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Abstract

The distance transform has been proposed for use in computer vision for
a number of applications such as matching and skeletonisation. This paper
proposes two things: (1) a multi-scale distance transform to overcome the
need to choose edge thresholds and scale and (2) the addition of various
saliency factors such as edge strength, length and curvature to the basic
distance transform to improve its effectiveness. Results are presented for
applications of matching and snake fitting.

1 Introduction

Given an image containing a set of features (edgels, lines, points), the function of
a distance transform (DT) is to assign to each pixel the distance to the nearest
feature. One of its most common purposes is to evaluate hypothesised model poses
by superimposing the model on the distance transform [1] which gives a measure
of how well the model fits.

The majority of applications of distance transforms use the output of edge
detection applied to an intensity image as the binary feature map from which
to calculate distances. However, this leads to several problems involving the ac-
curacy and reliability of the edge defection process itself. Most edge detectors
produce mislocated edges due to various factors such as noise, smoothing, and
the interaction of close edges, and spurious and missed edges (false positive and
false negatives). Spurious edges will cause distances from pixels to "real" edges
to be underestimated if the spurious edges are closer. Missing edges have the op-
posite effect and distances will be calculated to (he nearest edge that is present,
overestimating the distance if false positives are not considered.

Since the distance transform requires a binary feature map the edges must be
thresholded. Choosing the threshold value involves a balance between rejecting
false positives and false negatives. Too low a threshold produces excessive amounts
of spurious edges, too high a threshold eliminates too many desirable edges. In
addition to the edge strength, connectivity can be utilised. An old idea recently
reported [2] is to threshold on the summed edge strength for each list of connected
pixels. Although little attention has been paid to developing techniques which
can automatically threshold an edge map, this and other techniques such as non-
maximal suppression can produce perceptually good results. Automatic methods
are obviously more desirable and can give good results [3]. However, the problem
of defining what an edge is really depends on the context.
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Even if a reasonable threshold value can be selected the results of the distance
transform may still be inadequate for several reasons. First, no operator can be
optimal over all scales. Therefore the output of the edge detector will not capture
all the structures of interest in the image if they exist at different scales. Although
several multi-scale edge detectors are available they invariably still require param-
eters relating to the scale. For instance, the edge focussing process [4] the coarsest
scale must be specified. This determines which image features will be retained in
the final output. Second, when attempting to evaluate a hypothesised model pose
it is not simply the distance to the nearest edge that is relevant, but rather a com-
bination of several image based factors. In general, given the task of matching two
structures it is desirable to allow the sub-parts of each to have differing degrees of
salience or importance. This extends for the case; of distance transformations to
allowing some image features to have more effect than others. This paper describes
a technique for incorporating factors in addition to just the edge location into the
distance transform. The transformed image will then represent the salience of
each point rather than simply its distance from the nearest edge. The problem of
which scale to use for the distance transform is discussed. A multi-scale salience
distance transform is proposed that captures information at various scales without
the need for thresholding. The usefulness of these techniques is discussed in the
context of two applications namely template matching and the determination of
the boundary of a surface of revolution using an active contour.

2 Adding Salience to the Distance Transform

When edges are detected in images many attributes may be extracted in addition
to the edge location. Examples include the grey scale edge profile normal to
the edge, orientation and magnitude. Connected edges which are linked to form
curves have attributes such as length and curvature. These attributes may be
used singly or in combination to calculate the salience of the edges. For instance,
magnitude has regularly been used as an indication of edge salience. Others have
used combinations of edge magnitude and length for the extraction of significant
edges [5,2,3]. Recently, some work has been carried out in measuring the saliency
of every point in an image based on edge length and curvature [6] and orientation
and curvature [7].

Here we consider incorporating edge magnitude into the distance transform.
At a fine scale most edge detectors produce a noisy edge map even in regions of
supposedly constant grey level due to noise and quantisation effects which cause
small variations in the grey level producing edges. The result of applying the
chamfer 3-4 distance transform [1] is dependent on the edge map, and is therefore
severely affected by the noise. The affect of the noise can be reduced by using a
threshold on the edge data which is problematic. With no threshold, the bound-
ary of a model superimposed almost anywhere in the image would have a low
average distance. This can be alleviated to some extent by considering not only
the distance to the nearest edge pixel but also the orientation of that pixel [9].
However, noisy or cluttered regions in the image are likely to give rise to edges
at all orientations, and so the distance transform will still produce a considerable
response. Since the edges produced by noise generally have low magnitudes, if we
could weight the edges by their magnitudes then the effect of noise edges will be
reduced.

We propose an algorithm based on the chamfer 3-4 algorithm [1] which pro-
vides a reasonable approximation to the Euclidean distance for a moderate com-
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putational cost. Computation of the distance transform can be either parallel or
sequential. In this context parallel means that all the pixels in the image are pro-
cessed at one iteration. Here we describe the iterative parallel version. It can be
written thus:
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where dx y is the distance value at location (x,y) calculated at iteration i, and
wai, is the value of the mask at location (a, 6) where the centre is (0, 0). d° is the
initial binary edge map.

The new algorithm generates a salience distance transform (SDT) and stores
two images: the approximate Euclidean distance, and the edge magnitude. The
edge magnitude relates to the edge that the distance has been measured from. At
each iteration the neighbourhood around each pixel is examined. The local dis-
tances are calculated using the 3-4 mask. Each of the nine distances are weighted
by their corresponding edge magnitudes to provide nine salience measures. The
most salient (i.e. the minimum value) is selected and the corresponding distance
and edge magnitude values at that location are stored in the two images. The
process at pixel location (x,y) at iteration i can be written as:

min
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and the final salience map at iteration / is calculated as:
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A discussion of the performance of the salience distance transforn (SDT) is in
the next section. It is straightforward to extend the above method to incorporate
additional saliency factors such as curve length, shape, and image clutter. These
additional salience measures further improve the distance transform [10].

3 Combining Distance Transforms Over Scale

There are a number of problems with the distance transform. The first is at which
scale do you compute the distance transform? This is not surprising as the distance
transform is heavily dependent on the edge detection stage. One solution for model
based recognition is to use the same parameters for the edge detection in the two
stages of (1) feature extraction for hypothesis generation and pose estimation,
and (2) using the distance transform for matching and confirming/rejecting the
hypothesis. This has disadvantages [2] in that the best scales for the two stages
are not necessarily the same. In fact, a fine scale is good for feature extraction
(ellipses, lines etc.) because of the requirement for accurate feature and hence pose
estimation, whereas a coarse scale is good for the distance transform because it
reduces the effect of clutter caused by spurious edges and texture. A good match



582

may be obtained in a region of dense edges because it results in an area of low
distance values. This problem is exacerbated by a poor estimate of the pose of the
model. The hierarchical distance transform [11] has been proposed for iterative
refinement of pose for model to image matches. This, to some extent overcomes
the problem of choosing a suitable scale for the distance transform as a pyramid of
images is used to successively refine the match. In fact, in this context the clutter
is seen as having little effect whereas a missing feature can create problems [12].

The second problem is what threshold value do you use for the edge detector?
Although a number of techniques exist for detecting edges at the required accuracy
and reducing spurious edges (due to noise and 'unwanted' detail), the design of an
optimal edge detector requires some idea of the context in which it is being used.
The same argument holds for the distance transform. To overcome the problem
of which threshold and which scale to use, two approaches are possible. The
first is to generate the distance transform from edge maps at a number of scales
and use them in some form of multi-scale object, recognition scheme [13]. This
would differ from that suggested by Borgefors [11] in that the distance transforms
would be generated at the chosen scales for a number of edge images, not at the
different levels of a pyramid generated from one fine scale edge map. The second
approach considered here simply combines the distance transform images for the
scales together to form one distance transform. The simplest way of doing this is
to add the images together without taking into account the scale at which each
distance transform was generated. This approach is predicated on the following
ideas (1) without any context, all edges at all scales are equally important, and
(2) an edge becomes more important if it is present over a number of scales.

Summing the DT images together causes similar distance values to be rein-
forced and dissimilar values to be weakened. The result will be a single DT image
that has low distance values for edges that occur in a number of scales and increas-
ing values for edges that only occur over some scales. Most clutter and texture
will have high values of distance as these produce edges at a small number of
scales which tend to be unstable. Summing edges over scale can be thought of as
incorporating yet another saliency measure to pixels, namely scale lifetime. Al-
though summing individual scales only provides an approximation to individual
pixel lifetimes, it is more straightforward than applying techniques like the edge
focussing procedure [4].

When considering the multi-scale approach there are a number of questions
that have to be answered. These are: (1) what is the finest scale to use? (2)
what is the coarsest scale to use? and (3) what are the intervals between scales to
be combined? The values of u used for the Marr-Hildreth edge detector [8] were
1, 1.4, 2, 2.8, 4, 5.7, 8, 11.3 and 16. These result in frequency bands at octave
intervals. The minimum a of 1 was chosen as this gave all the detail in the image to
pixel accuracy. The maximum scale of 16 was chosen as this was the coarsest scale
at which features were still recognisable in the image. Figure 3.1 shows a noisy
image of the noisy pear on a complex background. Figures 3.2a&b show the
DTs for scales 4 and 16, and figure 3.2c shows the result of adding the DTs at all
scales together to form the Multi Scale Distance Transform (MSDT). As expected
as the value of a increases the noise is reduced leaving the more perceptually
significant edges and distances. The result of combining the scales together is not
perfect because of a property most edge detectors have, namely that of inaccurate
edge position estimation in the proximity of other edges. For a pair of straight
edges close together, the Marr-Hildreth edge detector detects them at increasing
separation as the edges are brought closer together. At coarse scales this effect is
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most apparent. However this generally only affects small portions of the edges such
as near corners. For most features of large objects there is a well defined distance.
The same multi-scale approach can be applied to the Salience Distance Transform
(SDT) described in section 2 to form the Multi Scale Salience Distance Transform
(MSSDT). Figures 3.3a&b show the SDTs for the edge strength weighted algorithm
and figure 3.3c shows the MSSDT. Incorporating edge strength into the distance
transform gives perceptually better results, especially at the finer scales, at which
the edges are generally weak for the fine detail. Results for the DT and SDT at
the higher scales are similar because the smoothing has effectively removed the
weak edges.

The MSDT and MSSDT show a good trade off between visibility of all of
the object and the amount of clutter. The edge of the object is reasonably dark
(good salience) and the majority of the rest of the image is reasonably light (poor
salience). There are other strong edges giving high salience which is to be expected
as there is no reason why the object should stand out more that other strong edges.

4 Using The Salience Distance Transform For
Model Evaluation

An alternative to high-level feature matching is to match the model features to
the edge pixels in the image. This allows any model feature to match edge data
and remove the reliance on good segmentation. Borgefors [11] has proposed a
hierarchical distance transform which is used to perform coarse to fine model
alignment to the edge data. Mundy and Heller [9] have used the distance transform
at one scale on an edge image obtained using the Canny edge detector. West and
Rosin [2] have investigated the use of a different scale for the distance transform
than that used for feature extraction for recognising surfaces of revolution. A
coarse scale was used to reduce the effect of clutter caused by texture near the
edges of the object of interest.

To obtain an idea of the performance of the different DTs proposed in this
paper, a number of experiments were performed on simulated images. Template
matching was performed using boundary models of 2D objects on the DT images.
Summing the values of the DT for each model pixel should result in low values for
good matches as the model will line up with the edges of the object in the image. It
is not our purpose to describe efficient alignment and matching algorithms in this
paper but to demonstrate that the proposed DTs can be used in such a scheme.
The important requirement with template matching is for there to be a well defined
minimumfor the correct match. The error space should be reasonably smooth with
few local minima. To determine the error space, the error is computed for a number
of discrete model positions by perturbing the pose parameters about the position
of correct match. Translation in the two orthogonal directions was considered. It
can be reasonably assumed that varying the other parameters (rotation, scaling)
will have similar effects.

For the first set of experiments, the DT and SDT for each of the edge detector
scales were processed. Figure 4.1 shows the noisy pear model and figures 4.2a&b
and 4.3a&b show the results at scales 4 and 16 for the two algorithms for a region of
the error space 100 X 100 pixels in size approximately centred on the reference point
of the model. Notice that in most there is a reasonably well defined minimum. The
important point to note is that for the finer scales, there are many local minima
while at the coarser scales there is usually one minima. Figures 4.2c and 4.3c show
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the results for the multi-scale algorithms which show well defined minima.
The same experiments were performed using the same noisy pear image but

the model used was the smooth pear (see figure 4.L). The smooth pear model
is the underlying shape of the noisy pear without the fine detail. It can be
regarded as a coarse representation of the model or as a noise-free description. As
expected, similar results for matching were obtained using the multi-scale distance
transforms.

5 Using The Salience Distance Transform with
Active Contours

We show here another application of the salience distance transform. Active con-
tours (aka snakes) are a popular method for refining an initial boundary estimate.
Early applications of snakes calculated the gradient by running an edge detector
on the image [14]. However, techniques for determining the optimal deformation
of the snake generally only use a local window around each contour point of the
snake at each step. Therefore, since edge detectors produce localised gradient
maps, the snake will not be attracted towards the edges unless it is very close.
This would require the initial estimate of the snakes position to be very accurate.
To overcome this problem, the edge magnitudes were; blurred. Unfortunately, this
distorts the position of the maximum gradient, requires a parameter to specify the
degree of blurring, and still produces a finite width energy well.

More recently, the distance transform has been used instead to generate the
image energy term. This has the advantage that it produces a continuous smooth
gradient over the whole image, and does not require any parameters. However,
the disadvantage is that it does not use the magnitude values of the gradient.
Thus, a significant amount of important information is being discarded. If instead
one of the SDTs is used, then the advantages of both techniques are available.
A continuous gradient is produced which incorporates as much information as is
available.

The application of the SDT is demonstrated in the context of bottom-up per-
ceptual grouping [15]. Certain arrangements of ellipses in the image are hypothe-
sised as being the projections of a surface of revolution (SOR) in the scene. This
hypothesis is reinforced by searching for symmetric sets of lines or edges about the
projected axis of revolution in the image. This enables the occluding boundary
of the SOR to be estimated. However, due to clutter and occlusion this estimate
is typically very crude. Here we use it as an initial estimate which is refined us-
ing snakes. The greedy algorithm [16] is used to calculate the deformation of the
snake at each iteration. The initial contour in the examples contains 150 points,
and the greedy algorithm was terminated in all cases when less than five points
moved during one iteration. The original image is shown in figure 5.1a, and the
initial estimate is shown superimposed in figure 5.1b. The blurred edge magnitude
(log mapped) is shown in figure 5.2a. Even though the writing on the can is not
significant its density causes the blurred edge map to contain a strong energy well.
In turn, this causes the snake to move in the wrong direction, and the final snake
(figure 5.2b) is mostly wrong except in a few sections in which there was little
spurious clutter. The DT is generated from the original thresholded edge map as
shown in figure 5.3a. Although not compounded by blurring, the clutter produces
many distracting energy wells. This can be seen in the final snake (figure 5.3b)
which in several instances (e.g. the bottom right hand rim) has latched on to
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adjacent background noise. The SDT shown in figure 5.4a does not suffer from
either of the above defects, and the final snake follows what we would consider to
be the significant contours.

The results of the DT and the edge blurring would be improved by using a
larger scale for edge detection, although this may reduce accuracy and in any
case, which scale should be used? Even at a single scale the SDT is much less
sensitive to artefacts produces by noise and clutter. Using the MSSDT would
allow a multi-scale snake algorithm to be used.

6 Conclusions

We have described a method for incorporating various additional factors into the
standard chamfering algorithm for calculating the distance transform. This allows
a more general salience distance transform to be generated, which is more useful
than the standard distance transform for many applications. Due to the limitations
of space we have concentrated on edge magnitude, but factors such as curve length
and shape and image clutter can easily be added [10]. The accuracy of the various
algorithms for calculating the standard DT can be easily analysed. However,
saliency is a less well defined concept, and varies from application to application.
Given the variability of the components of saliency, its usefulness can be assessed
best by experimental demonstrations for each application. We have compared
the performance of the SDT with the DT for model matching and an example
involving active contours. In both cases, the SDT gave superior results compared
to the basic DT.

None of the stages of the MSSDT require any parameters. This is essential
if the technique is to be robust over a variety of data without user intervention.
In particular, there is no requirement to threshold the edge map. As would be
expected, different threshold values can give drastically different results. Moreover,
thresholding removes potentially useful information. Although the multi-scale
approach removes the necessity for a scale parameter it requires significantly more
computation than a single scale SDT. In many cases the single-scale application
of the SDT may be sufficient.
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