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Abstract: The efficiency of deep learning-based fault diagnosis methods for bearings is affected by
the sample size of the labeled data, which might be insufficient in the engineering field. Self-training
is a commonly used semi-supervised method, which is usually limited by the accuracy of features
for unlabeled data screening. It is significant to design an efficient training mechanism to extract
accurate features and a novel feature fusion mechanism to ensure that the fused feature is capable of
screening. A novel training mechanism of multi-scale recursion (MRAE) is designed for Autoencoder
in this article, which can be used for accurate feature extraction with a small amount of labeled data.
An attention gate-based fusion mechanism was constructed to make full use of all useful features in
the sense that it can incorporate distinguishing features on different scales. Utilizing large numbers
of unlabeled data, the proposed multi-scale recursive semi-supervised deep learning fault diagnosis
method with attention gate (MRAE-AG) can efficiently improve the fault diagnosis performance
of DNNs trained by a small number of labeled data. A benchmark dataset from the Case Western
Reserve University bearing data center was used to validate this novel method which shows that
7.76% accuracy improvement can be achieved in the case when only 10 labeled samples was available
for supervised training of the DNN-based fault diagnosis model.

Keywords: deep learning; semi-supervised learning; multi-scale recursion; attention gate;
fault diagnosis

1. Introduction

As a key component of electromechanical equipment, rolling bearings play a crucial
role in electric motors. Fault diagnosis of bearings is important for healthy operation of
the motor [1–3]. Data-driven fault diagnosis methods can mine data features without
precise mathematical models and expert knowledge [4]. Deep learning is widely used in
the field of fault diagnosis for its powerful capability in feature extraction [5–7]. However,
it requires huge amounts of labeled data to train a well-performing model, which is always
unavailable in the engineering field. Semi-supervised deep learning methods can use
massive unlabeled data to optimize the supervised model trained by a small size of labeled
data [8–10]. Existing semi-supervised deep learning methods can be mainly classified into
deep generative methods, consistency regularization methods, graph-based methods, and
pseudo label-based self-training methods [11–13]. The graph-based methods treat samples
as nodes in a graph and use the graph structure to reflect the similarity between samples
to complete the propagation of labels [14–16]. Chen et al. [14] constructed a graph based
on the weighted sparse adjacency matrix through the k-nearest neighbor and Gaussian
kernel weighting algorithm, then the labels were propagated to unlabeled data. Yi et al. [15]
constructed a graph model for label propagation after removing redundant information
from the data using feature screening based on mutual information. Wang et al. [16]
transformed the diagnosis task into a hierarchical fault attribute representation task, which
reduced the complexity of the classification problem in a semi-supervised model. These
methods mentioned above used unlabeled data to improve the fault diagnosis accuracy
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of the model. However, the graph-based, semi-supervised methods assumed that the
connected nodes in the graph had the same labels and ignored the additional information
of neighboring nodes, which greatly limited the model performance. Liang et al. [17] used
wavelet transform to achieve time–frequency domain conversion of the vibration signal
and fed it to adversarial learning model, which achieved the purpose of combining masses
of unlabeled data with little labeled data for fault diagnosis. However, it was difficult to
train a good generator and semi-supervised classifier at the same time. Laine et al. [18]
introduced self-ensembling to achieve consistent prediction of unlabeled data through data
augmentation and dropout. However, this method relied too much on regularization and
data augmentation techniques.

Compared with the methods mentioned above, the semi-supervised methods based
on pseudo-labeling for self-training are easier to train the model [19–22]. Lee et al. [19]
utilized the assumption of low-density separation in semi-supervised learning to select
labels with maximum probability for unlabeled data, which improved fault diagnosis
accuracy. Yu et al. [20] performed the K-means method to obtain the clustering centers
of labeled data and constructed a loss function to minimize the distribution discrepancy
by Kullback–Leibler (KL) divergence between the features of unlabeled data and their
corresponding clustering centers. Sohn et al. [21] combined consistency regularization
and pseudo labels to predict label information for weakly enhanced unlabeled data. The
obtained pseudo labels would be used to optimize the model as supervised information of
strongly enhanced unlabeled data. Berthelot et al. [22] used random augmentation multiple
times on the same unlabeled data to obtain multiple predicted labels, then mixed the labeled
and unlabeled data to calculate the loss function separately. The above-mentioned self-
training methods can enhance the robustness of the model, but it is limited by inaccurate
features for unlabeled data screening.

Accurate features can better represent the original data and improve the accuracy of
semi-supervised models [23–25]. Tao et al. [23] used density peak clustering to generate
pseudo labels for unlabeled data, and then regularized the inter-class scatter and intra-
class scatter based on the pseudo labels to improve the discriminative performance of
the extracted feature. Zhang et al. [24] used a variational Autoencoder (VAE) to mine
features in the data and then used the features of the labeled data to train the classifier
and that of unlabeled data to reconstruct the original data, which improved the fault
diagnosis accuracy of semi-supervised model. To fully mine the unlabeled data features,
Tang et al. [25] built an unsupervised network to extract the unlabeled data feature and
improved fault diagnostic accuracy by jointly fine-tuning with a supervised network. These
methods mentioned above improved the accuracy of fault diagnosis by making full use
of the features contained in the data, but did not consider the problem of layer-by-layer
information loss and error accumulation in deep learning. On the other hand, the accuracy
of the pseudo labels used for model optimization also affects the final performance of the
semi-supervised model [26–28]. To reduce the error rate of pseudo label screening, Long
et al. [26] proposed a stepwise utilization mechanism that assigned nearest labels to each
unlabeled data based on distance. Hu et al. [27] designed an unsupervised loss function
based on the statistical distance between similar unlabeled data, then combined it with
the method proposed in Ref. [22] in order to improve the classification performance. Liu
et al. [28] alternately optimized a teacher model and pseudo labels, then jointly trained a
classifier using labeled data and unlabeled data in the student model training phase. The
above-mentioned methods improved the accuracy of semi-supervised fault diagnosis by
selectively utilizing pseudo labels of unlabeled data to reduce the influence of erroneous
pseudo labels in the fault diagnosis model. But only single-scale features were used in the
screening process, which could not guarantee the adequacy of the information utilized and
inevitably caused errors in pseudo label screening.

To solve the problem of inadequate information utilization by single-scale features,
some scholars have conducted research on multi-scale feature fusion methods [29–32].
Jiang et al. [29] used a deep belief network (DBN) for feature extraction of vibration
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signals, and then used locality preserving projection (LPP) to fuse different scale features,
improved the accuracy of fault diagnosis. Shao et al. [30] designed a new deep Autoencoder
(AE) model to extract different scale features of the data, and then used LLP for feature
fusion, which finally improved the robustness and effectiveness of the diagnostic model.
Zhuang et al. [31] stitched the local features extracted from the convolutional layer and
the down sampled features from the pooling layer into a multi-scale feature matrix, which
was connected to the fully connected layer to broaden and deepen the neural network
and obtain more robust and accurate diagnosis results. Zhou et al. [32] used deep neural
networks (DNNs) to extract different scale features and then designed a feature fusion
network to fuse the multi-scale features to improve the sufficiency of information utilization
and fault diagnosis accuracy. However, the methods mentioned above fused the features at
different scales directly without considering the degradation of model performance caused
by redundant features. The attention mechanism can guide the model to assign more
attention to important features, thus reduce the information redundancy in the feature
fusion process. Yao et al. [33] used an attention mechanism to design a feature fusion
network, which reduced feature redundancy in the fusion process and improved fault
diagnosis accuracy. Xie et al. [34] used an attention mechanism to design an adaptive
feature fusion layer combined with graph-based, semi-supervised learning to achieve
cross-scale information fusion in different neighborhoods. The methods mentioned above
fused features through the attention mechanism, which can guide the model to focus on
the key information, thus improved the fault diagnosis accuracy. It is significant to use
this idea of information screening to improve the adequacy of feature utilization in the
unlabeled data screening process of self-training semi-supervised methods.

To overcome the problems mentioned above in traditional self-training methods,
a multi-scale recursive semi-supervised deep learning fault diagnosis method with an
attention gate is proposed to ensure more accurate feature extraction and more adequate
multi-scale feature utilization. A novel training mechanism is designed to ensure the
accuracy of feature extraction by performing multi-scale reconstruction of deep features
during pre-training. An attention gate designed to fuse features at different scales enables
fuller use of the information contained in the data, which helps the model to screen
unlabeled data with high quality pseudo labels. The method proposed is able to improve
the fault diagnostic accuracy of the model using a large amount of unlabeled data when
the amount of labeled data is small. The innovations of the research are as follows:

1. A multi-scale, recursive, semi-supervised, deep learning fault diagnosis method with
an attention gate is proposed to enhance the performance of a semi-supervised model
by improving the accuracy of feature extraction and the adequacy of feature utilization.

2. The feature extraction network is trained in a scale recursive manner by designing loss
functions using multi-scale features to obtain deep features with good representability
of the original data. The adequacy of information utilization can be secured by
constructing an attention gate to fuse multi-scale features, thus the features used to
screen unlabeled data are more comprehensive.

3. The proposed method can still achieve a satisfying accuracy of fault diagnosis even
when there is a very small number of labeled training samples available, which is
common in the field of practical engineering diagnoses.

The remainder of this article is structured as follows. Section 2 introduces the theory
related to the DNN and attention mechanism. Section 3 details the specific improvement
measures of the proposed method. Section 4 verifies the effectiveness and superiority of
the designed method using the bearing dataset. Finally, the conclusions are summarized in
Section 5.

2. Related Theories
2.1. Deep Neural Network Based on Stacked Autoencoder

The DNN consists of multiple Autoencoders stacked on top of each other. The structure
of an AE is shown in Figure 1. The DNN is able to extract the deeper features of the original



Machines 2023, 11, 153 4 of 16

data, and its training process includes unsupervised feature extraction and supervised
global fine-tuning.
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2.2. Attention Mechanism

An attention mechanism is a special structure that can be embedded into a deep
learning model to weight the importance of different parts of features, allowing the model
to focus on certain parts while ignoring others. An attention mechanism generates a
weighted sum of the v based on the similarity between the q and the k. The calculation
process is shown in Figure 2.
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3. Multi-Scale Recursive Semi-Supervised Deep Learning Fault Diagnosis Method
with Attention Gate

The traditional DNN does not consider the ability of features to reconstruction the
original data in the pre-training stage of the network, which makes it difficult to ensure the
accuracy of feature extraction. In addition, features at the most abstract scale are difficult to
provide comprehensive characteristics of the data because of information loss in the process
of layer-by-layer feature extraction, which leads to insufficient information utilization
when only single-scale features are used to screen unlabeled data. Therefore, MRAE-AG is
designed to ensure the accurate extraction of features and the full use of information. The
method includes multi-scale recursive feature reconstruction oriented to accurate feature
extraction, an attention gate fusion mechanism oriented to full information utilization, and
an unlabeled data screening strategy based on fused features. The network structure is
shown in Figure 3.
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3.1. Multi-Scale Recursive Feature Reconstruction Oriented to Accurate Feature Extraction

Accurate features play a crucial role in the final fault diagnosis performance of the
semi-supervised model. Traditional DNNs obtain more abstract features by means of
layer-by-layer extraction of features, but the decoder of each AE aims to reconstruct only
the input of the current layer rather than the previous layers, which will result in inaccurate
feature representation. Therefore, a learning mechanism is proposed in this section to
make the AEs more powerful in accurate feature representation by designing a new loss
function taking both the reconstruction error of the current layer and the previous layers
into account.

The labeled and unlabeled data constitute the dataset used for model pre-training,
which is shown in Equation (1).

X = [xl , xu] (1)

where xl represents labeled data and xu represents unlabeled data.
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The 1st AE is trained by using the loss function corresponding to the error between
the original data X and the output of decoder. The i AE (i ≥ 2) is trained by using the
following steps.

3.1.1. Preliminary Training of the Current Layer

Using the traditional loss function shown in Equation (2) to train the AE on the i layer:

LossAEi =
1
M

M

∑
m=1

(hi−1 − ĥi−1,i)
2

(2)

where M is the number of samples used for pre-training, hi – 1 is the feature of the (i − 1)
layer, and ĥi−1,i is the reconstruction result of hi−1 by using the feature of the i layer.

3.1.2. Joint Update of the Current Layer and the Previous Layer

In order to reduce information loss from the previous layer to the current layer, the
current AEi and the previous AEi−1 are jointly trained in Equations (3)–(5).{

hi = σ(hi−1Wi,1 + bi,1)

ĥi−1,i = σ(hiWi,2 + bi,2)
(3)

{
hi = σ(σ(hi−2Wi−1,1 + bi−1,1)Wi,1 + bi,1)

ĥi−2,i = σ(σ(hiWi,2 + bi,2)Wi−1,2 + bi−1,2)
(4)

LossAEi ,AEi−1 =
1
M

M

∑
m=1

(hi−1 − ĥi−1,i)
2
+

1
M

M

∑
m=1

(hi−2 − ĥi−2,i)
2

(5)

where Equation (5) is the designed loss function for joint training of AEi and AEi−1. By
minimizing LossAEi , AEi−1 , the extracted feature on the current layer can reconstruct the
input of the previous layer as well as the current layer. In such a way, a more accurate
feature extraction process can be secured and information loss between adjacent layers
can be effectively reduced. Wi,1 and bi,1 are the weight and bias matrix of the encoder of
the i AE, respectively. Wi,2 and bi,2 are the weight and bias matrix of the decoder of the i
AE, respectively.

3.1.3. Recursively Update of All Previous Layers

To ensure that hi is a good representation of the original data, the current AEi and
previous AEi−1, . . . , AE1 are recursively trained in Equations (6)–(9).{

hi = σ(hi−1Wi,1 + bi,1)

ĥi−1,i = σ(hiWi,2 + bi,2)
(6)

{
hi = σ(σ(hi−2Wi−1,1 + bi−1,1)Wi,1 + bi,1)

ĥi−2,i = σ(σ(hiWi,2 + bi,2)Wi−1,2 + bi−1,2)
(7)

{
hi = σ(σ(σ(· · · σ(XW1,1 + b1,1))Wi−1,1 + bi−1,1)Wi,1 + bi,1)
X̂i = σ(σ(σ(· · · σ(hiWi,2 + bi,2))W2,2 + b2,2)W1,2 + b1,2)

(8)

LossAEi−AE1 =
1
M

M

∑
m=1

(hi−1 − ĥi−1,i)
2
+

1
M

M

∑
m=1

(hi−2 − ĥi−2,i)
2
+ · · ·+ 1

M

M

∑
m=1

(X− X̂i)
2 (9)

where Equation (9) is the designed loss function LossAEi−AE1 based on the reconstruction
results of the features of each layer by hi. By minimizing LossAEi – AE1 , we can recur-
sively optimize AEi−1, · · · , AE1 according to the ability of hi to reconstruct the features
of each layer, and then comprehensively ensure the accuracy of deep features. X̂i is the
reconstruction result of X by using the feature of the ith layer.
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3.2. Attention Gate Fusion Mechanism Oriented to Full Information Utilization

Due to information loss, it is difficult to ensure the adequacy of information utilization
by using only the most abstract features for unlabeled data screening, which will inevitably
lead to unlabeled data screening errors. Traditional feature fusion methods often simply
splice features of different scales directly, which cannot adaptively focus on key features.
In this section, an information fusion mechanism based on an attention gate is designed to
enable useful features at different scales to participate in the model building for unlabeled
data screening.

The features of the last two layers in the DNN are the final feature representations of
the model and can better describe the data, thus the last two scale features extracted from
the network are fused in this article. For a DNN with I hidden layers, the features used for
fusion are hI , hI−1. The specific implementation steps for feature fusion are as follows.

3.2.1. Multi-Scale Feature Fusion Based on Attention Gate

The fusion of features at different scales of the DNN can ensure the comprehensiveness
of the information, which can be shown in Equation (10).

Att = (1− GI)� hI−1 + GI � hI (10)

where Att is a more comprehensive fused feature of the data,� is the Hadamard product of
the matrix, and GI is the fusion strategy of the attention gate for features at different scales:

GI = σ(hI−1Wgate + bgate) (11)

where Wgate and bgate are the weight and bias matrix of the attention gate, respectively.

3.2.2. Training of the Attention Gate for Multi-Scale Feature Fusion

The goal of feature fusion based on an attention gate is to obtain key features that help
to perform unlabeled sample screening by comprehensive different scale features. A loss
function is designed using the labeled data:

Lossgate =
C

∑
c=1

dc +
1

C
∑

c1=1

C
∑

c2 = 1
c2 6= c1

dc1,c2

(12)

where C is the total number of classes, dc is the intra-class distance of the fused features
of the c class, and dc1,c2 is the inter-class distance of the fused features of the c1 class and
c2 class. The Euclidean distance is used in the algorithm design, which can be calculated
using Equation (13).

d(a,b) =

√
n

∑
k=1

(ak − bk)
2 (13)

By minimizing Lossgate, the attention gate can be well trained to guide the feature
fusion strategy to focus more attention on the important features and less attention on other
features with less contribution.

3.3. Unlabeled Data Screening Strategy Based on Fused Feature

In the semi-supervised methods based on self-training, the means of screening pseudo
label affects the final diagnosis accuracy of the semi-supervised method. Once the fused
feature on a multi-scale is obtained, unlabeled samples can be well screened as long as the
screening criterion with a higher confidence is used. The detailed steps are as follows.
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3.3.1. Determination of the Center of Each Class According to Labeled Data

The fused feature obtained by the attention gate can be used to calculate the center of
each class with labeled data:

Cenc =
1

Mc

Mc

∑
m=1

Attc,m (14)

where Cenc is the center of the labeled data in the c class, Attc,m is the feature for the mth
labeled sample corresponding to the c class, and Mc is the total number of the labeled data
in the c class.

3.3.2. Attention Gate-Based Fusion of Multi-Scale Features for Unlabeled Data

The multi-scale features of the unlabeled data are fused by using an attention gate,
which is shown in Equation (15).{

GI,u = σ(hI−1,uWgate + bgate)
Attu = (1− GI,u)� hI−1,u + GI,u � hI,u

(15)

3.3.3. Criteria Designing for Screening Unlabeled Data

To improve the correct rate of screened pseudo labels, screening criteria are established
based on the inter-class distance and intra-class distance. The screened unlabeled data and
their corresponding pseudo labels will be applied to optimize the semi-supervised model.

For a certain unlabeled data, it belongs to the p class once Equation (16) is satisfied.

d(Cenp ,Attu) < min
{

d(Cenc ,Attu)

∣∣∣c ∈ [1, C], c 6= p
}

(16)

The labeled dataset is expanded by splicing the labeled data and the screened unla-
beled data, which can be shown in Equation (17).{

xl,new = [xl , xu,reliable]
yl,new = [yl , yu,reliable]

(17)

where xu,reliable is the screened unlabeled sample by using the designing criterion and
yu,reliable is the corresponding pseudo labels.

The screening criterion proposed in this section is based on the similarity between the
fused features rather than the affiliation of the fault diagnosis results, which can effectively
avoid the problem of unlabeled data screening errors caused by insufficient information
utilization. The flowchart of MRAE-AG is shown in Figure 4.
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4. Experiment Analysis

Bearings are a crucial part of electric motors. In this section, experiments are con-
ducted using the Case Western Reserve University rolling bearing dataset to validate
the effectiveness of the proposed method. The presented model is programmed in the
Tensorflow framework.

4.1. Dataset Description and Experiment Design

The dataset provided by the Case Western Reserve University bearing data center
website is widely used in the field of fault diagnosis [35]. The experimental platform is
shown in Figure 5, which is mainly composed a 2HP motor (left), torque transducer (center),
and dynamometer (right).
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The data used for experiment verification in this section comes from the vibration data
collected by the accelerometer at the drive end of the Case Western Reserve University
bearing dataset when the motor load is 0 hp and the speed is 1797 rpm, with a sampling
frequency of 48 KHz. The three faults were measured for the inner race, ball, and outer race
of the rolling bearings at 0.021 inches, which constitute the four health states of the rolling
bearings together with the normal operation. The data applied in the experiments can be
obtained through a sliding window with a size of 400 and a step size of 30. The details of
the data are shown in Table 1.

Table 1. Details of the experiment data.

Bearing Health Condition Fault Size (Inches) Label

Normal 0 0
Inner race fault 0.021 1
Outer race fault 0.021 2

Roller fault 0.021 3

The DNN is used as the base network model in the experiment validation process, the
number of neurons in each hidden layer is 600/200/101/50/30/30/9, the learning rates is
0.005, and the Adam optimizer was used to train the model. To verify the superiority of
the proposed method, it was compared to four other semi-supervised methods, which is
shown in Table 2.
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Table 2. The related semi-supervised models for comparison.

Semi-Supervised Model Model Description

SAE-SSL Combines unlabeled data with labeled data for
pre-training of SAE

π-Model [18] Achieves prediction of unlabeled data through
data augmentation and dropout

DNN-SSL [25] Designs an unsupervised network to extract
the features of unlabeled data

VAE-M1 [24] Uses VAE to extract feature of both labeled and
unlabeled data

MRAE Designs training mechanism with multi-scale
recursive for SAE

MRAE-AG The method proposed in this article

Experiments 1–6 are designed to verify the superiority of the proposed method using
different sizes of unlabeled data. Experiments 7–16 are designed to compare the improve-
ment of fault diagnosis accuracy corresponding to different sizes of labeled data. A total
of 4236 samples were utilized to test the fault diagnosis accuracy of the semi-supervised
model. The detail of 16 experiments is shown in Table 3.

Table 3. Experiment design for semi-supervised fault diagnosis.

Number of Labeled Data
for Training

Number of Unlabeled Data
for Training

Experiment 1 4 × 10 0
Experiment 2 4 × 10 4 × 25
Experiment 3 4 × 10 4 × 100
Experiment 4 4 × 10 4 × 250
Experiment 5 4 × 10 4 × 2000
Experiment 6 4 × 10 4 × 4000
Experiment 7 4 × 5 0
Experiment 8 4 × 5 4 × 4000
Experiment 9 4 × 25 0
Experiment 10 4 × 25 4 × 4000
Experiment 11 4 × 35 0
Experiment 12 4 × 35 4 × 4000
Experiment 13 4 × 45 0
Experiment 14 4 × 45 4 × 4000
Experiment 15 4 × 1000 0
Experiment 16 4 × 1000 4 × 4000

4.2. Results and Analysis

The features extracted by traditional SAE and MRAE are visualized using t-SNE (t-
distributed Stochastic Neighbor Embedding), which is shown in Figure 6. The t-SNE1 and
t-SNE2 represent the two principal components obtained by t-SNE. The features extracted
by MRAE outperformed the features extracted by traditional methods, because the fault
classes represented by yellow and gray in Figure 6a are more prone to be confused, while
the distinguishability of these two classes is higher in Figure 6b. It can be seen from
Figure 6 that the class features extracted by MRAE are easier to distinguish since they are
well clustered.

The six experiments for the different numbers of unlabeled data used are designed to
test the efficiency of the proposed method. The fault diagnosis results are shown in Table 4.
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Table 4. Fault diagnosis results of experiments 1–6.

Number of
Labeled Data

Number of
Unlabeled Data SAE-SSL π-Model DNN-SSL VAE-M1 MRAE MRAE-AG

Experiment 1 4 × 10 0 36.53% 45.98% 46.08% 45.90% 46.50% 46.50%
Experiment 2 4 × 10 4 × 25 57.64% 58.66% 58.61% 59.99% 63.10% 65.62%
Experiment 3 4 × 10 4 × 100 58.29% 60.24% 60.67% 66.90% 66.97% 67.98%
Experiment 4 4 × 10 4 × 250 60.65% 64.06% 61.23% 66.98% 71.76% 75.49%
Experiment 5 4 × 10 4 × 2000 60.86% 65.76% 61.83% 69.21% 72.20% 76.61%
Experiment 6 4 × 10 4 × 4000 61.59% 67.46% 69.27% 69.84% 72.49% 77.60%

Comparison of the different rows of Table 4 shows that in the case when only 10 labeled
samples are available, the unlabeled data can be used to optimize the supervised model.
By increasing the number of unlabeled data, the fault diagnosis accuracy can be enhanced.
It can be seen from column 4 and column 5 of Table 4 that the π-model is superior to
SAE-SSL since it designs an unsupervised loss function for the model during training, but it
is difficult to balance the unsupervised loss function and the supervised loss function. It can
be seen from column 5 and column 6 of Table 4 that the features extracted by DNN-SSL will
be more accurate due to the unsupervised feature extraction network designed separately
for unlabeled data. However, the error rate of pseudo labels was higher because of the direct
use of fault diagnosis result affiliation for unlabeled data screening. It can be seen from
columns 4–7 that VAE-M1 improves the accuracy of feature extraction and fault diagnosis
over other conventional methods due to the powerful data generation capability. However,
its final fault diagnosis accuracy is limited since the unlabeled data is not referred to in
global fine-tuning. Column 7 and column 8 of Table 4 indicate that the feature extraction
ability of MRAE was better than that of VAE-M1 because each AE’s decoder of MRAE aims
to reconstruct the input of all previous layers rather than only the current layer. However,
it is still difficult to train a classifier with satisfying diagnosis performance since a unique
layer of feature is to referred for screening unlabeled data. Column 8 and column 9 show
that the fault diagnosis accuracy of MRAE-AG was significantly improved because an
attention gate was designed to make more adequate use of useful features of different
layers to ensure that sample screening is based on comprehensive features, which is helpful
for improving the correct rate of pseudo labels.

The confusion matrix is shown in Figure 7 to make the fault diagnosis result clearer.
Figure 7 shows the same conclusion as Table 4.
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The 10 total experiments for the different number of labeled data used showed that
the proposed MRAE-AG method was significantly superior to the existing methods in the
case when there is only a very small number of labeled data available. The fault diagnosis
results for these ten experiments are shown in Table 5.

Table 5. Fault diagnosis results of experiments 7–16.

Number of
Labeled Data

Number of
Unlabeled Data SAE-SSL π-Model DNN-SSL VAE-M1 MRAE MRAE-AG

Experiment 7 4 × 5 0 31.56% 36.30% 34.04% 36.04% 39.07% 39.07%
Experiment 8 4 × 5 4 × 4000 47.59% 54.91% 30.14% 62.25% 66.92% 70.15%
Experiment 1 4 × 10 0 36.53% 45.98% 46.08% 45.90% 46.50% 46.50%
Experiment 6 4 × 10 4 × 4000 61.59% 67.46% 69.27% 69.84% 72.49% 77.60%
Experiment 9 4 × 25 0 50.99% 56.30% 57.78% 58.09% 60.10% 60.10%
Experiment 10 4 × 25 4 × 4000 68.38% 70.30% 71.17% 71.34% 72.82% 77.75%
Experiment 11 4 × 35 0 57.12% 62.46% 58.59% 60.12% 63.83% 63.83%
Experiment 12 4 × 35 4 × 4000 64.56% 71.34% 71.53% 72.07% 73.79% 78.23%
Experiment 13 4 × 45 0 63.87% 66.43% 63.98% 64.87% 66.74% 66.74%
Experiment 14 4 × 45 4 × 4000 71.19% 71.57% 72.22% 73.04% 74.12% 81.72%
Experiment 15 4 × 1000 0 93.88% 94.40% 93.15% 93.22% 95.91% 95.91%
Experiment 16 4 × 1000 4 × 4000 94.16% 95.84% 93.83% 95.63% 97.85% 98.01%

Analysis of different rows of the last column shows that the proposed method can
achieve higher diagnosis accuracy with the increase in the number of labeled data. Com-
parison of the different columns in Table 5 arrives at the same conclusion as Table 4.

The confusion matrix is shown in Figure 8 to make the fault diagnosis result clearer.
Figure 8 shows the same conclusion as Table 5. The histogram is shown in Figure 9 to
indicate the comprehensive experiment results of the corresponding methods.
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5. Conclusions

Existing semi-supervised methods cannot obtain satisfying fault diagnosis accuracy
in the case when there is only a small amount of labeled data available due to inaccurate
feature extraction and inadequate information utilization. It is crucial to develop a training
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mechanism and a fusion strategy in order to train a well-performing, semi-supervised
model. A new loss function was designed to take both the reconstruction error of the current
layer and the previous layers into account in the pre-training stage of the network, which
makes the model more powerful in feature representation. A fusion mechanism based on
an attention gate was proposed to make the fusion feature more comprehensive, which is
prone to screen unlabeled data. The features obtained by the designed method were more
distinguishable than traditional methods in the sense that features were extracted more
accurately and the information was more fully utilized. The experiment results showed that
the proposed method outperformed existing semi-supervised methods and a more than 7%
accuracy improvement can be obtained in the case when only a small size of labeled data is
available. It was obvious that much less labeled data is sufficient for the proposed method
to train a satisfying semi-supervised model.

Although the proposed method outperforms existing methods, it cannot achieve
satisfying diagnostic accuracy in the case when there is less unlabeled data or no labeled
data available. We will build a joint learning model using data from different clients in
future work.
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