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Abstract. Landslide susceptibility assessment is a fundamental com-
ponent of effective landslide prevention. One of the main challenges in
landslides forecasting is the assessment of spatial distribution of landslide
susceptibility. Despite the many different approaches, landslide suscepti-
bility assessment still remains a challenge. A semi-quantitative method is
proposed combining heuristic, deterministic and probabilistic approaches
for a robust catchment scale assessment. A fuzzy ensemble model has
been exploited for aggregating an array of different susceptibility zona-
tion maps. Each susceptibility zonation has been obtained by applying
heterogeneous statistical techniques as logistic regression (LR),
relative distance similarity (RDS), artificial neural network (ANN) and
two different landslide susceptibility techniques based on the infinite
slope stability model. The sequence of data-transformation models has
been enhanced following the semantic array programming paradigm. The
ensemble has been applied to a study area in Italy. This catchment scale
methodology may be exploited for analysing the potential impact of
landscape disturbances. At regional scale, a qualitative approach is also
proposed as a rapid assessment technique – suitable for application in
real-time operations such as wildfire emergency management.

Keywords: Landslide susceptibility, Modelling, Ensemble, Semantic
Array Programming.

1 Introduction

One of the main challenges in modelling landslides is related to the assessment
of their spatial probability of occurrence. Estimating landslide spatial probability
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may be supported by many different analytical approaches: heuristic, determin-
istic and statistical [1]. A subset of those approaches may be described as data-
transformationmodels (D-TM) which propagate input data layers and parameters
so as to estimate landslide susceptibility as a spatially explicit derived data layer.

Statistical landslide susceptibility methods are based on establishing relation-
ships among measurable variables whose combination is empirically found to
correlate with observed landslide occurrences. Theoretical insights guide the se-
lection and analysis of landslide triggering factors (geological, hydrogeological
and geomorphological) to determine the most appropriate input – the best suited
set of predictors or covariates [2] – to use for statistically reconstructing land-
slide susceptibility. Domain expertise is therefore essential for supplementing
semi-automated computational methods with meaningful semantic heuristics.
Estimations are then made of their relative contribution in slope failure and ar-
eas are classified as having different hazard or susceptibility degree [3–5]. Multi-
variate statistical methods are commonly used methodologies for these analyses.
This kind of analysis is based upon the presence or not of stability phenomena
within the classified areas [6]. The main problem using this approach is the high
sensitivity of the results to the input data and the difficulty in deriving the
probability of occurrence from the susceptibility [5].

In deterministic approaches, the landslide susceptibility is determined by car-
rying out a slope stability analysis. It results in computing the distribution of
a factor of safety characterizing the study area. The deterministic approaches
should be able, in theory, to provide more reliable results (especially where no
field measurements are available on landslides and stable areas) but require de-
tailed datasets describing the triggering factors. Many different models, which
are usually composed of coupled dynamic hydrological and slope stability mod-
els, have been developed by several authors [7–9].

The evaluation of slope stability conditions in a landscape veneer can be per-
formed by considering the local equilibria of forces along pre-determined, shallow
slip surfaces representative of translational slide mechanisms. These equilibria can
be expressed as a local factor of safety (FS), a ratio between the resisting and driv-
ing forces acting on a slip surface. If this FS reaches values lower than unity, the
slope will fail.

FS =
resisting forces

driving forces
=

shear strength

shear stress
=

S

τ
. (1)

In this equation S represents the shear strength mobilised along the slip sur-
face and can be represented, in its simplest form, as:

S = c+ (σ − u) tanφ, (2)

In this equation c represents the cohesive resistances in the soil (these resis-
tance may be enhanced by the presence of roots and other elements), σ repre-
sents the total stress and u represents the pore pressure, both acting on the slip
surface and affecting the amount of frictional resistance φ that can be mobilised.
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The driving force is represented by τ , the slope parallel component of gravity
acting on the soil mass above the slip surface

τ = γZ cosβ sinβ, (3)

where γ is the bulk unit weight and Z is the depth to the shear surface.
Statistical methods have become popular in recent years [10], including those

employed by the British Geological Survey for their GEOSURE product that
incorporates an assessment of landslide potential based on an expert elicitation
process [11]. One of the main problems in applying these methods is related
to changing terrain conditions after a mass movement. Environmental param-
eters such as slope, land cover or soil depth can be totally different following
landslide events. Furthermore, temporal changes in triggering factors in these
dynamic landscapes are difficult to evaluate using statistical methods. Deter-
ministic methods may provide more physically based results, but the current
limitations due to data quality and availability seriously hampers our ability to
simulate landslide processes over relevant spatial and temporal scales [10,12,13].
Some of the soil properties required by deterministic methods, such as soil cohe-
sion or friction angle, are difficult to measure over large areas and show a high
spatial variability. Therefore, currently these models still need a high degree of
simplification [12]. Because of this limit on present approaches, research is ur-
gently needed for improving landslide susceptiblity assessment methodologies.

Landslide susceptibility is also closely linked to many geomorphological and
environmental aspects whose perturbation may be driven by natural or anthro-
pogenic changes. This may even affect the landscape/regional scale along with
challengingly complex networks of relationships among natural resources and
ecosystem dynamics [14–16], also involving climate change and land use alter-
ations [17]. The transdisciplinary analysis of the involved uncertainty and com-
plexity is addressed within the broad domain of integrated natural resources
modelling and management (INRMM) [18]. A new approach based on a robust
modelling ensemble at catchment scale is here proposed for improving landslide
susceptibility estimation. A preliminary regional-scale rapid assessment is also
introduced as a possible support in real-time operations such as wildfire emer-
gency management [19, 20].

2 Methods

2.1 Study Area

The study area is located in the Puglia region of southern Italy. The study
site (Fig. 1) covers almost 16 km2 in the municipal territory of Rocchetta
Sant’Antonio which is situated in the southern part of the Daunia Appennines.
The Daunia Appennines are highly susceptible to landsliding [21, 22] and over
20% of the Rocchetta Sant’Antonio area has experienced landslide activity [23].



324 C. Bosco et al.

Fig. 1. The study area (Rocchetta Sant’Antonio, Italy). Google Earth, c©2013 Google.

This area has seen a large number of landslides affecting the local economy
and has been studied for some years resulting in a database of information (in-
cluding topography and Digital Elevation Model (DEM), site investigation and
geotechnical test data, soil distribution and land use maps) [24–26].

2.2 Applied Techniques

Within the study area, precipitation is the main triggering factor for landslide oc-
currence. In order to improve the spatial prediction of landslides where water is
the triggering factor, a combined total of five different deterministic and statisti-
cal models have been applied. In order to enhance the determination of landslide
susceptibility of the study area, a new method based on an ensemble approach has
been used for aggregating the modelling results. The ensemble approach is a repro-
ducible D-TM applied to the results of the array of models and is based on relative-
distance similarity (RDS), a flexible technique in INRMM problems [27–29]. The
application of an ensemble approach, especially in data-poor regions, could poten-
tially reduce the uncertainty and mitigate local poor performance associated with
individual models, by excluding outlier estimations.

Uncertainty may affect these models from the inaccuracy of required inputs
data layersX and parameters θ to the approximation of their reconstruction (e.g.
by means of other specialised D-TMs) when not directly accessible as available
datasets. Uncertainty may also be exacerbated by modelling simplifications or
overcomplication. In the latter case, a perhaps theoretically accurate approach
might sometimes result in a poorly performing D-TM implementation due to
site-specific information gaps and possible impacts of site complexity where mul-
tiple conceptual mechanisms coexist as landslide drivers. Furthermore, nontriv-
ial computational models may be affected by software uncertainty [18, 30, 31],
namely the distance from the theoretical mathematical formulation and the ac-
tual model implementation in one or more artificial programming languages.
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Y = f∗(X) = f(θ∗, X) Theoretic D-TM: instance of a model family

f by means of selected parameters θ∗

Y = f ζ(θ∗,ζθ , XζX ) Real D-TM with uncertainty affecting input

data, parameter calibration and the model

itself (software uncertainty [18,30,31])

Y =

n
⋃

i=1

::
∣

∣

∣
f
ζ
i (θ

∗,ζθ , XζX )
∣

∣

∣
::
semi

Mitigating uncertainty by ensembling

an array of i ∈ {1, · · ·n} heterogeneous

models (design diversity [18,30]) with

semantic checks semi (semantic array

programming [31–33])

(4)

In order for the uncertainty to be mitigated, a robust fuzzy ensemble model
is proposed to aggregate an array of different susceptibility zonation maps. Each
susceptibility zonation has been obtained by applying heterogeneous models, so
as to increase design diversity [18,30]. The technique is designed to scale to dif-
ferent arrays of models. Each model is adapted to fit the ensemble array by wrap-
ping its interface so as to behave as a semantically enhanced module. Semantic
checks further mitigate inconsitencies between input data, parameters and out-
puts, following the paradigm of semantic array programming (SemAP) [31–33].
SemAP complements the compactness of array programming notation with an
effort towards the most concise generalisation of autonomous tasks as modules
which are subject to array-based semantic checks. Each model is considered as
a semantically-enhanced module of the ensemble. A few straightforward seman-
tic checks semi are exemplified in the following with the notation ::sem:: with
hyperlink to the corresponding online description.

Exploiting the available landslide maps and the available environmental in-
formation (DEM, land cover and lithological map, geomorphology) two deter-
ministic models based on the infinite slope equation (SINMAP [34, 35] and a
simple slope stability model inspired by van Beek’s PROBSTAB model [7]), as
well as three statistical models based on Artificial Neural Network (ANN), Lo-
gistic Regression (LR) and Relative Distance Similarity (RDS), were calibrated
and validated. The theoretical basis of SINMAP involves a mechanistic infinite
slope stability model linked with a topographically based steady-state hydrol-
ogy model. The theory at the basis of the model applies to translational slides
where fluctuating pore pressures form the dominant trigger factor. The landslide
susceptibility distribution is governed within the model by calculating slope and
specific catchment areas starting from a DEM.The model parameters are allowed
to be flexible, following a uniform distribution between an upper and lower limit.
The parameters may be calibrated using geographic calibration regions based on
lithological, land cover or soil characteristics [34, 35].

The implemented slope stability model (hereafter named TransSlide) is based
on a translational slope stability function that calculates the factor of safety at

http://mastrave.org/doc/mtv_m/check_is
http://mastrave.org/doc/mtv_m/check_is
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a potential shear plane based on variations of groundwater level and volumetric
moisture content. TransSlide is based on eqs. 1, 2 and 3 where:

σ = Zγ cos2 β (5a)

u = γwWL cos2 β (5b)

(γw is the density of water (kNm−3) andWL is the groundwater height above the
shear surface). The static inputs include soil shear strength (cohesion and friction)
and an additional root cohesion function representing land use. The model func-
tions in a raster-based environment and calculates the local instability on the bal-
ance between resisting and driving forces. The paucity of available data in the test
region meant that the full functionality of TransSlide could not be mobilised.

Logistic regression analysis, introduced by Cox [36] in 1958, is one of the more
commonly used statistical methods in earth science [37]. However, it does not
predict presence or absence of landslides, but the probability of occurrence [2].
The predicted values, ranging from 0 to 1, representing the landslides hazard
can be expressed as:

P (y) =
1

1+e−y
, (6)

where P is the probability of landslide occurrence. It describes the relationship
between a dependent variable (y) (assuming a distribution between presence [1]
and absence [0]) and n explanatory variables (the covariates C1

c , C
2
c , ..., C

n
c in

the spatial cell c) where:

y = b0 + b1C
1
c + b2C

2
c + .. + bnC

n
c (7)

and b0 is the intercept of the model with b1, b2, ..., bn the regression coefficients.
The maximum-likelihood method is used for estimating the coefficients of the

logistic multiple regression model. Because of the non-linearity between indepen-
dent variables and probability, parameters estimation requires the application
of an iterative algorithm [12].

Among the most recent approaches in landslide spatial susceptibility evalua-
tion there are artificial neural network models. An ANN can be considered as
a “computational mechanism able to acquire, represent and compute a map-
ping from one multivariate space of information to another, given a set of data
representing that mapping” [38]. A neural network may be able to learn and
describe more complex relationships among input covariates than logistic re-
gression could. Actually, a logistic regression model might be seen as a simple
special case of neural network. An ANN architecture is characterised by one
or more processing elements (nodes or neurons) which propagate weighted in-
puts received by other nodes [39]. The learning process comes from adjusting
the weights between neurons analysing the error between the predicted and tar-
get output. The output of a neural network, after the training, is a model that
starting from an input dataset is capable of predicting a target value [40].

The RDS is based on the relative distance between two values Cj
1 and C

j
2 of

th j-th nonnegative covariate. The relative distance is a dimensionless number
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between 0 (maximum dissimilarity) and 1 (maximum similarity) and is simply
the ratio between the minimum and the maximum value:

min(Cj
1 , C

j
2)

max(Cj
1 , C

j
2)
. (8)

The RDS index of a given multi-dimensional point c with respect to a set
A of reference points (either stable areas or unstable ones) involves the relative
distance among the pairs {Cj

c , C
j
α} for each α ∈ A and each dimension j of the

NC covariates.

2.3 Susceptibility Forecasts

2.3.1 Data and Explanatory Variables

For running the statistical models a set of calibration parameters was selected
from international literature [37, 39, 41]. Seven parameters, commonly assumed
as directly or indirectly related to landslide occurrence [37, 39], have been used
for calculating the ANN, LR and RDS models. The Topographic Wetness Index
(TWI) [42], the slope angle and aspect, the profile and plan curvature have been
calculated starting from a digital elevation model with a resolution of 5 meters.
The remaining models covariates are the land cover and the DEM itself.

The input parameters for running the deterministic models (root and soil
cohesion, internal friction angle, bulk density of the soil, groundwater height,
soil depth and the effective recharge rate), have been calculated using different
methods. When actual measured data did not exist, estimated values from the
literature were applied, if available, otherwise physically sensible values based
on our judgment were used.

The recharge rate used in SINMAP (50 mm/d) was derived comparing the
available climatological data (Rocchetta SantAntonio and Rocchetta scalo mete-
orological stations) and approaches from literature [43]. The transmissivity rate
required by the model (m2/hr) was calculated using the equation

T = K · b, (9)

where K(m/hr) is the saturated hydraulic conductivity and b (m) is the soil
depth [43]. The hydraulic conductivity as the soil cohesion and the internal
friction angle (used both in SINMAP and TransSlide) were derived from soil
texture data using typical soil properties values from literature [44, 45].

The general soil characteristics of the catchment were derived by comparing
the lithological map of the study area [23] and field data.

2.3.2 Calibration of the Models

The three statistical models were executed using both the same training set and
the same set of covariates. The training set consists of 2091 points. The selected
areas were subject to ::binary::1 classification as stable (0) or not stable (1)

1 http://mastrave.org/doc/mtv_m/check_is#SAP_binary

http://mastrave.org/doc/mtv_m/check_is#SAP_binary
http://mastrave.org/doc/mtv_m/check_is#SAP_binary
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Table 1.Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) related to
the singles and combined applied models. U and S refer on MAE and RMSE calculated
respectively on unstable (U) and stable (S) areas only.

RDS ANN LR SINMAP TransSl. median ENSEMB.

MAE 0.003 0.44 0.37 0.45 0.51 0.35 0.001

MAE U. 0.002 0.42 0.36 0.61 0.68 0.45 0
MAE S. 0.003 0.45 0.38 0.3 0.34 0.25 0.001
RMSE 0.02 0.47 0.43 0.54 0.58 0.4 0.019

RMSE U. 0.01 0.45 0.4 0.65 0.7 0.47 0
RMSE S. 0.03 0.48 0.46 0.4 0.42 0.32 0.026

on the basis of a dataset presented by [23]. The calibration points represent the
0.6% of the catchment area. These have been selected applying the RDS ensem-
ble technique for analysing the relative distance between the model’s covariates
within the catchment. Applying this method, for selecting the training and vali-
dation points, it is possible to minimize the presence in the training set of areas
having similar characterisics.

The multicollinearity of the dataset of ::nonnegative::2 ::finite::3 predictors
was also analysed in order to avoid high correlation between different predictors.
This was done for preventing the possibility that small changes in the data can
cause an erratic change of the coefficient estimates.

For estimating the best architecture of the ANN the sum of squared errors
(SSE) was determined for every combination of weight decay and number of
neurons calculated by the ANN model during the network training. The final
architecture of the ANN comes from the selection of weight decay and number
of nodes minimizing the SSE. The calculation of SSE was then used for evalu-
ating the fitting performance of the models, that is the ability of the model to
reproduce the calibration set.

The catchment was split into areas based upon vegetation or lithologic data
and calibration of the deterministic models was performed using data from the
literature. Due to the paucity of high resolution data for calculating the param-
eters required by SINMAP and TransSlide only a rough calibration was possi-
ble. The low resolution of the available data does not allow the modelling of
local variations within the catchment. The applied methodology includes a vi-
sual calibration based on expert judgment for adjusting the model’s parameters
in accordance with landslide observations. The adjustments were necessary for
capturing a higher proportion of landslides in areas having a low stability index.

2.3.3 Validation of Model Performance

The main objective of this method is to estimate the fitting performance of a
model with an independent set of data. Using cross-validation it is possible to
estimate how accurately the models perform. An initial set of data was parti-

2 http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative
3 http://mastrave.org/doc/mtv_m/check_is#SAP_finite

http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative
http://mastrave.org/doc/mtv_m/check_is#SAP_finite
http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative
http://mastrave.org/doc/mtv_m/check_is#SAP_finite
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tioned into two subsets, with the calibration carried out on a training subset
(2091 pixels) and the validation performed on the testing subset (682 pixels).
For analysing the performance error, mean absolute error (MAE) and root mean
square error (RMSE) of the models against validation data were calculated.

Heterogeneous quantities provided as model outputs need to be harmonised
in order for the models’ performance to be comparable. The ::nonnegative::

output of the two deterministic models has been remapped to the correspond-
ing ::possibility::4 values ∈ [0 1] by means of Piecewise Cubic Hermite Inter-
polating Polynomials (PCHIP) with the codelet (MATLAB language): pchip(
[0 0.5 1 1.25 1.5 10 ∞], [1 0.8 0.6 0.5 0.4 0 0], output ).

The results of validation are summarized in table 1. The table shows a better
performance of the statistical methods when compared with deterministic ap-
proaches. Between the applied models, the ensemble and RDS give the lowest
errors. Although the high error rate of some model, the simple models’ median is
the next best result. Its application as a staightforward unsupervised ensemble
might prove useful even where no additional information is available (black box
output data).

3 Results and Discussion

The results of the models are shown in Fig. 2. The classification criteria used
for measuring the landslide susceptibility fluctuate in a range between 0 (stable
conditions) and 1 (unstable conditions). The adopted classification scheme is as
follows: 0-0.4 (stable), 0.4-0.6 (area of model uncertainty) and 0.6-1 (unstable).
The better performance of the statistical approaches when compared to deter-
ministic techniques could be linked with both the weakness of data necessary for
estimating some of the deterministic model’s parameters and the use of spatial
data having a sub-optimal resolution.

The proposed ensemble, being a supervised method, slightly improves the best
model in the array of outputs (in the worst case, the enseble would have been
equal to the best model in the array). The high performance showed by the RDS
approach could be linked with the criterion used for the selection of the training
and testing set of data. The possible presence of bias in using a similar technique
for selecting the data and calculating the landslide susceptibility need to be fur-
ther investigated. Because the quality of spatial landslides forecast is largely
dependent on the quality of the available datasets, the good performance of the
combined model broadens the possibility of applying a quantitative assessment
in data poor regions. One of the main difficulties resides in determining how to
combine the models for application to a specific area. In landslide susceptibility
assessment this can be considered as an unresolved problem [46–48] in [41]. In
other disciplines, for example meteorology, a long experience in combining mul-
tiple model forecasts already exist [49]. Exploiting ensemble analysis to obtain
the most probable forecast is a common practice [41].

4 http://mastrave.org/doc/mtv_m/check_is#SAP_possibility

http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative
http://mastrave.org/doc/mtv_m/check_is#SAP_possibility
http://mastrave.org/doc/mtv_m/check_is#SAP_possibility
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Fig. 2. Landslide susceptibility maps of the south-eastern section of the study catch-
ment. The top three diagrams represent the statistical models outputs, the lower left
two maps represent the deterministic models. The lower right diagram represents the
output of the ensemble modelling.

4 Post-fire Regional Scale Rapid Assessment

European landscapes are affected by many disturbances [50, 51]. Among them,
wildfires have a major impact especially in southern Europe (Mediterranean
region) [52]. Besides their direct environmental impact, wildfires can result in
future secondary effects such as shallow landslides and debris flows [53, 54].

Applying landslide susceptibility models at a regional scale, in order for the
slope stability changes to be rapidly assessed in burnt areas, is a challenging
task. Rapid assessment of landslide susceptibility requires fast computational
modelling estimations. The availability – for a given spatial extent involving high
wildfire risk – of known areas where landslides occurred and of areas of stability
cannot be expected. Therefore, empirical models might not be best suited for
this kind of analysis. Complex physically based models are also generally inappli-
cable. However, less data demanding physically based models might provide pre-
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Fig. 3. Pre and Post-fire shallow landslide susceptibility in Northern Puglia (Italy).
Ground layer: Google Earth, c©2013 Google.

liminary assessments of landslide susceptibility. Here, an area of approximately
600 km2 was analysed calculating the changes in pre and post-fire landslide
susceptibility. Six large fires were selected from the European Forest Fires In-
formation System (EFFIS). An increased soil water content and a reduced root
cohesion are the main factors inducing shallow sliding after fires [55, 56]. The
SINMAP model was applied setting the model parameters for pre and post-fire
condition on the basis of literature data [57,58]. Land cover, aggregate stability
and saturated hydraulic conductivity, i.e. the post-fire parameters most suscep-
tible to change significantly [57, 59], were calibrated into the models.

Comparing the pre and post-fire modelling results within the area shown in
Fig. 3, indicates that almost 10% of the burnt area changes from stable to un-
stable conditions. The application of the SINMAP model in post-fire landslide
susceptibility analysis has to be considered as a first attempt for applying these
techniques at a regional scale. Future research will be carried out to extend the
multi-model ensemble architecture from catchment to regional scale, overcoming
the possible unavailability of observations on stable and unstable areas.

5 Conclusions

Five different techniques for modelling shallow landslide susceptibility were ap-
plied to a catchment located in Southern Italy (Rocchetta Sant’Antonio, FG).
The stability maps were obtained applying two deterministic models (SINMAP
and TransSlide) and three statistical methods (LR, RDS and ANN). A final
map was prepared combining the output of the applied models using a robust
fuzzy ensemble model. The performance of the models was evaluated against a
landslide inventory of the year 2006. The good results of the ensemble model,
when compared with the single techniques, make this method suitable to be
applied in data poor regions with a lack of calibration and validation data. Be-
cause of the uncertainty in selecting a single suitable method for modelling spa-
tial landslide susceptibility in areas characterized by data weakness, the applied
ensemble method can potentially result in a less uncertain zonation. Alhough
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these preliminary results are promising, further research is required before this
method can be used to communicate the findings with relevant authorities. The
landslide susceptibility maps calculated applying the statistical methods were
obtained using three different scripts [60] implemented using MATLAB and R
languages respectively in GNU Octave and GNU R free software along with the
modelling library Mastrave which implements the semantic array programming
(SemAP) paradigm. The script applied for calculating the ANN is based on the
work of Rossi [41]. Also the scripts used for selecting the training and testing
points and for calculating the combined model [60] were written following the
SemAP paradigm in MATLAB language, within GNU Octave as computing en-
vironment.

Acknowledgements. This paper is published with the permission of the Exec-
utive Director of the British Geological Survey and the support of the Maieutike
Research Initiative.
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ISESS 2011. IFIP AICT, vol. 359, pp. 310–318. Springer, Heidelberg (2011)

17. Winter, M.G., Dixon, N., Wasowski, J., Dijkstra, T.A.: Introduction to land-use
and climate change impacts on landslides. Quarterly Journal of Engineering Geol-
ogy and Hydrogeology 43(4), 367–370 (2010)

18. de Rigo, D.: Behind the horizon of reproducible integrated environmental
modelling at European scale: ethics and practice of scientific knowledge freedom.
F1000 Research, submitted (exp. 2013)

19. de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Di Leo, M., San-Miguel-Ayanz, J.:
An Architecture for Adaptive Robust Modelling of Wildfire Behaviour under Deep
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(eds.) ISESS 2013, vol. 413, pp. 11–22. Springer, Heidelberg (2013)

21. Iovine, G., Parise, M., Crescenzi, E.: Analisi della franosita nel settore centrale dell
Appennino Dauno. Mem. soc. Geol. Ita. 51, 633–641 (1996)

22. Magliulo, P., Di Lisio, A., Russo, F., Zelano, A.: Geomorphology and landslide sus-
ceptibility assessment using GIS and bivariate statistics: A case study in southern
Italy. Natural Hazards 47(3), 411–435 (2008)

23. Wasowski, J., Lamanna, C., Gigante, G., Casarano, D.: High resolution satellite
imagery analysis for inferring surface-subsurface water relationship in unstable
slopes. Remote sensing of Environment 124, 135–148 (2012)

24. Wasowski, J., Casarano, D., Lamanna, C.: Is the current landslide activity in the
Daunia region (Italy) controlled by climate or land use change. In: Proceedings of
the International Conference on Landslides and Climate Change, Ventor, Isle of
Wight, UK, vol. 124, pp. 41–49. Taylor and Francis, Balkema, London, Rotterdam
(2007)

25. Mossa, S., Capolongo, D., Pennetta, L., Wasowski, J.: A GIS-based assess-
ment of landsliding in the Daunia Apennines, southern Italy. In: Graniczny, M.,
Czarnogorska, M., et al. (eds.) Proceedings of the International Conference Mass
Movement Hazard in Various Environments, Krakow, Poland, vol. 20, pp. 86–91.
Polish Geological Institute, Warsaw (2005)

26. Wasowski, J., Lamanna, C., Casarano, D.: Influence of land-use change and precip-
itation patterns on landslide activity in the Daunia Appennines. Quarterly Journal
of Engineering Geology and Hydrogeology 43, 387–401 (2010)

27. Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P.: Modelling Soil Erosion
at European Scale. Towards Harmonization and Reproducibility (in prep.)



334 C. Bosco et al.

28. de Rigo, D., Guariso, G.: Rewarding Open Science: A Collaborative Review System
for Semantically-Enhanced Free Software and Environmental Data Modelling. IFIP
AICT (submitted)

29. de Rigo, D., Barredo, J.I., Busetto, L., Caudullo, G., San-Miguel-Ayanz, J.:
Continental-Scale Living Forest Biomass and Carbon Stock: a Robust Fuzzy En-
semble of IPCC Tier 1 Maps for Europe. In: Hřeb́ıček, J., Schimak, G., Kubásek,
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