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Motivation

Increase interest in multi-functional, structural composites

� Demand for smart structures with superior mechanical 
and functional properties

� Importance of weight savings

Nanofiber/cement composites

� Expected to improve mechanical properties 

� Additional “smart” properties: electromagnetic 
field shielding, self-sensing capabilities, self control of cracks

� Key aspects: proper dispersion and degree of interfacial interaction 
between the carbon nanofibers (CNFs) and the cement phases

Need for understanding the mechanisms of action of CNFs in 
cement pastes and the impact of their long-term use

Carbon nanofibers 
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Nano-Reinforcement/ Cement I nterface
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Determine the effect of surface treatment and admixture 
addition on the incorporation of CNFs in cement 
composites

Determine the effect of decalcification on the interface 
between CNFs and cement phases

Investigate how microstructural and morphological 
alteration of the cement paste due to decalcification 
affects the role of the CNFs and in turn the macroscale
properties of the material

Research Objectives
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Materials

Two types of cement pastes

� Portland cement (PC)

� Portland cement with 10 wt.% silica fume (SF)

Carbon nanofiber (CNF) size

� ~ 75-150 nm dia., 100-300 µm long

Surface treatment: HNO3

Mix design

� CNF loadings: 0 and 0.5 wt%

� Water/cementitious material: 0.33

Specimens

� Cylinders – 2in dia. x 4in height

� Curing – 28 days minimum, room temperature, 100% RH
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Microstructure Studies
CNF/ Portland Cement Composites

Entangled network of 

CNFs intermixed with 
hydration products

I nt. J. Materials and Structural I ntegrity, I n press

CNF pocket
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CNF pocket HNO3 surface 

treated CNFs

Appearance of 

combed yarn
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CNFs

Randomly 
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Individual CNFs well anchored inside of hydration products

Silica fume facilitated CNF dispersion

Microstructure Studies
CNF/ Cement Composites

Composites Science and Technology, 69 (2009)  1310–1318

I ndividual 

CNFs anchored 

in paste

Paste with 

silica fume

Groove 

left by CNF

Hole

left by CNF
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Microstructure Studies
CNF/ Portland Cement Composites

CNFs found acting as bridges between hydrates

Surface coating on CNFs

Surface 

treatment 
with HNO3
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I nterface Studies
Molecular Dynamics Modeling

H-bond network developed across the interface, bridging 
the structures

Optimal number of O-containing groups required for 
efficient graphitic structure/cement interaction

Polarity of functional group drives 
affinity to cement phases

J. of Colloid and I nterface Science, 323 (2008)  349–358
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Macroscopic Property Studies
CNF/ Cement Composites

Post compression
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Durability Studies

Water absorption studies

Decalcification studies
� 7M NH4NO3 solution

� Accelerates calcium leaching by formation 
of Ca(NO3)2

� Liquid-to-Surface ratio = 5 mL/cm2

� Immersion: 7, 30 and 95 days - No renewal

Material characterization 
� Mineralogical changes

− Solid phase mineralogy and element mapping 
of leached cement pastes

� Microstructural changes

� Mechanical performance effect
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Water Absorption Capacity
CNF/ Cement Composites

PC paste – CNF pockets hydrophobic (Gore-Tex effect)

SF paste – CNF pockets hydrophilic (C-S-H coating) 
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Mass Loss and Penetration Depth
CNF/ Cement Composites

Greater mass loss for PC pastes

Greater visual degraded depth for SF pastes

Greater visual degraded depth with CNFs
� Influence of volume fraction of CNF pockets (~13% and 3%)
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Visual degraded depth did not provide complete 
delineation of degraded state of the paste
“Sound zone” altered
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CNF pockets acted 
as sink for Ca, Si, Al

Impregnated CNF meshwork
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Mechanical Effect of Decalcification
CNF/ Cement Composites

No residual effect of CNFs on ultimate compressive 
strength
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Mechanical Effect of Decalcification
CNF/ Portland Cement Composites

Decalcification resulted in a change in failure mode from 
brittle cracking to slow ductile load dissipation
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Conclusions

SF and surface treatment with HNO3 facilitated CNF dispersion 
and improved interfacial interaction

Unchanged compression and tensile strengths with CNFs but 
residual load-bearing capacity post failure

Hydrophobic/hydrophilic effect of CNF pockets

Important role of CNF pockets in the decalcification process
� Kinetics of degradation affected by volume fraction of CNF pockets
� CNF pockets acted as sink for Ca, Si, Al

Decalcification changed the failure mode from brittle cracking to 
slow ductile load dissipation, which was more pronounced for 
the PC paste with CNFs

MD a useful technique for understanding interfacial interaction 
between cement phases and reinforcing structure
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