

Zajac M, Jones GL, Glazier JA. Simulating convergent extension by way of anisotropic differential

adhesion. J Theor Biol. 2003; 222:247–259. [PubMed: 12727459]

Zhang Y, Thomas GL, Swat M, Shirinifard A, Glazier JA. Computer imulations of Cell Sorting Due to

Differential Adhesion. PLoS ONE. 2011; 6(10):e24999. [PubMed: 22028771]

Zhdanov VP, Kasemo B. Simulation of the growth and differentiation of stem cells on a heterogeneous

scaffold. Phys Chem Chem Phys. 2004a; 6:4347–4350.

Zhdanov VP, Kasemo B. Simulation of the growth of neurospheres. Europhys Lett. 2004b; 68:134–

140.

Swat et al. Page 21

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 1.
GGH representation of an index-copy attempt for two cells on a 2D square cell lattice – The

“white” pixel (source) attempts to replace the “grey” pixel (target). The probability of

accepting the index copy is given by Eq. (2).

Swat et al. Page 22

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 2.
Flow chart of the GGH algorithm as implemented in CompuCell3D.

Swat et al. Page 23

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 3.
CellDraw graphics tools and GUI. (For color version of this figure, the reader is referred to

the web version of this book.)

Swat et al. Page 24

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4.
Invoking the CompuCell3D Simulation Wizard from Twedit++. (For color version of this

figure, the reader is referred to the web version of this book.)

Swat et al. Page 25

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 5.
Specification of basic cell-sorting properties in Simulation Wizard. (For color version of this

figure, the reader is referred to the web version of this book.)

Swat et al. Page 26

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 6.
Specification of cell-sorting cell types in Simulation Wizard. (For color version of this

figure, the reader is referred to the web version of this book.)

Swat et al. Page 27

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 7.
Selection of cell-sorting cell behaviors in Simulation Wizard.2 (For color version of this

figure, the reader is referred to the web version of this book.)

2We have graphically edited the screenshots of Wizard pages to save space.

Swat et al. Page 28

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 8.
Snapshots of the cell-lattice configurations for the cell-sorting simulation in Listing 1. The

boundary-energy hierarchy drives NonCondensing (light grey) cells to surround Condensing

(dark grey) cells. The white background denotes surrounding Medium.

Swat et al. Page 29

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 9.
Specification of the angiogenesis chemical field in Simulation Wizard. (For color version of

this figure, the reader is referred to the web version of this book.)

Swat et al. Page 30

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 10.
Specification of angiogenesis cell behaviors in Simulation Wizard. (For color version of this

figure, the reader is referred to the web version of this book.)

Swat et al. Page 31

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 11.
Specification of angiogenesis secretion parameters in Simulation Wizard. (For color version

of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 32

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 12.
Specification of angiogenesis chemotaxis properties in Simulation Wizard. (For color

version of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 33

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 13.
An initial cluster of adhering endothelial cells forms a capillary-like network via sprouting

angiogenesis. (A) 0 h (0 MCS); (B) ~2 h (100 MCS); (C) ~5 h (250 MCS); (D): ~18 h (1100

MCS). (For color version of this figure, the reader is referred to the web version of this

book.)

Swat et al. Page 34

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 14.
Specification of vascular tumor chemical fields in the Simulation Wizard. (For color version

of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 35

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 15.
Specification of vascular tumor cell behaviors in Simulation Wizard. (For color version of

this figure, the reader is referred to the web version of this book.)

Swat et al. Page 36

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 16.
Specification of vascular tumor chemotaxis properties in Simulation Wizard. (For color

version of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 37

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 17.
Two-dimensional snapshots of the vascular tumor simulation taken at: (A) 0 MCS; (B) 500

MCS; (C) 2000 MCS; (D) 5000 MCS. Red and yellow cells represent endothelial cells and

neovascular endothelial cells, respectively. (See color plate.)

Swat et al. Page 38

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 18.
Diagram of Delta–Notch feedback regulation between and within cells.

Swat et al. Page 39

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 19.
Initial Notch (left) and Delta (right) concentrations in the Delta–Notch model. (For color

version of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 40

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 20.
Dynamics of the Notch concentrations of cells in the Delta–Notch model. Snapshots taken at

10, 100, 300, 400, 450, and 600 MCS. (See color plate.)

Swat et al. Page 41

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 1.
Simulation-Wizard-generated draft CC3DML (XML) code for cell sorting.3

3We use indent each nested block by two spaces in all listings in this chapter to avoid distracting rollover of text at the end of the line.
However, both Simulation Wizard and standard Python use an indentation of four spaces per block.

Swat et al. Page 42

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Swat et al. Page 43

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 2.
CC3DML code for the angiogenesis model.

Swat et al. Page 44

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 3.
Simple Python loop.

Swat et al. Page 45

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 4.
Iterating over the inventory of CC3D cells in Python.

Swat et al. Page 46

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 5.
Sample CC3D steppable class.

Swat et al. Page 47

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 6.
The Main Python script initializes the vascular tumor simulation and runs the main

simulation loop.

Swat et al. Page 48

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Swat et al. Page 49

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Swat et al. Page 50

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Swat et al. Page 51

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 7.
CC3DML specification of the vascular tumor model’s initial cell layout, PDE solvers, and

key cellular behaviors.

Swat et al. Page 52

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 8.

Swat et al. Page 53

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Vascular tumor model Python steppables. The VolumeParametersSteppable adjusts the

properties of the cells in response to simulation events and the MitosisSteppable implements

cell division.

Swat et al. Page 54

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 9.
Jarnac specification of the Delta–Notch coupling model in Fig. 17.

Swat et al. Page 55

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 10.
Registering DeltaNotchClass in the main Python script, DeltaNotch.py in the Delta–Notch

model.

Swat et al. Page 56

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 11.
Implementation of the _init_ and start functions of the DeltaNotchClass in the Delta–Notch

model.

Swat et al. Page 57

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 12.
Implementation of a step function (continuation of the code from Listing 11) to calculate D̄

in the DeltaNotchClass in the Delta–Notch model.

Swat et al. Page 58

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 13.
Adding extra visualization fields in the main Python script DeltaNotch.py in the Delta–

Notch model.

Swat et al. Page 59

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Listing 14.
Steppable to visualize the concentrations of Delta and Notch in each cell in the Delta–Notch

model.

Swat et al. Page 60

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t


