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Abstract

This thesis focuses on a special class of Mathematical Programming (MP) algo-

rithms for continuous black-box optimization. Black-box optimization has been

a recurrent subject of interest for decades, as many real-world applications can

be modeled as black-box optimization problems. In particular, this research work

studies algorithms that partition the problem’s decision space over multiple scales

in search for the optimal solution and investigates three central topics.

• Plenty of such algorithms have been proposed and analyzed independently.

Furthermore, the theoretical analysis has been dominantly concerned with

the asymptotic (limit) behavior of the algorithms and their convergence to

optimal points, whereas finite-time behavior is more crucial in practice.

• Due to their systematic sampling of the decision space, the aforementioned

algorithms are inherently exploratory. This prevents from using them effec-

tively on computationally expensive optimization problems.

• The bulk of these algorithms has been tailored towards single-objective opti-

mization, whilst in practice, most real-world problems involve the optimiza-

tion of multiple objectives.

The present thesis refers to these algorithms as Multi-scale Search Optimization

(MSO) algorithms and addresses the above issues as follows. First, a theoretical

methodology is presented to consolidate the analysis of MSO algorithms and study

their finite-time convergence based on three basic assumptions: i). local Hölder

continuity of the objective function f ; ii). partitions boundedness; and iii). parti-

tions sphericity. Moreover, the worst-case finite-time performance and convergence

rate of several leading MSO algorithms, viz. Lipschitzian optimization methods,

Multilevel Coordinate Search (MCS), DIviding RECTangles (DIRECT), and opti-

mistic optimization methods have been shown.
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Second, in order to deal with expensive optimization, an algorithm—referred to

as the Naive Multi-scale Search Optimization (NMSO) algorithm—within the MSO

framework is developed. When compared with other MSO algorithms, NMSO’s ex-

ploitative search component is more dominant than its exploratory one. Besides

preserving its asymptotically-consistent property, NMSO enjoys a finite-time conver-

gence, which is generally difficult to establish for exploitation-biased algorithms.

Along with its theoretical study, a numerical assessment of NMSO—comparing it

with established multi-scale search algorithms such as MCS and DIRECT—has been

conducted. Based on the results, NMSO demonstrates a better performance than

the compared algorithms under limited (expensive) evaluation budget, particularly

in problems with separability, multi-modality, and low dimensionality. This is in

line with the Black-box Optimization Competition (BBComp) held at GECCO’15,

where NMSO finished third out of twenty-eight competitors in solving 1000 black-box

problems.

Third, in order to expand the frontiers of multi-scale search algorithms, two

MSO algorithmic instances are extended for multi-objective optimization: i). Multi-

Objective DIviding RECTangles (MO-DIRECT); ii) Multi-Objective Simultaneous

Optimistic Optimization (MO-SOO). Both of these algorithms are asymptotically

convergent towards the Pareto front. Furthermore, based on the presented theo-

retical methodology to analyze MSO algorithms, an upper bound on the Pareto-

compliant unary additive epsilon indicator is established as a function of the num-

ber of iterations. The bound is characterized by the objectives smoothness as well

as the structure of the Pareto front with respect to its extrema. First time in the

literature, a deterministic upper bound on a Pareto-compliant indicator has been

presented for a solver of continuous multi-objective problems.

Finally, to validate the efficacy of the proposed multi-objective MSO algo-

rithms, a Black-box Multi-objective Optimization Benchmarking (BMOBench)

platform is built around 100 multi-objective optimization problems from the lit-

erature, where the performance assessment is reported in terms of Pareto- and

Non-Pareto-compliant data profiles. BMOBench can be employed as a compre-

hensive platform for benchmarking any multi-objective optimization algorithm.

Besides the built platform, 300 bi-objective were used in comparing the proposed

multi-objective MSO algorithms with the state-of-the-art algorithms. Based on the

results, MO-SOO shows a performance on a par with the top performing algorithm,

ix



viz. SMS-EMOA and DMS, especially with limited number of function evaluations.

Future work includes: i). breaking away from MSO’s systematic sampling towards

more adaptive/learning scheme; ii). handling large-scale problems and general con-

straints; and iii). employing indicator-based techniques for multi-objective MSO.

x



List of Figures

1.1 A binary search tree built with 11 function evaluations over the de-

cision space X . The tree constructed, in a hierarchical fashion, four

{0, 1, 2, 3} partitions of the search space of different scale/granularity. 4

2.1 3-dimensional maps for 2-dimensional functions exhibiting typical

challenges in numerical black-box optimization. Figures (b), (c),

and (d) are adapted from Chen et al. [1]. . . . . . . . . . . . . . . . 14

2.2 Working principle of Lipschitzian Optimization in one-dimensional

search space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Identification of potentially-optimal hyperrectangles by DIRECT. . . 25

3.1 The process of computing exploration and exploitation scores for

the set of leaf nodes L ⊆ T (a) of an MSO algorithm A can be

regarded as projecting them onto a 2-D Euclidean space (b) R2 via

the mapping function s : L → R2. Y represents L’s image under s

and P (Y ) ⊆ Y is the potentially optimal set. Here P (Y ) lies on the

level set of b(x) = lx + λ · gx that corresponds to the value 4 (the

greatest among Y ’s). P and Q are chosen from the set of leaf nodes

whose image under s is P (Y ). . . . . . . . . . . . . . . . . . . . . . 45

3.2 Selecting expandable leaf node(s) Q (represented by black dots) for

an iteration in LO (a), for a batch of iterations in DIRECT (b) , a

batch of iterations in MCS (c), an iteration in DOO (d), and a batch

of iterations in SOO (e). The set Y , whose elements are represented

by black and gray dots, is the set of projected evaluated leaves into

the exploration-exploitation space. . . . . . . . . . . . . . . . . . . . 53

3.3 Xǫ in a 2-dimensional space is an ℓ́-circle (Here, ℓ́ and ℓ are the l2

norms, with α and β set to 1) centered at x∗ with a radius of ǫ. . . 56

xi



3.4 The empirical convergence rate and its theoretical bound with re-

spect to the number of function evaluations #f-evals for the algo-

rithms DIRECT (a), SOO (b), and MCS (c) in minimizing ||x − x∗||α∞,

with n = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Bootstrapped empirical cumulative distribution of the number of

objective function evaluations divided by dimension (FEvals/DIM)

for all functions and subgroups in 2-D. . . . . . . . . . . . . . . . . 88

4.2 Bootstrapped empirical cumulative distribution of the number of

objective function evaluations divided by dimension (FEvals/DIM)

for all functions and subgroups in 3-D. . . . . . . . . . . . . . . . . 89

4.3 Bootstrapped empirical cumulative distribution of the number of

objective function evaluations divided by dimension (FEvals/DIM)

for all functions and subgroups in 5-D. . . . . . . . . . . . . . . . . 90

4.4 Bootstrapped empirical cumulative distribution of the number of

objective function evaluations divided by dimension (FEvals/DIM)

for all functions and subgroups in 10-D. . . . . . . . . . . . . . . . 91

4.5 Bootstrapped empirical cumulative distribution of the number of

objective function evaluations divided by dimension (FEvals/DIM)

for all functions and subgroups in 20-D. . . . . . . . . . . . . . . . 92

4.6 Bootstrapped empirical cumulative distribution of the number of

objective function evaluations divided by dimension (FEvals/DIM)

for all functions and subgroups in 40-D. . . . . . . . . . . . . . . . 93

4.7 Timing Performance of NMSO compared with the state-of-the-art

MSO optimization algorithms. The y-axis represents the time (in

millisecond) per a function evaluation (FEval). All the algorithms

were run on a PC with: 64-bit Ubuntu, i7-4702MQ @ 2.20GHz CPU,

8GB of memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xii



5.1 An illustration of MO-DIRECT (Algorithm 8). The technique iden-

tifies and expands potentially-optimal hyperrectangles to look for

Pareto optimal solutions by partitioning their spaces along the deci-

sion space dimensions according to Algorithm 2, using Eq. (5.3) in-

stead of Eq. (2.6). In each iteration t, MO-DIRECT selects a set of hy-

perrectangles whose sizes are greater than a certain value σt and ex-

pands those that are non-dominated in the (m+1)-dimensional space

of the m-function space appended by the hyperrectangle size range

where hyperrectangles of minimum m-function values and bigger

sizes are preferred. Subsequently, one or more hyperrectangles can

be expanded in one iteration; at the second iteration, for instance,

only one hyperrectangle is partitioned (whose center is point 3) into

smaller hyperrectangles (whose centers are the points 3, 6, and 7)

as it is the only non-dominated point in (m+1)-dimensional space.

With regard to its partitioning, it has only one dimension (x1) of

maximum side length. Hence, division takes along that dimension,

generating three new hyperrectangles. On the other hand, at the

third iteration two hyperrectangles are partitioned (resp., centers

are the points 3 and 5) into smaller hyperrectangles (resp., centers

are the points 3, 8, 9, 10, and 11; and 5, 12, and 13). Here, the

division of hyperrectangle 3 takes place along the two dimensions

as both sides have equal lengths; the procedure first divides along

x1 as the points 8 and 10 are farther from point 3 in the function

space than the points 9 and 11. After 250 function evaluations,

MO-DIRECT’s approximation set A closely coincides on a sampled

set Y∗ of the Pareto front of Problem (5.4). . . . . . . . . . . . . . 107
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node depth till the maximal depth specified by hmax(t). MO-SOO ex-
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{(2, 6), (1, 2), (0, 0)} are 1- and 2-optimal nodes, respectively. Fur-
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5.5 The objective space Y for a multi-objective optimization problem

(m = 2). The solid curve marks the Pareto front Y∗. At depth h,

assuming the {j}j=1,2-optimal nodes are not expanded yet, one can

use the NDmin(·) operator, which causes nodes whose representative

states lie in the decision space portion ∪j=1,2X δj(h)
j to be expanded

before others. However, this may hold up discovering other parts
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objective space is bounded by the Pareto front and the points y1,

y2, and y3 = ynadir(f(∪j=1,2X δj(h)
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considered depth at iteration t be h and the depth of the deep-
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−ds1 ·2δ2(h), that is to say y12−f2(x

∗
1) ≤ C1δ1(h)

−ds1 ·2δ2(h);
similar argument can be made between the points y2 and y5 along
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Chapter 1

Introduction

“Begin at the beginning,“ the King said gravely, “and go on till you

come to the end: then stop.“

- Lewis Carroll, Alice in Wonderland

1.1 Motivation

Numerical optimization has been a recurring subject of interest for centuries, as

many decision-making problems for real-world systems can be described by objec-

tive functions of decision variables that model and capture such systems. Examples

range from transmembrane protein structure determination [7] and molecular dock-

ing [8] to designing hybrid fuel cell vehicles [9] and controlling wet clutches [10].

Nevertheless, the complexity and difficulty of such problems are growing steadily.

On the one hand, the objective functions may often be multi-variate, non-differentiable,

ill-conditioned, and/or multi-modal [11]. On the other hand, it is not uncommon

that derivatives of the objective functions are neither symbolically nor numerically

available [12], and therefore the objective functions are only accessible through a

black box (e.g., a computer code or a laboratory experiment) where one can pro-

vide a solution (a point in the decision space) to the black box and gets in return

the objective value at that solution. In other words, the only source of informa-

tion about the objective is point-wise evaluations. Optimizing such objectives is

often referred to as black-box optimization. In various real-world black-box prob-

lems (see, e.g., [13, 14, 15, 16, 17]), evaluating a solution is typically expensive,

requiring some computational resources (e.g., time, power, money), and hence one

seeks the fastest possible search to achieve the best possible solution.
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The aforementioned challenges of black-box optimization have been studied to a

great extent by the Mathematical Programming (MP) community. MP methods,

compared with others, are generally devised to show a systematic convergence

towards the optimal solution from the beginning of the search—by making use of

all the points sampled to guide the search and/or construct models of the objective

function. Moreover, the asymptotic convergence is often provable due to their

systematic sampling of the decision space. Examples of MP algorithms solving

real-world black-box problems can be found in applications ranging from aircraft

routing to maximum power tracking for a photovoltaic system [18, 19, 20, 21, 22].

Many of MP algorithms for continuous black-box optimization have been de-

veloped and analyzed independently, for which the theoretical studies have been

dominantly concerned with the limit behavior of the algorithms and their asymp-

totic convergence to optimal/stationary points (e.g., [23, 24, 25, 26, 27, 28, 29, 30,

31, 32]). Few papers, such as those by Hansen et al. [33] and Munos [34], have

studied their finite-time behavior, which is more crucial in practice [35], given the fi-

nite constraints on the computational budget (the number of function evaluations).

Moreover, finite-time analysis lays the foundations towards possible directions of

research for efficient algorithms.

On the one hand, several black-box MP algorithms are—attributable to their

structured sampling—inherently exploratory: behaving, sometimes, as an exhaus-

tive grid search [36]. This, among other factors, results in a slow convergence [37],

which is less of a desired attribute with the growing computational complexity

of real-world problems, as mentioned earlier. On the other hand, exploitative

(greedy) algorithms may not adapt well to the complexity of the problem at hand

(e.g., multi-modality) converging to a local stationary point.

Additionally, a substantial number of problems encountered in practice are of

multiple objectives: Multi-objective Optimization Problems (MOPs)—in contrast

to Single-objective Optimization Problems (SOPs)—involve a set of (often) con-

flicting objectives that are to be optimized simultaneously (see, e.g., [38, 39, 40,

41, 42]). With conflicting objectives, there does not exist a single optimal solution,

but a set of incomparable optimal solutions: each is inferior to the other in some

objectives and superior in other objectives. This induces a partial order on the set

of objective vectors of an MOP. The set of optimal objective vectors according to

this partial order is commonly named as the Pareto front of the problem. The task
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of MOP solvers therefore becomes finding the Pareto front or producing a good

approximation of the same. Although Evolutionary Algorithms (EAs) have been

applied with empirical success to multi-objective problems, there has been a grow-

ing gap between EAs’ theory and practice [43]. Besides, among the several lessons

learned from developed MOP solvers over the past decades is that, in order to gen-

erate a dense and good approximation set of the Pareto front, one must maintain

the set diversity. Furthermore, one must not discard inferior solutions too easily,

as some of them may pave the way towards rarely-visited regions of the Pareto

front [44]. In other words, the exploration-vs.-exploitation trade-off in search for

the Pareto optimal set should be thought carefully about, at the algorithmic design

level. To this end, one can tailor MP techniques towards MOPs leveraging their

exploratory nature and, at the same time, seek conceptual insights making use of

their theoretical guarantees.

In the light of this discussion, three key points arise with regard to black-box

MP algorithms:

• With the growing bulk of computationally expensive black-box problems,

there is a need to be able to gauge the performance of black-box MP algo-

rithms against the number of function evaluations used (or any time-related

quantity). In other words, a principled methodology is required to study the

finite-time performance of black-box MP algorithms.

• To deal with computationally expensive optimization, there is a need for

techniques that prioritize exploitation over exploration given a very expensive

computational budget, yet preserve sound theoretical properties as those of

within the MP framework.

• As plenty of real-world problems involve multiple objectives, the theoretical

and exploratory properties of MP algorithms make them an attractive candi-

date to solve MOPs. In other words, there is a need to extend and investigate

the suitability of black-box MP algorithms for MOPs.

In this thesis, the above points are addressed with regard to a special fam-

ily/class of MP algorithms that employ a divide-and-conquer tree search by parti-

tioning the continuous decision space in a hierarchical fashion given a finite number
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Figure 1.1: A binary search tree built with 11 function evaluations over the decision
space X . The tree constructed, in a hierarchical fashion, four {0, 1, 2, 3} partitions
of the search space of different scale/granularity.

of function evaluations (see, Fig. 1.1). These algorithms, iteratively, carry out a dy-

namic expansion of a tree whose nodes represent subspaces of the decision space,

with the root corresponding to the entire search space. The space-partitioning

tree grows seeking a trade-off between exploration and exploitation of the decision

space: a dilemma whose initial investigations date back to Thompson [45] and Rob-

bins et al. [46], where it was known as the multi-armed bandit problem. Tree-based

frameworks have a big body of literature in such various fields as artificial agents,

control, and planning [47]. They have recently been gaining popularity [e.g., game

of GO, 48] and witnessed a sensational success [49].

With this regard, global continuous black-box optimization can be modeled as a

structured bandit problem where the objective value is a function of some arm pa-

rameters (see, for instance, [50, 51]). Based on the observations (sampled points)

and assumptions about the objective smoothness, an optimistic strategy would

compute a bound on the objective (reward) value at each solution (arm) x ∈ X
and choose the arm with the best bound. Examples of global continuous opti-

mization algorithms with a closely related approach are Lipschitzian optimization

techniques [52]. However, this approach poses two problems: i) the computational

complexity of computing the bounds over X at each step; ii) the restriction that
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the smoothness assumption puts on the objective functions that can be optimized.

While the second issue can be addressed with weak, yet effective assumptions on

the function smoothness, e.g., local (rather than global) smoothness; the first is-

sue can be alleviated by transforming the problem from a many-arm bandit to

a hierarchy of multi-armed bandits (often referred to as hierarchical bandits [53]).

Hence, such an algorithm can be regarded as a tree-search divide-and-conquer tech-

nique that iteratively constructs finer and finer partitions of the search space X
at multiple scales h ∈ N0. Given a scale h ≥ 0 and a partition factor K ≥ 2,

X can be partitioned into a set of Kh cells/hyperrectangles/subspaces Xh,i where

0 ≤ i ≤ Kh − 1 such that ∪i∈{0,...,Kh−1}Xh,i = X . These cells are represented by

nodes of a K-ary tree T (as shown in Figure 1.1), where a node (h, i) represents

the cell Xh,i—the root node (0, 0) represents the entire search space X0,0 = X . A

parent node possesses K child nodes {(h+1, ik)}1≤k≤K , whose cells {Xh+1,ik}1≤k≤K

form a partition of the parent’s cell Xh,i.

1.2 Objectives

This research is concerned with Mathematical Programming (MP) algorithms for

continuous black-box optimization given a finite budget of function evaluations. In

particular, the present thesis focuses on MP algorithms, which search for the (or

one) optimal solution over multiple scales of the decision space of problems that

are of one (or more) objective function(s). The objectives of the present thesis can

be summarized as follows.

• Finite-Time Analysis. In literature, the bulk of convergence analysis stud-

ies on the aforementioned algorithms has been primarily concerned with their

infinite-time behavior, whereas finite-time analysis is more relevant in a finite-

budget setting. Hence, providing a principled, generic methodology to study

the finite-time behavior is a major objective of this research.

• Expensive Optimization. Fueled by the increasing number of compu-

tationally expensive real-world optimization problems, this research seeks to

design a black-box MP algorithm, aimed at expensive optimization, prioritiz-

ing exploitation over exploration whilst providing solid theoretical guarantees

on its convergence.
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• Multi-Objective Optimization. In practice, several problems encoun-

tered are of multi-objective nature. However, when compared to Single-

objective Optimization Problems (SOPs), a few MP algorithms have been

tailored towards Multi-objective Optimization Problems (MOPs). This opens

the door to a promising evaluation of black-box MP techniques for MOPs,

leveraging their theoretical and exploratory properties. Therefore, another

major objective of this research is to investigate the suitability of MP algo-

rithms for black-box multi-objective optimization.

1.3 Thesis Contributions

This thesis brings several contributions to the theory and algorithms of the Math-

ematical Programming (MP) field for continuous black-box optimization given a

finite budget of function evaluations. These contributions revolve around a special

family of algorithms that employ a space-partitioning tree search. The present

thesis refers to such algorithms as Multi-scale Search Optimization (MSO), as they

search for the (or one) optimal solution over multiple scales of the decision space.

In essence, the contributions presented in this thesis can be categorized into three

parts: i). theory; ii). algorithms; and iii). benchmarking of MSO algorithms.

These contributions are highlighted next, respectively.

1.3.1 Theoretical Analysis Contributions

This thesis provides a generic framework for black-box Multi-scale Search Opti-

mization (MSO) algorithms and proposes a theoretical methodology to analyze

their finite-time convergence based on three basic assumptions: a) Hölder continu-

ity of the objective function; b) partitions boundedness; and c) partitions sphericity.

The analysis is built on quantifying how much exploration is required to achieve

near-optimal solutions. Based on this methodology, the obtained theoretical results

are two-fold:

• Single-Objective Optimization. The worst-case finite-time performance and

convergence rate of several established MSO algorithms, namely, Lipschitzian

Optimization (LO) [54, 55], Multilevel Coordinate Search (MCS) [27], DIviding

RECTangles (DIRECT) [56], and optimistic optimization methods [34] are

presented.
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• Multi-Objective Optimization. The finite-time analysis presented in the single-

objective setting is extended towards MOPs, where a hypothetical measure

of objectives conflict is proposed and is referred to as the conflict dimension.

The conflict dimension captures the proximity of Pareto front extrema to

the rest of its elements. In the light of this measure, the present research

establishes an upper bound on the Pareto-compliant unary additive epsilon

indicator characterized by the objectives smoothness as well as the conflict

dimension. First time in the literature, a deterministic upper bound on

a Pareto-compliant indicator has been presented for a solver of continuous

MOPs.

Additionally, the concluded theoretical results are empirically validated on a set of

synthetic problems using symbolic maths.

1.3.2 Algorithmic Design Contributions

This thesis proposes and analyzes three algorithms to deal with expensive as well

as multi-objective optimization:

• Expensive Single-Objective Optimization. The bulk of MSO algorithms are

exploratory in nature due to their systematic sampling. The present research

proposes an algorithm within the framework of MSO and refers to it as the

Naive Multi-scale Search Optimization (NMSO) algorithm. Similar to other

MSO algorithms, NMSO builds a partitioning tree over the decision space.

The tree is expanded using the following rule: exploit until no further im-

provement is observed. Compared to other MSO algorithms, NMSO prioritizes

exploitation over exploration, which makes it suitable for computationally

expensive optimization problems. Despite being exploitative (greedy), NMSO

enjoys a theoretical finite-time and asymptotic convergence within the estab-

lished theoretical methodology. At the Black-box Optimization Competition

(BBComp) [57], NMSO emerged third out of twenty-eight competitors in solv-

ing 1000 black-box problems.

• Multi-Objective Optimization. To expand the frontier and investigate the

suitability of MSO algorithms in solving MOPs, two algorithmic instances

are proposed: i). Multi-Objective DIviding RECTangles (MO-DIRECT) based
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on DIRECT [56]; and ii). Multi-Objective Simultaneous Optimistic Optimiza-

tion (MO-SOO) based on SOO [34]. While both of these algorithms enjoy an

asymptotic convergence towards the Pareto front, the iterative sweep over

multiple scales of the search by MO-SOO makes its finite-time performance

provable within the proposed theoretical framework. Moreover, the exhaus-

tive exploratory nature of MO-DIRECT makes it an attractive candidate to

initialize local search multi-objective solvers. On the other hand, MO-SOO

serves as a suitable solver for problems with a limited number of function

evaluations.

1.3.3 Benchmarking Contributions

Empirical analysis employs experimental simulations of algorithms on complex

problems, gaining an insight on the their practicality/applicability on real-world

problems. In order to complement the theoretical perspective and the algorithmic

development in the present thesis, an empirical analysis has been conducted to

validate and compare the effectiveness of MSO algorithms. To this end, the exper-

imental evaluation must be able to distinguish the good features of the algorithms

and show their differences over different stages of the search for various goals and

situations. With these concerns, the contributions are of two folds:

• Single-Objective Optimization. A thorough empirical analysis and compari-

son of several MSO algorithms—viz. classical (DIRECT, MCS), commercial (BB-LS)

and recent (SOO, BaMSOO) algorithms—against NMSO have been conducted on

the noiseless Black-Box Optimization Benchmarking (BBOB) testbed under

both expensive and cheap-budget settings. The Comparing Continuous Op-

timizers (COCO) methodology [58] has been adopted as it meets the above

concerns in benchmarking. Furthermore, recently developed stochastic algo-

rithms, namely SRPSO [59], DMeSR-PSO [60], RL-SHADE [61], RF5-CMA-ES [62],

and Bsrr [63] have as well been compared with NMSO. Overall, NMSO is suitable

for problems with a small number of function evaluations, low-dimensionality

search space, and objective functions that are separable or multi-modal. Oth-

erwise, it is comparable with the top performing algorithms.

• Multi-Objective Optimization. Several test problems for validating multi-

objective algorithms have been proposed (see, e.g., [64]). However, most of
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the time, methods proposed to solve MOPs are benchmarked on a differ-

ent set of problems under arbitrary budgets of function evaluations. Hence

and in line with ongoing efforts of the community in consolidating testbeds

for black-box optimization (e.g., BBOB and BBComp), the Black-box Multi-

objective Optimization Benchmarking (BMOBench) platform is built around

100 multi-objective optimization problems from the literature collected by Custódio

et al. [65]. In BMOBench, the performance assessment is reported in terms

of Pareto- and Non-Pareto-compliant data profiles. BMOBench can be em-

ployed as a comprehensive platform for benchmarking any multi-objective op-

timization algorithm. Besides the built platform, 300 bi-objective from Brock-

hoff et al. [6] were used in comparing the proposed multi-objective MSO al-

gorithms with several stochastic and deterministic algorithms. The results

substantiate the efficacy of MO-SOO especially for expensive MOPs.

1.4 Thesis Organization

The thesis is organized as follows:

• In Chapter 2, a historical overview of Mathematical Programming (MP)

techniques in the context of continuous black-box optimization is presented,

followed by a literature review on the family of space-partitioning tree-search

MP algorithms. Here these algorithms are grouped into two categories: one

category requires the knowledge about the objective function smoothness,

while the other category makes an assumption about the smoothness whose

knowledge may not be available.

• Chapter 3 addresses the class of space-partitioning tree-search MP algo-

rithms for continuous black-box optimization and provides a generic pro-

cedure referred to as Multi-scale Search Optimization (MSO). Moreover, a

principled theoretical methodology is presented to study the finite-time be-

havior of MSO algorithms. The approach is based on three assumptions: i).

local Hölder continuity of the objective function; ii). partitions boundedness;

and iii). partitions sphericity. In the light of this analysis, the worst-case

finite-time performance of several leading MSO algorithms is presented and

validated empirically using symbolic maths.
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• Chapter 4 tackles expensive optimization and proposes NMSO (short for

Naive Multi-scale Search Optimization): an MSO algorithm with a finite-

time and asymptotic provable performance, sitting at the exploitation end of

exploration-vs.-exploit- ation dilemma. NMSO’s analysis provides the basis for

analyzing exploitation-biased MSO algorithms. Besides validating the empir-

ical performance of NMSO, a thorough numerical validation and comparison

of the classical, commercial, as well as recent MSO algorithms is conducted

on the noiseless Black-Box Optimization Benchmarking (BBOB) testbed for

both expensive- and cheap-budget settings.

• In Chapter 5, the frontier of MSO algorithms is extended towards multi-

objective optimization in terms of algorithmic development and theoretical

analysis. In particular, the present research provides multi-objective algo-

rithmic instances of DIRECT and SOO, which we refer to as MO-DIRECT and

MO-SOO, respectively. This chapter shows that both algorithms enjoy an

optimal limit behavior. Moreover, it analyzes the finite-time performance of

MO-SOO and validates its theoretical guarantees on a set of synthetic problems.

The finite-time analysis establishes an upper bound on the Pareto-compliant

unary additive epsilon indicator characterized by the objectives smoothness

as well as the structure of the Pareto front with respect to its extrema.

• Chapter 6 complements Chapter 5 by validating the empirical performance

of the two developed multi-objective solvers, viz. MO-DIRECT and MO-SOO

on a set of multi-objective problems. To this end, the algorithms are tested

on two testbeds: i). 300 bi-objective problems generated from the BBOB

testbed and ii). the Black-box Multi-objective Optimization Benchmarking

(BMOBench), which is built to consolidate 100 MOPs from the literature.

The algorithms are also compared with state-of-the-art deterministic and

stochastic multi-objective solvers in terms of different quality indicators (e.g.,

the additive epsilon indicator) in the form of data profiles.

• Chapter 7 concludes the thesis and provides directions for future research

work.
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Chapter 2

Literature Review

“The greatest part of a writer’s time is spent in reading, in order to

write: a man will turn over half a library to make one book.“

- Samuel Johnson, The Life of Samuel Johnson LL.D. Vol 2

This chapter is intended as a general overview of Mathematical Programming

(MP) techniques for continuous black-box optimization. After briefly motivating

black-box problems in Section 2.1, a historical summary of black-box MP methods

is presented in Section 2.2. This is followed by a literature review on the family of

space-partitioning tree-search MP algorithms in Section 2.3. These algorithms are

grouped into two categories: one category requires the knowledge about the ob-

jective function smoothness. On the other hand, the other category just makes an

assumption about its smoothness whose knowledge may not be available. Towards

the end of this chapter, a formal background on multi-objective optimization is

presented. Lastly, some comments are made with regard to the objectives of this

thesis.

2.1 Continuous Black-Box Optimization

In various real-world applications and industries, products are designed using com-

puter/ math models that alleviate the need for physical prototypes and ease the

exploration of alternative designs [66]. To achieve an optimal design, optimiza-

tion algorithms are tailored to query these models for a specific design to get the

corresponding objective value. In other words, the objective function is evalu-

ated through a computer code with no analytical expression nor knowledge about
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its structure nor derivatives. Besides computer-based models, there are chemical,

mechanical, and aeronautical problems based on laboratory experiments where

information other than objective function values are impossible or difficult to col-

lect. Such scenarios are commonly referred to as black-box optimization. Without

loss of generality, the numerical (continuous) deterministic black-box minimization

problem with n decision variables has the form:

minimize f(x)

subject to x ∈ X ,
(2.1)

given v function evaluations, where f : X ⊆ Rn → R is the black-box objective

function defined on decision (search) space X subset of Rn. The sole source of

information about f is point-wise evaluations : one can query f at any point x ∈ X
and the black box will return the corresponding objective value f(x). Therefore,

the black-box optimization problem can be looked at as a search for the (or one)

optimal solution x∗ within the decision space X given a finite number of function

evaluations v, since only zero-order information is available. While this may seem

a simple task, the objective function f often comes with a number of challenges

that make solving (2.1) or finding a near-optimal solution tedious. Table 2.1 briefly

discusses typical challenges encountered in real-world problems.

Black-box optimization is also referred to as Derivative-Free Optimization (DFO),

a term coined within the MP community, in contrast to optimization techniques

with derivatives (e.g., Newtonian methods [67]). The next section presents a his-

torical summary of mathematical programming methods for continuous black-box

optimization.

2.2 Historical Overview of Black-Box Mathemat-

ical Programming

Let x∗ be the (or one) solution to (2.1) such that f ∗ = f(x∗). A simple, yet not

so efficient, approach to find any solution x∗ would be to use a passive algorithm

Ap, which would use its v-evaluation budget at once to evaluate a uniform grid of

v points in the objective function’s domain X . Ap then returns x(v), the point

in the grid with the best function value among the grid points, as a guess on x∗

(see, e.g., [72]). Alternatively, a sequential algorithm As would start by arbitrarily

12
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Table 2.1: Common challenges in black-box optimization. The present thesis does
not address problems that are noisy (stochastic) and/or dynamic.

Challenge Description

Computational Cost A problem is said to be expensive if the cost (e.g., time, power,
money) of optimizing it per an (function) evaluation is less than the
cost of one function evaluation [44] (e.g., vehicle crash simulation
could take 20 hours [56]).

Non-Separability A problem is separable if the optimum can be found by performing
n one-dimensional independent searches along each of the n coor-
dinates. Thus, the difficulty of separable problems increases lin-
early with the decision space dimension n, whereas non-separable
problems—e.g, see Fig. 2.1 (a)—face the curse of dimensionality [68]
with higher dimensions [69] as discussed next.

High-Dimensionality Besides the proportional computational complexity, the volume of
search space scales exponentially with n. In order to get a cover-
age in 10-dimensional unit hypercube similar to the coverage of 10
points in a unit interval, 1010 points are required.

Multi-Modality The presence of more than one optimum. This could lead to pre-
mature convergence to a local optimum—e.g, see Fig. 2.1 (b).

Ill-Conditioning A problem is ill-conditioned if different decision variables con-
tribute differently to the objective function—e.g, see Fig. 2.1 (c).
In other words, different directions in the decision space exhibit a
considerably-different contribution (orders of magnitude difference)
to the objective function value [69].

Multi-Objective Optimizing m objective functions {fj}1≤j≤m is referred to as a
Multi-objective Optimization Problem (MOP). The solution is gen-
erally a set of incomparable optimal points. More will be discussed
in Section 2.4.2.

Dynamic A problem is dynamic if the objective function value of a feasible
solution depends on time [70].

Accuracy/Noise Sometimes, the function evaluation accuracy depends on proce-
dures that involve random errors (e.g., chemical reactions) or the
computational time allocated to it (e.g., the finer is the grid size
in solving a partial differential equation, the more accurate will be
the result) [71].

Ruggedness Similar to noise, non-differentiability / non-continuity can be
a source of difficulty in black-box optimization [35]—e.g, see
Fig. 2.1 (d).

guessing/selecting a point in the search space and evaluating it on f . As then

iteratively refines its next guess based on the previously selected points and their

corresponding function f values. After v evaluations, As returns x(v): its best

guess on x∗ (see, e.g., [54]). Since there is no prior knowledge on f , there is
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(a) Non-Separability (b) Multi-modality

(c) Ill-Conditioning (d) Ruggedness

Figure 2.1: 3-dimensional maps for 2-dimensional functions exhibiting typical chal-
lenges in numerical black-box optimization. Figures (b), (c), and (d) are adapted
from Chen et al. [1].

no guarantee that x(v) of either Ap nor As is the solution to the Problem (2.1).

While passive algorithms are simple and easy, sequential algorithms can achieve

solutions of better quality given the same computational budget. It was shown

independently by Ivanov [73] and Sukharev [74] that the evaluation budget needed

to find a solution with a desired degree of quality is the same for the best passive

and sequential algorithms in the worst case for some functions, whereas for most

other functions, the required evaluation budget for a passive algorithm is much

greater than that of a sequential algorithm.

One can look at sequential algorithms as v-round sequential decision-making

processes under uncertainty where a future action (selecting a candidate solution)

depends on past actions (previously selected points) and their rewards (observed

function values). A principal question is: how can As identify, as quickly as pos-

sible, the most rewarding action to select next? Intuitively, As would explore the

set of possible actions it can take to know more about f and as its knowledge

improves, As should increasingly exploit its current knowledge by selecting what
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it believes to be the best action. Clearly, the trade-off between exploration and

exploitation affects As’s returned solution x(v). The quality of the returned so-

lution, as a function of the number of function evaluations v, is evaluated by the

following regret (or loss) measure:

r(v) = f(x(v))− f ∗ (2.2)

Such measure also serves as an indicator of As’s convergence rate with respect to

v, as it measures how efficient As is, in capturing enough information about f to

produce a solution with a desired degree of accuracy.

The literature on sequential decision-making problems under uncertainty is rich

and large with applicability in various scientific fields (e.g., machine learning, plan-

ning, and control). Initial investigations on such problems date back to Thompson

[45] in 1933 and Robbins et al. [46] in 1952, where they were known as multi-

armed bandit problems. Since then, much progress has been made to address the

exploration vs. exploitation dilemma. Many strategies were proposed, studied,

and analyzed, such as ǫ-greedy [75], softmax [76], Bayesian [77], upper-confidence-

bound [75], and optimistic [78] strategies. With respect to numerical black-box

optimization, (sequential) techniques can be grouped into one of two groups:

• Heuristic algorithms that provide only probabilistic guarantees on their con-

vergence.

• Algorithms, with roots in the field of Mathematical Programming (MP),

that often guarantee asymptotic convergence to an optimal solution (or a

good approximation with a specified accuracy).

Heuristic Algorithms. Stochastic algorithms (particularly, evolutionary algo-

rithms) are one established class of the former group. These evaluate the objective

function at a suitably chosen random collection of points and subsequently at-

tempt to approach a local (or hopefully global) optimal solution. They try to

mimic the nature, viz. concepts from physics and biology, in solving optimization

challenges. Examples include genetic algorithms [79], Ant Colony Optimization

(ACO) [80], Bacterial Forging Optimization (BFO) [81], Particle Swarm Optimiza-

tion (PSO) [82], Artificial Fish School Algorithm (AFSA) [83], and a lot more. In
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essence, these algorithms keep a population of entities (ants in ACO, bacteria in

BFO, birds in PSO, etc.), each of which represents a possible solution for the prob-

lem at hand, and iteratively construct a new population of solutions based on the

previously constructed population. Although there are several reasons that make

the search for x∗ difficult as discussed in Table 2.1, the majority of these algorithms

have been designed with a strong emphasis on multi-modality problems [35] and

they require some time (more function evaluations) to move towards encouraging

regions of the search space [44]. Furthermore, the algorithmic development and

validation of such methods have been mainly empirical; there has been a growing

gap between their theory and practice [43], where convergence to the global opti-

mum is only guaranteed with a positive probability. Nevertheless, they have been

applied with success to several real-world problems [84, 85, 86] and several recent

studies have been addressing their convergence speed [35].

MP Algorithms. On the other hand and with origins in the MP community,

the latter group is generally tailored to show a systematic convergence towards the

optimum from the initial phase of the search. MP methods make use of all the

points sampled in an iterative manner to direct the search and/or construct models

of the objective function. Moreover, the asymptotic convergence is often provable

due to their structured sampling of the search space. Dating back to the fifties

of the twentieth century, the field of black-box MP optimization—or Derivative-

Free Optimization (DFO)1—has a long history and a huge body of literature,

which is motivated by the growing number of black-box applications (e.g., [88])

and advances in computational paradigms. Initial investigations and empirical

algorithmic developments in this field were pioneered by Piyavskii [54], Shubert

[55], Box and Wilson [89], Fermi and Metropolis [90], Box [91], Hooke and Jeeves

[92], Spendley et al. [93], Nelder and Mead [94], and Strongin [95, 96], as described

next.

In 1951, Box and Wilson [89] built on the work of Fisher [97] in the field of De-

sign of Experiments (DOE) to identify optimal conditions in chemical investigations

1The use of this term in the literature has been often confusing and inconsistent. While there
exist some works that reserve the term derivative-free algorithms for a special class of black-box
MP algorithms, others generalize it to include both heuristic and MP methods [87]. In this
thesis, this term is used to refer to black-box algorithms from the MP community in line with
the classical mathematical optimization algorithms with derivatives.
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and after 6 years, Box [91] proposed a method to increase industrial productivity

and assess the effects of changes in variables controlling manufacturing processes.

The method, referred to as Evolutionary Operation, resembles coordinate search

where a small hyperrectangle is constructed around the current solution, with its

corners representing slightly-perturbed solutions of the manufacturing process com-

pared to the current solution. The quality of these solutions (their corresponding

objective function values) is then estimated and the best-quality solution is cho-

sen to be next center/mean of the hyperrectangle. On the other hand, Fermi and

Metropolis [90] used one of the first digital computers to vary one variable at a

time via steps of the same size that get halved if no improvement is observed. The

procedure is repeated iteratively until a stopping criterion with regard to the step

size is met.

Direct-Search Methods. Likewise, Hooke and Jeeves [92] adopted the iterative

framework of function evaluations at a sample of points/solutions. It is generally

agreed that they have been the first to use the term direct search in the DFO

community to “describe sequential examination of trial solutions involving com-

parison of each trial solution with the ”best” obtained up to that time together

with a strategy for determining (as a function of earlier results) what the next trial

solution will be” [92]. Their work recognized the notion of pattern search as a

specific kind of strategy, where exploratory moves to identify the behavior of the

objective function f are employed, in addition to so-called pattern moves along

probable directions in the search space X towards a better solution. Audet and

Dennis Jr [98] extended Hooke and Jeeves’ method and introduced Generalized

Pattern Search (GPS) methods for unconstrained optimization unifying similar al-

gorithmic variants using the notion of translated, scaled integer lattices within the

search space X .

Simplex-based Methods. Spendley et al. [93] put the foundations to simplex-

based algorithms in 1962. In search for the optimal solution, they suggested using

the vertices of an n+1-simplex within X . Based on the vertices’ objective function

values, the method attempts to improve the worst vertex of the simplex by isomet-

rically reflecting it with respect to the mean of the other n vertices. Otherwise, the

same process is repeated to the second worst vertex. Benefited by the notion of
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simplex designs, Nelder and Mead [94] extended Spendley et al. [93]’s proposition

to non-isometric reflections, viz. contractions and expansions, thereby allowing

arbitrary simplex shapes. The Nelder-Mead algorithm has ever since become a

Science Citation Classic.

Trust-Region Methods. The aforementioned approaches compute the objec-

tive function f values directly to identify promising search directions. In 1969, Win-

field [99] suggested the use of a surrogate model of f , namely a quadratic interpola-

tion model, to direct the search process within a region of validity. Along the same

line, multiple approaches were proposed, to be later known as trust-region meth-

ods, denoting the region of validity: the neighborhood about the current solution,

where the surrogate model is assumed to be valid (see, e.g., [100, 101, 102]).

Line-Search Methods. Furthermore, similar techniques were suggested to ac-

celerate the search by constructing surrogate models to approximate the gradient.

For instance, the implicit-filtering algorithm of Kelley et al. [26, 103] approximated

the gradient at the current solution based on forward (or centered) differences. It

has been shown that the approximated gradient is nothing but the simplex gradi-

ent : the gradient of the linear model fitting n + 1 sample points [104]. Some of

these methods were also viewed as line-search algorithms, since they seek a better

solution along a specific direction in the search space [105, 106, 107].

Partitioning Methods. In some optimization problems, decision variables take

values constrained in a given range. Such problems, often referred to as bound-

constrained optimization problems, play a key role in the design of general opti-

mization algorithms, because many of which reduce their solutions to the solution

of a sequence of bound-constrained problems. Moreover, bound-constrained opti-

mization problems are present in several practical applications as the decision vari-

ables of many real-world systems are often bounded by physical limits [108, 109].

In the seventies of the twentieth century, a growing interest towards these problems

was taking place. Piyavskii [54], Shubert [55], and Strongin [95, 96] were the pio-

neers in applying sequential partitioning for derivative-free optimization problems

over a closed (compact) decision space.
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Piyavskii [54] and Shubert [55] proposed, in 1972, to solve the problem of

finding the global minimum of a function f defined on a closed interval ⊂ R. In-

dependently, they devised a sequential method—to be known later as Lipschitzian

Optimization (LO)—of partitioning the space by iteratively refining a piecewise

linear lower bound (of a sawtooth shape) on f based on the assumption that f ’s

rate of change is upper-bounded by the Lipschitz constant L > 0. The next split

(sample) takes place at the minimum of f ’s lower bound.

While Piyavskii and Shubert used a priori given constant L, Strongin [95, 96]

proposed to adaptively estimate the Lipschitz constant during the search based on

a statistical model, which also computes the likelihood of optimal solutions within

each of the subintervals. It should be noted that pattern search methods have as

well been extended to bound-constrained problems by Lewis and Torczon [110],

where they proposed to include axis-wise directions in the set of poll directions.

From all of these early contributions, various algorithmic frameworks have

emerged (see, e.g., [30, 37, 111, 112, 113, 114]) and there have been several classifi-

cations of these algorithms in the literature (see, e.g., [31, 87, 107]). Though with

regard to the discussion herein, one can classify them into five groups: i). direct-

search; ii). simplex-based; iii). trust-region; iv). line-search / implicit filtering;

and v). partitioning methods.

Theoretical Analysis. With regard to convergence analysis, initial direct search

methods lacked coherent mathematical analysis. Although key ingredients to prove

convergence had already been established [115, 116], they fell out of favor with the

mathematical community in the beginning of 1970s. According to Swann [117],

“... [direct search] methods have been developed heuristically, ... no proofs of

convergence have been derived for them,... [and] sometimes the rate of convergence

can be very slow.”

However, as gradient calculation had been the biggest cause of error in optimiza-

tion software, engineering and scientific communities remained using direct search

methods as a way of avoiding gradient calculation [37]. It was only in the 1990s that

concrete mathematical analysis started to appear. The first convergence theory for

a class of direct methods was provided by the PhD work of Torczon [118] and later

works [119, 120] under the assumption of continuous derivatives. In 2003, Audet
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and Dennis Jr [98] relaxed this assumption by only requiring the objective func-

tion to be Lipschitz continuous and proved the optimality of a limit point for GPS

methods using Clarke’s calculus [121]. On the other hand, Tseng [122] proved

that a modified Nelder-Mead algorithm converges to a stationary point provided

that—among other conditions—the function is continuously differentiable. Con-

vergence properties for several forms of convex objective functions were proved for

simplex-search variants in [123]. Bortz and Kelley [124] built on ideas presented

by Kelley [125] to analyze the global convergence of the implicit-filtering algorithm

to a critical point.

The bulk of the convergence studies has sought to prove optimality of the limit

(asymptotic) behavior of black-box MP methods. Few papers addressed the con-

vergence rate (speed) of the same, which is more relevant in practical scenarios.

Based on a theoretical study by Danilin [126] in 1971 on the number of iterations

of Piyavskii [54]’s algorithm for univariate optimization problems, Hansen et al.

[33] compared the number of iterations needed to have the minimum of the re-

fined piecewise linear bound not more than ε > 0 lower than the minimum of

the function f with the smallest possible number of iterations required by an ar-

tificial sequential algorithm whose bound achieves the same. Elster and Neumaier

[127] proposed a low-dimensional trust-region algorithm that employs a quadratic

regression model built by sampling successively refined grids and provided a hypo-

thetical finite-time upper bound on the gradient as the algorithm refines its search.

Theoretical analysis for trust-regions methods based on polynomial interpolation

or regression have been presented in [31, 101]. Furthermore, the rate of local con-

vergence for the implicit-filtering algorithm has been studied by Choi and Kelley

[128]. In the recent years, the finite-time convergence has increasingly become the

focus for several theoretical analyses [5, 34, 35].

The established convergence properties of black-box MP algorithms made them

an attractive and popular choice for practitioners in scientific as well as engineering

fields. Up to 2016 and according to Audet and Kokkolaras [129],

the design engineering community is increasingly becoming aware that

rigorous black-box and derivative-free algorithms have made significant

advances in the past 20 years and can be much better than heuristics.
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The latter are popular because they are easy to understand and imple-

ment, but their solutions can rarely be characterized in terms of op-

timality or quality. With only a modest investment in understanding

the theoretical background and appropriate use, design engineers may

reap large benefits by using black-box and derivative-free algorithms with

convergence properties.

Multi-Objective Optimization. With regard to black-box multi-objective op-

timization,2 very little/limited, yet slowly growing research has been reported on

derivative-free approaches. Such algorithmic instances are mainly based on di-

rect search methods, with two established extensions, viz. Multi-objective Mesh

Adaptive Direct Search (MULTIMADS) [130] and Direct MultiSearch (DMS) [65]. In

MULTIMADS, the problem is formulated as a series of single-objective problems that

are solved using the Mesh Adaptive Direct Search (MADS) algorithm [30]. On the

other hand, DMS carries out the search in the original problem formulation based

on the partial order relationship among feasible solutions. In the limit, both of the

algorithms converge to Pareto-Clarke critical points [65]. Recently, some papers

started addressing the multi-objective problem from a partitioning, yet stochas-

tic, scheme [131, 132, 133]. However, these algorithmic developments have been

dominantly empirical.

As the focus of this thesis is on space-partitioning black-box MP (derivative-

free) algorithms, in the next section, a detailed literature review is presented:

categorizing key methods and briefly describing their variants.

2.3 Partitioning Algorithms for Continuous Black-

Box Optimization

Partitioning algorithms, as discussed briefly in the past section, is one of the most

important classes of black-box MP methods. The basic concept is that the decision

(search) space X is broken recursively by splitting it into smaller and smaller

parts. In essence, such algorithms implicitly build a tree over the decision space

(as illustrated in Fig. 1.1) where each node corresponds to a subspace that can be

further partitioned into smaller subspaces by expanding the corresponding node

2Multi-objective optimization will be discussed in detail in Section 2.4.2.
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to two or more child nodes. The space-partitioning tree is used to look for the (or

one) optimal solution over multiple scales (partitions) of the decision space.

As mentioned in Section 2.2, Piyavskii [54], Shubert [55], and Strongin [95, 96]

are considered to be the pioneers in applying the framework of sequential partition-

ing to mathematical black-box optimization. Their work has become the basis, on

which a large existing body of research relies (see, e.g., [32, 52, 134, 135, 136]). In

general, partition algorithms make certain assumptions about the objective func-

tion smoothness (e.g., continuity, differentiability). In this thesis, these methods

are grouped into two categories: one category requires the knowledge about the ob-

jective function smoothness, while the other category makes an assumption about

the smoothness whose knowledge may not be available. In line with this clas-

sification, the next section presents and discusses several established algorithms

from the two categories, namely Lipschitzian Optimization (LO) [54, 55] and De-

terministic Optimistic Optimization (DOO) [34] from the first category; DIviding

RECTangles (DIRECT) [56], Multilevel Coordinate Search (MCS) [27], and Simulta-

neous Optimistic Optimization (SOO) [34] from the second category. It should be

noted that partitioning methods have been typically designed for single-objective

problems. Towards the end of this section, a discussion on aspects of partition

algorithms in terms of partitioning schemes is presented. This is followed by a

formal background on multi-objective optimization and recent attempts to extend

the space-partitioning algorithmic framework towards these problems.

2.3.1 Lipschitzian Optimization (LO)

As discussed earlier, Piyavskii [54] and Shubert [55] independently proposed what

was known later as Lipschitzian optimization (LO) for univariate problems. It has

been extended to multi-dimensional problems in [137]. LO assumes that f satisfies

the Lipschitz condition:

|f(x)− f(y)| ≤ L||x− y|| , ∀x,y ∈ X , (2.3)

where L, a positive real number, is the Lipschitz constant.3 For a minimization

problem, LO begins by evaluating the extreme points of the search space (e.g.,

3In this paper, we refer to the work of Piyavskii [54] and Shubert [55] by LO. One should note
that Strongin [96] independently employed the Lipschitz condition for optimization problems.
While Piyavskii and Shubert used a priori given constant L, Strongin proposed to adaptively
estimate the Lipschitz constant during the search.
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vertices of X = [l,u] ⊂ Rn for (2.1)) and constructs a piecewise linear estimator f̂

lower bounding f , by employing the Lipschitz condition (2.3). The minimum point

of f̂ represents the current estimator’s best guess on where x∗ lies. LO then uses this

point as a partitioning point of the search space into multiple subspaces, on which

the process of constructing a lower bound is applied iteratively (demonstrated in

Fig. 2.2). In essence, LO gradually refines a piecewise linear estimator f̂ to guide its

hierarchical partitioning of the search space towards x∗, where the next partitioning

(sample) point is the optimum according to f̂ .

d) f̂ after two samples

f

f̂

c) f̂ after one sample

f

f̂

b) Constructing a lower bound f̂

f

f̂

a) A Lipschitzian function f

f

Figure 2.2: Working principle of Lipschitzian Optimization in one-dimensional
search space.

Limitations of LO. LO techniques come with several desired features such as the

fact that L places a bound on how far the search is from the optimum and hence a

more useful termination criterion can be employed rather than iteration/evaluation

count. Second, a few parameters are required to be tuned when compared with

other optimization algorithms. However, this approach has some drawbacks. First,
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the knowledge of L: although an estimate for the Lipschitz constant can be found

(e.g. L may be set to ||f́ ||∞ if f is differentiable [138, 139]), this is often infeasible

for many applications as the objective function can have no closed-form expres-

sion [37, 140]. Since then, several methods have been proposed within the LO frame-

work to approximate the Lipschitz constant [52]. The computational complexity

of the method in higher dimensions is another drawback: with an n-dimensional

search space, LO partitions the space into a set of hyperrectangles whose vertices

are the sampled points. As a result, the number of function evaluations grows

exponentially with n. Apart from the computational complexity of 2n function

evaluations, finding the next point to sample can be hard and involves solving

several systems of linear equations [136, 141].

Variants of LO. Techniques from combinatorial optimization [142] can be em-

ployed in LO constructing lower and upper bounds for f . Such bounds are used

to eliminate a portion of the search space X . In other words, some leaf nodes of

the space-partitioning tree are never considered for expansion and only a small

part of the tree has to be generated and processed. This results in branch-and-

bound search algorithms [52, 136, 143, 144]. LO techniques are only reliable if

analytical knowledge about the function f is available, or an approximation of L

is used (e.g., see [145]). For performance gains, LO can be parallelized as demon-

strated in [146, 147, 148]. A general discussion on parallel algorithms for global

optimization has been presented in [147].

2.3.2 DIviding RECTangles (DIRECT)

In 1993, Jones et al. [56], motivated by LO’s limitations, proposed a search tech-

nique, DIRECT (stands for DIviding RECTangles), which does not need the knowl-

edge of L. Instead, it carries out the search by using all possible values of L from

0 to ∞ in a simultaneous framework. Furthermore, rather than splitting one sub-

space (or so-called hyperrectangle as the search space is normalized to be the unit

box) at a time, DIRECT selects a set of subspaces/hyperrectangles—described as

potentially-optimal—that are convex-Pareto-optimal in the 2-dimensional space of

objective function values and hyperrectangle sizes, as illustrated in Fig. 2.3. The

next definition puts formally the condition for hyperrectangles to be potentially-

optimal.
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fmin − ǫ

fmin

Hyperrectangle size

f
(c
)

Non-optimal
Potentially Optimal

Figure 2.3: Identification of potentially-optimal hyperrectangles by DIRECT.

Definition 1. (Potentially-optimal hyperrectangles) Denote the set of hyperrectan-

gles created by DIRECT after k iterations by H. Let ǫ > 0 be a positive number, and

let fmin be the best value of the objective function found so far. A hyperrectangle

i ∈ H, with center (base point) ci and size σi, is said to be potentially optimal if

there exists L̂ such that,

f(ci)− L̂σi ≤ f(cj)− L̂σj , ∀j ∈ H (2.4)

f(ci)− L̂σi ≤ fmin − ǫ|fmin| . (2.5)

The procedure of DIRECT is outlined in Algorithm 1. It iteratively identifies

and splits potentially-optimal hyperrectangles until the evaluation budget is ex-

hausted. Initially, H1—the set of hyperrectangles at step 1—is initialized with a

single subspace/ hyperrectangle that is the entire search space X . At step t, the

algorithm evaluates all the new hyperrectangles i ∈ Ht at their base points—i.e.,

centers ci ∈ i. It then identifies the set of potentially-optimal hyperrectangles It
(Definition 1). Prior to step t+1, DIRECT partitions all the hyperrectangles in It ac-
cording to a heuristic procedure (listed in Algorithm 2), which ensures well-shaped
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hyperrectangles and retains better solutions with bigger hyperrectangles to speed

up local convergence, whilst maintaining an exploration-vs.-exploitation trade-off.

After exhausting the evaluation budget v, DIRECT returns c(v), the hyperrectangle

center with the best function value f(c(v)) obtained.

DIRECT is far more efficient than LO as it performs sampling at the hyperrect-

angles’ centers rather than their vertices. Moreover, DIRECT is consistent, i.e., it

asymptotically converges to the global optimum (limv→∞ r(v) = 0) [56]. Orig-

inally, the algorithm was designed for decision spaces of simple bounds, i.e., X
of Problem (2.1) is a hyperrectangle. Nevertheless, it can be easily extended to

general-constraint settings (e.g., using artificial assignment heuristics) as shown in

[139].

Algorithm 1 The DIviding RECTangles (DIRECT) algorithm by Jones et al. [56]

Input: function to be minimized as a black-box f , search space X , evaluation
budget v
Initialization: H1 = {X}
Output: Approximation of f ’s minimizer x(v)

1: while evaluation budget v is not exhausted do
2: Evaluate all the new hyperrectangles ∈ Ht.
3: It ← the set of hyperrectangles ∈ Ht that are potentially optimal (Defini-

tion 1).
4: Partition the hyperrectangles in It according to the procedure outlined in

Algorithm 2.
5: Ht+1 ← Ht \ It ∪ {It’s newly generated hyperrectangles}.
6: t← t+ 1.
7: end while
8: return argminci:i∈Ht f(ci)

Algorithm 2 Partitioning Procedure of DIRECT [56]

Input: function f , potentially-optimal hyperrectangle i ∈ It,
1: Identify the set J of the n dimensions with the maximum side length of hyper-

rectangle i. Let δ equal one-third of i’s maximum side length.
2: Sample the function at the points ci± δ ·ej for all j ∈ J , where ci is the center

of i and ej is the jth unit vector.
3: Divide the hyperrectangle i containing c into thirds along the dimensions in J ,

starting with the dimension with the lowest value of

wj = min(f(ci + δ · ej), f(ci − δ · ej)) , (2.6)

and continuing to the dimension with the highest wj.
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Variants of DIRECT. Over the past years, several studies and modifications have

been conducted on DIRECT (see, e.g., [36, 139, 149, 150, 151, 152, 153, 154, 155,

156]). While DIRECT represented the size of a hyperrectangle i ∈ H (denoted

by σi) by the l2-norm of the distance from the center to the vertices (diagonal),

Gablonsky and Kelley [150] used l∞-norm, thereby reducing the variations in the

hyperrectangle sizes; and making the algorithm locally biased. Numerical experi-

ments showed that it is good for problems with a few global minima as compared

to the original DIRECT algorithm. On the other hand, it has been shown in [36] that

the ǫ-constraint (2.5) is sensitive to additive scaling and leads to a slow asymptotic

convergence. Hence, in [36], a modification has been proposed by using the thresh-

old ǫ|fmedian − fmin| instead of ǫ|fmin| in Eq. (2.5), where fmedian is the median of

the observed function values. Sergeyev and Kvasov [151] coupled DIRECT’s idea

of using several values of the Lipschitz constant L instead of a unique value with

estimating a bound on f and proposed a two-phased algorithm that is suitable for

multi-modal functions. The first phase focuses on moving closer towards discovered

local optima by splitting hyperrectangles close to the current best solution. On the

other hand, the second phase is oriented towards discovering new local optima by

expanding hyperrectangles with high global scores and far from the current best

solution.

2.3.3 Multilevel Coordinate Search (MCS)

Inspired by DIRECT, Huyer and Neumaier [27] proposed what can be regarded

as a branch without bound algorithm to look for the optimal solution over a box

X = [l,u] with infinite or finite bounds. Similar to DIRECT, the so-called Mul-

tilevel Coordinate Search (MCS) algorithm partitions X in hyperrectangles/boxes.

However, MCS allows these boxes to be of uneven sizes. The base points can be

anywhere in the corresponding boxes, which rectifies the slow-convergence short-

coming of DIRECT in optimizing functions whose optimizers lie at the boundary of

the decision space. Furthermore, the boxes are split one coordinate at a time, in

contrast to DIRECT, which splits a box along several coordinates. In addition to its

branching framework, MCS contains a local search enhancement using a quadratic

interpolation model.
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Algorithm 3 The Multilevel Coordinate Search (MCS) algorithm by Huyer and
Neumaier [27]. Adapted from [157]

Input: search space X = [l,u], function to be minimized as a black-box f ,
x0 ∈ [l,u], initialization list xj

i (j = 1, . . . , Li, i = 1, . . . , n), smax, evaluation
budget v

1: x←x0; b ← [l,u]; level(b)← 1
2: for i← 1 to n do ⊲ initialization
3: x← the best of {xj}Li

j=1, where xj is x with xi changed to xj
i .

4: Split b along the ith coordinate at xj
i (j = 1, . . . , Li) and between.

5: b← the largest box containing x.
6: end for
7: while there are no boxes of level s < smax and
8: evaluation budget v is not exhausted do
9: for all non-empty levels s← 2 to smax − 1 do ⊲ branching
10: Choose the box b at the level s with the lowest function value.
11: i← the coordinate used least often when producing b.
12: if s > 2n(ni + 1) then ⊲ split by rank
13: Split the box b along the ith coordinate.
14: else if box not tagged as not promising then ⊲ split by exp. gain
15: Determine the most promising splitting coordinate i.
16: Compute the minimal expected function value fexp at new point(s).
17: if fexp < fbest then
18: Split b along the ith coordinate.
19: else
20: Tag b as not promising, increase its level by 1.
21: end if
22: end if
23: end for
24: for base points x of all the new boxes at level smax do ⊲ local search
25: Start a local search from x if improvement is expected.
26: end for
27: end while
28: return the(or one) best of all the v sampled points x(v), i.e., fbest = f(x(v)).

From Algorithm 3, one can observe that the procedure of MCS has three main

phases: initialization, branching, and local search phase. First, along each dimen-

sion (coordinate) i = 1, . . . , n, three or more user-defined values x1
i < x2

i < · · · <
xLi
i in [li, ui] are specified, where Li ≥ 3. Based on these values and an initial point

x0, the algorithm then performs n splits, where a new best point x is computed

and the partitioned box at step i is the box that contains x. The number of boxes

formed at each step is at least 2(Li − 1) ≥ 4 boxes since the splits take place at

and between the user-defined values.
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After initialization is complete, MCS starts the core of its search: branching

through partitions (boxes) over the decision space. Each box is assigned a level s,

which indicates the number of times the corresponding box has been processed. As

outlined in Algorithm 3 (lines 9–23), MCS sweeps through the assigned levels and

nominates the box with the least objective value at each level value for splitting.

Let ni be the number of splits along the least often used coordinate i in the history

of the candidate box. The algorithm employs two heuristic rules to decide if a

nominated box is to be partitioned, namely i). split by rank: split the box if

s > 2n(ni + 1); else ii). split by expected gain: split the box along a direction

that minimizes a local separable quadratic model if the expected best function

value improves by some additive factor (min1≤i≤n êi, where êi is the computed

expected gain along coordinate i) over the best achieved function value; otherwise,

the box’s level s is increased by one and the procedure continues. Base points at

level smax are put into a shopping basket, assuming them to be useful points. One

can accelerate the convergence by starting local searches from these points and

checking that they do not converge to points already in the shopping basket before

putting them there.

With local search, MCS seeks to accelerate the convergence to optimal points

from the base points of boxes of level smax. This is achieved by constructing a local

quadratic interpolation surrogate model by triple searches, followed by a line search

along the direction that minimizes the surrogate model until a stopping criterion is

met, i.e., no progress is observed or the approximated gradient is arbitrarily small.

With regard to its theoretical properties, MCS is consistent, that is asymptoti-

cally converges if and only if smax goes to infinity [27].

2.3.4 Optimistic Optimization

Although the class of Lipschitz functions is very general [52], it is still a strong

restrictive assumption on a wide class of functions. In an attempt to handle more

general assumptions, Munos [34] designed two algorithms, viz. DOO (stands for De-

terministic Optimistic Optimization) and SOO (stands for Simultaneous Optimistic

Optimization) that follow the optimism in the face of uncertainty principle, whose

foundation is in the field of machine learning (e.g., [46]). Munos proposed DOO by
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assuming f to be locally smooth (around one of its global optima x∗) with respect

to a semi-metric ℓ. That is to say,

f(x)− f(x∗) ≤ ℓ(x,x∗) , ∀x ∈ X . (2.7)

This relaxes the restrictive assumption of LO. Based on (2.7), DOO estimates the

minimum lower bound of f within a subspace/hyperrectangle, which is referred to

as the hyperrectangle’s b-value. Similar to LO, this lower bound is used to guide

the hierarchical partitioning of the decision space.

As outlined in Algorithm 4, DOO can be regarded as a divide-and-conquer search

algorithm that iteratively constructs finer and finer partitions of the search space

X at multiple scales h ≥ 0 in looking for the optimum solution. Given a scale

h ≥ 0 and a partition factor K ≥ 2, X can be partitioned into a set of Kh

cells/hyperrectangle Xh,i such that ∪i∈{0,...,kh−1}Xh,i = X . These cells can be rep-

resented by nodes of a K-ary tree T . A node (h, i) represents the cell Xh,i. The

set of leaves in T is denoted as L ⊆ T . Similar to DIRECT and MCS, each node is

associated with a base point xh,i ∈ Xh,i at which f is evaluated. In each iteration,

one leaf node (h, i) is expanded if its b-value is the (or one of the) smallest value(s)

among L. The b-value for (h, i) is computed as f(xh,i)−minx∈Xh,i
ℓ(x,xh,i) based

on (2.7).

Algorithm 4 The Deterministic Optimistic Optimization (DOO) by Munos [34]

Input: function to be minimized as a black-box f , search space X , budget
evaluation v, partition factor K
Initialization: t← 1, T1 = {(0, 0)}
Output: approximation of f ’s minimizer

1: while the evaluation budget is not exhausted do
2: Evaluate all the nodes (h, i) ∈ Lt.
3: Expand the node (h∗, i∗) = argminh,i:(h,i)∈Lt f(xh,i)−minx∈Xh,i

ℓ(x,xh,i).
4: Tt+1 ← Tt ∪ {(h∗, i∗)’s K children}.
5: t← t+ 1.
6: end while
7: return x(v) = argminxh,i:(h,i)∈Tt f(xh,i)

Similar to LO, DOO requires the knowledge of the function smoothness. This

makes DOO practically inapplicable, which motivated the design of the Simultaneous

Optimistic Optimization (SOO) algorithm. Munos [34] sought to approximate DOO’s

behavior when ℓ is unknown. It expands simultaneously all the nodes (h, i) of its
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Algorithm 5 The Simultaneous Optimistic Optimization (SOO) by Munos [34]

Input: function to be minimized as a black-box f , search space X , budget
evaluation v, partition factor K
Initialization: t← 1, T1 = {(0, 0)} , Evaluate f(x0,0)
Output: approximation of f ’s minimizer

1: while evaluation budget is not exhausted do
2: νmin ←∞
3: for h = 0 : min{depth(Tt), hmax(t)} do
4: Select (h, j) = argminj∈{j|(h,j)∈Lt} f(xh,j)
5: if f(xh,j) < νmin then
6: Evaluate the children of (h, j)
7: Add the children of (h, j) to Tt
8: νmin ← f(xh,j)
9: t← t+ 1
10: end if
11: end for
12: end while
13: return x(v) = argminxh,i:(h,i)∈Tt f(xh,i)

tree T for which there exists a semi-metric ℓ such that the corresponding lower

bound would be the minimum. This is simulated by expanding at most a leaf node

per depth if such node has the least f(xh,i) with respect to leaf nodes of the same

or lower depths as illustrated in Algorithm 5. In addition to that, the algorithm

takes a function hmax(t), as a parameter, such that after t node expansions only

nodes at depth h ≤ hmax(t) can be expanded.

Both the algorithms enjoy sound finite-time properties as the regret (2.2) de-

creases as a function of the number of function evaluations v in O(v−1/d), where

d is the near-optimality dimension of f defined similar to optimality measures

in [158, 159]. An exponential decreasing loss can as well be achieved when d = 0—

i.e., r(v) = O(e−cv), where c > 0.

Variants of SOO. Two main variants of SOO have been proposed in the literature,

namely, the Stochastic Simultaneous Optimistic Optimization (StoSOO) [160] and

Bayesian Multi-Scale Optimization (BaMSOO) [5] algorithms. StoSOO addresses the

situation where function evaluations are perturbed independently by noise. The

b-values of StoSOO’s nodes are lower confidence bounds of f at their representa-

tive/base points. As a stochastic extension of SOO, it expands at most one node per

depth after having it evaluated at its base point several times. Multiple evaluations
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per node are to ensure that the expanded nodes are with high probability close

to optimal. Similar to StoSOO’s stochastic settings is the Hierarchical Optimistic

Optimization (HOO) by Bubeck et al. [161], which builds a binary tree to estimate

the mean of the stochastic f over X . On the other hand, BaMSOO was designed

with the goal of cutting down the number of function evaluations incurred by SOO.

BaMSOO eliminates the need for evaluating representative states xh,i deemed unfit

by Gaussian Process (GP) posterior bounds. Prior to evaluating a node (h, i),

upper and lower confidence bounds on f(xh,i) are computed using a GP posterior

fitted on the previous evaluations. These bounds are employed to guide the search

efficiently and possibly serve as the b-value of the corresponding node instead of

f(xh,i).

For more details on black-box MP algorithms, one can refer to some survey

papers on the topic, viz. the ones by Kolda et al. [37], and Lewis et al. [162]. The

first textbooks dedicated to this topic were written by Conn et al. [104], and Kelley

[163].

2.4 Discussion

In this section, different aspects of partition methods for black-box optimization

are discussed, followed by a formal background on multi-objective optimization

problems and methods tailored for such problems.

2.4.1 Rules of Partitioning

Partition algorithms use different procedures for splitting a region of the decision

space. On one end, DOO and SOO partition a cell/hyperrectangle by a single coordi-

nate creating K cells of equal length along that coordinate. On the other end, LO

partitions with respect to all the n coordinates, which results in 2n (not necessarily

equal in size) cells. For MCS, knowledge built from sampled points is used to deter-

mine the partitioning coordinate as well as the position of the partitioning through

the rules of golden section ratio and expected gain [27]. DIRECT stands out in two

aspects: i). its partitioning may go by a single coordinate up to n coordinates in

a way that retains better solutions with bigger regions; ii). these partitions are

applied recursively to the hyperrectangle itself and some of its descendants. In

other words, if DIRECT is expanding a region (h, i) by n coordinates, the first split
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takes place at that region, and the kth split (k ≤ n) is applied on a subregion

created from the past m− 1 splits as described in Algorithm 2.

A number of rules for splitting the search space has been investigated and

numerically validated [164, 165, 166]. For instance, numerical experiments in [166]

showed that bisecting a subspace into two subcells works better than partitioning

it into 2n subcells using n intersecting hyperplanes.

2.4.2 Multi-Objective Optimization

Many real-world application and decision problems involve optimizing two or more

objectives at the same time [see, for instance, 10, 42]. In the general case, Multi-

objective Optimization Problems (MOPs) are hard because the objective functions

are often conflictual, and it is difficult to design strategies that are optimal for all

objectives simultaneously. Furthermore, with conflicting objectives, there does

not exist a single optimal solution but a set of incomparable optimal solutions:

each is inferior to the other in some objectives and superior in other objectives.

This induces a partial order on the set of feasible solutions to an MOP. The set

of optimal feasible solutions according to this partial order is referred to as the

Pareto optimal set and its corresponding image in the objective space is commonly

named as the Pareto front of the problem. The task of multi-objective algorithms

therefore becomes finding the Pareto front or producing a good approximation of

it (referred to as an approximation set of the problem).

Formal Background. Without loss of generality, the multi-objective minimiza-

tion problem with n decision variables and m objectives, has the form:

minimize y = f(x) = (f1(x), . . . , fm(x))

where x = (x1, . . . , xn) ∈ X ,

y = (y1, . . . , ym) ∈ Y ,

(2.8)

given v function evaluations. The vector x is called the decision vector (solution), y

is called the objective vector,4 X is the feasible decision space, and Y =
∏

1≤j≤m Yj

is the corresponding objective space, where Yj is the jth-objective space and we

write the corresponding image in the objective space for any region X̂ ⊆ X as

f(X̂ ) ⊆ Y . It is assumed that the derivatives of the functions involved are neither

4For brevity, we sometimes omit the word objective when referring to an objective vector.
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symbolically nor numerically available. Nevertheless, f can be evaluated point-wise,

which is typically an expensive operation, requiring some computational resources

(e.g., time, power, money). More specifically, the task is to best approximately

solve Problem (2.8) using a computational budget of v function evaluations.

A vector y1 is more preferable than another vector y2, if y1 is at least as good

as y2 in all objectives and better with respect to at least one objective. y1 is then

said to be dominating y2. This notion of dominance is commonly known as Pareto

dominance, which leads to a partial order on the objective space, where we can

define a Pareto optimal vector to be one that is non-dominated by any other vector

in Y . Nevertheless, y1 and y2 may be incomparable to each other, because each

is inferior to the other in some objectives and superior in other objectives. Hence,

there can be several Pareto optimal vectors. The following definitions put these

concepts formally (see, for more details, [44, 167]).

Definition 2 (Pareto dominance). The vector y1 dominates the vector y2, that is

to say, y1 ≺ y2 ⇐⇒ y1j ≤ y2j for all j ∈ {1, . . . ,m} and y1k < y2k for at least one

k ∈ {1, . . . ,m}.

Definition 3 (Strict Pareto dominance). The vector y1 strictly dominates the

vector y2 if y1 is better than y2 in all the objectives, that is to say, y1 ≺≺ y2 ⇐⇒
y1j < y2j for all j ∈ {1, . . . ,m}.

Definition 4 (Weak Pareto dominance). The vector y1 weakly dominates the vec-

tor y2 if y1 is not worse than y2 in all the objectives, that is to say, y1 � y2 ⇐⇒
y1j ≤ y2j for all j ∈ {1, . . . ,m}.

Definition 5 (Pareto optimality of vectors). Let ŷ ∈ Y be a vector. ŷ is Pareto

optimal ⇐⇒ ∄y ∈ Y such that y ≺ ŷ. The set of all Pareto optimal vectors

is referred to as the Pareto front and denoted as Y∗. The corresponding decision

vectors (solutions) are referred to as the Pareto optimal solutions or the Pareto set

and denoted by X ∗.

In other words, the solution to the MOP (2.8) is its Pareto optimal solutions

(Pareto front in the objective space). Practically, multi-objective solvers aim to

identify a set of objective vectors that represent the Pareto front (or a good ap-

proximation of it). We refer to this set as the approximation set.
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Definition 6 (Approximation set). Let A ⊆ Y be a set of objective vectors. A is

called an approximation set if any element of A does not dominate or is not equal

to any other objective vector in A. The set of all approximation sets is denoted as

Ω. Note that Y∗ ∈ Ω.

Furthermore, denote the ideal point (vector)—not necessarily reachable—by

y∗ def
= (min

y∈Y∗
y1, . . . , min

y∈Y∗
ym) . (2.9)

Likewise, let us denote the (or one of the) global optimizer(s) of the jth objective

function by x∗
j , i.e., y

∗
j = fj(x

∗
j). Note that x

∗
j ∈ X ∗. On the other hand, we define

the nadir point of a region in the objective space Ŷ ⊆ Y as

ynadir(Ŷ) def
= (max

y∈Ŷ
y1, . . . ,max

y∈Ŷ
ym) . (2.10)

Performance Assessment for Multi-Objective Optimization. Given two

approximation sets A,B ∈ Ω, it is not that easy to tell which set is better, par-

ticularly if their elements are incomparable [168]. In general, two aspects are

considered in an approximation set: i). its distance (the closer the better) to the

optimal Pareto front and ii). its diversity (the higher the better) within the optimal

Pareto front. To this end, several quality indicators have been proposed [169]. The

quality of an approximation set is measured by a so-called (unary) quality indica-

tor I : Ω→ R, assessing a specific property of the approximation set. Likewise, an

l-ary quality indicator I : Ωl → R quantifies quality differences between l approxi-

mation sets [65, 168]. A quality indicator is not Pareto-compliant if it contradicts

the order induced by the Pareto-dominance relations. Four commonly-used quality

indicators, whose properties are listed in Table 2.2, are formally defined next.

Definition 7. (Additive ǫ-indicator [168]) For any two approximation sets A,B ∈
Ω, the additive ǫ-indicator Iǫ+ is defined as:

Iǫ+(A,B) = inf
ǫ∈R
{∀y2 ∈ B, ∃y1 ∈ A : y1 �ǫ+ y2} (2.11)

where y1 �ǫ+ y2 ⇐⇒ y1j ≤ ǫ+ y2j for all j ∈ {1, . . . ,m}. If B is the Pareto front

Y∗ (or a good approximation reference set R ∈ Ω if Y∗ is unknown) then Iǫ+(A,B)

is referred to as the unary additive epsilon indicator and is denoted by I1ǫ+(A), i.e.,

I1ǫ+(A)
def
= Iǫ+(A,Y∗).
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Quality Indicator (I) Pareto-Compliant Reference Set Required Target

Additive ǫ-Indicator (I1ǫ+) Yes Yes Minimize

Hypervolume Indicator (I−H) Yes Yes Minimize

Generational Distance (IGD) No Yes Minimize

Inverted Generational Distance (IIGD) No Yes Minimize

Table 2.2: Commonly-used quality indicators [for more details, see 2, 3, 4].

Definition 8. (Hypervolume Difference [169]) For any two approximation sets

A,B ∈ Ω, the hypervolume difference IH is defined as:

IH(A,B) = IH(A)− IH(B) (2.12)

where IH(A) measures the hypervolume of the objective space portion that is weakly

dominated by A [170] with respect to a reference point. If A is the Pareto front Y∗

(or a good approximation reference set R ∈ Ω if Y∗ is unknown) then IH(A,B) is

referred to as the hypervolume indicator and is denoted by I−H(B), i.e., I−H(B)
def
=

IH(Y∗, B).

Definition 9. (Generational Distance [171]) For any approximation sets A ∈ Ω,

the generational distance metric IGD is defined as:

IGD(A) =
1

|A|
∑

a∈A

min
b∈Y∗
||a− b|| . (2.13)

If the Pareto front Y∗ is unknown, a good approximation reference set R ∈ Ω can

be used.

Definition 10. (Inverted Generational Distance [172]) For any approximation sets

A ∈ Ω, the inverted generational distance metric IIGD is defined as:

IIGD(A) =
1

|Y∗|
∑

b∈Y∗

min
a∈A
||a− b|| . (2.14)

If the Pareto front Y∗ is unknown, a good approximation reference set R ∈ Ω can

be used.

In accordance with the single-objective loss (2.2) measure for optimization

methods, we introduce a vectorial loss measure for MOPs. Let Yv
∗ ∈ Ω be the

approximation set returned by an algorithm after v function evaluations, we have:

r(v) = yv
∗ − y∗ (2.15)

where yv
∗ is the empirical ideal point found so far, defined as (miny∈Yv

∗
y1, . . . ,miny∈Yv

∗
ym).
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Methods for Multi-Objective Optimization. Conventionally, solving an MOP

follows one of two principles, namely preference-based and ideal principles [173].

Following the preference-based principle, the MOP is transformed into a single-

objective optimization problem (through an aggregation/scalarization function that

exploits a priori information), which then can be solved using one of many available

single-objective optimizers [see, for instance, 174, 175, 176]. While preference-based

algorithms converge to a single solution in each run, ideal-based algorithms search

for a set of solutions at once. One example in this approach is evolutionary multi-

objective algorithms [177, 178] in which a population of solutions evolves, follow-

ing a crude analogy with Darwinian evolution, towards better solutions. Recently,

there has been a growing interest in formulating multi-objective problems within

the framework of reinforcement learning [see, for instance, 179, 180, 181, 182, 183].

Partitioning Algorithms for Multi-Objective Optimization. As discussed

earlier, two main algorithmic approaches have been designed by the Mathematical

Programming (MP) community to deal with multi-objective optimization repre-

sented by MULTIMADS [130] and DMS [65], respectively. These approaches belong

to the class of direct-search methods. With regard to decision space partitioning

methods, little work has been done on multiple objectives. In 2008, Wang et al.

[131] adapted the DIRECT [56] algorithm to identify potentially optimal solutions

based on their ranks and crowding distance. The identified solutions are then

used as candidates for a multi-objective genetic algorithm. On the other hand,

Van Moffaert et al. [133] empirically validated an extension of the stochastic Hi-

erarchical Optimistic Optimization (HOO) [161] on the problem of filling phase for

wet clutches.

2.5 Summary

In this section, a summary of the research challenges/issues with regard to par-

titioning algorithms is discussed based on the literature review presented in this

chapter.

Finite-Time Analysis. On the one hand, the work of Torczon [118, 120] and

Audet and Dennis Jr [98] has consolidated a theoretical framework to analyze the
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asymptotic convergence of a class of black-box MP methods, i.e., direct-search

algorithms (particularly, GPS methods). On the other hand, the theoretical anal-

ysis of space-partitioning MP algorithms such as LO and DIRECT has been sparse

and independent (see, e.g., [29, 33]). One is therefore motivated to address this

theoretical gap, by providing a generic theoretical framework. Furthermore, as

optimization algorithms are employed as anytime solvers in practice, finite-time

analysis should be the focus of such a generic framework rather than asymptotic

analysis, as will be seen in Chapter 3.

Expensive Optimization. Although black-box MP algorithms are designed

such that a systematic and consistent behavior is achieved from the beginning of

the search, one can observe from the literature that plenty of these algorithms ex-

hibit slow convergence [37]. Among the contributing factors is that global search

(exploration) is prioritized over local search (exploitation). For instance, Finkel

and Kelley [36] had showed that DIRECT may act as an exhaustive grid search. On

the other hand, Huyer and Neumaier [27] complemented MCS’s branching proce-

dure with an independent local search. In other words, global search is performed

before local search. With the widespread emergence of expensive black-box op-

timization, one is motivated to integrate the local (exploitative) search into the

partitioning/branching procedure itself rather than having it as a separate compo-

nent. This issue is addressed in Chapter 4.

Multi-Objective Optimization. While the divide-and-conquer paradigm has

inspired several successful evolutionary multi-objective techniques, such as the

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) frame-

work [184] that decomposes an MOP into a number of different single objective

optimization subproblems (or simple multi-objective optimization subproblems).

It would be interesting to take the same inspiration from a different angle, viz.

mathematical programming whose theoretical foundations and structured sampling

may help towards a better understanding of MOPs. Chapter 5 examines this topic

theoretically, followed by an empirical validation in Chapter 6.
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Single-Objective Multi-Scale
Search

“If you find that you’re spending almost all your time on theory,

start turning some attention to practical things; it will improve your

theories. If you find that you’re spending almost all your time on prac-

tice, start turning some attention to theoretical things; it will improve

your practice“

- Donald Knuth

In this chapter, a family of Mathematical Programming (MP) algorithms for

continuous black-box optimization is addressed. These algorithms employ a tree

search, which partitions the objective function domain over multiple scales in search

for the (or one) global optimum. For such algorithms, we provide a generic frame-

work and refer to it as the Multi-scale Search Optimization (MSO) framework.

Furthermore, a theoretical methodology is presented to analyze the finite-time per-

formance of MSO algorithms based on three basic assumptions: i). local Hölder

continuity of the objective function f ; ii). partitions boundedness; and iii). parti-

tions sphericity. Such methodology quantifies the amount of exploration carried by

an MSO algorithm over a partition of a specific scale. As a result, a bound on the

regret (2.2) can be established reflecting the finite-time behavior of the algorithm.

Using these theoretical findings, a finite-time analysis is established for Lipschitzian

optimization methods [55], DIviding RECTangles (DIRECT) [56], and Multilevel Co-

ordinate Search (MCS) [27]. Moreover, we build on and integrate the analysis of

Deterministic Optimistic Optimization (DOO) and Simultaneous Optimistic Opti-

mization (SOO) in [34] under the MSO framework. Without loss of generality, the
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work presented in this chapter is formulated with respect to a maximization

version of Problem (2.1).

This chapter is organized as follows. Basic notations and terminology are in-

troduced in Section 3.1. In Section 3.2, a formal introduction of the MSO frame-

work to solve continuous black-box optimization problems is provided. Towards

the end of the section, some well-known black-box MP algorithms are discussed

from the presented framework’s viewpoint. In Section 3.3, a principled approach

for analyzing MSO algorithms theoretically is presented and demonstrated on the

algorithms discussed in Section 3.2.2. Section 3.4 outlines the theoretical contribu-

tion and complements it with empirical validation. Towards the end, Section 3.5

summarizes this chapter.

3.1 Some Preliminaries

In this section, using some of the concepts from [185], we formally define the hier-

archy of partitions and the data structure (tree), on the search space X employed

by an MSO algorithm.

We denote by 2X the set of all subsets (subspaces, or cells) of X . The size/volume

of a subset in 2X is approximated by the function σ : 2X → R+. Two elements Xi,

Xj of 2
X are said to be disjoint if and only if

Xi ∩ Xj = β(Xi) ∩ β(Xj) (3.1)

Here, β(Xi) denotes the boundary of Xi. A subset of 2X is called a partial partition

of X if its elements are disjoint and nonempty. A union of a partial partition is

called its support. A partition of X is a partial partition whose support is X . A set

G ⊆ 2X is a hierarchy on X if any two elements of G are either disjoint or nested,

i.e.:

Xi ∩ Xj ∈ {β(Xi) ∩ β(Xj),Xi,Xj} for any Xi,Xj ∈ G (3.2)

Let X and Y be two distinctive elements of a hierarchy G. We say that Y is a child

of X and X is the parent of Y if Y ⊆ X and for any Z ∈ G, such that Y ⊆ Z ⊆ X,

we have Z = X or Z = Y . In other words, X is the smallest superset of Y among

G elements. A partition factor K ∈ Z+ of a hierarchy G is the maximum number

of children of a parent in G. An element L ∈ G is called a leaf of G if it has no

child. A hierarchy of partitions on X is formally defined as:
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Definition 11. A hierarchy G on X is a hierarchy of partitions on X if the

union of its leaves is a partition of X and X ∈ G.

The term multi-scale in MSO is derived from the fact that a hierarchy of par-

titions has a set of partitions at multiple scales h ∈ Z+
0 . Let G be a hierarchy of

partitions on X created by an MSO algorithm. A hierarchy of partitions G may

be represented by a tree structure T (G) whose nodes correspond to the elements

of G with the root representing the whole space X , while its edges link every node

corresponding to a child in G to its corresponding parent’s node. T is referred to

as a tree on X if it represents a hierarchy of partitions on X . It is possible to index

a node in T (and subsequently a cell of X ) by one or more integer attribute(s). For

example, with a partition factor of K, a node can be indexed by its depth/scale h

and an index i where 0 ≤ i ≤ Kh as (h, i) which corresponds to a cell/subspace

Xh,i ⊂ X and possesses up to K children nodes {(h+ 1, ik)}1≤k≤K such that:

X = ∪i∈{0,...,Kh−1}Xh,i (3.3)

Xh,i ∩ Xh,j = β(Xh,i) ∩ β(Xh,j) , i 6= j (3.4)

Xh,i = ∪1≤k≤KXh+1,ik , ∀h ∈ Z+
0 (3.5)

Nodes can be indexed and grouped by any of their attributes such as depth, and

size. For example, S = {i ∈ T : σ(i) = s} is the set of all nodes in the tree T of

size s. Note that for any two elements i, j ∈ S, i ∩ j = β(i) ∩ β(j). The set of

leaves in T is denoted as LT ⊆ T and its depth is denoted by depth(T ).

3.2 Multi-scale Search Optimization (MSO)

In this section, a general framework for sequential decision-making algorithms that

dynamically expand a tree on the search space to find the optimal solution, is

introduced. We refer to this framework as the Multi-Scale Optimization MSO,

as these algorithms partition the search space over multiple scales. We formally

define MSO algorithm as follows.

Definition 12. An algorithm that constructs a hierarchy of partitions on the search

space X whilst looking for f ’s global optimizer, is an MSO algorithm.

MSO algorithms differ only in their strategies of growing and using the tree

further to provide a good approximation of f ’s global optimizer point. Hence, we

introduce a generic procedure of MSO algorithms.
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3.2.1 A Generic Procedure of MSO Algorithms

An MSO algorithm can be regarded as a divide-and-conquer tree search algorithm.

In an iterative manner: it evaluates and assesses a set of leaf nodes of its tree on

X ; and selectively expands a subset of them.

Each node provides its approximate solution xh,i ∈ Xh,i which is referred to as

(h, i)’s representative state (or sometimes base point). Let A be an MSO algorithm

with up to J function evaluations per node, P evaluated nodes per iteration, Q

subdivided/expanded nodes per iteration, and a partition factor K. Furthermore,

let us denote A’s tree T after iteration t ≥ 1 by Tt.

Remark 1. Node expansions make the tree T grow with time. We may therefore

index different forms of T by an index t to denote T ’s form Tt+1 after a specific

event with respect to its previous form Tt. An event could be a single/several node(s)

expansion, or a function evaluation (for which Tt+1 = Tt). Expanding Q nodes

{(hq, iq)}1≤q≤Q ∈ Lt at time t, where (hq, iq) is the qth expanded node, results in:

1. Tt+1 = Tt ∪ {(hq + 1, iqk)}1≤q≤Q,1≤k≤K

2. Lt+1 = Lt \ {(hq, iq)}1≤q≤Q ∪ {(hq + 1, iqk)}1≤q≤Q,1≤k≤K

3. |Tt+1| = |Tt|+QK

4. |Lt+1| = |Lt|+Q(K − 1)

5. H(Tt+1) = max(depth(Tt),max1≤q≤Q hq + 1)

At iteration t+1, two steps take place, namely evaluation and expansion illus-

trated as follows.1

1. Leaf Node(s) Evaluation: In order to find xh,i, J ≥ 1 function evaluations

are performed within Xh,i as a part of the sequential decision making process

and out of the v-evaluation budget. These J function evaluations of a leaf

node may be independent of its ancestors’ and may not happen at the same

iteration. We refer to the process of evaluating f within Xh,i J times as

evaluating the node (h, i). Leaf nodes with function evaluations less than J

1At t = 1, the root node gets evaluated J times and partitioned into K nodes; P = Q = 1 for
all MSO algorithms, irrespective of their values at t > 1.
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are referred to as under-evaluated nodes. Otherwise, they are called evaluated

nodes. The set of evaluated nodes up to iteration t (inclusive) are denoted

as Et ⊆ LTt−1 . At each iteration, A selects P ≥ 1 under-evaluated nodes

(if any) to be evaluated. Denote the set of selected-to-be-evaluated nodes as

Pt+1
def
= ∪h∈{0,...,depth(Tt)}Pt+1,h ⊆ LTt \ Et where:

Pt+1,h
def
= {(h, i) : 0 ≤ i ≤ Kh − 1, (3.6)

(h, i) is evaluable at t+ 1 according to A}

and |Pt+1| ≤ P .

2. Leaf Node(s) Expansion: A inspects the evaluated leaf nodes (if any), and

selects Q ≥ 1 among them to be split/partitioned. These selected nodes

represent the sub-domain in which A thinks x∗ potentially lies and hence a

finer search is favored. We refer to the process of splitting/ partitioning a leaf

node (h, i) into its K children as expanding the node (h, i). Denote the set

of selected-to-be-expanded nodes as Qt+1
def
= ∪h∈{0,...,depth(Tt)}Qt+1,h ⊆ Et+1 ⊆

LTt where:

Qt+1,h
def
= {(h, i) : 0 ≤ i ≤ Kh − 1, (3.7)

(h, i) is expandable at t+ 1 according to A}

and |Qt+1| ≤ Q.

Algorithm 6 Pseudo-code for Multi-scale Search Optimization (MSO)

Input: function to be optimized as a black-box f , search space X , budget
evaluation v
Initialization: T ← initial tree with one node (0, 0) with X0,0 = X
Output: approximation of f ’s minimizer

1: while the evaluation budget is not exhausted do
2: Evaluate the nodes ∈ P .
3: Expand the nodes ∈ Q and add their child nodes in T .
4: end while
5: return x(v) ∈ argmaxxh,i:(h,i)∈T f(xh,i)

After v function evaluations, A returns x(v):

x(v) ∈ arg max
xh,i:(h,i)∈T

f(xh,i) (3.8)
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as an approximate of f ’s global maximizer point.2 This procedure is summarized

in Algorithm 6.

One can have different MSO algorithms based on the defining policies of the

evaluable set P and the expandable set Q. In fact, an MSO algorithm A seeks

a balance between two components of search [186]: exploration, and exploitation.

Exploration (or global search) refers to the process of learning more about the

search space. On the other hand, exploitation (or local search) is the process of

acting optimally according to current knowledge. Given a finite computational

budget, excessive exploration (e.g., an algorithm with a broad-search tree) leads to

slow convergence, whereas excessive exploitation (e.g., an algorithm with a deep-

search tree) leads to premature convergence to a local maximum and hence a

trade-off must be made. Accordingly, A chooses P and Q to be of leaf nodes of its

tree T that preferably possess jointly good exploration and exploitation A-defined
scores.

Let l : L → R be the exploitation score function and g : L → R be the

exploration score function. The projection of a node (h, i) onto the exploitation

axis is then denoted as lh,i = l((h, i)) whereas its projection onto the exploration

axis is denoted as gh,i = g((h, i)).

Exploitation (Local) Score As the function value at (h, i)’s base point, f(xh,i)

is the best value of f within Xh,i according to A’s current belief. It is a direct

indicator of (h, i)’s exploitation (local) score. Therefore, lh,i is taken as f(xh,i) or

its approximate (if it is unavailable) with an absolute error less than or equal to

η ≥ 0 :3

|lh,i − f(xh,i)| ≤ η (3.9)

Exploration (Global) Score While lh,i reflects A’s guess on the best value of

f within Xh,i, (h, i)’s exploration (global) score gh,i is regarded as the likelihood of

finding a better value than f(xh,i) within Xh,i. This is correlated with the bulk of

unexplored space in Xh,i and often quantified by a rough measure of its size. For

example, gh,i = depth(T ) − h or gh,i = σ(Xh,i). Hence, one can argue that nodes

2This is the same x(v) of the maximization version of Problem (2.2).
3Bounding the approximation error could be valid with a probability of γ ≥ 0. In such case,

any related analysis holds with a probability of γ.
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Figure 3.1: The process of computing exploration and exploitation scores for the
set of leaf nodes L ⊆ T (a) of an MSO algorithm A can be regarded as projecting
them onto a 2-D Euclidean space (b) R2 via the mapping function s : L → R2. Y
represents L’s image under s and P (Y ) ⊆ Y is the potentially optimal set. Here
P (Y ) lies on the level set of b(x) = lx + λ · gx that corresponds to the value 4 (the
greatest among Y ’s). P and Q are chosen from the set of leaf nodes whose image
under s is P (Y ).

of the same depth have the same exploration score or may differ up to a certain

limit ζ ≥ 0:
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|gh,i − gh,j| ≤ ζ ∀h ∈ Z+
0 , i, j ∈ {0, . . . , Kh − 1}, i 6= j (3.10)

In the exploration-exploitation plane, each node (h, i) of L is represented by the

point (gh,i, lh,i). Let Y be the set of these points. In other words, Y
def
= {(g(x), l(x)) :

x ∈ L}. A defines a measure-of-optimality function b : R2 → R such that P and

Q are chosen from the set of leaf nodes whose exploration-exploitation points are

the potentially optimal set P (Y )
def
= {y ∈ Y : {x ∈ Y : b(x) > b(y), x 6= y} = ∅}. In

other words, P (Y ) is the set of points ⊆ Y whose level set of b (b-value) corresponds

to the highest value among all points of Y . Generally, b is a weighted sum of l and

g of the form:

bx = b((g(x), l(x))) = l(x) + λ · g(x), x ∈ L, λ ≥ 0 (3.11)

trading off between local and global searches. It is important to note that g, l, b

used for P may not be the same as for Q.
We can visualize the process of computing these scores as projecting the leaf

nodes of T (depicted in Figure 3.1(a)) onto a 2-D Euclidean space R2, as illustrated

in Figure 3.1(b), whose vertical and horizontal coordinate axes represent the do-

main of values for exploitation score and exploration score, respectively. From

Figure 3.1(b), lh,i (3.9) for the node (4, 6), gh,i (3.10) for nodes at depth 4, and

P (Y ) for λ = 1 are shown.

Remark 2. One can introduce heuristics to consider, compute, and compare the

b-values only for a subset of L at a given iteration from which P and Q are chosen

rather than the whole set L.

3.2.2 MSO Algorithms in the Literature

In the literature, several established algorithms satisfy the definition of MSO algo-

rithms. Examples include Lipschitzian Optimization (LO) [54, 55], Dividing Rect-

angles (DIRECT) [56], Multilevel Coordinate Search (MCS) [27], Deterministic Opti-

mistic Optimization (DOO) [34], Simultaneous Optimistic Optimization (SOO) [34],

and their variants.

As described in Chapter 2, these algorithms can be grouped into two categories:

one category requires the knowledge about f ’s smoothness, with the b-values being
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a weighted sum of the local and global scores, LO and DOO are examples of such

a category. On the other hand, DIRECT, MCS, and SOO still make an assumption

about f ’s smoothness, but knowledge about it may not be available. Nevertheless,

these algorithms account for more than one possible setting of f ’s smoothness by

grouping nodes based on their global scores for which local scores play a role in

analyzing each group separately. We describe algorithms in these two categories

in accordance with the generic procedure discussed in Section 3.2.1.

3.2.2.1 Lipschitzian Optimization (LO)

As discussed in Chapter 2, LO looks for the optimal solution by approximating f

with a piece-wise linear bound f̂ over partitions of the decision space X .
With respect to the generic procedure outlined in Section 3.2.1, LO has the

following settings: J is of O(2n); K = P = 2n, that is leaf nodes created in an

iteration get evaluated in the next iteration; and Q = 1. The two steps of LO at

iteration t+ 1 are summarized as follows.

1. Leaf Node(s) Evaluation: Pt+1 is LTt \ Et, i.e., the set of leaf nodes that are

not evaluated. For a node (h, i) ∈ Pt+1, 2
n function evaluations—at (h, i)’s

vertices—are performed (hence (h, i) is ∈ Et+1), and the b-value (f̂(xh,i)) is

computed as shown in Section 3.3.2.1.

2. Leaf Node(s) Expansion: Qt+1 is simply one node among those ∈ Et+1 whose

b-value is the maximum, where ties are broken arbitrarily—that is, if there

are more than one node whose b-value is the maximum, then any node of

these is selected arbitrarily to be in Qt+1.

3.2.2.2 Deterministic Optimistic Optimization (DOO)

Munos [34] proposed DOO by assuming f to be locally smooth (around one of its

global optima) with respect to a semi-metric ℓ. This assumption in DOO offers

a relaxation over the restrictive assumption of LO. DOO estimates, based on local

smoothness, the maximum upper bound of f within a partition. Similar to LO, this

upper bound is used to guide the hierarchical partitioning of the space.

DOO constructs a tree on X whose settings with respect to the generic procedure

outlined in Section 3.2.1, are the following: J = 1; K and P are equal (as with LO)

and treated as a parameter by DOO with a default value of 3. The two steps of DOO

at iteration t+ 1 are summarized as follows.
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1. Leaf Node(s) Evaluation: Pt+1 is LTt \ Et, i.e., the set of leaf nodes that

are not evaluated. For a node (h, i) ∈ Pt, one function evaluations at (h, i)’s

center is performed (hence (h, i) becomes an evaluated node), and the b-value

is computed as shown in Section 3.3.2.2.

2. Leaf Node(s) Expansion: Qt+1 is simply one node among those ∈ Et+1 whose

b-value is the maximum, where ties are broken arbitrarily.

3.2.2.3 DIviding RECTangles (DIRECT)

First of all, DIRECT does not need the knowledge of the Lipschitz constant L.

Instead, it carries out the search by using all possible values of L from zero to

infinity in a simultaneous framework, thereby balancing global and local search and

improving the convergence speed significantly. This is captured by the heuristic

rule (3.14). In addition to that, it introduces an additional constraint—on Q—
whose tightness depends on a parameter ǫ ≥ 0 of a nontrivial amount. If fmax is

the best current function value, then ǫ|fmax| is the minimum amount by which the

b-values of Q must exceed fmax as will be illustrated later. This ǫ-constraint (3.13)

helps in protecting the algorithm from excessive local search. Furthermore, DIRECT

cuts down the computational complexity from O(2n) to O(1) by evaluating the

cells’ center points (which are their base points as well) instead of their vertices.

With respect to the generic procedure outlined in Section 3.2.1, J ≤ 1,4 K ≤ 3n,

P ≤ 3n, and Q = O(Kdepth(T )). Furthermore, let σ be a measure of a node’s size

such that a node (h, i) has a size of σh,i = σ(Xh,i) = ||dh,i||2 where dh,i is Xh,i’s

diameter. Denote the set of evaluated-node sizes by St
def
= {σh,i : (h, i) ∈ Et}; and

denote the set of iteration indices {t, . . . , t + |St| − 1} by It, where I1 is the first

iteration batch, I|St|+1 is the second iteration batch, and so on. With t́ ∈ It, σ
t́
St

is the (t́− t + 1)th element of St in a descending order. Moreover, let f t
max be the

best function value achieved before t. The two steps of DIRECT at iteration t́ ∈ It

are then summarized as follows.

1. Leaf Node(s) Evaluation: Pt́ is LTt́−1
\ Et́−1, i.e., the set of leaf nodes that

are not evaluated. For a node (h, i) ∈ Pt́, one function evaluation at (h, i)’s

center is performed (hence (h, i) is ∈ Et́), and the b-value is computed as

shown in Section 3.3.2.3.

4One function evaluation may belong to one or more nodes.
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2. Leaf Node(s) Expansion: Let QIt
t́

be the set of evaluated nodes whose size

is σt́
St
; mathematically: QIt

t́

def
= {(h, i) : (h, i) ∈ Et, σh,i = σt́

St
}, and bt́ is

max
(h,i)∈Q

It
t́

b(h,i), then Qt́ are set of nodes where each node (h, i) ∈ QIt
t́
such

that:

b(h,i) = bt́ (3.12)

and there exists L̂ ≥ 0 such that:

b(h,i) + L̂σt́
St
≥ (1 + ǫ)f t

max (3.13)

b(h,i) + L̂σt́
St
≥ bt̂ + L̂σt̂

St
, ∀t̂ ∈ It \ t́ (3.14)

If such node does not exist, the algorithm proceeds to the next iteration

without expanding any node at t́ (see [139] for more details on how (3.13)

and (3.14) are tested).

One can notice that within a batch of iterations, nodes are first contested among

others of the same size, then among others of different size.

3.2.2.4 Multilevel Coordinate Search (MCS)

Huyer and Neumaier [27] addressed the slow-convergence shortcoming of DIRECT

in optimizing functions whose optimizers lie at the boundary of X ; and devised

a global optimization algorithm (called Multilevel Coordinate Search (MCS)). MCS

partitions X into hyperrectangles of uneven sizes whose base points are not neces-

sarily the center points.

For a node (h, i) ∈ its tree T , MCS assigns a rank measure sh,i ≥ h, which is

used in selecting the expandable set Q. The measure sh,i captures how many times

a node (h, i) has been part of/candidate for an expansion process. We refer to

this measure as pseudo-depth because it does not reflect the actual depth of the

node. The children of node (h, i) with pseudo-depth sh,i, can have upon creation

a pseudo-depth of sh,i + 1 or min(sh,i + 2, smax) based on its size with respect to

its siblings. The expandable set Q is selected based on pseudo-depth.

A node (h, i) has a set of numbers {n(h,i)
j }1≤j≤n where nj denotes the number of

times Xh,i has been part of an expansion along coordinate j. T ’s depth is controlled

through a single parameter smax which forces the tree to a maximal depth of smax.

Given a fixed budget of node expansions, greater smax reduces the probability of

expanding an optimal node in T , and hence a greater regret bound.
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There are two heuristic rules employed to post-process Q. The first rule (3.16)
is based on {n(h,i)

j }1≤j≤n to expand nodes which have high pseudo-depths, yet there

is at least one coordinate along which their corresponding hyperrectangles have not

been part of an expansion very often. The second rule (3.17) is to expand a node

along a coordinate where the maximal expected gain in function value is large

enough; the gain ê
(h,i)
j for a node (h, i) along coordinate j is computed using a

local quadratic model [27]. Accordingly, if max1≤j≤n ê
(h,i)
j is large enough, (h, i) is

then eligible for expansion along the coordinate argmax1≤j≤n ê
(h,i)
j . If any of these

rules does not hold for a node ∈ Q, it is removed from Q and its pseudo-depth

is increased by one. Base points at depth smax are put into a shopping basket,

assuming them to be useful points. One can accelerate convergence by starting

local searches from these points before putting them into the shopping basket.

With respect to the generic procedure outlined in Section 3.2.1, the settings of

MCS are the following: J = 1; Based on the partitioning coordinate, P is Li ≥ 3

where Li is the number of sampled points along coordinate i. Consequently, K

could be 2Li, 2Li − 1, or 2Li − 2; and Q = 1. Furthermore, let It be the set of

iteration indices {t, . . . , t + smax − 1}; I1 is the first iteration batch, Ismax is the

second iteration batch, and so on. The two steps of MCS at iteration t́ ∈ It are

summarized as follows.

1. Leaf Node(s) Evaluation: Pt́ is LTt́−1
\Et́−1, i.e., the set of leaf nodes that are

not evaluated. For a node (h, i) ∈ Pt́, one function evaluation is performed

(hence (h, i) ∈ Et́), and the b-value is computed as shown in Section 3.3.2.4.

2. Leaf Node(s) Expansion: Let QIt
t́
be {(h, i) : (h, i) ∈ Et́, sh,i = t́− t} (if QIt

t́
=

∅, the current iteration is simply skipped to t́+1), and bt́ is max
(h,i)∈Q

It
t́

b(h,i)

then, Qt́ is simply the node (h, i) ∈ QIt
t́
such that:

b(h,i) = bt́ (3.15)

and fulfills the one of the two heuristics:

t́− t > 2n

(

min
1≤j≤n

n
(h,i)
j + 1

)

(3.16)

or:

b(h,i) ≥ fmax − max
1≤j≤n

ê
(h,i)
j (3.17)

where ties are broken arbitrarily. If none of the heuristic rules holds, the

node’s pseudo-depth is set to sh,i + 1 and proceeds to the next iteration

where it may be considered again.

50



Chapter 3. Multi-Scale Search Optimization

3.2.2.5 Simultaneous Optimistic Optimization (SOO)

SOO [34] tries to approximate DOO’s behavior when ℓ is unknown. It expands si-

multaneously all the nodes (h, i) of its tree T for which there exists a semi-metric

ℓ such that the corresponding upper bound would be the greatest. This is simu-

lated by expanding at most a leaf node per depth if such node has the greatest

f(xh,i) with respect to leaf nodes of the same or lower depths. In addition to that,

the algorithm takes a function p → hmax(p), as a parameter, which forces T to a

maximal depth of hmax(p) + 1 after p node expansions (e.g., hmax(p) = pǫ where

ǫ > 0).

With respect to the generic procedure outlined in Section 3.2.1, the settings

of SOO are the following: J = 1; K and P are equal and treated as a parameter

by SOO with a default value of 3; and Q = 1. Furthermore, let It be the set of

iteration indices {t, . . . , t + hmax(p)}; I1 is the first iteration batch, Ihmax(p) is the

second iteration batch, and so on. The two steps, according to [186], of SOO at

iteration t́ ∈ It are summarized as follows.

1. Leaf Node(s) Evaluation: Pt́ is LTt́−1
\ Et́−1, i.e., the set of leaf nodes that

are not evaluated. For a node (h, i) ∈ Pt́, one function evaluation at (h, i)’s

center is performed (hence (h, i) is ∈ Et́), and the b-value is computed as

shown in Section 3.3.2.5.

2. Leaf Node(s) Expansion: Let QIt
t́
be {(h, i) : (h, i) ∈ Et−1, h = t́ − t}, and bt́

is max
(h,i)∈Q

It
t́

b(h,i) then Qt́ is simply the node (h, i) ∈ QIt
t́
such that:

b(h,i) = bt́ (3.18)

b(h,i) ≥ bt̂ ∀t̂ t ≤ t̂ < t́ (3.19)

where ties are broken arbitrarily. If no such node exists, the current iteration

is simply skipped to t́+ 1.

The Expandable Set Q While the selected-to-be-evaluated set P is almost the

same for all the algorithms (a node is evaluated upon its creation), the process

of selecting Q differs among them. Figure 3.2 shows a typical scenario of what

Q could be in one (a batch of) iteration(s). Similar to Figure 3.1(b), it shows

the evaluated leaves projected into the exploration-exploitation space. In LO, and
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DOO; each iteration is independent of each other; and a node is selected if it is

the first node to lie on the curve from above. In DIRECT, MCS, and SOO; the case

is different, iterations within a batch of iterations are co-dependent; a node is

selected if it is among the first nodes to lie on the corresponding curve from above.

However, from their visualizations, it can be argued that SOO and DIRECT have a

greedier behavior than MCS as they only expand a set of Pareto-optimal nodes in

the exploration-exploitation plane.

3.3 Convergence Analysis of MSO algorithms

In this section, we propose a theoretical methodology for finite-time analysis of

MSO algorithms. It is then applied to analyze different MSO algorithms in the

literature.

3.3.1 Theoretical Framework for Convergence

We derive a measure of convergence rate by analyzing the complexity of the regret

(2.2) as a function of the number of node expansions p. We upper-bound r(p) by

quantifying the amount of exploration required in each of the multi-scale partitions

to achieve a near-optimal solution. In line with [34], three basic assumptions are

made; the first two assumptions assist in establishing a bounded (finite) bound on

r(p), whereas the third assumption helps in computing it in finite time.

3.3.1.1 Bounding the regret r(p)

To bound r(p) (2.2), one needs to assume the characteristics of f . In LO, f is as-

sumed to be Lipschitz-continuous [54], whereas DOO and SOO assume local smooth-

ness on f [34]. Here, we impose the local smoothness assumption on f , defined

formally as local Hölder continuity. Let T be a tree on X created by an MSO

algorithm and ℓ : X × X → R+ be a semi-metric such that ℓ(x,y) = L||x − y||α

with L and α being positive real constants.

Assumption 1 (local Hölder continuity). f is Hölder-continuous with re-

spect to (at least) one of its global optimizer x∗, that is to say, for all

x ∈ X , it satisfies Hölder condition [187] around x∗:

|f ∗ − f(x)| ≤ L||x∗ − x||α = ℓ(x∗,x) (3.20)
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Figure 3.2: Selecting expandable leaf node(s) Q (represented by black dots) for an
iteration in LO (a), for a batch of iterations in DIRECT (b) , a batch of iterations
in MCS (c), an iteration in DOO (d), and a batch of iterations in SOO (e). The set
Y , whose elements are represented by black and gray dots, is the set of projected
evaluated leaves into the exploration-exploitation space.

Remark 3. The class of Hölder-continuous functions is very broad. In fact, it has

been shown in [52, 139] that among the Lipschitz-continuous functions (which are

Hölder-continuous with α = 1) are convex/concave functions over a closed domain

and continuously differentiable functions.

Before applying Assumption 1, we define the following.
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Definition 13. A node (h, i) ∈ T is optimal if x∗ ∈ Xh,i.

Definition 14. h∗
p ∈ Z+

0 is the depth of the deepest optimal node that has been

expanded up to p expansions 5 and (h∗
p, i

∗
p) ∈ T is the deepest expanded optimal

node.

Given that (h∗
p, i

∗
p) is known, we can bound the regret as follows.

r(p) = f ∗ − f(x(p)) (3.21)

≤ f ∗ − f(xh∗
p,i

∗
p
) (3.22)

≤ ℓ(x∗,xh∗
p,i

∗
p
) from (3.20) (3.23)

≤ sup
x∈Xh∗p,i

∗
p

ℓ(x,xh∗
p,i

∗
p
) (3.24)

Presume that the evaluation of a node’s children is always coupled with its expan-

sion.6 This means that f(xh∗
p+1,i∗nk

) for 1 ≤ k ≤ K are known. Consequently, there

exists a tighter bound on r(p) than (3.24) as x∗ is in one of (h∗
p, i

∗
p)’s children:

r(p) ≤ sup
1≤k≤K

sup
x∈Xh∗p+1,i∗

pk

ℓ(x,xh∗
p+1,i∗pk

) ≤ sup
x∈Xh∗p,i

∗
p

ℓ(x,xh∗
p,i

∗
p
) (3.25)

In order to have a bounded (finite) bound to on r(p), cells of T ’s nodes need to be

bounded. The next assumption implies that the bound on r(p) is bounded:

Assumption 2 (Bounded Cells). There exists a decreasing sequence δ(h) = cρh

in h such that

sup
x,y∈Xh,i

ℓ(x,y) ≤ δ(h) ∀(h, i) ∈ T (3.26)

where c is a positive real number and ρ ∈ (0, 1).

Consequently, from (3.25) the regret is bounded by:

r(p) ≤ δ(h∗
p + 1) (3.27)

Thus, finding h∗
p is the key to bound the regret. This is discussed in the next

section.

5 We are treating MSO as a v-round sequential decision making process. For MSO algorithms,
v may correspond to the number of iterations, evaluations, or expansions. All three quantities
are interrelated. Generally, we mean by v the number of evaluations if not stated otherwise.

6we shall consider this presumption throughout our analysis. In other words, for p node
expansions, there are v = Kp node evaluations.
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3.3.1.2 Finding the depth of the deepest expanded optimal node, h∗
p

MSO algorithms may inevitably expand non-optimal nodes as part of their explo-

ration -vs.-exploitation strategy. Hence, the relationship between the number of

expansions n and h∗
p therefore may not be straight forward. Let us take an MSO

algorithm A whose T ’s deepest expanded optimal node after p expansions is at

depth h́ < depth(T )- i.e., h∗
p = h́). For any node (h́+ 1, i) to be expanded before

(h́+ 1, i∗), the optimal node at depth h́+ 1; the following must hold for f(xh́+1,i):

b(h́+1,i) ≥ b(h́+1,i∗) (3.28)

lh́+1,i + λ · gh́+1,i ≥ lh́+1,i∗ + λ · gh́+1,i∗ (3.29)

from (3.9) and (3.10):

f(xh́+1,i) + 2 · η + λ · ζ ≥ f(xh́+1,i∗) (3.30)

from (3.24) and (3.26):

f(xh́+1,i) + 2 · η + λ · ζ + δ(h́+ 1) ≥ f ∗ (3.31)

Let us state three definitions to quantify and analyze nodes that satisfy (3.31).

Definition 15. The set Xǫ
def
= {x ∈ X , f(x) + ǫ ≥ f ∗} is the set of ǫ-optimal

states in X .

Definition 16. The set Iǫh
def
= {(h, i) ∈ T : f(xh,i) + ǫ ≥ f ∗} is the set of ǫ-

optimal nodes at depth h in T . For instance, I2·η+λ·ζ+δ(h́+1)

h́+1
is the set of nodes

that satisfy (3.31).

Definition 17. hǫ
p ∈ Z+

0 is the depth of the deepest ǫ-optimal node that has been

expanded up to p expansions.

Let ε(h) = 2 · η + λ · ζ + δ(h). If A allows expanding more than one node per

depth, then we are certain that the optimal node at depth h gets expanded if all

the nodes in Iε(h)h are expanded. Hence, h∗
p is guaranteed to be greater than or

equal to h. Mathematically,

h∗
p ≥ argmax {h : h ∈ {0, . . . , depth(T )− 1}, x is expanded ∀x ∈ Iε(h)h } (3.32)

Therefore, the relationship between n and h∗
p can be established by finding out

how many expansions n are required to expand, at a given depth h, all the nodes

in Iε(h)h . It depends on two factors:
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Xǫ

ǫ

x
∗

Figure 3.3: Xǫ in a 2-dimensional space is an ℓ́-circle (Here, ℓ́ and ℓ are the l2
norms, with α and β set to 1) centered at x∗ with a radius of ǫ.

1. The number of the ε(h)-optimal nodes at depth h, |Iε(h)h |.

2. A’s strategy in expanding Iε(h)h . If A has nodes at depth h, where h́ + 1 <

h < depth(T ), then such nodes are not necessarily ε(h)-optimal. In other

words, only a portion of the p expansions is dedicated ∪h<depth(T )Iε(h)h . This

depends on A’s expansion strategy.

While the second factor is A-dependent, the first depends on f , ℓ, and how the

nodes are shaped. The first factor is discussed in the next section. In Theorem

1 of section 3.3.1.4, we shall demonstrate how these two factors play a role in

identifying the regret bound for a class of MSO algorithm.

Remark 4 (Another bound for r(p)). The condition (3.31) gives us another bound

on the regret:

r(p) ≤ 2 · η + λ · ζ + δ(h) ∀h ∈ 0, . . . , hε(h)
p (3.33)

≤ 2 · η + λ · ζ + δ(hε(h)
p ) (3.34)

Note that h∗
p ≥ ĥ implies h

ε(h)
p ≥ ĥ.

3.3.1.3 Bounding |Iε(h)h |

Consider the ǫ-optimal states Xǫ in an n-dimensional space. Assume that ℓ́(x∗,x) ≤
f(x∗) − f(x) where ℓ́(x∗,x) = Ĺ||x∗ − x||β, Ĺ and β are positive real constants.7

7The purpose of presenting ℓ́ is to quantify how big Xǫ is, and consequently to introduce the
near-optimality dimension (presented shortly). It does not always hold. Consider a constant

function (e.g., f(x) = 5), for which ℓ́(x∗,x) should be 0. This violates the definition of ℓ́ with
Ĺ being a positive real constant. Nevertheless, it implies that ℓ(x∗,x) = 0 ≤ ǫ, for all x ∈ X
and hence Xǫ = X . In other words, all the nodes at all depths have to be expanded to find the
optimal node, yet each one of them is an optimal node. In summary, if ℓ́ does not exist, the
whole search space is considered as ǫ-optimal. Note that Assumption 1 implies β ≥ α.
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From Definition 15, ℓ́(x∗,x) ≤ ǫ, Xǫ is then an ℓ́-hypersphere of radius ǫ centered

at x∗. From Definition 16, Iǫh have their base points xh,i in Xǫ. Since xh,i can be

anywhere in Xh,i, covering Xǫ by Iǫh is regarded as a packing problem of Iǫh into Xǫ.

Note that, in general, cells of Iǫh will not be spheres. A bound on |Iǫh| is formulated

as the ratio of Xǫ’s volume to the smallest volume among the cells of Iǫh:

|Iǫh| ≤
σ(Xǫ)

min(h,i)∈Iǫ
h
σ(Xh,i)

(3.35)

= O
(

ǫ
n
β

min(h,i)∈Iǫ
h
σ(Xh,i)

)

. (3.36)

To simplify the bound further, we make an assumption about the cells shape in

line with Assumption 2.

Assumption 3 (Cells Sphericity). There exists 1 ≥ v > 0 such that for any

h ∈ Z+
0 , any cell Xh,i has an ℓ-hypersphere of radius vδ(h).

Remark 5. The purpose of Assumption 3 is to fit a vδ(h)-radius ℓ-hypersphere

within cells of depth h, and hence the size of Iδ(h)h can be bounded more accu-

rately. This depends on the hierarchical partitioning of the algorithm rather than

the problem and holds seamlessly if the algorithm does not skew the shape of the

cells. Almost all MSO algorithms maintain a coordinate-wise partition that does

not skew the shape of their cells, and therefore, it is a reasonable assumption.

Cells sphericity lets us have an explicit bound on the number of δ(h)-optimal

nodes at depth h, |Iδ(h)h |- i.e., the number of nodes that cover the ℓ́-hypersphere of

radius δ(h) at depth h. Subsequently, |Iδ(h)h | has a bound of:

|Iδ(h)h | = O
(
δ(h)

n
β

δ(h)
n
α

)

(3.37)

= O
(

ρ−h
(
n( 1

α
− 1

β
)
))

(3.38)

which comes in one of three cases:

1. α < β: At a given depth h, |Iδ(h)h | scales exponentially with n.

2. α = β: At a given depth h, |Iδ(h)h | is constant and independent of n.
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3. α > β: This is not possible as it violates Assumption 1. Nevertheless, it tells

us that if ℓ was chosen such that there is no guarantee that f(x∗)− f(x) ≤
ℓ(x∗,x), then it is possible that A may expand nodes other δ(h)-optimal

nodes at depth h and possibly converges to a local optimum. In such case,

r(p) is of O(1).

Let dv be n( 1
α
− 1

β
). From (3.38), dv can be seen as a quantitative measure of

how much exploration is needed to guarantee optimality. For better understanding,

Figure 3.3 shows Xǫ for n = 2; it can be packed with

(

ǫ
1
β

(vǫ)
1
α

)2

= v−
2
α ℓ-circles of

radius vǫ. In such case, dv is 0.

In accordance with the Assumptions 1, 2, and 3, the next definition generalizes

dv and refers to it as the near-optimality dimension:

Definition 18. The v-near-optimality dimension is the smallest dv ≥ 0 such

that there exists C > 0 and c > 0 such that for any 1 ≥ ǫ > 0 and 1 ≥ v > 0,

the maximal number of disjoint ℓ-hyperspheres of radius vcǫ and contained in Xcǫ

is less than Cǫ−dv .

The next lemma reformulates and generalizes the bound of (3.38) in the light

of the near-optimality definition.

Lemma 1. |Imδ(h)
h | ≤ Cρ−hdv/m, where m > 0.

Proof. From Assumption 3, a cell Xh,i has an ℓ-hypersphere of radius v
m
·mδ(h).

As a result, if |Imδ(h)
h | exceeds Cρ−hdv/m , then there are more than Cρ−hdv/m ℓ-

hypersphere of radius v
m
·mδ(h) in Xmδ(h) which contradicts the definition of dv/m.

Using the above lemma, the bound of (3.38) can be reformulated as |Iδ(h)h | ≤
Cρ−hdv . Having constructed an explicit bound on |Iδ(h)h |, let us bound |Iε(h)h |
formally in the next lemma.

Lemma 2. For h < hε, we have |Iε(h)h | ≤ Cρ−hdv/2 such that

hε
def
= min{h : δ(h) < 2 · η + λ · ζ} (3.39)

and dv/2 is the v/2-near-optimality dimension.
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Proof. Bounding |Iε(h)h | in a similar way to |Iδ(h)h | requires that a cell Xh,i has an

ℓ-hypersphere of radius v́(δ(h)+2 ·η+λ · ζ) where 1 ≥ v́ > 0. From Assumption 3,

we know that a cell Xh,i has an ℓ-hypersphere of radius vδ(h) where 1 ≥ v > 0.

Thus, for a cell Xh,i to have an ℓ-hypersphere of radius v́(δ(h) + 2 · η + λ · ζ), we
need to ensure that v́(δ(h) + 2 · η + λ · ζ) ≤ vδ(h). With respect to a v/2-near-

optimality dimension, this holds for any depth h where δ(h) ≥ 2 · η+ λ · ζ because

v
2
· 2 · δ(h) ≥ v́(δ(h) + 2 · η + λ · ζ) where v́ = v

2
. Now, since δ(h) is a decreasing

sequence in h, this is valid for depths less than min{h : δ(h) < 2 ·η+λ · ζ} denoted
by hε.

Up to this point, we know that |Iε(h)h | for h < hε is upper-bounded by the max-

imal number of disjoint ℓ-hypersphere of v
2
·2 · δ(h) packed in X2δ(h). Consequently,

from Definition 18 and similar to the proof of Lemma 1, we have:

|Iε(h)h | ≤ Cρ−hdv/2 , ∀h < hε (3.40)

where dv/2 is the v/2-near-optimality dimension.

3.3.1.4 A Convergence Theorem

In this section, we present a theorem on the convergence of a class of MSO al-

gorithms that adopt an expansion strategy of minimizing their trees’ depths by

connecting r(p), h∗
p, h

ε(h)
p , and Iε(h)h . Afterwards, three examples are worked out

to see the effect of some parameters on the complexity of r(p).

Theorem 1. Let the assumptions of local Hölder continuity (Assumption 1), bounded

cells (Assumption 2), and cells sphericity (Assumption 3) hold and let A be an MSO

algorithm with a partition factor of K whose local and global score functions satisfy

(3.9) and (3.10), respectively. Furthermore, A expands for each ε(h)-optimal node

at most M − 1 other nodes with an expansion strategy of minimizing its tree T ’s
depth depth(T ).8 Then the regret of A after p expansions is bounded as:

r(p) ≤ δ(max(h́(p),min(h(p), hε))) + 2 · η (3.41)

8The purpose of Theorem 1 is to provide a recipe for finite-time analysis of any proposed
algorithm under MSO framework. Nonetheless, the recipe needs to know the behavior of the
algorithm. As a possible behavior, we have just assumed that the algorithm, analyzed in Theo-
rem 1, minimizes its depth.
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where h́(p) is the smallest h ∈ Z+
0 , such that:

M

h́(p)
∑

l=0

K l ≥ p (3.42)

and h(p) is the smallest h ∈ Z+
0 , such that:

CM

h(p)
∑

l=0

ρ−ldv/2 ≥ p (3.43)

and hε is the smallest h ∈ Z+
0 that satisfies (3.39).

Proof. Consider any h(p) ≤ hε. From the definition of h(p) (3.43) and Lemma 2,

we have:

M

h(p)−1
∑

l=0

|Iε(l)l | ≤ CM

h(p)−1
∑

l=0

ρ−ldv/2 < p (3.44)

Since for each ε(h)-optimal node at most M other nodes are expanded in a way

that minimizes the tree’s depth, we deduce from (3.44) that the depth of deepest

expanded optimal node h∗
p ≥ h(p) − 1 and the depth of the deepest expanded

ε(h)-optimal node h
ε(h)
p ≥ h(p). On the other hand, for h(p) > hε, there is no valid

bound on |Iε(l)l |. Thus, h∗
p ≥ min(hε, h(p))− 1 and h

ε(h)
p ≥ min(hε, h(p)). With h∗

p

and h
ε(h)
p at hand, we have two bounds on r(p). Consider first the bound based

on h∗
p. Let (h∗, i∗) be the child node of the deepest expanded optimal node that

contains x∗, we have:

r(p) ≤ f ∗ − f(xh∗,i∗) (3.45)

Now, since A deals with the approximate l (3.9) of f values at the nodes’ base

points, the regret bound, with respect to A’s solution l(x(p)), is expressed as:

r(p) ≤ f ∗ − f(x(p)) + η since |l(x(p))− f(x(p))| ≤ η , (3.46)

≤ f ∗ − f(xh∗,i∗) + 2 · η since l(x(p)) ≥ l(xh∗,i∗) . (3.47)

From Assumptions 1 & 2 and since h∗ = h∗
p + 1 ≥ min(hε, h(p)), we have:

r(p) ≤ δ(min(hε, h(p))) + 2 · η (3.48)

On the other hand, consider the bound based on h
ε(h)
p ≥ min(hε, h(p)). From

Remark 4, the regret is bounded as r(p) ≤ 2 · η + λ · ζ + δ(min(hε, h(p))). Clearly,

the bound (3.48) is tighter. However, it relies on hε and hence can be really

pessimistic (e.g. when hε = 0). We may achieve a better bound by utilizing the
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fact that A’s strategy is to minimize its tree’s depth; and that for p expansions,

there are at least ⌊ n
M
⌋ expanded ε(h)-optimal nodes. From the definition of h́(p)

and A’s strategy, we deduce that h∗
p ≥ h́(p)− 1 and h

ε(h)
p ≥ h́(p). Thus:

r(p) ≤ δ(h́(p)) + 2 · η (3.49)

Therefore, r(p) here has two bounds, viz. (3.48), (3.49) from which we choose the

tightest as in (3.41).

It is important to note here that not all MSO algorithms aim to minimize

their trees’ depths. Nevertheless, the aim of the theorem is to stress that there

are usually two possible approaches to obtain a regret bound: the first involves

identifying the link between n and h∗
p (Section 3.3.1.2); and the second is based

on identifying the link between n and h
ε(h)
p (Remark 4). Furthermore, it showed

that even when the two approaches are infeasible, an MSO algorithm’s expansion

strategy may help in establishing a better bound. The following examples evaluate

the regret bound for different settings of Theorem 1’s parameters.

Example 1 (r(p) for dv/2 = 0, h́(p) < min(h(p), hε)). From (3.43), we have:

CM

h(p)
∑

l=0

ρ−ldv/2 ≥ p (3.50)

CM(h(p) + 1) ≥ p since dv/2 = 0 (3.51)

h(p) ≥ p

CM
− 1 (3.52)

We have two cases with respect to hε:

1. η = 0 and ζ = 0, for which hε = ∞. Therefore, r(p) decays exponentially

with p:

r(p) ≤ cρ
p

CM (3.53)

2. η > 0 or ζ > 0, for which hε = h́ <∞. Therefore:

r(p) ≤ cρmin( p
CM

,h́) + 2 · η (3.54)

Clearly, for 1 ≤ p ≤ CMh́, the regret decays exponentially with p towards

2 · η. For p > CMh́, the best bound on r(p) equals cρh́ + 2 · η.
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Example 2 (r(p) for dv/2 > 0, h́(p) < min(h(p), hε)). From (3.43), we have:

CM

h(p)
∑

l=0

ρ−ldv/2 ≥ p (3.55)

From the sum of geometric series formula:

CM(ρ−dv/2(h(p)+1) − 1) ≥ p(ρ−dv/2 − 1) (3.56)

ρ−dv/2h(p) >
p

CM
(1− ρdv/2) (3.57)

ρh(p) <
( CM

1− ρdv/2

) 1
dv/2 · p−

1
dv/2 (3.58)

h(p) is logarithmic with p. We have two cases with respect to hε:

1. η = 0 and ζ = 0, for which hε = ∞. Therefore, r(p) decays polynomially

with p:

r(p) < c
( CM

1− ρdv/2

) 1
dv/2 · p−

1
dv/2 (3.59)

2. η > 0 or ζ > 0, for which hε = h́ <∞. Therefore:

r(p) ≤ c ·max(ρh́,
( CM

1− ρdv/2

) 1
dv/2 · p−

1
dv/2 ) + 2 · η (3.60)

Example 3 (r(p) for h́(p) > min(h(p), hε)). From (3.42), we have:

M

h́(p)
∑

l=0

K l ≥ p (3.61)

K h́(p)+1 ≥ p

M
(K − 1) + 1 (3.62)

h́(p) ≥ ⌈logK(
p

M
) + logK(K − 1)− 1⌉ (3.63)

h́(p) is logarithmic with p and r(p) is bounded as:

r(p) ≤ cρ⌈logK( p
M

)+logK(K−1)−1⌉ + 2 ∗ η (3.64)

Remark 6 (MSO vs. Uniform Sampling). It is interesting to note that for an n-

dimensional function where |f ∗−f(x)| = ||x∗−x||β, a uniform grid of Kp samples

exhibits a polynomially decaying regret of O(p− β
n ) whereas an MSO algorithm with

a partition factor K and p expansions may have an exponentially decaying regret

of O(ρ p
CM ) (Example 1) irrespective of the problem dimensions n.
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3.3.2 Analysis of MSO Algorithms

Using the theoretical framework established in the previous section, we analyze the

finite-time behavior of different MSO algorithms in the literature.

3.3.2.1 Analysis of LO

Several researchers have addressed the convergence analysis of LO techniques [33,

137]. Here, we present a complimentary analysis under the framework of MSO.

Let n = 1 which implies that Xh,i is an interval [ch,i, dh,i] where ch,i and dh,i are

its endpoints. Furthermore, ℓ(x,y) here is L|x− y|. Using the Lipschitz condition

(2.3), f̂(xh,i)—and eventually b(h,i)—is computed as:

b(h,i) = f̂(xh,i) =
f(ch,i) + f(dh,i)

2
+ L

dh,i − ch,i
2

(3.65)

This can be made equivalent to the exploitation-exploration trade-off (3.11) where

the local score lh,i =
f(ch,i)+f(dh,i)

2
, λ = L, and the global score gh,i =

dh,i−ch,i
2

. From

the Lipschitz condition (2.3) and Assumption 2, we have:

0 ≤ f̂(xh,i)− f(xh,i) ≤ L(dh,i − ch,i) ≤ δ(h) . (3.66)

The next lemma shows that LO expands 2δ(h)-optimal nodes in search for the

optimal node at depth h.

Lemma 3. In LO and at depth h, a node (h, i) is expanded before the optimal node

(h∗, i∗), if:

f(xh,i) + 2δ(h) ≥ f ∗ . (3.67)

Proof. In LO, expanding more than one node per depth is possible; a node (h, i) is

expanded before the optimal node (h∗, i∗) when f(xh,i) satisfies the following:

b(h,i) ≥ b(h∗,i∗) (3.68)

f̂(xh,i) ≥ f̂(xh∗,i∗) (3.69)

From (3.66):

f(xh,i) + δ(h) ≥ f(xh∗,i∗) (3.70)

From the Lipschitz condition (2.3) which is in line with Assumption 1 and As-

sumption 2, we have f ∗ − f(xh∗,i∗) ≤ supx∈Xh,i
ℓ(xh,i,x) ≤ δ(h); from which (3.67)

follows.
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Therefore, we are certain that h∗
p ≥ h if all the 2δ(h)-optimal nodes at depth

h are expanded. The following theorem establishes the regret bound for LO algo-

rithms.

Theorem 2. (Convergence of LO) Let T be LO’s tree on X and h(p) be the smallest

h ∈ Z+
0 , such that:

C

h(p)
∑

l=0

ρ−ldv/2 ≥ p (3.71)

where dv/2 is the v/2-near-optimality dimension and p is the number of expansions.

Then the regret of LO is bounded as r(p) ≤ 2δ(h(p)).

Proof. From Lemma 3, LO expands only nodes that are 2δ(h)-optimal for 0 ≤ h ≤
depth(T ). As a result, the depth of deepest expanded 2δ(h)-optimal node h

2δ(h)
p is

depth(T )− 1 and hence bounding the regret in the light of Remark 4 as follows:

r(p) ≤ 2δ(depth(T )− 1) (3.72)

Clearly, the bound depends on depth(T ). Let us try to make this bound more

explicit by finding out the minimum depth(T ) with p expansions. In line with

Lemma 1, we have |I2δ(h)h | ≤ Cρ−hdv/2 . This implies along with the definition of

h(p):
h(p)−1
∑

l=0

|I2δ(l)l | ≤ C

h(p)−1
∑

l=0

ρ−ldv/2 < p (3.73)

that h
2δ(h)
p ≥ h(p). Therefore, r(p) ≤ 2δ(h(p)).

Similar analysis can be applied when n > 1. Here, Xh,i is a hyperrectangle and

δ(h) bounds a norm L||x− y|| rather than an interval.

3.3.2.2 Analysis of DOO

With respect to the theoretical framework, [34] provides the analysis of DOO for

δ(h) < 1. Here, we provide a generalized analysis (including δ(h) ≥ 1) by modifying

[34, Theorem 1]. Let us start with the b-value of a node (h, i):

b(h,i) = f(xh,i) + δ(h) (3.74)

With reference to (3.11), lh,i = f(xh,i), λ = 1, and gh,i = δ(h). The next lemma

shows that DOO expands δ(h)-optimal nodes in search for the optimal node at depth

h.
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Lemma 4. In DOO and at depth h, a node (h, i) is expanded before the optimal

node (h∗, i∗), if:

f(xh,i) + δ(h) ≥ f ∗ . (3.75)

Proof. In DOO, expanding more than one node per depth is possible; a node (h, i)

is expanded before the optimal node (h∗, i∗) when f(xh,i) satisfies the following:

b(h,i) ≥ b(h∗,i∗) (3.76)

f(xh,i) ≥ f(xh∗,i∗) (3.77)

From Assumptions 1 & 2, we have f ∗−f(xh∗,i∗) ≤ supx∈Xh,i
ℓ(xh,i,x) ≤ δ(h); from

which (3.75) follows.

Therefore, we are certain that h∗
p ≥ h if all the δ(h)-optimal nodes at depth h

are expanded. The following theorem establishes the regret bound for DOO.

Theorem 3 (Convergence for DOO). Let us write h(p) the smallest h ∈ Z+
0 such

that

C

h(p)
∑

l=0

ρ−ldv ≥ p (3.78)

where dv is the v-near-optimality dimension and p is the number of expansions.

Then the regret of DOO is bounded as r(p) ≤ δ(h(p)).

Proof. From Lemma 4, DOO expands only nodes that are δ(h)-optimal for 0 ≤ h ≤
depth(T ). As a result, the depth of deepest expanded δ(h)-optimal node h

δ(h)
p is

depth(T )− 1, and hence bounding the regret in the light of Remark 4 as follows:

r(p) ≤ δ(depth(T )− 1) (3.79)

Clearly, the bound depends on depth(T ). Let us try to make this bound more

explicit by finding out the minimum depth(T ) with p expansions. In line with

Lemma 1, we have |Iδ(h)h | ≤ Cρ−hdv . This implies along with the definition of h(p):

h(p)−1
∑

l=0

|Iδ(l)l | ≤ C

h(p)−1
∑

l=0

ρ−ldv < p (3.80)

that h
δ(h)
p ≥ h(p). Therefore, r(p) ≤ δ(h(p)).
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3.3.2.3 Analysis of DIRECT

The b-value of a node in DIRECT is its local score l, with lh,i = f(xh,i), λ = 0, and

gh,i = σh,i = ||dh,i||2 where dh,i is Xh,i’s diameter. As λ = 0, DIRECT may seem

to be an exploitative MSO algorithm, which is not the case. The global score is

employed in a heuristic (represented by (3.13) and (3.14)) for selecting Q within

a batch of iterations, balances the exploration-vs.-exploitation trade-off. Given

that the optimal node at depth h́ − 1 has been expanded, for any node (h́, i) to

be expanded before the optimal node (h́, i∗), the following must hold (assuming

(3.13) and (3.14) hold):

b(h́,i) ≥ b(h́,i∗) (3.81)

f(xh́,i) + δ(h́) ≥ f ∗ (3.82)

For such depths, DIRECT expands δ(h)-optimal nodes at depth h if the heuristic

rules hold. However, there is no guarantee that the heuristic rules hold [36]. In

[36, Theorem 2], it has been shown that DIRECT may behave as an exhaustive grid

search expanding nodes based solely on their sizes. In Theorem 4, we provide a

finite-time9 regret bound on DIRECT by exploiting [36]’s findings that within a batch

of iteration It, there exists at least one node ∈ Et−1 that satisfies (3.13) and (3.14)

and hence gets expanded within It. Such node is simply the node (h∗, i∗) ∈ Et−1

such that b(h∗,i∗) = bt.

Theorem 4 (Convergence of DIRECT). Let us define h(p) as is the smallest h ∈ Z+
0

such that:
h(p)
∑

l=0

3l ≥ nI (3.83)

where nI is the greatest positive integer number such that:

nI(nI − 1) ≤ 2

n2
(p− n) (3.84)

where p is the number of expansions. Then the regret of DIRECT with Q = 1 is

bounded as:

r(p) ≤ δ(h(p)) (3.85)

9To the best of our knowledge, there is no finite-time analysis of DIRECT (only the consistency
property limn→∞ r(p) = 0 given by Jones et al. [56] which was proven again in [29] by Finkel
and Kelley. Furthermore, they showed, based on non-smooth analysis, that certain samples of
DIRECT may converge to points that satisfy the necessary conditions for optimality defined by
Clarke [188]).
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Proof. DIRECT expands at least one node per batch of iterations; and this node is

one among those of the largest size among the leaf nodes. Thus, as DIRECT has

a partitioning factor of 3; given a number of batches nI ; and from the definition

of h(p), at depth h(p)− 1, all the nodes (optimal and non-optimal) are expanded.

Hence, r(p) ≤ δ(h(p)).

Since we are interested in bounding the regret as a function of the number of

expansions p, we need to find what is the maximum number of expansions for nI

iteration batches. In a given batch It, the maximum number of expansions with

Q = 1 is n · depth(Tt−1), with depth(T ) growing at most by n per iteration batch.

Thus, with 3 iteration batches, for instance, we can have at most n+1 ·n ·n+2 ·n ·n
expansions. For m batch of iterations, there are at most n+n2

∑m−1
i=0 i = n+ 1

2
·n2 ·

m(m− 1) expansions. Therefore, for p expansions, the minimum possible number

of completed iteration batches is the greatest positive integer nI iteration such

that:

n+
1

2
· n2 · nI(nI − 1) ≤ p

from which (3.84) follows.

3.3.2.4 Analysis of MCS

The following factors influence the analysis of MCS. First, the set of nodes to be

considered for expansion are not of the same scale, and hence, no statement can

be made about the optimality of the expanded nodes. Second, even if MCS is

considering near-optimal nodes for expansion, the heuristics (3.16) and (3.17) may

not hold which results in moving such nodes into groups of different pseudo-depth.

Third, the fact that two nodes of consecutive depths h and h + 1 may have the

same size makes Assumption 2 more associated with the node’s first pseudo-depth

value rather than its depth h (i.e. for a node (h, i) whose s upon creation is sh,i,

then supx,y∈Xh,i
ℓ(x,y) ≤ δ(sh,i) rather than δ(h)).

The b-value of a node in MCS is its local score, with lh,i = f(xh,i), λ = 0, and

gh,i = −sh,i. The global score is used to group the nodes considered for expansion

at an iteration. Assume that all the nodes keep their initial pseudo-depth; given

that the optimal node at a pseudo-depth s − 1 has been expanded, its optimal

child node (h́, i∗) may have a pseudo-depth of s + 1 for which no statement can

be made about the nodes with a pseudo-depth of s. Nonetheless, if (h́, i∗) is at
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pseudo-depth s, then for any node (h, i) of the same pseudo-depth to be expanded

before (h́, i∗), the following must hold (assuming either of the heuristics (3.16) or

(3.17) holds as well):

b(h,i) ≥ b(h́,i∗) (3.86)

f(xh,i) + δ(s) ≥ f ∗ (3.87)

For such case, MCS expands δ(s)-optimal nodes (with regards to MCS, we refer to

a node that satisfies (3.87), where s is the node’s initial pseudo-depth as a δ(s)-

optimal node, and denote the set of such nodes by Iδ(s)) and may expand non-

δ(s)-optimal nodes, otherwise. Clearly, the analysis is complicated. However, we

can simplify it with an assumption about the structure of the maximal expected

gain max1≤j≤n ê
(h,i)
j for δ(s)-optimal nodes. With this assumption, the relationship

between h∗
p and p can be established. This is demonstrated in the next lemma.

Lemma 5. In MCS, for any depth 0 ≤ h < smax, whenever n ≥ ∑s
l=0 |Iδ(l)|

(smax−1) and max1≤j≤n ê
(h,i)
j ≥ δ(s), for all δ(s)-optimal node ∈ T where 0 ≤ s ≤

smax − 1, we have h∗
p ≥ s, where p is the number of expansions.

Proof. We know that h∗
p ≥ 0 and hence the above statement holds for s = 0. For

s ≥ 1, we are going to prove it by induction.

Assume that the statement holds for 0 ≤ s ≤ ŝ. We prove it for s ≥ ŝ+ 1. Let

p ≥∑ŝ+1
l=0 |Iδ(l)|(smax − 1). Consequently, we know that p ≥∑ŝ

l=0 |Iδ(l)|(smax − 1)

for which h∗
p ≥ ŝ. Here, we have two cases: h∗

p ≥ ŝ + 1, for which the proof is

done; or h∗
p = ŝ. In the second case, any node (h, i) at pseudo-depth ŝ+ 1 that is

expanded before the optimal node of the same pseudo-depth has to be δ(ŝ + 1)-

optimal. However, the heuristics of MCS may possibly cause the expansion of such

nodes to be skipped and expanding at the same time non-δ(s)-optimal nodes at

higher pseudo-depths. Nonetheless, if the computed expected gain for a δ(ŝ + 1)-

optimal node (h, i) satisfies max1≤j≤n ê
(h,i)
j ≥ δ(ŝ + 1), then we are certain that

heuristic (3.17) will always hold for such nodes. This can be proved as follows. Let

(h, i) be a δ(ŝ+ 1)-optimal node, we have:

f(xh,i) + δ(ŝ+ 1) ≥ f ∗ (3.88)

f(xh,i) + max
1≤j≤n

ê
(h,i)
j ≥ fmax (3.89)
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Thus, (3.17) holds for δ(ŝ + 1)-optimal nodes and they will always get expanded.

Since there are |Iδ(ŝ+1)| of such nodes, we are certain that the optimal node at

pseudo-depth ŝ+1 is expanded after at most |Iδ(ŝ+1)|(smax− 1) expansions. Thus,

h∗
p ≥ ŝ+ 1.

The next theorem builds on Lemma 5 to present a finite-time analysis of MCS

with an assumption on the structure of a node’s gain. To the best of our knowl-

edge there is no finite-time analysis of MCS with/without local search (only the

consistency property limn→∞ r(p) = 0 for MCS without local search in [27]).

Theorem 5 (Convergence of MCS). Assuming max1≤j≤n ê
(h,i)
j ≥ δ(s), for all δ(s)-

optimal node ∈ T where 0 ≤ s ≤ smax − 1, let us write s(p) the smallest s ∈ Z+
0

such that

C(smax − 1)

s(p)
∑

l=0

ρ−ldv ≥ p (3.90)

where dv is the v-near-optimality dimension. Then the regret of MCS without local

search is bounded as

r(p) ≤ δ(min(s(p), smax))

Proof. From Lemma 1, and the definition of s(p) (3.90), we have |Iδ(s)| ≤ Cρ−sdv

and:
s(p)−1
∑

l=0

|Iδ(l)|(smax − 1) ≤ C(smax − 1)

s(p)−1
∑

l=0

ρ−ldv < n (3.91)

which implies from Lemma 5 and depth(T ) ≤ smax that h∗
p ≥ min(s(p)−1, smax−

1)). Thus, from (3.27), we have r(p) ≤ δ(min(s(p), smax)).

3.3.2.5 Analysis of SOO

The b-value of a node in SOO is its local score, with lh,i = f(xh,i), λ = 0, and

gh,i = −h. Similar to MCS, the global score is used as a heuristic to filter the nodes

considered for expansion at an iteration. Given that the optimal node at depth

h́ − 1 has been expanded, for any node (h́, i) to be expanded before the optimal

node (h́, i∗), the following must hold:

b(h́,i) ≥ b(h́,i∗) (3.92)

f(xh́,i) + δ(h́) ≥ f ∗ (3.93)
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For such depths, SOO may expand δ(h)-optimal nodes . However, in contrary

to DOO, SOO may expand non-δ(h)-optimal nodes at depths h́ < h ≤ depth(T ).
Nevertheless, the relationship between h∗

p and p can be established due to SOO’s

strategy in sweeping T . This is demonstrated in [34, Lemma 2]. With respect

to the theoretical framework, [34] provides the analysis of SOO for δ(h) < 1. We

provide a generalized analysis (including δ(h) ≥ 1) by modifying [34, Theorem 2]:

Theorem 6 (Convergence of SOO). Let us write h(p) the smallest h ∈ Z+
0 such

that

Chmax(p)

h(p)
∑

l=0

ρ−ldv ≥ p (3.94)

where dv is the v-near-optimality dimension and p is the number of expansions.

Then the regret of SOO is bounded as

r(p) ≤ δ(min(h(p), hmax + 1))

Proof. In line with Lemma 1, we have |Iδ(h)h | ≤ Cρ−hdv . Thus, from the definition

of h(p) (3.94) and [34, Lemma 2], the following:

hmax

h(p)−1
∑

l=0

|Iδ(l)l | ≤ Chmax(n)

h(p)−1
∑

l=0

ρ−ldv < p

implies that h∗
p ≥ min(h(p)− 1, hmax(p)). Thus, from (3.27), we have

r(p) ≤ δ(min(h(p), hmax + 1))

Effect of hmax(p). SOO controls T ’s exploration behavior (deep vs. broad) through

a single parameter, namely hmax(p). Given a fixed budget of node expansions,

greater hmax reduces the likelihood of expanding an optimal node in T , and hence

a greater regret bound. It is interesting to consider SOO’s behavior when hmax(p) is

set to∞. Although Theorem 6 may imply that, for any n, the regret is bounded as

r(p) ≤ δ(0)—i.e., by a constant—when hmax(p) =∞, this is not really the case for

SOO. When hmax(p) is set to ∞, the regret of SOO is related to number of iteration

batches the algorithm may have for a number of expansions p. The next corollary
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establishes a regret bound for SOO with hmax(p) =∞. It exploits the fact that for

an iteration batch It, the number of expansions is less than or equal depth(Tt−1);

and after each batch of iterations, T ’s depth is increased at most by one.

Corollary 1 (Convergence of SOO with hmax = ∞). Let us define h(p) as is the

smallest h ∈ Z+
0 such that:

C

h(p)
∑

l=0

ρ−ldv ≥ nI (3.95)

where nI is the greatest positive integer number such that:

nI(nI + 1) ≤ 2 · p (3.96)

where p is the number of expansions. Then the regret of SOO with hmax = ∞ is

bounded as:

r(p) ≤ δ(h(p)) (3.97)

Proof. Let h∗
p = h́ after ń complete batches of iteration. Then, each of the next

batches expands a δ(h́ + 1)-optimal node (if any). Since there are |Iδ(h́+1)
h | ≤

Cρ−(h́+1)dv of such nodes, we know, after at most ń + Cρ−(h́+1)dv batches, that

h∗
p ≥ h́ + 1. Now, for m batches of iterations, SOO can have at most m(m+1)

2

expansions. Thus, from the definition of h(p) and (3.27), we have h∗
p ≥ h(p) − 1

and r(p) ≤ δ(h(p)), respectively.

3.4 Discussion

This section presents an outline of the theoretical findings and complements it

with optimization problems in practice. Table 3.1 summarizes the convergence

rate in terms of the regret bound for the algorithms discussed. These bounds do

not imply a comparative performance, but rather report their worst-case behavior.

Each algorithm employs different partitioning rules for which δ(h) can be different.

Nevertheless, since LO and DOO are theoretical propositions, one could comment on

their comparative performance. Based on Table 3.1, we can conclude the following:

1. While LO and DOO assumes the knowledge about f ’s smoothness; for a Lipschitz-

continuous function, DOO is more preferable than LO as the latter’s regret

bound is double the former’s for the same number of expansions, provided
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that dv = dv/2, not to mention that DOO comes with a less restrictive assump-

tion of the function smoothness. In practice, both algorithms are inapplicable

unless some approximations on the function smoothness are made.

2. If smax = hmax + 1, then SOO and MCS without local search, following the

same partitioning rule, share the same regret bound, under the assumption

max1≤j≤n ê
(h,i)
j ≥ δ(s), for all δ(s)-optimal node ∈ T .

3. DIRECT has the most over-pessimistic regret bound requiring a number of ex-

pansions n that grows quadratically in the number of problem dimensions n.

Table 3.1: Convergence rate of different MSO algorithms. These rates hold pro-
vided that Assumptions 1, 2, & 3 are satisfied. The Condition column provides
the relation between the number of expansions p and the depth h(p)/s(p) besides
other algorithm-specific conditions. hmax and smax define the maximum depth for
the trees of SOO and MCS, respectively.

Algorithm Convergence Rate Condition

LO r(p) ≤ 2δ(h(p)) C
∑h(p)

l=0 ρ−ldv/2 ≥ p

DOO r(p) ≤ δ(h(p)) C
∑h(p)

l=0 ρ−ldv ≥ p

DIRECT r(p) ≤ δ(h(p))

h(p)∑

l=0
3l ≥ nI ,

nI(nI − 1) ≤ 2
n2

(p− n), Q = 1

SOO r(p) ≤ δ(min(h(p), hmax(p) + 1)) Chmax(p)
∑h(p)

l=0 ρ−ldv ≥ p

MCS r(p) ≤ δ(min(s(p), smax))
C(smax − 1)

∑s(p)
l=0 ρ−ldv ≥ p,

max1≤j≤n êxj ≥ δ(s), ∀x ∈ Iδ(s) 0 ≤ s < smax

A Worked Example. Here, we present a worked example, where the loss mea-

sure bounds are computed using symbolic maths and compared with respect to the

empirical results of the algorithms: DIRECT, SOO, and MCS.10 Consider the function

to be minimized f(x) : Rn → R = ||x−x∗||α∞ over the decision space X = [−1, 1]n,
where n = 1. As these algorithms evaluate their cells at the center, the decreasing

sequence δ(h) can be defined as K−3α⌊h/n⌋ with a partitioning factor of K = 3 and

v = 1/2. As shown in Figure 3.4, the bounds of SOO and MCS are tightly following

their empirical regrets. On the other hand, DIRECT’s pessimistic behavior makes

the loss bound lagging behind.

10LO and DOO are hypothetical propositions for which only practical/adapted implementation
exists.
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(a) DIRECT (b) SOO
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Figure 3.4: The empirical convergence rate and its theoretical bound with respect
to the number of function evaluations #f-evals for the algorithms DIRECT (a), SOO
(b), and MCS (c) in minimizing ||x− x∗||α∞, with n = 1.

3.5 Conclusions

This chapter has consolidated a broad category of algorithms that search for the

(or one) optimal solution x∗ by partitioning the search space X over multiple scales

for solving black-box global optimization problems, under the Multi-scale Search

Optimization (MSO) framework. In line with MSO, a theoretical methodology has

been presented to analyze these algorithms based on three basic assumptions: i).

local Hölder continuity of the objective function f ; ii). partitions boundedness;
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and iii). partitions sphericity. As a result, we are able to provide a theoretical

bound on the regret of several state-of-the-art MSO algorithms, including LO, DOO,

DIRECT, MCS and SOO.
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Naive Multi-Scale Optimization

“Be Fearful When Others Are Greedy and Greedy When Others Are

Fearful“

- Warren Buffett

The scope of this chapter is expensive optimization, that is to say find a near-

optimal solution given a limited number of function evaluations. In such settings,

it is likely that acting optimally according to current knowledge (exploitation) is

more rewarding than learning more about the decision space (exploration). While

MSO algorithms are inherently exploratory due to their systematic sampling [36],

attempts have been made to couple them with local search (e.g., MCS by Huyer

and Neumaier [27]). This chapter aims to incorporate the local search into the

MSO framework rather than being a separate procedure. To this end, we propose

an algorithm within the framework of Multi-scale Search Optimization (MSO)

and refer to it as the Naive Multi-Scale Optimization (NMSO) algorithm. Similar to

other MSO methods, NMSO creates partitions of X at multiple scales. It expands its

X -partitioning tree depth-wise, with the following policy: exploit until no further

improvement is observed. When compared with other MSO algorithms, NMSO’s

exploitative search component is more dominant than its exploratory one. NMSO’s

theoretical finite-time and asymptotic analysis is provided in line with the presented

methodology in Chapter 3.

In real-world problems, solving a problem with an acceptable degree of accuracy

is adversely impacted by the evaluation budget (number of function evaluations).

For instance, an evaluation of one candidate solution might take a whole laboratory

experiment (e.g., [13, 16]). Although NMSO asymptotically converges to the optimal
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solution; given a limited evaluation budget, it may only find a local optimal solution

due to its exploitative nature. With this regard, the search trade-off has to reduce

the exploitation dominance to increase the chances of hitting the optimal solution.

In order to handle limited/expensive-budget settings, NMSO can delay/push further

exploration of a well-explored region after exploring less-explored regions. The

efficacy of NMSO for both expensive- and cheap-budget settings is demonstrated on

the noiseless black-box optimization benchmarking (BBOB) testbed. Thus, our

contribution here is of two folds:

1. NMSO: an algorithm with a finite-time and asymptotic performance, sitting at

the exploitation end of exploration-vs-exploitation dilemma. NMSO’s analysis

provides the basis for analyzing a class of MSO optimization algorithms that

are exploitation-biased.

2. A thorough empirical analysis and comparison of the leading MSO optimiza-

tion algorithms on the noiseless BBOB testbed under both expensive- and

cheap-budget settings.

The chapter is organized as follows. Section 4.1 presents NMSO as an exploitation-

biased partition algorithm for solving the black-box optimization problem (2.1) and

provides a theoretical finite-time and asymptotic analysis on its convergence. An

empirical assessment of NMSO on the noiseless BBOB testbed is discussed and com-

pared with other MSO optimization algorithms in Section 4.2. Furthermore, NMSO

is also compared with the state-of-the-art stochastic algorithms as a supplement

work. The standing of NMSO in the black box optimization competition (BBComp)

within the GECCO’15 conference is shown and discussed in Section 4.3, supporting

the suitability of NMSO for optimization problems with expensive-budget settings.

Finally, Section 4.4 concludes the chapter.

4.1 Naive Multi-scale Search Optimization (NMSO)

In this section, we present and analyze a Multi-scale Search Optimization (MSO)

algorithm that satisfies both finite-time convergence and consistency property. We

refer to it as the Naive Multi-scale Search Optimization (NMSO) algorithm.
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4.1.1 The NMSO Algorithm

Similar to other MSO algorithms, NMSO is based on a hierarchical partitioning of the

search space X with the representative state xh,i of a node (h, i) being the center of

Xh,i. However, NMSO is more exploitative in its exploration-vs.-exploitation trade-

off. The partitioning of (h, i) is carried out by splitting its cell Xh,i along the (h

mod n + 1)th dimension into K cells corresponding to K child nodes. NMSO’s bias

towards exploitation is demonstrated by its expanding T at most one node (h, i)

per depth h whose f(xh,i) is among the minimum of f(xh,j)0≤j≤Kh−1, starting

from the root until no further improvement is expected. Intuitively, no further

improvement in the quality of solution within the subspace Xh,i is expected if f ’s

rate of change around Xh,i is small, and if Xh,i is a tiny portion of the search space.

This is simulated by imposing some conditions (rules) on the node (h, i). If these

conditions are met, NMSO assumes that no better solution can be found within Xh,i

other than those found and starts, from the root node (0, 0), a new sequence of

depth-wise expansions.

Denote by △fh,i the finite difference of f along the (h mod n+1)th dimension

at Xh,i computed as:

△fh,i = f(xh+1,iK+⌈K/2⌉)− f(xh+1,iK+⌊K/2⌋−1) (4.1)

and denote by △xh,i the ℓ1-norm:

△xh,i = ||xh+1,iK+⌈K/2⌉ − xh+1,iK+⌊K/2⌋−1||1 (4.2)

Where ⌈.⌉ and ⌊.⌋ denote the ceiling and floor functions, respectively. NMSO decides

whether to start a new sequence of expansions or continue its current one through

the following rule: if the depth of the last expanded node (h, i) is of the form

mn− 1 where m ∈ N1, and

∇f
h,i = max(ĥ,̂i)∈S(h,i)

△f ĥ,̂i ≤ α (4.3)

∇x
h,i = max(ĥ,̂i)∈S(h,i)

△xĥ,̂i ≤ β (4.4)

then NMSO starts a new sequence of depth-wise expansions (starting from depth

0), otherwise it continues its current sequence (continuing from depth h + 1);

where α and β are arbitrarily small non-negative constants, and S(h,i) is the set of
nodes comprising of the last expanded node (h, i) and its n− 1 last ancestors. In
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other words, the algorithm checks for potential improvement in the solution quality

within the cell of the last expanded node, by approximating f gradients along the

n dimensions. If these approximations are within a certain value, NMSO assumes

no further improvement is possible and starts a new sequence of expansions of the

tree from its root.

In an expansion sequence, NMSO explores new regions of the search space.

Nonetheless, it is possible that the algorithm considers expanding a node whose

parent node was the last expanded node in one of the previous expansion sequences.

Let us denote the set of such nodes by B. Under such scenario, NMSO may miss

the optimal solution in another node of the same depth, since the algorithm has

already assumed that no further improvement is possible, thereby converging to a

local optimal solution. One possible remedy is to prune the tree at nodes of B.
As a result, cells of these nodes are never explored. Such approach is not desired

as it violates the consistency property–the optimal solution may lie in the never-

explored region. Alternatively, NMSO keeps track of how many expansion sequences

in which a node (h, i) in B has been visited, denoted by vh,i. Subsequently, if vh,i

is significant enough– say, ≥ V ∈ N1, the algorithm expands (h, i).

The pseudo-code of NMSO is shown in Algorithm 7. At each round, it expands

at most one node from the set of evaluated leaf nodes E per scale/depth (if any).

Sorted by the function values at their representative states in an ascending order,

NMSO expands the first node in E at depth h that satisfies one of the following; it

does not belong to B, or it belongs to B and has been visited V times. Otherwise,

the algorithm moves to the next scale in the sequence. When a node is expanded,

its child nodes are evaluated, i.e., E = L. NMSO decides whether to go to the next

scale of partition or starts a new sequence from the root, based on the rule of

expected improvement described earlier.

The NMSO algorithm comes with four parameters to set: α > 0, of Eq. (4.3);

β > 0, of Eq. (4.4); K ≥ 2, the partitioning factor; and V > 0, the number of

visits for a node ∈ B to be expandable. Although NMSO can be regarded as an

exploitation-biased algorithm, one can reduce its exploitative nature dominance

through the parameter V . Setting V to a large value forces NMSO to explore more

nodes outside B and increases NMSO’s chances of hitting the optimal for a problem

of limited/expensive-budget settings.
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Algorithm 7 Naive Multi-Scale Optimization (NMSO)

Input:
1: T ← initial tree with one evaluated node (0, 0) with

X0,0 = X ;
2: x(v)← x0,0 ⊲ current best solution
3: h← 0; ⊲ current scale
4: B ← ∅; ⊲ a bag to collect the last expanded node from each sequence
5: while evaluation budget is not exhausted do
6: C ← {node ∈ E of depth h};
7: while |C| > 0 do
8: select the node (h, i∗), such that:

i∗ ∈ arg min
i:(h,i)∈C

f(xh,i)

9: if (h, i∗) ∈ B and vh,i∗ < V then
10: vh,i∗ ← vh,i∗ + 1 ;
11: C ← C \ (h, i∗);
12: else
13: break;
14: end if
15: end while
16: if |C| == 0 then
17: h← h+ 1; ⊲ go to the next scale
18: continue;
19: end if
20: expand (h, i∗) into its child nodes {(h+ 1, i∗k)}1≤k≤K ;
21: add {(h+ 1, i∗k)}1≤k≤K to T ;
22: evaluate {(h+ 1, i∗k)}1≤k≤K ;
23: update the best solution x(v);
24: if h+ 1 is a multiple of n and
25: ∇f

h,i∗ ≤ α and
26: ∇x

h,i∗ ≤ β
27: then ⊲ start a new sequence of expansions
28: h← 0;
29: put {(h+ 1, i∗k)}1≤k≤K in B;
30: vh+1,i∗k

← 0 , ∀1 ≤ k ≤ K ⊲ initialize a
31: counter of visits for each
32: else ⊲ go to the next scale
33: h← h+ 1;
34: end if
35: end while
36: return x(v);
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4.1.2 Convergence Analysis

In line with the methodology presented in Chapter 3, a theoretical analysis of

NMSO is discussed in this section. For the sake of completeness and simplicity,

assumptions—similar to those in Chapter 3—about the function and the hierar-

chical partitioning are stated. Then, we analyze the performance of NMSO and

upper bound the loss (2.2) as a function of the number of expansion sequences.1

Towards the end of this section, we present the main result on NMSO’s finite-time

performance and consistency (asymptotic performance) with their proofs.

Assumptions. There exists a semi-metric ℓ : X × X → R+ (i.e., ℓ satisfies

symmetry, non-negativity, and the coincidence axiom) such that:

A4.1 (local smoothness of f):

f(x)− f(x∗) ≤ ℓ(x,x∗), ∀x ∈ X

Thus, ensuring that f does not change too fast around its one global optimizer

x∗.

A4.2 (bounded cells diameters): For all (h, i) ∈ T , there exists a decreasing

sequence δ(h) > 0 such that: supx∈Xh,i
ℓ(xh,i,x) ≤ δ(h) and limh→∞ δ(h) = 0.

Thus, ensuring the regularity of the cells’ sizes which decrease with their

depths in T .

A4.3 (well-shaped cells): For all (h, i) ∈ T , there exists v > 0 such that a cell

Xh,i contains an ℓ-ball of radius vδ(h) centered in xh,i. Thus, ensuring that

the cells’ shapes are not skewed in some dimensions.

Finite-Time Performance. In order to derive a bound on the loss, we use the

near-optimality dimension—defined in Chapter 3—as a measure of the quantity of

near-optimal solutions (states in X ). For the sake of simplifying the terminology

used, the near-optimality dimension is redefined here similar to [34]. Prior to that,

some of the terminology, used in Chapter 3, is revised briefly. For any ǫ > 0,

1Typically, v in Eq. (2.2) represents the number of sampled points (function evaluations).
Nevertheless, it can denote other growing-with-time quantities (e.g., the number of iterations,
the number of expansion sequences). In the rest of this chapter, we refer to the number of the:
function evaluations and expansion sequences, by v and ns, respectively.
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let us denote the set of ǫ-optimal states, {x ∈ X : f(x) ≤ f(x∗) + ǫ}, by Xǫ.

Subsequently, denote the set of nodes at depth h whose representative states are

in Xδ(h) by Ih, i.e., Ih def
= {(h, i) ∈ T : 0 ≤ i ≤ Kh − 1,xh,i ∈ Xδ(h)}. A node

(h, i) is optimal ⇐⇒ x∗ ∈ Xh,i. After t expansion sequences, we denote the depth

of the deepest expanded optimal node by h∗
t . Now, we define the near-optimality

dimension.

Definition 19 (Near-optimality dimension). The near-optimality dimension is the

smallest dv ≥ 0 such that there exists C > 0 such that for any ǫ > 0, the maximal

number of disjoint ℓ-balls of radius vǫ and center in Xǫ is less than Cǫ−dv .

After t expansion sequences, NMSO’s tree T has its deepest expanded optimal

node at depth h∗
t . Assume that (h∗

t + 1, i∗) is the optimal node at depth h∗
t + 1.

Furthermore, assume that none of the nodes at depth h∗
t + 1 belongs to B. Since

(h∗
t + 1, i∗) has not been expanded yet, any node at depth h∗

t + 1 that is later

selected (line 8 in Algorithm 7) and expanded before (h∗
t + 1, i∗) must satisfy the

following:

f(xh∗
t+1,i) ≤ f(xh∗

t+1,i∗) (4.5)

f(xh∗
t+1,i) ≤ f(x∗) + δ(h∗

t + 1) , (4.6)

where Eq. (4.6) comes from combining Assumptions A4.1 and A4.2: f(xh∗
t+1,i∗) ≤

f(x∗) + ℓ(xh∗
t+1,i,x

∗) ≤ f(x∗) + δ(h∗
t + 1). Thus, from the definition of Ih, we

are certain that (h∗
t + 1, i∗) gets expanded after |Ih∗

t+1| node expansions at depth

h∗
t +1 in the worst-case scenario. Now, consider the case where any of these nodes

can be in B. Such node needs to be visited in V expansion sequences before it

can be expanded. Thus, at most V |Ih∗
t+1| expansions at depth h∗

t + 1 are needed

to expand the optimal node (h∗
t + 1, i∗). From this observation, we deduce the

following lemma.

Lemma 6. In NMSO, after ns expansion sequences, for any depth h ∈ N0 whenever

ns ≥ V
∑h

l=0 |Il|, we have h∗
ns
≥ h.

Proof. We know that h∗
ns
≥ 0 and hence the above statement holds for h = 0. For

h ≥ 1, we are going to prove it by induction. Assume that the statement holds

for 0 ≤ h ≤ ĥ. Let us then prove it for h ≥ ĥ + 1. Let ns ≥ V
∑ĥ+1

l=0 |Il|, and
hence, ns ≥ V

∑ĥ
l=0 |Il| for which we know by our assumption that h∗

n ≥ ĥ. Here,
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we have two cases: h∗
n ≥ ĥ + 1, for which the proof is done; or h∗

n = ĥ. In the

second case, any node at depth ĥ+ 1, which is expanded before the optimal node

at the same depth, is one of two types. Either it belongs to Iĥ+1, or it has been

selected and expanded in one of the V − 1 visits to a node in Iĥ+1. Since there are

V |Iĥ+1| of such nodes, and the fact that only one node per depth gets expanded

in one sequence of expansions; we are certain that the optimal node at depth ĥ+1

is expanded after at most V |Iĥ+1| sequences. Therefore, we have h∗
n ≥ ĥ+ 1.

In other words, the size of Ih gives a measure of how much exploration is need

provided that the optimal node at depth h− 1 has expanded. The near-optimality

dimension lets us bound the size of Ih. From Lemma 1, we have |Ih| ≤ Cδ(h)−dv .

We now provide NMSO’s loss bound in terms of the number of expansion sequences

ns.

Theorem 7 (r(ns) for NMSO). Let us define h(ns) as the smallest h ∈ N0 such that:

V C

h(ns)∑

l=0

δ(l)−dv ≥ ns , (4.7)

where ns is the number of expansion sequences. Then, the loss of NMSO is bounded

as:

r(ns) ≤ δ(h(ns)) (4.8)

Proof. From Lemma 1 and the definition of h(ns), we have:

h(ns)−1
∑

l=0

|Il| ≤ C

h(ns)−1
∑

l=0

δ(l)−dv < ns (4.9)

Thus, from Lemma 6, we have h∗
ns
≥ h(ns)−1. Now, let (h∗

ns
+1, i∗) be the deepest

non-expanded optimal node (which is a child node of the deepest expanded optimal

node at depth h∗
ns
), then the loss is bounded as

r(ns) ≤ f(xh∗
ns

+1,i∗)− f(x∗) ≤ δ(h∗
ns

+ 1) (4.10)

Since h∗
ns
≥ h(ns)− 1, therefore, we have r(ns) ≤ δ(h(ns)).
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Remark 7. (A generic finite-time analysis for multi-restart algorithms) Under the

Assumptions A4.1, A4.2, and A4.3; our finite-time analysis can be applied to any

exploitative algorithm whose strategy includes a multi-restart component within the

MSO framework, provided no node is pruned. i.e., the theoretical analysis here

holds irrespective of the expansion sequence stopping rule, as well as the rule for

expanding a node from B.

Consistency Property. Theorem 7 addressed the finite-time performance of

NMSO. Let us consider its consistency property. An algorithm is consistent if it

asymptotically converges to the globally optimal fitness value. NMSO guarantees

that no portion of X is disregarded. Accordingly, if an optimal node happens

to be the last expanded node of an expansion sequence, then its optimal child

node will get expanded in one of the next expansion sequences. As the number

of expansion sequences ns grows bigger, the base points sampled by NMSO form a

dense subset of X such that for an arbitrary small ǫ ≥ 0 and with our assumption

on f ’s smoothness, there exists a base point x such that f(x)−f(x∗) ≤ ǫ. The next

theorem puts formally our proposition about the consistency property of NMSO.

Theorem 8. For NMSO, limns→∞ r(ns) = 0.

Proof.

lim
ns→∞

rns ≤ lim
ns→∞

δ(h(ns)) from Theorem 7,

≤ lim
h(ns)→∞

δ(h(ns)) from the definition of h(ns),

≤ 0 from Assumption A4.2.

Thus, as r(ns) ≥ 0, we have limns→∞ r(ns) = 0.

4.2 Numerical Assessment

In this section, empirical assessment and comparison of NMSO with the state-of-the-

art MSO algorithms are presented.2 We have adopted the Comparing Continuous

2The online supplement #1, at https://www.dropbox.com/s/a1hdwcno9allxnj/

supplement-materials-1.pdf??dl=0, provides the algorithm’s assessment with respect
to the state-of-the-art stochastic algorithms.
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Optimizer (COCO) methodology [58] to distinguish the good features of one al-

gorithm over the others, and show the difference in the algorithms behavior over

several settings of an optimization problem. The COCO platform comes with

the black-box optimization benchmarking (BBOB) testbed, which has twenty-four

scalable noiseless functions given in [189], addressing such real-world difficulties

as ill-conditioning, multi-modality, and dimensionality. It has been used for the

BBOB workshops that took place during the GECCO conference in 2009, 2010,

2012, and 2013, besides the CEC conference in 2015.

The rest of the section discusses the numerical assessment in terms of: setup,

evaluation procedure, and algorithms comparison with regard to performance and

computational complexity.

4.2.1 Experimental Setup

NMSO and five of the state-of-the-art MSO algorithms, namely BB-LS [190], DIRECT

[56], MCS [27], SOO [34] and BaMSOO [5] are benchmarked on twenty-four functions

(with Ntrial = 15 trials/runs per function) of the BBOB testbed using an evalua-

tion budget of 104 · n function evaluations v (#f-evaluations) per trial. The goal

in each trial is to reach a target function value ft over a search space of [−5, 5]n

for n ∈ {2, 3, 5, 10, 20, 40}. The numerical results are presented in two forms:

data profile plots and tables displaying quantitative ERT values (and additionally

providing statistical significance tests). Here, we only report the plots (the ta-

bles can be found in the online supplement #2 at https://www.dropbox.com/s/

69tovqcden39yy6/supplement-materials-2.pdf?dl=0)

The algorithms terminate in one of two cases: exhausting the evaluation budget;

or hitting ft. Only algorithms parameters related to the evaluation budget are

modified accordingly, other parameters are set to their standard values. MATLAB

implementations/wrappers3 of the algorithms are retrieved from the sources shown

in Table 4.1 and used for our experiments.

NMSO’s main parameters, viz. α, β, and V , are set as shown in Table 4.2: in

accordance with many single-objective MSO algorithms, the partition factor K is

set to be 3. V can be adjusted according to the evaluation budget v to suit various

budget settings, but since V ’s purpose is to guarantee asymptotic convergence,

3BB-LS is implemented in C, and interfaced to MATLAB using a mex file interface.
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Table 4.1: List of MSO algorithms considered for empirical analysis and their
implementation. We have used our own implementation of BaMSOO [5].

Algorithm Source

BB-LS http://tomopt.com/

DIRECT www4.ncsu.edu/~ctk/Finkel_Direct/

SOO sequel.lille.inria.fr/Software/StoSOO

MCS www.mat.univie.ac.at/~neum/software/mcs/

BaMSOO http://ash-aldujaili.github.io/BaMSOO/

NMSO http://ash-aldujaili.github.io/NMSO/

Table 4.2: Parameters setting of NMSO.

Parameter Value

α 10−8 · n
β 10−8 · n ·max1≤i≤n(ui − li)

V 1000 · n
K 3

one can set it to a large value (e.g., 1000 · n). On the other hand, as NMSO’s

principle is exploit until no further improvement is observed, α and β are set with

a small multiplicative tolerance factor 10−8, similar to several algorithms’ stopping

criterion from the literature. Nevertheless, they are made proportional to the

problem dimensionality n to scale the exploration in line with the search space’s

volume.

An essential aspect of the algorithm is the expansion/splitting mechanism. As

mentioned in Section 4.1, a cell Xh,i is expanded along the (h mod n + 1)th di-

mension. In other words, the expansions in an expansion sequence take place

along one dimension after the other in a round-robin fashion over an ordered se-

quence of the dimensions {1, . . . , n}. However, some fitness functions—primarily

ill-conditioned—vary across one dimension (e.g., the fifth) more rapidly than an-

other (e.g., the second), and hence splitting the cell along the fifth before the second

dimension is more likely to result in a big improvement in the solution quality than

otherwise.

In our experiments, the dimensions are ordered according to an empirical mea-

sure of how much f varies along each of them. Prior to growing the tree, along
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each dimension i, two points xi
1,x

i
2 are sampled and the absolute difference be-

tween their f values is computed, λi = |f(xi
1)−f(xi

2)|. The splitting mechanism is

then restated as follows. A cell Xh,i is split along the dimension i whose λi ranked

(h mod n+ 1)th among {λi}1≤i≤n.

4.2.2 Performance Evaluation Procedure

The performance experiments are set up according to [58], where each algorithm

is run on the twenty-four functions with Ntrial trials per function. A set of target

function values is specified per function. The algorithms are evaluated based on the

number of function evaluations required to reach a target. The Expected Running

Time (ERT) [191] is used here to measure the performance of the algorithms in

reaching these targets. The ERT depends on a given target function value, ft =

fopt + ∆ft, and is computed over all relevant trials as the number of function

evaluations executed during each trial while the best function value did not reach ft,

summed over all trials and divided by the number of trials that actually reached ft

[58, 191]. Statistical significance is tested with the rank-sum test for a given target

∆ft using, for each trial, either the number of needed function evaluations to reach

∆ft (inverted and multiplied by −1), or, if the target was not reached, the best

∆f -value achieved, measured only up to the smallest number of overall function

evaluations for any unsuccessful trial under consideration. For more details on

ERT and statistical test procedure, one should refer to [58].

4.2.3 Performance Evaluation Presentation

In line with the performance evaluation procedure discussed in Section 4.2.2, the

numerical results are presented in two forms: plots and tables. Based on a boot-

strapped distribution of the ERT, the figures (e.g., Figure 4.3) show the Empirical

Cumulative Distribution Function (ECDF) of the problems solved (targets hit) as

a function of the evaluation budget divided by dimension (#f-evaluations/Dim)

aggregated over all the objective functions, as well as over different function cate-

gories, namely separable, moderate, ill-conditioned, multi-modal, and weakly struc-

tured multi-modal functions. The targets are chosen from 10[−8..2] such that the

bestGECCO2009 artificial algorithm just not reached them within a given budget

of k × DIM , with k ∈ {0.5, 1.2, 3, 10, 50}. The best 2009 line corresponds to the

best ERT observed during BBOB 2009 for each selected target.
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On the other hand, the tables (reported in supplement #1) present a statistical

comparison of the algorithms’ ERT, measuring their spreads for a given set of target

function values and highlight statistically significantly better algorithms compared

with others. Best results are printed in bold. Entries, followed by the symbol ⋆ are

statistically significantly better compared to all others algorithms, with p = 0.05

or p = 10−k where k ∈ {2, 3, 4, . . .} is the number following the ⋆, with Bonferroni

correction by the number of instances. The symbol ↓ indicates the same tested

against the best algorithm of BBOB-2009. The ERT and in braces, as dispersion

measure, the half difference between 90 and 10%-tile of bootstrapped run lengths

appear for each algorithm and run-length based target, the corresponding best

ERT (preceded by the target ∆f-value in italics) in the first row. #succ is the

number of trials that reached the target value of the last column. The median

number of conducted function evaluations is additionally given in italics, if the

target in the last column was never reached. Entries, succeeded by a star, are

statistically significantly better (according to the rank-sum test) when compared

to all other algorithms of the table, with p = 0.05 or p = 10−k when the number

k following the star is larger than 1, with Bonferroni correction by the number of

instances.

4.2.4 Performance Evaluation Discussion

Results from the performance experiments for n ∈ {2, 3, 5, 10, 20, 40} are presented
in Figures 4.1 to 4.6, respectively. The discussion of the results is broken down

according to three key points, viz. function category, dimensionality and evaluation

budget.

4.2.4.1 Function Category

• Separable functions f1–f5: Aggregated ECDF graphs of the ERT for these

(uni- and multi-modal) functions in n ∈ {2, 3, 5, 10, 20, 40} are shown in the

upper left part of Figures 4.1 to 4.6, respectively. NMSO and MCS dominate

the rest of the algorithms especially in their initial phase (#f-evaluations

≤ 10 ·n) with a steep convergence, solving about 90% of the problems– those

associated with the separable functions. In a later phase (#f-evaluations

≥ 1000 · n), the performance of the rest of the algorithms (BaMSOO followed
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Figure 4.1: Bootstrapped empirical cumulative distribution of the number of
objective function evaluations divided by dimension (FEvals/DIM) for all functions
and subgroups in 2-D.
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Figure 4.2: Bootstrapped empirical cumulative distribution of the number of
objective function evaluations divided by dimension (FEvals/DIM) for all functions
and subgroups in 3-D.
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Figure 4.3: Bootstrapped empirical cumulative distribution of the number of
objective function evaluations divided by dimension (FEvals/DIM) for all functions
and subgroups in 5-D.
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Figure 4.4: Bootstrapped empirical cumulative distribution of the number of
objective function evaluations divided by dimension (FEvals/DIM) for all functions
and subgroups in 10-D.
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Figure 4.5: Bootstrapped empirical cumulative distribution of the number of
objective function evaluations divided by dimension (FEvals/DIM) for all functions
and subgroups in 20-D.
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Figure 4.6: Bootstrapped empirical cumulative distribution of the number of
objective function evaluations divided by dimension (FEvals/DIM) for all functions
and subgroups in 40-D.
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by BB-LS, DIRECT, and SOO) follow that of NMSO and MCS. The performance

of BB-LS, DIRECT, and SOO is clearly decoupled from that of MCS, NMSO, and

BaMSOO as the problem’s dimensionality increases.

• Moderate functions f6–f9: Aggregated ECDF graphs of the ERT for these

functions in n ∈ {2, 3, 5, 10, 20, 40} are shown in the upper right part of

Figures 4.1 to 4.6, respectively. Except for 2-D problems, NMSO solves around

60% of the problems very rapidly (#f-evaluations ≈ 10 · n), dominating even

the bestGECCO2009 artificial algorithm. With more function evaluations,

the rest of the algorithms leaving out SOO solve more problems (more than

80% across all the dimensions).

• Ill-conditioned functions f10–f14: Aggregated ECDF graphs of the ERT for

these functions in n ∈ {2, 3, 5, 10, 20, 40} are shown in the middle left part

of Figures 4.1 to 4.6, respectively. In spite of its initial slow convergence

(#f-evaluations < 10 · n), BB-LS shows a sharp convergence behavior for

all the associated problems and across all the dimensionality settings. This

may be due to its adaptive partitioning nature that the rest of the MSO

algorithms do not employ. Nonetheless, NMSO, BaMSOO, and DIRECT solve

nearly an equal portion of problems in low dimension (2-D, 3-D, and 5-

D), which degrades with dimensionality. On the other hand, MCS shows a

consistent performance against dimensionality, solving around 90% of the

problems. SOO’s performance gap with respect to BB-LS grows bigger with

dimensionality.

• Multi-modal functions f15–f19: Aggregated ECDF graphs of the ERT for

these functions in n ∈ {2, 3, 5, 10, 20, 40} are shown in the middle right part of

Figures 4.1 and 4.6, respectively. In lower dimensions of 2-D and 5-D, all the

algorithms perform well, solving almost all the problems. Nevertheless, the

convergence behavior of BB-LS is slow and different compared to the rest of

algorithms whose graphs follow closely that of the bestGECCO2009 artificial

algorithm. With increasing dimensionality, the performance of BB-LS and

MCS drops significantly (solving less than 50%), while the rest maintain a

consistence convergence behavior. NMSO beats the bestGECCO2009 artificial

algorithms in 5-D and 20-D.
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• Weakly structured multi-modal functions f20–f24: Aggregated ECDF graphs

of the ERT for these functions in n ∈ {2, 3, 5, 10, 20, 40} are shown in the

lower left part of Figures 4.1 to 4.6, respectively. All the algorithms exhibit a

similar convergence in solving the problems, with a performance gap, in their

initial phase, which grows with dimensionality. BB-LS, NMSO, and MCS solve

in their initial phase a large portion of the problems (around 60%) faster

with dimension than the rest of algorithms. However, with more function

evaluations, BaMSOO emerges as a suitable alternative for these algorithms.

4.2.4.2 Dimensionality

Examining the data profiles of all functions across all the dimensions tested (the

lower right part of, e.g., Fig. 4.1), the following observations can be stated about

the algorithms suitability with respect to the problem dimensionality, which have

been categorized into low- and high-dimensionality groups in line with the COCO

platform [58].

• Low -dimensionality (n ∈ {2, 3, 5}): In general, there is no big performance

gap among the algorithms in problems of low-dimensionality. Nevertheless,

NMSO and MCS appear to do well over different settings of the evaluation

budget.

• High-dimensionality (n ∈ {10, 20, 40}): The performance gap among the

algorithms grows bigger with higher dimensions. Over different settings of

the evaluation budget MCS, BB-LS, BaMSOO, and NMSO are suitable for high-

dimensional optimization problems.

4.2.4.3 Evaluation Budget

Looking across the data profiles with two scenario: expensive optimization (#f-

evaluations≤ 102·n) and cheap optimization (#f-evaluations > 102·n), the following
observations can be stated about the algorithms suitability with respect to the

evaluation budget.

• Expensive-budget settings (#f-evaluations ≤ 102 · n): Overall, NMSO and MCS

exhibit a very fast convergence making them suitable solvers for expensive

problems. For problems with an ill-conditioned or weakly structured multi-

modal function, BB-LS appear to be equally effective.
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• Cheap-budget settings (#f-evaluations > 102 · n): In general, SOO’s perfor-

mance relatively degrades with a bigger evaluation budget. This holds true

for BB-LS, and MCS when dealing with multi-modal functions. BaMSOO consis-

tently solves more problems with more function evaluations, which suggests

its suitability for cheap- rather than expensive-budget settings. Likewise,

NMSO solves more problems with increasing function evaluations, particularly

with multi-modal functions.

Limitations. Benchmarking NMSO on the BBOB testbed clearly shows its efficacy

in solving optimization problems, especially in low-dimensionality and expensive-

budget settings with objective functions that are separable or multi-modal. NMSO’s

coordinate-aligned sequential partitioning is the main drawback of the proposed

technique. This is supported by the empirical validation on problems with ill-

conditioned objectives (see the middle left part of, e.g., Fig. 4.6). One can im-

prove its performance by integrating the adaptive encoding strategy, proposed

by Hansen [192], as demonstrated in [193]. Another disadvantage of NMSO’s parti-

tioning scheme is its poor scalability with respect to search space dimensionality.

Recently proposed embedding techniques (e.g., [194]) can be used to rectify this

issue.

4.2.5 Empirical Computational Complexity

In order to evaluate the complexity of the algorithms (measured in time per func-

tion evaluation), we have run the algorithms on the function f8 (arbitrarily chosen

as a moderate function) for 100·n function evaluations with n ∈ {2, 3, 5, 10, 20, 40}.
The empirical complexity of an algorithm is then computed as the running time

(in seconds) of the algorithm summed over different settings of n divided by the

total count of function evaluations. The results are shown in Fig. 4.7. From the

figure, we can observe that BaMSOO and SOO are computationally complex when

compared to the rest of the MSO algorithms. BaMSOO’s computational complexity

is very high due to the Gaussian process computations. While BB-LS’s efficiency

can be attributed to its C implementation, MCS and DIRECT are computationally

cheap despite being implement in MATLAB.
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Figure 4.7: Timing Performance of NMSO compared with the state-of-the-art MSO
optimization algorithms. The y-axis represents the time (in millisecond) per a
function evaluation (FEval). All the algorithms were run on a PC with: 64-bit
Ubuntu, i7-4702MQ @ 2.20GHz CPU, 8GB of memory.

4.3 Black Box Optimization Competition (BBComp)

The black box optimization competition (BBComp) within the GECCO’15 con-

ference provides a testbed for evaluating optimization algorithms that is truly a

black box to participants. The testbed consists of 1000 problems covering a wide

range of problems with n ∈ {2, 4, 5, 8, 10, 16, 20, 32, 40, 64}. The only information

known to the optimizer is the dimension of the problem, bounds on all variables,

and a budget of black box queries v ∈ [10, 100] · n. The competition allowed the

participants to run their algorithms only once on the problem set—so no second

chance or room for overfitting. The overall score/ranking was evaluated based

on aggregated problem-wise ranks as follows. Similar to the formula one scoring

system, the algorithms are sorted—for each problem—with respect to their best

solution achieved. Based on this sort and the number of participants, each algo-

rithm receives a score. These scores are computed in a way that amplifies the

differences of top performing algorithms (low ranks) and suppresses those of bad

performance (high ranks). For more details, one could refer to [57].

Table 4.3 lists the twenty-eight participating algorithms with overall scores

(higher is better). NMSO finished third after the Nonlinear Interior point Trust

Region Optimization (KNITRO) algorithm [195] and the Mean-Variance Mapping

Optimization (MVMO) [196] algorithm. KNITRO, developed by Byrd et al. [195] at
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Table 4.3: Algorithms Ranking in BBComp within GECCO’2015

Rank Algorithm Score

1 KNITRO [195] 1268.76

2 MVMO [196] 1191.54

3 NMSO 1099.04

4 A bag of algorithms: faced response surface

design optimized with SCIP/YALMIP, CMA-ES,

kriging-Surrogate, and Nelder-Mead

1092.39

5 Jumping Duplex 879.125

6 CTA : Curved Trajectories Algorithm [197] 689.558

7 RBFOpt [198] 669.860

8 SaDE: Self-adaptive DE [199] 607.344

9 b6e6rl [200] 568.964

10 Crossing differential evolution and CMA-ES 537.304

11 UNAMED 449.830

12 MCRS [201] 376.076

13 RD&R 323.617

14 UNAMED 293.915

15 Learn to optimization 278.599

16 TRDF : Trust-region Derivative-free Algorithm*

[202]
277.811

17 Machine-learning-guided optimization 218.893

18 RBM-ES [203] 216.784

19 Memetic schema with selection features 204.664

20 MADS: Mesh Adaptive Direct Search [30] 202.549

21 CMA-ES flavors 171.661

22 DDS [204] 124.074

23 DE [205] 115.440

24 Self-adaptive, Two-Phase Differential

Evolution

109.887

25 New Custom Method 98.5314

26 GACE - Genetic Algorithm with Cross

Entropy [206]
91.7493

27 BEA-GECCO2015 61.7187

28 UNAMED 41.3182

Artelys, is a commercial optimization software package, which employs state-

of-the-art active-set and interior-point methods for solving nonlinear optimization
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problems. On the other hand, the MVMO algorithm [196] is a population-based

stochastic optimization technique, which applies a special mapping function for

producing offspring solutions based on the mean and variance of the k ≥ 1 best

solutions obtained so far. Compared with NMSO finite-time and consistency prop-

erties, KNITRO is not consistent, while MVMO can find the optimum quickly with

minimum risk of premature convergence. NMSO’s standing validates its efficacy in

solving black-box multi-dimensional optimization problems with expensive budget

when compared with other state-of-the-art optimization algorithms coming from

several (mathematical programming, evolutionary computation, machine learning,

etc.) communities.

4.4 Conclusion

This chapter proposed and analyzed NMSO, Multi-scale Search Optimization (MSO)

algorithm for solving global optimization problems given a finite number of func-

tion evaluations. It enjoys two main theoretical properties, namely the finite-time

convergence rate and the consistency property. Moreover, the theoretical analysis

of NMSO provides a generic basis for analyzing any multi-restart MSO optimization

algorithm.

Along with its theoretical study, a numerical assessment of NMSO, comparing

it with the leading state-of-the-art MSO algorithms has been conducted. Based

on the results, NMSO demonstrates a better performance than the state-of-the-art

MSO algorithms in scenarios with separability, multi-modality, limited (expensive)

evaluation budget, and low dimensionality. This is in line of the Black-box Op-

timization Competition (BBComp) held at GECCO’15, where NMSO finished third

out of twenty-eight competitors in solving 1000 black-box problems. Therefore,

one can use NMSO as a suitable off-the-shelf solver for computationally-expensive

black-box real-world optimization problems.
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Multi-Objective Multi-Scale
Search

“The trade-off between speed and image quality is a key constraint

of first-person action games, and the job of developing a workable en-

gine involves constantly optimizing both elements. Gamers dream of

the day they’ll be able to haul their arsenals through three-dimensional

environments of photographic clarity, playing ’Myst’ with a meat ax“

- Marc Laidlaw

This chapter addresses the continuous black-box Multi-objective Optimization

Problem (MOP) where it is desired to optimize two or more objectives. Such

problem has applications in various science and engineering disciplines [10, 38, 40].

For instance, in manufacturing a product, the makers would like to minimize its

cost and maximize its performance, simultaneously.

As the objectives of an MOP are often conflictual, there does not exist a single

optimal global solution—which is often the case in single-objective optimization—

but a set of incomparable optimal solutions: each is inferior to the other in some

objectives and superior in other objectives, inducing a partial order on the set of

feasible solutions to an MOP. The set of optimal feasible solutions according to this

partial order is referred to as the Pareto optimal set and its corresponding image

in the objective space is commonly named as the Pareto front of the problem. For

more details on the background of multi-objective optimization and its conventional

methods, one can refer to Section 2.4.2.

Among the multi-objective solvers that witnessed an experimental success is

the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)
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framework [184]. Such framework, taking inspiration from the divide-and-conquer

paradigm, decomposes an MOP into a number of different single objective opti-

mization subproblems (or simple multi-objective optimization subproblems) and

then employs a population-based method to optimize these subproblems, at the

same time. The research community has been extensively studying the MOEA/D

framework in terms of its strengths, weaknesses, variants, generalizations, and ap-

plications (e.g., see [207, 208, 209, 210]).

In this chapter, we take inspiration from the divide-and-conquer paradigm from

a different angle, viz. Mathematical Programming (MP). In particular, we are

inspired to expand the frontier of Multi-scale Search Optimization (MSO) algo-

rithms towards MOPs. These methods systematically sample the decision space,

which may provide an insight onto one of the important lessons learned over the

past decades from multi-objective solvers; that is, in order to generate a dense

and good approximation set, one must maintain the set diversity and must not

discard inferior solutions too easily, as some of them may pave the way towards

rarely-visited regions of the Pareto front [44]. Furthermore, MSO’s theoretical

foundation may help towards better understanding of multi-objective solvers’ per-

formance. In general, two observations can be made about approaches similar to

MSO methods within the context of multi-objective optimization. First, there has

been very little/limited yet slowly growing research reported on such algorithms

for multi-objective optimization. For instance, the focus has been distinctly on

a discrete set of solutions [211], or solving a subproblem (e.g., selecting a genetic

operator in evolutionary multi-objective algorithms by Li et al. [212]). Second, the

algorithmic development and validation have been dominantly empirical [see, for

instance, 132, 133, 213].

With this regard, in this chapter, the suitability of MSO methods for multi-

objective optimization problems is formally investigated by proposing and analyz-

ing two multi-objective algorithmic instances, viz. the Multi-Objective DIviding

RECTangles (MO-DIRECT) and the the Multi-Objective Simultaneous Optimistic

Optimization (MO-SOO) based on the single-objective MSO algorithms DIRECT [56]

and SOO [34], respectively.

The rest of the chapter is organized as follows. Section 5.1 presents the MO-DIRECT

and MO-SOO algorithms as multi-objective algorithmic instances of the MSO frame-

work. Both of the algorithms are demonstrated on a worked example in Section 5.2.
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This is followed by a theoretical analysis of the algorithms in Section 5.3. Sec-

tion 5.4 concludes the chapter.

5.1 Multi-Scale Search for Multi-Objective Op-

timization

In this section, two MSO algorithmic instances are tailored towards multi-objective

optimization problems based on the DIviding RECTangles (DIRECT) [56] and Si-

multaneous Optimistic Optimization (SOO) [34] algorithms. We refer to the pro-

posed algorithms as the Multi-Objective DIviding RECTangles (MO-DIRECT) and

the Multi-Objective Simultaneous Optimistic Optimization (MO-SOO) algorithms,

respectively. MO-DIRECT partitions the search space into a set of shrinking hyper-

rectangles to find a good approximation set of the Pareto front. Likewise, MO-SOO

partitions the search space to find a good approximation set of the Pareto front,

but it does so at one scale at a time. At each step, MO-SOO expands leaf nodes

of its space-partitioning tree that may optimistically contain Pareto optimal solu-

tions. The main difference between the two algorithms is how the global search

(exploration) is considered.

5.1.1 Multi-Objective DIviding RECTangles

In this section, we first describe a possible extension of DIRECT [56] to accommodate

multiple objectives settings and then present the MO-DIRECT algorithm.

5.1.1.1 From Single- to Multi-Objective Optimization

The simplest way to approach multi-objective optimization is through aggregat-

ing the objectives into a single function (preference-based techniques). Despite

the approach’s simplicity, finding a set of trade-off solutions on the Pareto front

requires multiple runs with different scalarization weights, yet there is no guar-

antee that a good approximation of the Pareto front is obtained [173]. Though

preference-based techniques can be incorporated into DIRECT; from the concept

of potentially-optimal hyperrectangles (Definition 1), one can observe that the al-

gorithm naturally fits ideal-based approach: exploring multiple solutions at once.

In essence, DIRECT is projecting a set of hyperrectangles H (more specifically,
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the solutions represented by their centers) into the 2-dimensional space of func-

tion values and hyperrectangle sizes. It then partitions hyperrectangles that are

non-dominated with regard to convex Pareto optimality (see Fig. 2.3) to look for

potentially better solutions. Likewise, solutions of an MOP can be projected into

the (m + 1)-dimensional space of the m-function space and hyperrectangles sizes.

However, in MOPs, the interest is to find solutions that are Pareto optimal in the

function space and not necessarily convex. Hence, a possible alternative of Def-

inition 1 for an MOP is define potentially-optimal hyperrectangles as the set of

hyperrectangles that are non-dominated in the (m+1)-dimensional aforementioned

space. Note that now each hyperrectangle is represented by an (m + 1)-point,

where it is desired to minimize the first m values (objectives) in accordance with

Problem (2.8) and maximize the (m+1)th value (size) in accordance with DIRECT’s

framework (Fig. 2.3). Adding the hyperrectangle size as an additional objective

may be both beneficial and obstructive in solving the problem at hand as shown

by Brockhoff et al. [214], but it essentially provides a better exploration of the

search space by favoring larger unexplored regions. In the single-objective set-

ting, DIRECT trades off exploration vs. exploitation through the ǫ-constraint (2.5).

This still can be simulated in MOPs by constraining the set of hyperrectangle that

can be partitioned according to their sizes (e.g., a sliding/growing window over

the range of size values or a threshold limit). Mathematically, given a set of hy-

perrectangles H, the set of potentially-optimal hyperrectangles I can be defined

as:

I = ND({(f(ci), σi) : i ∈ H , σi ≥ σt}) , (5.1)

where (f(ci), σi) is the (m + 1)-dimensional vector of hyperrectangle i ∈ H of

center ci and size σi, σt is the minimum size a hyperrectangle can have to be

considered for potential optimality, and ND(·) is an operator on a set of vectors A

such that ND(A) is the set of non-dominated vectors in A, as defined next.

Definition 20 (The non-dominated operator ND(·)). Let A ⊆ Y be a set of ob-

jective vectors. The operator ND(·) is defined such that ND(A) is the set of all

non-dominated vectors in A, i.e.,

ND(A)
def
= argmax

B∈Ω,B⊆A
|B| , (5.2)

where Ω is the set of all possible approximation sets as stated by Definition 6.
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One more aspect of DIRECT needs to be considered with regard to MOPs,

namely the partitioning procedure (Algorithm 2). Because of the partial order on

the objective vectors, the definition of wj (2.6) does not suit the multi-objective

settings. The rationale behind its definition is to increase the attractiveness of

search near points with good function values by making the biggest rectangles

contain the best solutions as bigger rectangles are more likely to be potentially-

optimal, with everything else equal [56]. With respect to MOPs, one can define wj

to increase the diversity/spread of the solutions as follows:

wj =
1

mink∈{1,−1} ||f(ci + k · δ · ej)− f(ci)||
. (5.3)

In other words, a hyperrectangle is divided such that the biggest produced hyper-

rectangles contain the distant solutions from that of the hyperrectangle, increasing

the likelihood of visiting unexplored regions of the function space. Now, we are

ready to present formally the MO-DIRECT algorithm, a multi-objective algorithmic

instance of the dividing rectangles framework.

5.1.1.2 MO-DIRECT Algorithm

MO-DIRECT differs from DIRECT in two basic aspects: the criterion of potentially-

optimal hyperrectangle (Eq. (5.1) instead of Eq. (2.5) & Eq. (2.4)) and the def-

inition of wj in Algorithm 2 (Eq. (5.3) rather than Eq. (2.6)). Furthermore,

MO-DIRECT returns a set of non-dominated solutions, that is the approximation

set from its samples: ND
(
{f(ci)}i∈H

)
. The pseudo-code of MO-DIRECT is shown in

Algorithm 8 summarizing the concepts and the adaptations to MOPs presented

earlier.

5.1.2 Multi-Objective Simultaneous Optimistic Optimiza-
tion

This section describes a possible extension of SOO [34] to accommodate multiple

objectives settings and then present the MO-SOO algorithm.

5.1.2.1 From Single- to Multi-Objective Optimization

One can regard SOO [34] as a tree of multi-armed bandits, where the B-value of

each arm represents an optimistic bound on the values of the objective function
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Algorithm 8 MO-DIRECT

Input: vectorial function to be minimized f, search space X , evaluation budget
v, hyprrectangle threshold σt, evaluation budget v
Initialization: H1 = {X}
Output: approximation set of minx∈X f(x), Yv

∗

1: while evaluation budget v is not exhausted do
2: Evaluate all the new hyperrectangles ∈ Ht.
3: It ← ND({(f(ci), σi) : i ∈ Ht , σi ≥ σt}).
4: Partition the hyperrectangles in It according to the procedure outlined in

Algorithm 2 using Eq. (5.3) instead of Eq. (2.6).
5: Ht+1 ← Ht \ It ∪ {It’s newly generated hyperrectangles}
6: t← t+ 1
7: end while
8: return Yv

∗ = ND
(
{f(ci)}i∈Ht

)

values over tree’s nodes. In an iterative manner: it assesses a set of leaf nodes of

its tree on the search space X and selectively expands a set of them. This is in

line with the generic template presented in Chapter 3 (Algorithm 6). At iteration

t, SOO’s Pt is the set of leaf nodes at the depth considered at iteration t, whereas

Qt is at most one node ∈ Pt that satisfies the condition in Algorithm 5: line 4. On

this notion of sets, the SOO algorithm can be extended to multi-objective settings

by defining the corresponding P and Q.

Algorithm 9 MO-SOO

Input: vectorial function to be minimized f, search space X , partition factor
K, evaluation budget v, maximal depth function t→ hmax(t)
Initialization: T1 = {(0, 0)}, t← 1
Output: approximation set of minx∈X f(x), Yv

∗

1: while evaluation budget is not exhausted do
2: V ← ∅
3: for h← 0 to min(hmax(t), depth(Tt)) do
4: Pt ← {leaf nodes at depth h}
5: V ← ND(Pt ∪ V)
6: Qt ← Pt ∩ V
7: Expand all the nodes inQt; evaluate and add to Tt theirK ·|Qt| children,

Tt+1 = Tt ∪
(
∪(h,i)∈Qt {(h+ 1, ik)}1≤k≤K

)

8: t← t+ 1
9: end for
10: end while
11: return Yv

∗ = ND
(
{f(xh,i)}(h,i)∈Tt

)
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5.1.2.2 The MO-SOO Algorithm

Based on the generic template presented in Chapter 3 (Algorithm 6), a multi-

objective algorithmic instance whose aim is to recognize Pareto optimal solutions

can be realized. Taking inspiration from SOO, we refer to it as the Multi-Objective

Simultaneous Optimistic Optimization (MO-SOO). MO-SOO iteratively considers leaf

nodes, one depth at a time, starting from the root. The sets P and Q are defined

as follows. Denote T ’s depth considered at iteration t by ht, we have:

• Pt
def
= {leaf nodes at depth ht}.

• Qt
def
= the subset of nodes ∈ Pt that are non-dominated with respect to Pt as

well as all the expanded nodes in the previous ht iterations, based on their

representative objective vectors. Finding this set is captured by the operator

ND(·) defined in Definition 20.

The pseudo-code of the proposed scheme is outlined in Algorithm 9. MO-SOO

comes with three parameters, viz. i). the partition factorK; ii). the maximal depth

function hmax(t); iii). the splitting dimension per depth. All of these parameters

contribute to the algorithm exploration-vs.-exploitation trade-off. Nevertheless,

as it will be shown later, hmax(t) has the most compelling impact on MO-SOO’s

convergence.

5.2 A Worked Example

For a better understanding of the MO-DIRECT and MO-SOO algorithms, we show

their application to the following problem:

minimize y = f(x) = (f1(x), f2(x))

s.t. x = (x1, x2) ∈ X = [−1, 1]2 ,
(5.4)

where f1(x) = (x1 − 0.25)2 + (x2 − 0.66)2 and f2(x) = (x1 + 0.25)2 + (x2 − 0.66)2.

Figure 5.1 shows the convergence of MO-DIRECT’s approximation set A towards a

sampled set (numerically-obtained) of the Pareto front at different stages of the

algorithm iterations. The reader can refer to Figure 5.1, which briefly describes the

first stages of the algorithm. This demo as well as the source code of the algorithm

can be retrieved from the project’s website: https://sites.google.com/site/

modirectmops/.
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Figure 5.1: An illustration of MO-DIRECT (Algorithm 8). The technique identifies
and expands potentially-optimal hyperrectangles to look for Pareto optimal solu-
tions by partitioning their spaces along the decision space dimensions according to
Algorithm 2, using Eq. (5.3) instead of Eq. (2.6). In each iteration t, MO-DIRECT
selects a set of hyperrectangles whose sizes are greater than a certain value σt and
expands those that are non-dominated in the (m+1)-dimensional space of the m-
function space appended by the hyperrectangle size range where hyperrectangles
of minimum m-function values and bigger sizes are preferred. Subsequently, one
or more hyperrectangles can be expanded in one iteration; at the second iteration,
for instance, only one hyperrectangle is partitioned (whose center is point 3) into
smaller hyperrectangles (whose centers are the points 3, 6, and 7) as it is the only
non-dominated point in (m+1)-dimensional space. With regard to its partitioning,
it has only one dimension (x1) of maximum side length. Hence, division takes along
that dimension, generating three new hyperrectangles. On the other hand, at the
third iteration two hyperrectangles are partitioned (resp., centers are the points 3
and 5) into smaller hyperrectangles (resp., centers are the points 3, 8, 9, 10, and
11; and 5, 12, and 13). Here, the division of hyperrectangle 3 takes place along the
two dimensions as both sides have equal lengths; the procedure first divides along
x1 as the points 8 and 10 are farther from point 3 in the function space than the
points 9 and 11. After 250 function evaluations, MO-DIRECT’s approximation set A
closely coincides on a sampled set Y∗ of the Pareto front of Problem (5.4).
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Figure 5.2: An illustration of MO-SOO. The algorithm expands its leaf nodes to
look for Pareto optimal solutions by partitioning their cells along the decision
space coordinates one at a time in a round-robin manner, with a partition factor
of K = 3. Sweeping its tree from the root node depth till the maximal depth
specified by hmax(t). MO-SOO expands a set of leaf nodes per depth if they are
non-dominated with respect to other leaf nodes in the same level and with respect
to those expanded at lower depths in the current sweep. Subsequently, none or
more nodes can be expanded in one iteration; at the third iteration, for instance,
only one node is expanded (whose representative state is point 4) into its children
(whose representative states are the points 4, 6, and 7). On the other hand, at
the fourth iteration three nodes are expanded (resp., representative states are the
points 4, 6, and 7) into their children nodes (resp., representative states are the
points 4, 6, 7, 8, 9, 10, 11, 12, and 13). After 20 iterations, MO-SOO’s approximation
set A closely coincides on a sampled set of the Pareto front Y∗ of Problem (5.4).

On the other hand, Figure 5.2 shows the convergence of MO-SOO’s approxima-

tion set A towards a sampled set (numerically-obtained) of the Pareto front at

different stages of the algorithm iterations—demo is available at https://www.

dropbox.com/s/1g52fexvylfxh4n/mosoo-demo.zip?dl=0. The reader can refer

to Figure 5.2 as we briefly describe the first stages of the algorithm.

Initialization. MO-SOO starts by initializing its tree with a root node (0, 0) whose
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cell represents the decision space, i.e., X0,0 = X . The root’s representative state

x0,0 = (0, 0)—point 2 in Figure 5.2—is evaluated and f(x0,0) is obtained.

Iteration 1. At this iteration, leaf nodes at depth h = 0 are considered for

expansion. In other words, the root node is expanded by partitioning its cell along

the first dimension of the decision space intoK = 3 cells. Here, P1 = Q1 = {(0, 0)}.
For convenience, we shall refer to the nodes by their representative states, i.e.,

P1 = Q1 = {2}. The newly generated leaf nodes are added to the tree and

evaluated at their representative states viz. the points 1, 2, and 3 in Figure 5.2.

Note that having an odd partition factor (K = 3) saves one function evaluation

for each node expansion (point 2 was already evaluated).

Iteration 2. At this iteration, leaf nodes at depth h = 1 are considered for

expansion. We have P2 = {1, 2, 3} and V = {2}. Along with Lines 4–8 of Algo-

rithm 9, Q2 becomes {2}, because point 2 dominates both points 1 and 3 as it can

noted in the function space. Thus, node 2 is expanded and the tree grows to have

the leaves L = {1, . . . , 5}, each being evaluated at its representative state. The

case is the same for iteration 3 which considers nodes at h = 2 generating a new

set of leaves L = {1, . . . , 7}.
Iteration 4. At this iteration, leaf nodes at depth h = 3 are considered for

expansion. Here, P4 = {4, 6, 7} and V = {4, 6, 7}. Along with Lines 4–8 of Algo-

rithm 9, Q4 becomes {4, 6, 7}, because the points 4, 6, and 7 are non-dominated

with respect to the nodes in P4 and V as it can seen in the function space. Thus,

they all are expanded and the tree grows to have the leaves L = {1, . . . , 13}.
Next Iterations. The same holds for the next iterations until the maximal

depth—specified by hmax(t)—is reached. Then, V is set to ∅ and the tree is swept

again from its root. After some iterations, MO-SOO closely approximates the Pareto

front as shown in Figure 5.2.

Both algorithms provide a very simple and flexible framework to try other

approaches in tackling an MOP (e.g., indicator-based or scalarization-based tech-

nique). However, they come with an increased space complexity when compared to

evolutionary multi-objective algorithms, since an archive of all the samples has to

be maintained rather than a population of samples. Nevertheless, this is becoming

less of a concern with increasing complexity of MOPs where employed evaluation

budgets are usually within practical storage limits.
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5.3 Convergence Analysis

The analysis of multi-objective solvers is hindered by several issues; namely the

diversity of approximation sets, the size of the Pareto front, and the convergence

of approximation sets to the Pareto front [4]. While most theoretical studies have

addressed finite-set and/or discrete problems [215, 216], others have provided prob-

abilistic guarantees [217] or assumed a total order on the solutions [179]. The

present section discusses theoretical aspects of the proposed techniques. While

it is not difficult to prove the optimal limit behavior of the two algorithms, the

finite-time analysis is complicated by the presence of multiple objectives. It is even

more complicated in the case of MO-DIRECT as it considers—besides the conflicting

objectives—the hyperrectangle size as a criterion for selection.

In the light of the above, this section is organized as follows. Section 5.3.1 dis-

cusses the asymptotic behavior of the MO-DIRECT algorithm. Section 5.3.2 builds

on the theoretical methodology presented in Chapter 3 and studies MO-SOO’s finite-

and asymptotic-time performance. On the one hand, the finite-time analysis es-

tablishes an upper bound on the Pareto-compliant unary additive epsilon indicator

characterized by the objectives smoothness as well as the structure of the Pareto

front with respect to its extrema. On the other hand, the asymptotic analysis in-

dicates the consistency property of MO-SOO. Moreover, we validate the theoretical

provable performance of the algorithm on a set of synthetic problems.

5.3.1 Convergence Analysis of MO-DIRECT

Emerging from a mathematical programming approach, MO-DIRECT comes with a

theoretical property that it asymptotically converges to the Pareto front. Despite

being practically infeasible, due to limits in available time and storage; this makes

MO-DIRECT theoretically sounder than many MOP solvers. In line with analysis

presented in [56], Theorem 9 puts formally the aforementioned proposition based

on the following lemma.

Lemma 1. As the number of iterations t goes to∞, the fewest number of divisions

r(t) undergone by any hyperrectangle i ∈ H created by MO-DIRECT approaches ∞.

Proof. Let us prove it by contradiction. If limt→∞ r(t) < ∞, then there must

exist some iteration t́ after which r(t) never increases, i.e., limt→∞ r(t) = r(t́). At
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the end of iteration t́, there is a finite number N of hyperrectangles in Ht́ with

a number of divisions equals to r(t́). As these hyperrectangles are the biggest in

Ht́, then after at most t́+N iterations, all of these hyperrectangles will have been

divided, as they are not dominated by any other hyperrectangle generated after

the end of iteration t́. This implies that r(t́+N) ≥ r(t́) + 1 which contradicts our

assumption about r(t) never increases above r(t́). Thus, limt→∞ r(t) =∞.

Theorem 9. As the number of iterations t goes to ∞, MO-DIRECT converges to

the Pareto front of an MOP with continuous objectives.

Proof. To simplify the proof, let the decision space X ⊂ Rn be a unit hyper-

cube. Since new hyperrectangles are created by partitioning existing ones into

thirds along X ’s dimensions, a hyperrectangle i ∈ H that has been part of ri(t)

partitions/divisions will have ji(t) = ri(t) mod n sides of length 3−(ki(t)+1) and

n − ji(t) sides of length 3−ki(t), where H is the set of hyperrectangles created by

MO-DIRECT over X and ki(t) = ri(t)−ji(t)
n

. Since ri(t) ≥ r(t), from Lemma 1 we

have: limt→∞ ri(t) =∞. Thus, as the number of iterations approaches infinity, the

radius Ri(t) of hyperrectangle i (distance from i’s center to its vertices) goes to

zero, since: limt→∞ Ri(t) = limt→∞

√
ji(t)·3−2(ki(t)+1)+(n−ji(t))·3−2ki(t)

2
= 0. Therefore,

given any δ > 0, there exists T > 0 such that after t > T iterations, all the hy-

perrectangles in Ht have a center-to-vertex distance less than δ. In other words,

any point in the hypercube X is at a distance δ of some sampled point. Thus,

if the MOP’s objectives are continuous in the neighborhood of its Pareto front;

MO-DIRECT’s approximation set will asymptotically converge to that front.

5.3.2 Convergence Analysis of MO-SOO

In this section, the finite-time performance of MO-SOO is presented besides its

asymptotic convergence. The finite-time analysis of MO-SOO is established with

respect to the Pareto-compliant quality indicator, the unary additive epsilon indi-

cator I1ǫ+ [168]. We do this in a two-step approach. First, we upper bound the loss

measure introduced in Section 5.1.2.1, viz. r(v) of Eq. (2.15). The loss measure

captures the convergence of MO-SOO’s approximation set Yv
∗ to m points—on the

Pareto front—that contribute to the problem’s ideal point y∗. Second, based on

the presented loss bound and an intrinsic measure of the Pareto front, an upper

bound on the unary additive epsilon indicator I1ǫ+ is established.
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In general, the design of MSO algorithms is driven by assumptions about the

function smoothness. Here, we make three assumptions about the function f and

the hierarchical partitioning in line with those presented in Chapter 3 for single-

objective settings. In essence, these assumptions let us express the quality of

MO-SOO solutions in relation to the number of iterations, by quantifying how much

exploration is needed to expand nodes that contain objective-wise optimal solu-

tions. The rest of this section is organized as follows. First, these assumptions are

stated in Section 5.3.2.1. Then, in Section 5.3.2.2, the finite-time performance of

MO-SOO is analyzed, where we first upper bound the loss (2.15) as a function of

the number of iterations t.1 Second, this objective-wise loss bound is employed to

establish an upper bound on the I1ǫ+ indicator. After presenting the main result

on the finite-time performance of the algorithm, MO-SOO’s consistency property

(asymptotic performance) is proved and illustrative examples are given. Towards

the end of this section, an empirical validation of the theoretical findings is pre-

sented.

5.3.2.1 Assumptions

There exists a vector-valued function ℓ : X × X → R+m
such that each entry is a

semi-metric (i.e., {ℓj}1≤j≤m satisfy symmetry, non-negativity, and the coincidence

axiom) such that:

A5.1 (Hölder continuity of f1, . . . , fm):

|fj(x)− fj(y)| ≤ ℓj(x,y), ∀x,y ∈ X , j = 1, . . . ,m .

A5.2 (bounded cells diameters): For j = 1, . . . ,m and ∀(h, i) ∈ T , ∃ a non-

increasing sequence δj(h) > 0 such that

sup
x∈Xh,i

ℓj(xh,i,x) ≤ δj(h)

and limh→∞ δj(h) = 0. Thus, ensuring the regularity of the cells’ sizes which

decrease with their depths in T .
1Typically, v in Eq. (2.15) and the approximation set Yv

∗
represents the number of sampled

points (function evaluations). Nevertheless, one can express the loss (and likewise the approxima-
tion set) with other growing-with-time quantities (e.g., the number of iterations, the number of
node expansions). In the rest of this chapter, we refer to the number of the: function evaluations
and iterations, by v and t, respectively, where one iteration represents executing the lines 4–8 of
Algorithm 9, once.
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A5.3 (well-shaped cells): For j = 1, . . . ,m and ∀(h, i) ∈ T , ∃ sj > 0 such that a

cell Xh,i contains an ℓj-ball of radius sjδj(h) centered in xh,i. Thus, ensuring

that the cells’ shapes are not skewed in some dimensions.

5.3.2.2 Finite-Time Performance

In this section, we characterize the finite-time performance of MO-SOO in terms of

the Pareto-compliant unary additive epsilon indicator based on the assumptions

presented in Section 5.3.2.1. To this end, we upper bound the loss measure (2.15)

with respect to the number of iterations t. This provides the basis upon which a

bound for the ǫ-indicator is established with respect to the same.

Bounding the Loss Measure. In order to derive a bound on the loss, we employ

the near-optimality dimension—defined in Chapter 3—as a measure of the quantity

of objective-wise near-optimal solutions (states in X ). For the sake of completeness,

we redefine the near-optimality dimension and revise some terminology, besides the

terminology of Section 2.4.2.

For j = 1, . . . ,m; and for any ǫ > 0; let us denote the set of ǫ-optimal states

according to fj, {x ∈ X : fj(x) ≤ fj(x
∗
j) + ǫ}, by X ǫ

j , as depicted in Figure 5.4.

Subsequently, denote the set of nodes at depth h whose representative states are

in X δj(h)
j by Ihj , i.e., Ihj

def
= {(h, i) ∈ T : 0 ≤ i ≤ Kh − 1,xh,i ∈ X δj(h)

j }. A node

(h, i) is Pareto optimal ⇐⇒ ∃x ∈ X ∗ : x ∈ Xh,i. Furthermore, a Pareto optimal

node (h, i) is j-optimal ⇐⇒ it is optimal with respect to fj, i.e., x
∗
j ∈ Xh,i. After

t iterations, one can denote the depth of the deepest expanded j-optimal node by

h∗
j,t (as illustrated in Figure 5.3).

Now, we define the near-optimality dimension for fj:

Definition 21 (sj-near-optimality dimension). The sj-near-optimality dimension

for

{fj}1≤j≤m is the smallest dsj ≥ 0 such that there exists Cj > 0 and for any ǫ > 0,

the maximal number of disjoint ℓj-balls of radius sjǫ and center in X ǫ
j is less than

Cjǫ
−dsj .

One can note that dsj is characterized by: the function fj, the semi-metric ℓj,

and the scaling factor sj, i.e., it depends on the objectives smoothness and relates
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Figure 5.3: Hierarchical partitioning of the decision space X with a partition
factor of K = 3 at iteration t represented by a K-ary tree. Consider a multi-
objective problem where m = 2 and the global optimizers of the first and sec-
ond objective functions (x∗

1 and x∗
2, respectively) are shown. Thus, the nodes

{(3, 4), (2, 1), (1, 0), (0, 0)} and {(2, 6), (1, 2), (0, 0)} are 1- and 2-optimal nodes, re-
spectively. Furthermore, h∗

1,t = 3 and h∗
2,t = 2.

to the partitioning strategy of the space through the scaling factor sj. Based on

Assumption A5.3 and Definition 21, we have:

|Ihj | ≤ Cjδj(h)
−dsj .2 (5.5)

Now, let us assume for simplicity that the ND(·) operator in Algorithm 9 is

replaced by NDmin(A) = ∪1≤j≤m argminy∈A yj; that is to say, in each iteration, m

or less nodes are expanded whose representative objective vectors f(xh,i) have the

minimum entries with respect to the m objectives. Furthermore, for j = 1, . . . ,m;

assume that h∗
j,t = h́ and denote the j-optimal node at depth h́+ 1 by (h́+ 1, j∗).

Since (h́ + 1, j∗) has not been expanded yet, any node at depth h́ + 1 that is

selected at later iterations and expanded before (h́+ 1, j∗) (line 7 in Algorithm 9)

must satisfy the following:

fj(xh́+1,i) ≤ fj(xh́+1,j∗)

fj(xh́+1,i) ≤ fj(x
∗
j) + δj(h́+ 1) (5.6)

2 From Lemma 1.
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Figure 5.4: The feasible decision space and the corresponding jth objective space
(Yj ⊆ R). The global optimizer x∗

j and any solution x whose image under the jth

objective lies within {fj(x) ≤ fj(x
∗
j) + δj(h)} are denoted by X δj(h)

j .

where inequality (5.6) comes from combining Assumptions A5.1 and A5.2: fj(xh́+1,j∗) ≤
fj(x

∗
j) + ℓj(xh́+1,j∗ ,x

∗
j) ≤ fj(x

∗
j) + δj(h́ + 1). As defined earlier, X δj(h)

j satisfies

Eq. (5.6) (depicted in Figure 5.5, for m = 2). Thus, from the definition of Ihj
and since all the objectives are considered simultaneously, we are certain that

{(h́+ 1, j∗)}1≤j≤m get expanded after
∑m

j=1 |I h́+1
j | node expansions at depth h́+ 1

in the worst-case scenario. Nevertheless, such definition of the NDmin(·) opera-

tor favors exploring {X δj(h)
j }1≤j≤m over other regions, which delays the search

for other Pareto points outside these regions (see, for instance, the circled re-

gion in Figure 5.5). Using the ND(·) operator from Definition 20 rectifies this

behavior: by expanding non-dominated nodes, MO-SOO explores as well the region

{x : f(x) ≺ ynadir(f(∪j=1,2X δj(h)
j ))}−∪j=1,2X δj(h)

j denoted by X h
ND (see Figure 5.5).

While we are able to quantify—based on the near-optimality dimension—the num-

ber of nodes within {X δj(h)
j }1≤j≤m, similar analysis gets unnecessarily complicated

for X h
ND. However, since ND(·) expands—besides other nodes—the same set of

nodes that would have been selected by NDmin(·), we know that at most |I h́+1
j |

iterations at depth h́+ 1 are needed to expand the optimal node (h́+ 1, j∗). From

this observation, the following lemma is deduced.

Lemma 2. In MO-SOO, after t iterations, for any depth 0 ≤ h ≤ hmax(t) whenever

hmax(t)
h∑

l=0

max
1≤j≤m

|I lj| ≤ t , (5.7)
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Figure 5.5: The objective space Y for a multi-objective optimization problem
(m = 2). The solid curve marks the Pareto front Y∗. At depth h, assuming
the {j}j=1,2-optimal nodes are not expanded yet, one can use the NDmin(·) op-
erator, which causes nodes whose representative states lie in the decision space

portion ∪j=1,2X δj(h)
j to be expanded before others. However, this may hold up

discovering other parts of the Pareto front (the circled region). This is not
the case with the ND(·) operator, where another region X h

ND—whose image in
the objective space is bounded by the Pareto front and the points y1, y2, and

y3 = ynadir(f(∪j=1,2X δj(h)
j ))—is as well considered. Let the considered depth at

iteration t be h and the depth of the deepest {j}j=1,2-optimal nodes be h − 1.
Then, prior to expanding the {j}j=1,2-optimal nodes at depth h, the set Qt (of Al-
gorithm 9) comprises of at most 3 types of nodes whose representative states lie in

X δ1(h)
1 ,X δ2(h)

2 , and X h
ND, respectively. Furthermore, one can note from Eq. (5.5) as

well as Assumptions A5.1 and A5.2 that the point y1 is greater than or equal
y4, and hence f(x∗

1), along f2 by at most C1δ1(h)
−ds1 · 2δ2(h), that is to say

y12 − f2(x
∗
1) ≤ C1δ1(h)

−ds1 · 2δ2(h); similar argument can be made between the
points y2 and y5 along f1. This observation is the main ingredient in the proof of
Theorem 11.

we have {h∗
j,t}1≤j≤m ≥ h.

Proof. We know that {h∗
j,t}1≤j≤m ≥ 0 and hence the above statement holds for

h = 0. For 0 < h ≤ hmax(t), we are going to prove it by induction.

Assume that the statement holds for 0 ≤ h ≤ ĥ < hmax(t). Let us then prove it

for h ≥ ĥ+1. Let hmax(t)
∑ĥ+1

l=0 max1≤j≤m |I lj| ≤ t, and hence, hmax(t)
∑ĥ

l=0 max1≤j≤m |I lj| ≤
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t for which we know by our assumption that {h∗
j,t}1≤j≤m ≥ ĥ. Here, we have two

cases: (i) {h∗
j,t}1≤j≤m ≥ ĥ + 1, for which the proof is done; (ii) {h∗

j,t}1≤j≤m = ĥ,

for this case, the set of nodes expanded at depth ĥ + 1 at each iteration, be-

fore the {j}1≤j≤m-optimal nodes at the same depth, belong to m + 1 sets (pos-

sibly overlapped) of nodes. Among theses sets, m sets are from {I ĥ+1
j }1≤j≤m,

respectively; while the remaining set of nodes have their representative states

in X ĥ+1
ND − ∪mj=1X

δj(ĥ+1)
j . As a result, at each iteration, there could be at least

one node to be expanded from {I ĥ+1
j }1≤j≤m, respectively. Since expanding all

of these nodes takes at most max1≤j≤m |I ĥ+1
j | iterations at depth ĥ + 1; with a

tree of depth hmax(t), we are certain that the {j}1≤j≤m-optimal node at depth

ĥ + 1 are expanded after at most hmax(t)max1≤j≤m |I ĥ+1
j | iterations. Therefore,

we have {h∗
j,t}1≤j≤m ≥ h.

In other words, the size of Ihj gives a measure of how much exploration is

needed, provided that the j-optimal node at depth h− 1 has been expanded; and

this exploration is quantified by the near-optimality dimension. The next theorem

builds on Lemma 2 to present a finite-time analysis of MO-SOO in terms of a bound

on the loss of Eq. (2.15) as a function of the number of iterations t.

Theorem 10 (r(t) for MO-SOO). Let us define h(t) as the smallest h ≥ 0 such that:

hmax(t)

h(t)
∑

l=0

max
1≤j≤m

Cjδj(l)
−dsj ≥ t (5.8)

where t is the number of iterations. Then the loss of MO-SOO is bounded as:

rj(t) ≤ δj(min(h(t), hmax(t) + 1)) , j = 1, . . . ,m . (5.9)

Proof. Since |Ihj | ≤ Cjδj(h)
−dsj from Eq. (5.5); from the definition of h(t) (5.8),

we have:

hmax(t)

h(t)−1
∑

l=0

|I lj| ≤ hmax(t)

h(t)−1
∑

l=0

max
1≤j≤m

Cjδj(l)
−dsj < t

Thus, from Lemma 2 and since hmax(t) is the maximum depth at which nodes can

be expanded, we have {h∗
j,t}1≤j≤m ≥ min(h(t)− 1, hmax(t)). Now, let (h

∗
j,t + 1, j∗)

be the deepest non-expanded j-optimal node (which is a child node of the deepest
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expanded j-optimal node at depth h∗
j,t and its representative state xh∗

j,t+1,j∗ has

been evaluated), then the loss with respect to the jth objective is bounded, based

on Assumption A5.2, as:

rj(t) ≤ f(xh∗
j,t+1,j∗)− f(x∗

j) ≤ δj(h
∗
j,t + 1) .

Since {h∗
j,t}1≤j≤m ≥ min(h(t)− 1, hmax(t)), we have rj(t) ≤ δj(min(h(t), hmax(t) +

1)), for j = 1, . . . ,m.

Bounding the Additive Epsilon Indicator. Within the context of multi-

objective optimization and after t iterations, the vectorial loss r(t) of Eq. (2.15)

does not explicitly capture the quality of MO-SOO’s approximation set Y t
∗ with

respect to the whole Pareto front Y∗. Here, we investigate whether there is an im-

plicit connection between the two concepts. Particularly, we study the relationship

between r(t) (as well as its bound of Eq. 5.9) and the Pareto-compliant additive

ǫ-indicator of MO-SOO’s approximation set Y t
∗ with respect to the Pareto front Y∗

(or the unary additive ǫ-indicator of Y t
∗): I1ǫ+(Y t

∗). In essence, I1ǫ+(Y t
∗) measures

the smallest amount ǫ needed to translate each element in the Pareto front Y∗ such

that it is weakly dominated by at least one element in the approximation set Y t
∗.

This notion is put formally in Definition 7.

A negative value of Iǫ+(A,B) indicates that A strictly dominates B: every

element in B is strictly dominated by at least one element in A. Note that

I1ǫ+(Y t
∗)

def
= Iǫ+(Y t

∗,Y∗) ≥ 0 as no element in Y t
∗ strictly dominates any element

in Y∗. Thus, the closer I1ǫ+(Y t
∗) to 0, the better the quality of Y t

∗. Figure 5.6

illustrates the two quantities, viz. r(t) and I1ǫ+(Y t
∗), and highlights their explicit

relationship for m = 2. From this observation, the following lemma is deduced.

Lemma 3. For any MOP solver, we have I1ǫ+(Y t
∗)≥ max1≤j≤m rj(t).

Proof. From the definition of the vectorial loss measure (2.15), the m closest ele-

ments on the approximation set Y t
∗ to the m extrema of the Pareto front Y∗—i.e.,

{f(x∗
j)}1≤j≤m—differ by {rj(t)}1≤j≤m along the corresponding jth objective, re-

spectively. Therefore, an objective-wise translation of at least max1≤j≤m rj(t) is

needed so as each of the translated Pareto front extrema is weakly dominated

by at least one element in the approximation set Y t
∗. Thus, from Definition 7,

I1ǫ+(Y t
∗) ≥ max1≤j≤m rj(t).
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Figure 5.6: Illustration of the vectorial loss r(t) of Eq. (2.15) and its relation to
the unary additive epsilon indicator I1ǫ+(Y t

∗) (Definition 7) for a multi-objective
problem (m = 2) whose objective space Y is shown in two scenarios: (i) non-
conflicting objectives and (ii) conflicting objectives. The faded square (resp., curve)
in the first (resp., second) scenario represents the least-translated Pareto front so
as every translated element is weakly dominated by at least one element in the
approximation set Y t

∗, i.e., {(y1+I1ǫ+(Y t
∗), . . . , ym+I1ǫ+(Y t

∗))}y∈Y∗ . Mathematically,
I1ǫ+(Y t

∗) ≥ max1≤j≤m rj(t) where equality sufficiently holds when |Y t
∗| = 1 (see

Lemma 3).

While Lemma 3 provides a lower bound on the indicator I1ǫ+(Y t
∗), one is more

interested in an upper bound so as to capture the convergence of the approximation

set to the whole Pareto front. To this end, we propose a measure of conflict of

the Pareto front extrema with respect to the rest of its elements, called conflict

dimension.

Definition 22. (conflict dimension) The conflict dimension Ψ ≥ 0 for an MOP

with m objectives and Pareto front Y∗ is the unary additive epsilon indicator of

the approximation set that consists of the extrema of Y∗ (m or less elements).

Mathematically:

Ψ
def
= I1ǫ+({f(x∗

j)}1≤j≤m)
def
= Iǫ+({f(x∗

j)}1≤j≤m,Y∗) (5.10)

Figure 5.7 illustrates the proposed measure. Note that Ψ is an intrinsic property

of the MOP’s Pareto front Y∗. In essence, the conflict dimension Ψ captures the

proximity of Pareto front extrema to the rest of its elements, where Ψ = 0 ⇐⇒
|Y∗| ≤ m. We now provide our upper bound on the indicator I1ǫ+(Y t

∗).
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Figure 5.7: The objective space Y for a multi-objective optimization problem (m =
2) with conflict dimension Ψ ≥ 0 (Definition 22). The solid curve marks the
Pareto front Y∗. The faded curve represents the Ψ-translated Pareto front, i.e.,
{(y1 + Ψ, . . . , ym + Ψ)}y∈Y∗ . Every element of the Ψ-translated Pareto front is
weakly dominated by at least one element in the set {f(x∗

j)}1≤j≤m ⊆ Y∗.

Theorem 11 (I1ǫ+(Y t
∗) for MO-SOO). Let us define h́(t)

def
= min(h(t), hmax(t) + 1)

where t is the number of iterations and h(t)—as in Theorem 10—is the smallest

h ≥ 0 such that Eq. (5.8) holds. Then for an MOP with conflict dimension Ψ, the

indicator I1ǫ+(Y t
∗) of MO-SOO is bounded as:

I1ǫ+(Y t
∗) < Ψ+ max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t)) . (5.11)

Proof. From the loss bound (5.9) established in Theorem 10, MO-SOO’s approxima-

tion set after t iterations Y t
∗ lies in a portion of the function space, viz. {f(X δ1(h́(t))

1 ), . . . , f(X δm(h́(t))
m )

and possibly f(X h́(t)
ND ) (defined before Lemma 2 in Section 5.3.2.2 and depicted in

Figure 5.5, for m = 2). Therefore, in the worst-case scenario, Y t
∗ consists of m (or

less) elements that contribute to the nadir point of f(X h́(t)
ND ) (e.g., Y t

∗ = {y1,y2}
in Figure 5.5, where their objective-wise values constitute y3). For brevity, let us

denote this worst-case approximation set and the set of the Pareto front extrema

{f(x∗
j)}1≤j≤m by Y t,w

∗ and Y∗,e, respectively.
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Now, for all j ∈ {1, . . . ,m}, the maximum objective-wise translation between

the element Y t,w
∗ ∩ f(X δj(h́(t))

j ) (e.g., y1 in Figure 5.5 for j = 1) and f(x∗
j) ∈ Y∗,e is

upper bounded as follows (see Figure 5.5 for illustration).

max
1≤̄≤m

y1∈Yt,w
∗ ∩f(X

δj(h́(t))

j )

y1̄ − f̄(x
∗
j) ≤ max

(

max
1≤l≤m
l 6=j

from Eq. (5.5)
︷ ︸︸ ︷

Cjδj(h́(t))
−dsj · 2δl(h́(t))

︸ ︷︷ ︸

from A5.1 and A5.2

,

from Eq. (5.9)
︷ ︸︸ ︷

δj(h́(t))
)

≤ max
1≤k≤m

(

max
(

max
1≤l≤m
l 6=k

2Ckδk(h́(t))
−dsk δl(h́(t)), δk(h́(t))

)
)

< max
1≤k,l≤m

(1 + 2Ckδk(h́(t))
−dsk ) · δl(h́(t)) . (5.12)

Put it differently, elements in Y t,w
∗ differ objective-wise by a value less than the

right-hand side of (5.12) with respect to their corresponding closest elements in

Ye
∗ . On the other hand, Definition 22 implies that there exists at least one element

y2 ∈ Y∗,e for every element y3 ∈ Y∗ such that y2 �Ψ y3. Consequently, we have

y2j+ max
1≤k,l≤m

(1+2Ckδk(h́(t))
−dsk )·δl(h́(t)) ≤ Ψ+ max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t))+y3j ,

(5.13)

for all j ∈ {1, . . . ,m}. Combining (5.12) and (5.13) indicates that for every element

y3 ∈ Y∗, there exists at least one element y1 ∈ Y t,w
∗ such that

y1j < Ψ+ max
1≤k,l≤m

(1 + 2Ckδk(h́(t))
−dsk ) · δl(h́(t)) + y3j , (5.14)

for all j ∈ {1, . . . ,m}. i.e., I1ǫ+(Y t,w
∗ ) ≤ Ψ+max1≤k,l≤m(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t)).
Since maxy4∈Yt

∗
y4j ≤ maxy1∈Yt,w

∗
y1j for all j ∈ {1, . . . ,m}, we have

I1ǫ+(Y t
∗) < Ψ+ max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t)) .

Theorem 11 characterizes the bound on I1ǫ+(Y t
∗) by a non-increasing func-

tion max1≤k,l≤m

(1+2Ckδk(h́(t))
−dsk )·δl(h́(t)) reflecting the objectives smoothness with an offset de-

pendent on the structure of the Pareto front with respect to its extrema {f(x∗
j)}1≤j≤m—

i.e., the conflict dimension Ψ. Towards the end of this section, some illustrative

examples are given about the characteristics of the non-increasing function in re-

lation to the theoretical bounds presented. Furthermore, these theoretical bounds

are calculated via symbolic computation and validated on a set of synthetic prob-

lems.
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5.3.2.3 Asymptotic Convergence (Consistency Property)

Theorem 10 addressed the finite-time performance of MO-SOO with respect to m

points on the Pareto front, whereas Theorem 11 established it with respect to the

additive ǫ-indicator as the number of iterations t grows. Here, we consider the

asymptotic convergence towards the Pareto front. An algorithm is consistent if it

asymptotically converges to the Pareto front. MO-SOO guarantees that no portion

of X is disregarded ⇐⇒ hmax(t)→∞ as t→∞. Accordingly, if a Pareto optimal

node happens to be a leaf node at iteration t́, then it will definitely get expanded

in one of the next iterations ≥ t́ + 1. As the number of iterations t grows bigger,

the base points sampled by MO-SOO form a dense subset of X such that for an

arbitrary small ǫ ≥ 0: ∀x́ ∈ X ∗, ∃ a base point x such that |f(x) − f(x́)| ≤ ǫ. The

next theorem establishes formally our proposition about the consistency property

of MO-SOO.

Theorem 12 (MO-SOO Consistency). MO-SOO is consistent, provided that hmax(t)→
∞ as t→∞, where t is the number of iterations.

Proof. Let us denote the deepest Pareto optimal node that has the Pareto optimal

solution x́ ∈ X ∗ by (hx́(t), ix́). i.e., x́ ∈ Xh
x́
(t),i

x́

. From Assumption A5.2 and the

definition of the semi-metric ℓj,

0 ≤ ℓj(xh
x́
(t),i

x́

, x́) ≤ δj(hx́(t)) , ∀x́ ∈ X ∗, j = 1, . . . ,m .

Since hmax(t)→∞ as t→∞, the depths of all the Pareto optimal nodes tends to
∞, mathematically:

0 ≤ lim
t→∞

ℓj(xh
x́
(t),i

x́

, x́) ≤ lim
h
x́
(t)→∞

δj(hx́(t)) , ∀x́ ∈ X ∗, j = 1, . . . ,m .

Then, with Assumption A5.2:

lim
t→∞

ℓj(xh
x́
(t),i

x́

, x́) = 0 , ∀x́ ∈ X ∗, j = 1, . . . ,m ,

and from the coincidence axiom satisfied by ℓj as a semi-metric:

lim
t→∞

xh
x́
(t),i

x́

= x́ , ∀x́ ∈ X ∗ .

Thus, as the number of iterations t grows bigger, MO-SOO asymptotically converges

to the Pareto front.
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5.3.2.4 Illustration

In this section, insights on the loss bound (5.9) is presented and illustrated through

some examples.3 For j = 1, . . . ,m; let δj(h) = cjγ
h
j for some constants cj > 0 and

0 < γj < 1; hmax(t) = tp for p ∈ (0, 1). Putting this in (5.9), two interesting cases

can be noted:

• Consider the case where {dsj}0≤j≤m = 0, denote max1≤j≤m Cj by Ĉj. From

Theorem 10:

t ≤ hmax(t)

h(t)
∑

l=0

max
1≤j≤m

Cjδj(l)
−dsj = hmax(t) · Ĉj(h(t) + 1) .

Thus, for j = 1, . . . ,m:

rj(t) ≤ O(γ
min(t1−p, tp)
j ) , (5.15)

i.e., the loss is a stretched-exponential function of the number of iterations t.

• Consider the case where ∃k ∈ {1, . . . ,m} such that ∀l, Ckδk(l)
−dsk = max1≤j≤m Cjδj(l)

−dsj

and dsk > 0, then from Theorem 10, we have:

t ≤ hmax(t)

h(t)
∑

l=0

Ckδk(l)
−dsk = Ck · c−dsk

k · tp · γ
−dsk (h(t)+1)

k − 1

γ
−dsk
k − 1

,

(1− γ
dsk
k )

Ck

· t1−p ≤ c
−dsk
k γ

−dskh(t)

k ,

(

Ck

1− γdsk

)1/dsk

· t−
1−p
dsk ≥ ckγ

h(t)
k .

Hence, h(t) is of a logarithmic order in t, making h(t) < hmax(t) + 1 as t

grows bigger. Thus, with δj(h) = Θ(δk(h)) for j = 1, . . . ,m;

rj(t) ≤ O(t
− 1−p

dsk ) , (5.16)

i.e., the loss is a polynomially-decreasing function of the number of itera-

tions t.

3As the indicator bound (5.11) is dependent on the loss bound (5.9), similar analysis holds
true for the indicator bound as well.
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One can deduce that the performance (in terms of the loss (2.15)) is influenced by

two main factors, viz. the near-optimality dimension of the objectives {dsj}0≤j≤m

, and the maximal depth function hmax(t).

The Maximal Depth Function hmax(t). From Theorem 10, the maximal depth

function hmax(t) acts as a multiplicative factor in the definition of h(t) (Eq. 5.8) as

well as a limiting factor on the loss bound (Eq. 5.9). This effect of hmax(t) elegantly

captures the exploration-vs.-exploitation trade-off. Larger hmax(t) makes the al-

gorithm more exploitative (deeper tree) and h(t) smaller, while smaller hmax(t)

makes the algorithm more exploratory (broader tree) and h(t) larger; the inverse

proportionality between hmax(t) and h(t) evens out the loss bound in both situa-

tions.
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Figure 5.8: Bi-objective problem (m = 2, n = 1) over X = [0, 1] with f1(x) =
||x− 0.25||α1

∞ , f2 = ||x− 0.75||α2
∞ , ℓ1(x,y) = ||x−y||β1

∞, ℓ2(x,y) = ||x−y||β2
∞ where

β1 ≤ α1, β2 ≤ α2. The region X ǫ
1 (resp., X ǫ

2 ) is the interval centered around x∗
1

(resp., x2
∗) of length 2 · ǫ1/α1 (resp., 2 · ǫ1/α2). They can be packed with ǫ1/α1−1/β1

(resp., ǫ1/α2−1/β2) intervals of length 2 · ǫ1/β1 (resp., 2 · ǫ1/β2).

The Near-Optimality Dimensions {dsj}0≤j≤m. While hmax(t) is a parameter of

the algorithm, {dsj}0≤j≤m are dependent on the multi-objective problem at hand
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and are related to the algorithm’s partitioning strategy through the scaling factors

{sj}1≤j≤m. Consider the near-optimality dimensions for the bi-objective problem

(depicted in Figure 5.8 for n = 1) where X = [0, 1]n, f1(x) = ||x − 0.25||α1
∞ , and

f2 = ||x − 0.75||α2
∞ for α1 ≥ 1, α2 ≥ 1; and let MO-SOO have a partition factor

of K = 3n. Furthermore, assume the semi-metrics to be ℓ1(x,y) = ||x − y||β1
∞,

ℓ2(x,y) = ||x − y||β2
∞ where β1 ≤ α1, β2 ≤ α2 in line with Assumption A5.1.

In the light of Assumption A5.2, δ1(h) and δ2(h) may be written as 2−β1 · 3−hβ1

and 2−β2 · 3−hβ2 , respectively; and from Assumption A5.3, we have s1 = 1 and

s2 = 1. The region X δ1(h)
1 (resp., X δ2(h)

2 ) is the L∞-ball of radius δ1(h)
1/α1 (resp.,

δ2(h)
1/α2) centered in 0.25 (resp., 0.75). In line of Definition 21, these regions can

be packed by
(

δ1(h)
1/α1

δ1(h)
1/β1

)n

(resp.,
(

δ2(h)
1/α2

δ2(h)
1/β2

)n

) L∞-balls of radius δ1(h)
1/β1 (resp.,

δ2(h)
1/β2). Thus the near-optimality dimensions are ds1 = n(1/β1 − 1/α1) and

ds2 = n(1/β2 − 1/α2). Without loss of generality, three scenarios are present with

respect to the first objective:

1. α1 = β1 =⇒ ds1 = 0; the cardinality of the set Ih1 is a constant regardless

of the depth h and the decision space dimensionality n. This presents a

balanced trade-off between exploration and exploitation as the semi-metric ℓ1

is capturing the function f1 behavior precisely.

2. α1 > β1 =⇒ ds1 > 0 ; the cardinality of the set Ih1 becomes an increasing

function of the depth h and the decision space dimensionality n. This presents

a bias towards exploration as the semi-metric ℓ1 underestimates the behavior

of the function f1.

3. α1 < β1; this violates Assumption A5.1. With this regards, the algorithm

becomes more exploitative falling for local optimal solutions as the semi-

metric ℓ1 is overestimating f1’s smoothness.

The first two scenarios coincide with the two cases discussed earlier in this section.

As t grows larger and the near-optimality dimensions are zero (reflecting a balance

in the exploration-vs.-exploitation dilemma), setting p = 0.5 in hmax(t) = tp results

in a faster decay of the loss bound (Eq. 5.15). On the other hand, when more

exploration is needed, setting p→ 0 (broader tree) gives a faster loss bound decay

(Eq. 5.16).
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Remark 8. It is important to reiterate here that MO-SOO does not need the knowl-

edge of the functions smoothness and the corresponding near-optimality dimen-

sions, it only requires the existence of such smoothness. These measures help only

in quantifying the algorithm’s performance.

Remark 9. The case of zero near-optimality dimension covers a large class of

functions. In fact, it has been shown by [160] that the near-optimality dimension

is zero for any function defined over a finite-dimensional and bounded space, and

whose upper- and lower-envelopes around the global optimizer are of the same order.

5.3.2.5 Empirical Validation of Theoretical Bounds

In this section, the loss r(t) and the indicator I1ǫ+(Y t
∗) bounds of (5.9) and (5.11),

respectively, are validated empirically for the bi-objective problem defined in Sec-

tion 5.3.2.4 and depicted in Figure 5.8. We compute these quantities using Symbolic

Math Toolbox from The MathWorks, Inc. and compare them with respect to the

numerical loss and indicator values obtained by running MO-SOO with an evaluation

budget of v = 104 function evaluations.

With a partition factor of K = 3, the decreasing sequence δ1(h) (resp., δ2(h))

can be defined as 2−α1 ·K−3α1⌊h/n⌋ (resp., 2−α2 ·K−3α2⌊h/n⌋) as the search space is

partitioned coordinate-wise per depth. Moreover, from Assumption A5.3, we have

s1 = 1 (resp., s2 = 1). C1 and C2 of Definition 21 are set to 2 as the cell centers

may lie on the boundary of X δ1(h)
1 and X δ2(h)

2 , respectively.

To assess the effect of the conflict dimension Ψ (defined in Definition 22), eight

instances of the problem are tested, where n ∈ {1, 2}, and the j-optimal solutions

(x∗
1, x

∗
2) are set in one of four configurations—reflecting among others the maximum

and minimum Ψ values. The Pareto front Y∗ and the conflict dimension Ψ of the

problem are estimated numerically from 106 uniformly-sampled points. While the

maximal depth function hmax(t) acts as a very conservative multiplicative factor

in (5.8) for the number of depths visited in each iteration. In our experiments, we

have recorded the number of depths visited in each iteration and used the recorded

values as the multiplicative factor in computing the theoretical bounds of (5.9)

and (5.11).

The numerical and theoretical measures are presented in Figure 5.9. First, one

can easily verify Lemma 3. Second, whilst having the same evaluation budget v,
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the conflict and decision space dimensions have a clear impact on the corresponding

number of iterations t. Recall that one iteration represents executing the lines 4–8

of Algorithm 9, once. Though with some offset, one can note how the theoretical

measures upper bound the numerical measures with a similar trend. The code for

generating the data presented in this section is available at https://www.dropbox.

com/s/ssiq1m52hczuj7a/mosoo-theory-validation.rar?dl=0.
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Figure 5.9: Empirical validation of MO-SOO’s finite-time analysis for eight instances {a, . . . , h} of the bi-objective problem of
Figure 5.8. Each plot shows the problem measures, namely the loss measures r1(t), r2(t) and the indicator I1ǫ+(Y t

∗), as well as their
upper bounds (denoted by r̄1, r̄2, and Ī1ǫ+, respectively) as a function of the number of iterations t with a computational budget
of v = 104 function evaluations. The upper bounds are obtained via symbolic computation of the (5.9) and (5.11) equations using
MATLAB’s Symbolic Math Toolbox. The header of each instance’s plot reports the decision space dimension n and the conflict
dimension Ψ. The j-optimal solutions (x∗

1, x
∗
2) are fixed as follows: (0,1) for (a) and (e), (0.21,0.81) for (b) and (f), (0.47,0.61)

for (c) and (g), and (0.57,0.57) for (d) and (h).
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5.4 Conclusion

This chapter proposed two multi-objective algorithmic instances within the MSO

framework, namely MO-DIRECT and MO-SOO inspired by the single-objective DIRECT [56]

and SOO [34] algorithms. With the aim of recognizing Pareto optimal solutions,

MO-DIRECT creates iteratively a set of shrinking hyperrectangles over the search

space, seeking an exploration-vs.-exploitation trade-off. Likewise, MO-SOO encodes

the feasible decision space in a tree of bandits and expands it using the non-

dominated Pareto relation among its tree nodes.

While both algorithms are optimal in the limit—that is, they enjoy the consis-

tency property, MO-DIRECT’s finite-time analysis is complicated by the inclusion

of the hyperrectangle size as a criterion in its search for Pareto-optimal solu-

tions. On the other hand, MO-SOO performance in terms of finite-time rate has

been established, based on three basic assumptions about the function smooth-

ness and hierarchical partitioning. The theoretical analysis of MO-SOO establishes

a deterministic upper bound on the Pareto-compliant ǫ-indicator for continuous

MOPs, whereas existing theoretical analysis of multi-objective solvers either con-

siders finite-set/discrete problems or provides probabilistic guarantees.
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Benchmarking Multi-Objective
Multi-Scale Search

“Do not wait for someone else to validate your existence; it is your

own responsibility“

- Jasz Gill

In general, optimization algorithms are assessed in one of two ways, viz. the-

oretical and empirical analysis. In theoretical analysis (as carried out in Chap-

ter 5), a principled methodology is carried out to derive an analytical bound of

the (run-time) solution quality or guarantee its optimality in the limit. Alterna-

tively, empirical analysis employs experimental simulations of the algorithm on

complex problems, gaining an insight on the algorithm’s practicality/applicability

on real-world problems. With this regard, the present chapter complements the

theoretical perspective of the proposed multi-objective algorithms, MO-DIRECT and

MO-SOO, presented in Chapter 5 by validating them on a set of multi-objective

problems.

In the course of developing efficient good algorithms, the multi-objective opti-

mization community have been testing their techniques on arbitrary sets of prob-

lems from the literature (e.g., [64]). In this chapter, we seek to consolidate a

testbed for black-box multi-objective optimization in line with the recent efforts

in that direction (e.g., Black-Box Optimization Benchmarking (BBOB) [218] and

Black-box Optimization Competition (BBComp) [57])

Therefore, our contribution here is of two-fold: i). to validate the empirical

performance of MO-DIRECT and MO-SOO and compare them with the state-of-the-

art stochastic as well as deterministic multi-objective algorithms; ii). to build a
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benchmarking platform around a collection of multi-objective problems reflecting

common challenges in real-world problems. To this end, the proposed solvers are

evaluated on the recently presented 300 bi-objective problems from the BBOB

testbed by [6], which we refer to as BO-BBOB. Furthermore, the Black-box Multi-

objective Optimization Benchmarking (BMOBench) is proposed to amalgamate

100 MOPs from the literature.

The rest of this chapter is organized as follows. In Section 6.1, MO-DIRECT and

MO-SOO are validated on the BO-BBOB testbed, whereas Section 6.2 introduces

the proposed BMOBench platform and reports the performance of MO-DIRECT and

MO-SOO on the same.

6.1 Bi-Objective Black-Box Optimization Bench-

marking (BO-BBOB)

This section presents a numerical assessment and comparison of MO-DIRECT and

MO-SOO with respect to the state-of-the-art multi-objective algorithms based on the

BBOB testbed [218]. The rest of the section discusses the compared algorithms,

test problems, setup, evaluation procedure, and performance comparison.

6.1.1 Compared Algorithms

Four state-of-the-art algorithms from main multi-objective approaches have been

selected to compare against MO-DIRECT and MO-SOO: the genetic algorithm, NSGA-II

[177]; the decomposition-based algorithm, MOEA/D, by Zhang and Li [184]; the adap-

tive evolutionary strategy, MO-CMA-ES, by Voß et al. [219]; and the hypervolume-

based algorithm, SMS-EMOA, by Beume et al. [220]. In our experiments, we have

used C/C++ implementations of the algorithms, which can be retrieved from the

sources shown in Table 6.1.

6.1.2 Test Problems

We make use of the recently proposed benchmark platform by Brockhoff et al.

[6],1 which we refer to as BO-BBOB. It comes with three-hundred bi-objective

optimization problems, with simple bound constraints, that is to say, X = [l,u] ⊂
1 The test suite is retrieved from http://coco.gforge.inria.fr/doku.php?id=

mo-gecco2015.
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Table 6.1: The compared algorithms and their implementation sources.

Algorithm Source

NSGA-II [177] C implementation at http://www.iitk.ac.in/kangal/codes.shtml

MOEA/D [184] C++ implementation at http://dces.essex.ac.uk/staff/zhang/

webofmoead.htm

MO-CMA-ES [219] Shark library at http://image.diku.dk/shark

SMS-EMOA [220] Shark library at http://image.diku.dk/shark

MO-SOO Our C implementation at http://ash-aldujaili.github.io/MOSOO

MO-DIRECT Our C implementation at https://sites.google.com/site/modirectmops/

Rn, where u � l. These problems are derived using combinations of 24 well-known

single-objective BBOB functions [218], spanning a wide range of attributes that

are observed in real-world problems (e.g., separability, conditioning, and modality).

Moreover, investigating the scalability of algorithms with increasing n is possible

with BO-BBOB problems as they can be tested over different search dimensions.

Furthermore, each of these problems has five different instances, transforming the

original functions through such operations as search space rotation and non-linear

variable transformations.

6.1.2.1 Experimental Setup

In this section, we discuss the experimental setup, viz. algorithm parameters and

evaluation budget settings.

6.1.2.2 Parameters Setting

To improve the exploitation search component as opposed to the exploratory inher-

ent nature of the MO-DIRECT algorithm, the hyperrectangle threshold σt—the sole

parameter of MO-DIRECT—was set to be the square of the problem dimensionality

n2. The parameters setting for MO-SOO is listed in Table 6.2. For the rest of the

algorithms, the default settings of their implementations are used, except for those

listed in Table 6.3, which were set as in [6].

6.1.2.3 Evaluation Budget

MO-SOO and MO-DIRECT are deterministic algorithms producing the same approxi-

mation set in each run of the algorithm for a given problem, whereas the approx-
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Table 6.2: Parameters setting of MO-SOO. In accordance with many single-objective
MSO algorithms, we set the partition factor K to be 3 and the cells partition-
ing to be along one dimension per depth in a sequential fashion. Given a finite
evaluation budget v(t) at iteration t, we have simulated the effect of exploration-
vs.-exploitation trade-off by offsetting the maximal depth hmax(t) from ho(t), the
depth of the shallowest leaf node (i.e., the minimal depth at iteration t), by the
depth of the uniform tree that would have been built using double the evaluation
budget. Furthermore, as the algorithm splits one dimension per depth, we consid-
ered an additive factor proportional to the decision space n. We found a factor of
n1.5 generalize well over the range of dimensions considered n ∈ {2, 3, 5, 10, 20}.

Parameter Value

K 3

Splitting Dimension at depth h h mod n

hmax(t) ho(t)+ logK(2 · v(t))+n1.5

Table 6.3: The modified parameters of MOEA/D, MO-CMA-ES, and SMS-EMOA accord-
ing to Brockhoff et al. [6].

Algorithm Parameter Value

All Population Size 200

NSGA-II

Binary Crossover Distribution Index 20

Binary Crossover rate 1

Polynomial Mutation Index Parameter 50

Polynomial Mutation Rate 1/n

MOEA/D

Crossover Rate 1

Mutation Rate 1/n

SBX Crossover Index Parameter 20

Polynomial Mutation Index Parameter 50

Differential Evolution Crossover CR 0.8

Differential Evolution Crossover F 0.9

Neighborhood Size 20

MO-CMA-ES
Notion of Success population-based

Evolutionary Strategy generational

imation sets produced by the compared stochastic algorithms: NSGA-II, MOEA/D,

MO-CMA-ES, and SMS-EMOA can be different every time they are run for a given

problem. In practice, stochastic algorithms are run several times per problem.

To this end and to ensure a fair comparison, given a computational budget of v

function evaluations per run, the stochastic algorithms are allocated 10 runs per

problem instance. On the other hand, MO-SOO is run once per problem instance

with the cumulated 10× v function evaluations.
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In our experiments, the evaluation budget v is made proportional to the search

space dimension n and is set to 103 · n. The overall computational budget used by

an algorithm on BO-BBOB is the product of the evaluation budget per run, the

number of instances per problem, the number of problems, and the number of runs

per instances.

With n = 2, for instance, the overall computational budget used by MO-SOO on

BO-BBOB is 104 · 2 · 5 · 300 · 1 = 3 × 107 function evaluations. Each of the other

algorithms uses also a computational budget of 103 ·2 ·5 ·300 ·10 = 3×107 function

evaluations.

Remark 10. Comparing deterministic and stochastic algorithms is a general is-

sue and ongoing research that goes beyond the thesis. To this end, the algorithms

performance are also compared in a different experimental setup at https: // www.

dropbox. com/ s/ uxe4gzcba3lb3al/ mosoo-supplement-quantiles-thesis. pdf? dl=

0 comparing performance of the deterministic algorithms to quantiles of the stochas-

tic algorithms’ under the same evaluation budgets.

6.1.3 Benchmark Procedure

Similar to [6], a set of targets are defined for each problem in terms of the most

popular and recommended quality indicators [169], viz. the hypervolume (I−H) and

the unary additive ǫ-indicator (I1ǫ+). A solver (algorithm) is then evaluated based

on its runtime with respect to each target: the number of function evaluations

used until the target is reached. We present the recorded runtime values in terms

of data profiles [221]. A data profile can be regarded as an empirical cumulative

distribution function of the observed number of function evaluations in which the

y-axis tells how many targets—over the set of problems and quality indicators—

have been reached by each algorithm for a given evaluation budget (on the x-axis).

Mathematically, a data profile for a solver s on a problem class P has the form

ds(α) =
1

|P |

∣
∣
∣
∣

{

p ∈ P
∣
∣
∣
tp,s
np

≤ α

}∣
∣
∣
∣
,

where tp,s is the observed runtime of solver s on solving problem p (hitting a

target) over a decision space X ⊆ Rnp . The data profile approach captures several

benchmarking aspects, namely the convergence behavior over time rather than a

fixed budget, which can as well be aggregated over problems of similar category [see,
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for more details, 6]. In our experiments, 70 linearly spaced values in the logarithmic

scale from 10−0.1 to 10−3 and from 10−0.1 to 10−2 were used as targets for I−H and I1ǫ+,

respectively.

The I−H and I1ǫ+values are computed for each algorithm at any point of its run

based on the set of all (normalized) non-dominated vectors found so far—i.e., the

archive—with respect to a (normalized) reference set R ∈ Ω.2 For I−H , we made

use of the available hypervolume values of the reference set computed by Brockhoff

et al. [6]. Nevertheless, we had to compute the reference set for calculating I1ǫ+. The

reference set R for I1ǫ+ was computed by running NSGA-II, MOEA/D, and MO-CMA-ES

for 10 runs with 104 · n function evaluations.

As mentioned in the previous section, we aim to provide a fair comparison

between MO-SOO and the state-of-the-art solvers and accommodate the multiple-

run practice for stochastic algorithms, at the same time. This has been reflected in

the evaluation budget allocation (see Section 6.1.2.3). Likewise, we need to adapt

the data profiles. To this end, given a problem instance and for each one of the

stochastic solvers, we consider the best reported runtime for each target from the

solver’s 10 runs, rather than the mean value. With this setting at hand, the data

profile of MO-SOO at 103 function evaluations, for instance, can be compared to that

of SMS-EMOA at 102 function evaluations.

6.1.4 Performance Discussion

Results from the performance experiments are presented—in terms of data profiles

aggregated over all the problems for each of the tested search space dimension

n ∈ {2, 3, 5, 10, 20} —in Figures 6.1 and 6.2 for HV and Iǫ+, respectively. On the

other hand, Figures 6.3 and 6.4 report the aggregated data profiles over problem

categories for the same. The online supplement presents the results in detail,

reporting data profiles per problem (aggregated over the problem’s five instances)

and per problem category for each n, for both indicators.3 As mentioned earlier, the

data profiles show the proportion of problems solved (targets hit) as a function of

2In line with [169], I−
H
(Yv

∗
) = IH(R) − IH(Yv

∗
) and I1

ǫ+(Yv

∗
) = Iǫ+(Yv

∗
, R), where the IH(A)

indicator for an approximation set A measures the hypervolume of the objective space portion
that is weakly dominated by A [222].

3The online supplement will be made available at the project’s website. Currently, it is avail-
able at https://www.dropbox.com/s/8snmnuozak19scr/mosoo-supplement-thesis.pdf?dl=

0.
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Figure 6.1: I−H-based data profiles aggregating over all 300 problems for a decision
space dimensionality n ∈ {2, 3, 5, 10, 20}. The symbol × indicates the maximum
number of function evaluations. The bottom right plot shows the aggregated data
profiles over all the decision space dimensions tested.

the number of function evaluations used (denoted by #f-evaluations in the figures).

Overall, results show a comparable performance of MO-SOO with respect to the

compared algorithms. Sometimes (especially, when #f-evaluations ≤ 5 · 102 · n),
MO-SOO outperforms the compared algorithms (especially, MO-CMA-ES and MOEA/D)

even with a computational budget ten times less than that used by the rest of the

algorithms. Recall that the data profile of MO-SOO at v #f-evaluations represents the

performance of the algorithm after v #f-evaluations, while those of the compared

algorithms represent their best performance among 10 runs after v #f-evaluations

each. One can observe such behavior clearly in problems with separable functions

(see, e.g., the first two rows of Figures 6.3 and 6.4). On the other hand, MO-DIRECT’s

exploratory behavior is evident by its data profiles that catch up slowly after the

rest of the algorithms.

Problem Dimensionality. As shown in Figures 6.1 and 6.2, the targets become

more difficult to solve within the allocated evaluation budge as n increases: MO-SOO

solves roughly 50% of the problems in 20-n, compared to around 80% in 2-n. The

effect of dimensionality is more present on MO-DIRECT, which hits around 30% of

the targets in 20-n. On the other hand, MO-CMA-ES’s performance degrades from

hitting 70% of the targets in 2-n to 10% in 20-n. However, given MO-CMA-ES’s

steep performance towards the end of allocated budget, the algorithm is projected
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Figure 6.2: I1ǫ+-based data profiles aggregating over all 300 problems for a decision
space dimensionality n ∈ {2, 3, 5, 10, 20}. The symbol × indicates the maximum
number of function evaluations. The bottom right plot shows the aggregated data
profiles over all the decision space dimensions tested, where the term lcm denotes
the least common multiple operator.

to solve more targets (up to 70%) with 10% increase in the evaluation budget. In

general, the performance gap among the algorithms grows with n as more function

evaluations used.

Problem Category. Among the 15 categories of BO-BBOB test suite problems,

MO-SOO’s performance suffers the most on problems with weakly-structured multi-

modal structures : hitting around 40% of the targets, which is the lowest among the

categories, as shown in Figure 6.3. This is supported by the theoretical basis of the

algorithm, since the Cj constant of the near-optimality dimension (Definition 21) is

directly proportional to the number of distinct global optima—as shown by Munos

[223, page 85]—which is a special case of multi-modal functions. In other words,

for a problem whose objectives have k distinct global optima, MO-SOO requires an

evaluation budget that can be as much as k times the budget used for a problem

with uni-modal objectives of similar structure. Similar behavior can be noted on

MO-DIRECT’s performance but with a slower progress. This slow convergence can be

distinctively seen from the algorithm’s data profile for separable problems (the first

row of Figures 6.3 and 6.4), this is supported by the fact that it is more efficient

to perform independent n coordinate-wise searches for separable problem, which is

not the case for MO-DIRECT’s partitioning procedure.
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Figure 6.3: I−H-based data profiles aggregated over problem categories across all
the dimensions tested. The symbol × indicates the maximum number of function
evaluations, whereas the term lcm denotes the least common multiple operator.

Limitations. When compared with MO-SOO, MO-DIRECT’s sampling and parti-

tioning along all the coordinates appears to be an ineffective strategy especially

in higher dimensions. On the other hand, the sequential partitioning scheme of

MO-SOO gives equal importance to the coordinates of the search space, which may

138



Chapter 6. Benchmarking Multi-Objective Multi-Scale Search

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MO-DIRECT
MOEA/D
MO-SOO
SMS-EMOA
NSGA-II

F1: f1→f5 (separable)
F2: f1→f5 (separable)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MO-DIRECT
MOEA/D
MO-SOO
SMS-EMOA
NSGA-II

F1: f1→f5 (separable)
F2: f6→f9 (moderate)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MO-DIRECT
MOEA/D
MO-SOO
SMS-EMOA
NSGA-II

F1: f1→f5 (separable)
F2: f10→f14 (ill-conditioned)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MO-DIRECT
MOEA/D
NSGA-II
SMS-EMOA
MO-SOO

F1: f1→f5 (separable)
F2: f15→f19 (multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)
MO-CMA
MO-DIRECT
MOEA/D
MO-SOO
SMS-EMOA
NSGA-II

F1: f1→f5 (separable)
F2: f20→f24 (w/s multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MOEA/D
MO-DIRECT
NSGA-II
MO-SOO
SMS-EMOA

F1: f6→f9 (moderate)
F2: f6→f9 (moderate)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MO-DIRECT
MOEA/D
SMS-EMOA
MO-SOO
NSGA-II

F1: f6→f9 (moderate)
F2: f10→f14 (ill-conditioned)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MOEA/D
MO-DIRECT
NSGA-II
SMS-EMOA
MO-SOO

F1: f6→f9 (moderate)
F2: f15→f19 (multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MOEA/D
MO-DIRECT
MO-SOO
SMS-EMOA
NSGA-II

F1: f6→f9 (moderate)
F2: f20→f24 (w/s multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MO-DIRECT
MOEA/D
MO-SOO
SMS-EMOA
NSGA-II

F1: f10→f14 (ill-conditioned)
F2: f10→f14 (ill-conditioned)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MOEA/D
MO-DIRECT
NSGA-II
SMS-EMOA
MO-SOO

F1: f10→f14 (ill-conditioned)
F2: f15→f19 (multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

of
 (f

un
ct

io
n+

ta
rg

et
)

MO-CMA
MOEA/D
MO-DIRECT
MO-SOO
NSGA-II
SMS-EMOA

F1: f10→f14 (ill-conditioned)
F2: f20→f24 (w/s multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MOEA/D
NSGA-II
SMS-EMOA
MO-DIRECT
MO-SOO

F1: f15→f19 (multi-modal)
F2: f15→f19 (multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MOEA/D
MO-DIRECT
NSGA-II
SMS-EMOA
MO-SOO

F1: f15→f19 (multi-modal)
F2: f20→f24 (w/s multi-modal)

dimension = 
{
2,3,5,10,20

}

101 102 103

# f-evaluations / lcm(dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 (f
un

ct
io

n+
ta

rg
et

)

MO-CMA
MOEA/D
MO-DIRECT
NSGA-II
SMS-EMOA
MO-SOO

F1: f20→f24 (w/s multi-modal)
F2: f20→f24 (w/s multi-modal)

dimension = 
{
2,3,5,10,20

}

Figure 6.4: I1ǫ+-indicator-based data profiles aggregated over problem categories
across all the dimensions tested. The symbol × indicates the maximum number
of function evaluations, whereas the term lcm denotes the least common multiple
operator.

affect the performance on weakly-structured objectives. Another factor influencing

both algorithms’ performance is the nature of the ND(·) operator: selecting all the

nodes on the non-dominated front without considering their spread, which may
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lead to inefficient use of the evaluation budget.

6.2 Black-box Multi-objective Optimization Bench-

marking (BMOBench)

Inspired by the BO-BBOB platform [6] and the work of Custódio et al. [65],

this section describes the Black-box Multi-objective Optimization Benchmark-

ing (BMOBench) platform, available at https://github.com/ash-aldujaili/

BMOBench. It presents the test problems, evaluation procedure, and experimental

setup. Towards the end of this section, the BMOBench is demonstrated by com-

paring recent multi-objective solvers from the literature, namely SMS-EMOA [220],

DMS [65], and MO-HOO [133], with the proposed multi-objective MSO algorithms.

BMOBench was made possible by making use of the codes developed by Brockhoff

et al. [6] and Custódio et al. [65].

6.2.1 Test Problems

One-hundred multi-objective optimization problems from the literature are se-

lected.4 These problems have simple bound constraints, that is to say, X =

[l,u] ⊂ Rn, where u � l. Table 6.4 presents a brief list of these problems with

number of dimensions/objectives. In order to have a better understanding of the

algorithm strength/weakness, the benchmark problems are categorized (wherever

possible) according to three key characteristics, namely dimensionality : low- or

high-dimension decision space, separability : separable or non-separable objectives,

and modality : uni-modal or multi-modal objectives. Each of these attributes im-

poses a different challenge in solving an MOP [224].

6.2.2 Evaluation Budget

MO-SOO and MO-DIRECT are deterministic algorithms producing the same approxi-

mation set in each run of the algorithm for a given problem, whereas the approx-

imation sets produced by the compared stochastic algorithms: DMS and SMS-EMOA

can be different every time they are run for a given problem. In practice, stochas-

tic algorithms are run several times per problem. To this end and to ensure a fair

4retrieved from http://www.mat.uc.pt/dms.

140

https://github.com/ash-aldujaili/BMOBench
https://github.com/ash-aldujaili/BMOBench
 http://www.mat.uc.pt/dms


Chapter 6. Benchmarking Multi-Objective Multi-Scale Search

Table 6.4: Test problems definition and properties. Symbols: D : dimensionality ∈
{L : low-dimensionality, H : high-dimensionality}; S : separability ∈ {S : separable,
NS : non-separable}; M : modality ∈ {U : uni-modal, M : multi-modal}; × :
uncategorized/mixed.

# Problem Name n m D S M # Problem Name n m D S M

1 BK1 [224] 2 2 L S U 51 L3ZDT3 [225] 30 2 H × ×
2 CL1 [226] 4 2 L × × 52 L3ZDT4 [225] 30 2 H × ×
3 Deb41 [64] 2 2 L × × 53 L3ZDT6 [225] 10 2 H × ×
4 Deb512a [64] 2 2 L × × 54 LE1 [224] 2 2 L S U

5 Deb512b [64] 2 2 L × × 55 lovison1 [227] 2 2 L × ×
6 Deb512c [64] 2 2 L × × 56 lovison2 [227] 2 2 L × ×
7 Deb513 [64] 2 2 L × × 57 lovison3 [227] 2 2 L × ×
8 Deb521a [64] 2 2 L × × 58 lovison4 [227] 2 2 L × ×
9 Deb521b [64] 2 2 L × × 59 lovison5 [227] 3 3 L × ×
10 Deb53 [64] 2 2 L × × 60 lovison6 [227] 3 3 L × ×
11 DG01 [224] 1 2 L × M 61 LRS1 [224] 2 2 L S U

12 DPAM1 [224] 10 2 H NS × 62 MHHM1 [224] 1 3 L × U

13 DTLZ1 [228] 7 3 H × M 63 MHHM2 [224] 2 3 L S U

14 DTLZ1n2 [228] 2 2 L × M 64 MLF1 [224] 1 2 L × M

15 DTLZ2 [228] 12 3 H × U 65 MLF2 [224] 2 2 L NS M

16 DTLZ2n2 [228] 2 2 L × U 66 MOP1 [224] 1 2 L S U

17 DTLZ3 [228] 12 3 H × M 67 MOP2 [224] 4 2 L S U

18 DTLZ3n2 [228] 2 2 L × M 68 MOP3 [224] 2 2 L × ×
19 DTLZ4 [228] 12 3 H × U 69 MOP4 [224] 3 2 L S ×
20 DTLZ4n2 [228] 2 2 L × U 70 MOP5 [224] 2 3 L NS ×
21 DTLZ5 [228] 12 3 H × U 71 MOP6 [224] 2 2 L S ×
22 DTLZ5n2 [228] 2 2 L × U 72 MOP7 [224] 2 3 L × U

23 DTLZ6 [228] 22 3 H × U 73 OKA1 [229] 2 2 L × ×
24 DTLZ6n2 [228] 2 2 L × U 74 OKA2 [229] 3 2 L × ×
25 ex005 [174] 2 2 L × U 75 QV1 [224] 10 2 H S M

26 Far1 [224] 2 2 L NS M 76 Sch1 [224] 1 2 L × ×
27 FES1 [224] 10 2 H S U 77 SK1 [224] 1 2 L S M

28 FES2 [224] 10 3 H S U 78 SK2 [224] 4 2 L × ×
29 FES3 [224] 10 4 H S U 79 SP1 [224] 2 2 L NS U

30 Fonseca [230] 2 2 L S U 80 SSFYY1 [224] 2 2 L S U

31 I1 [231] 8 3 H S U 81 SSFYY2 [224] 1 2 L × ×
32 I2 [231] 8 3 H NS U 82 TKLY1 [224] 4 2 L × ×
33 I3 [231] 8 3 H NS U 83 VFM1 [224] 2 3 L S U

34 I4 [231] 8 3 H NS U 84 VU1 [224] 2 2 L S U

35 I5 [231] 8 3 H NS U 85 VU2 [224] 2 2 L S U

36 IKK1 [224] 2 3 L × U 86 WFG1 [224] 8 3 H S U

37 IM1 [224] 2 2 L × U 87 WFG2 [224] 8 3 H NS ×
38 Jin1 [232] 2 2 L × U 88 WFG3 [224] 8 3 H NS U

39 Jin2 [232] 2 2 L × U 89 WFG4 [224] 8 3 H S M

40 Jin3 [232] 2 2 L × U 90 WFG5 [224] 8 3 H S ×
41 Jin4 [232] 2 2 L × U 91 WFG6 [224] 8 3 H NS U

42 Kursawe [233] 3 2 L × × 92 WFG7 [224] 8 3 H S U

43 L1ZDT4 [225] 10 2 H × × 93 WFG8 [224] 8 3 H NS U

44 L2ZDT1 [225] 30 2 H × × 94 WFG9 [224] 8 3 H NS ×
45 L2ZDT2 [225] 30 2 H × × 95 ZDT1 [234] 30 2 H S U

46 L2ZDT3 [225] 30 2 H × × 96 ZDT2 [234] 30 2 H S U

47 L2ZDT4 [225] 30 2 H × × 97 ZDT3 [234] 30 2 H S ×
48 L2ZDT6 [225] 10 2 H × × 98 ZDT4 [234] 10 2 H S ×
49 L3ZDT1 [225] 30 2 H × × 99 ZDT6 [234] 10 2 H S M

50 L3ZDT2 [225] 30 2 H × × 100 ZLT1 [224] 10 3 H S U

comparison, given a computational budget of v function evaluations per run, the

stochastic algorithms are allocated 10 runs per problem instance. On the other

hand, the deterministic algorithms are run once per problem instance with the
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cumulated 10× v function evaluations.

In our experiments, the evaluation budget v is made proportional to the search

space dimension n and is set to 102 · n. The overall computational budget used by

an algorithm on BMOBench is the product of the evaluation budget per run, the

number of problems, and the number of runs per problem.

With n = 2, for instance, the overall computational budget used by MO-SOO and

MO-DIRECT on BMOBench is 103 · 2 · 100 · 1 = 2× 105 function evaluations. Each of

the other algorithms uses also a computational budget of 102 · 2 · 100 · 10 = 2× 105

function evaluations.

6.2.3 Benchmark Procedure

Quality Indicator (I) Pareto-Compliant Reference Set Required Target

Hypervolume Difference (I−H) Yes Yes Minimize

Generational Distance (IGD) No Yes Minimize

Inverted Generational Distance (IIGD) No Yes Minimize

Additive ǫ-Indicator (I1ǫ+) Yes Yes Minimize

Table 6.5: Employed Quality Indicators. Adapted from Hadka [2] (for more details,
see [3, 4]).

In line with the BO-BBOB testbed, data profiles are used. Nevertheless, four—

rather than two—popular quality indicators [168, 169] are employed as listed in

Table 6.5. In the present experiments, 70 linearly spaced values in the logarithmic

scale from 10−0.8 to 10−3 and from 10−0.1 to 10−2 were used as targets for I−H , IGD,

and IIGD; and I1ǫ+, respectively.

The I−H , IGD, IIGD and I1ǫ+values are computed for each algorithm at any point

of its run based on the set of all (normalized) non-dominated vectors found so far—

i.e., the archive—with respect to a (normalized) reference set R ∈ Ω. We computed

the reference set for calculating the quality indicators by post-processing the union

of approximation sets generated by the evolutionary algorithms used in [65].

6.2.4 Compared Algorithms

As the BMOBench is coded in both MATLAB and C, access to a larger pool

of multi-objective algorithms was possible. For the sake of demonstration, several
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algorithms were selected as follows. Besides SMS-EMOA [220], the Direct Multi-

Search [65] algorithm from the MP community is considered in its deterministic

(DMS) and stochastic (sDMS) settings. The MO-HOO algorithm by Van Moffaert

et al. [133] is as well selected since it is the only algorithm—to the best of our

knowledge—that attempts to solve black-box multi-objective problems via parti-

tioning the decision space, hierarchically. From a theoretical perspective, it would

be interesting as well to compare MO-DIRECT and MO-SOO’s empirical performance

with that of a uniform-sampling algorithm whose loss bound can be a polynomially-

decreasing function of the number of samples. For instance, a uniform grid of s

samples, for the bi-objective problem presented in the previous chapter, has a loss

rj(s) of O(s−
αj
n ). Default parameters were used for the aforementioned algorithms

in line with Section 6.1.2.2.

6.2.5 Results & Discussion

Figures 6.5 and 6.6 show the data profiles of the compared algorithms as a function

of the number of functions evaluations used in terms of I−H , I
1
ǫ+ and IGD, IIGD,

respectively. On the other hand, Fig. 6.7 shows the aggregated performance of the

same over all the problems and all the quality indicators used.

The performance of the proposed algorithms is consistent with theirs on the

BO-BBOB testbed especially in the initial phase of search. With more function

evaluations allocated, SMS-EMOA and DMS exhibit a better performance over all

the quality indicators considered. DMS performs a line search, consolidating our

hypothesis that independent coordinate-wise search (e.g., in MO-SOO) is far more

efficient that joint coordinate search. This is evident in MO-DIRECT, which exhibits

a better performance in low-dimensional rather than high-dimensional problems.

6.3 Conclusion

In this chapter, the empirical performance of MO-DIRECT and MO-SOO in approxi-

mating Pareto fronts has been evaluated using 400 (300: BO-BBOB; 100: BMOBench)

multi-objective problems and their results are compared with state-of-the art multi-

objective solvers. The performance of MO-SOO is comparable with best results

of the top performing algorithms. From results, we observe that problems with

weakly-structured multi-modal objectives impose a challenge for MO-SOO. This can
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Figure 6.5: Data profiles aggregated over problem categories for the hypervolume
and additive epsilon quality indicators computed. The symbol × indicates the
maximum number of function evaluations.

be attributed to two factors: theoretical foundation of the algorithm (the near-

optimality dimension) in scaling the exploration proportionally with the number

of objective-wise global optima and the fact that sequential partitioning scheme

may not adapt well in case of weakly-structured objectives. In addition, the nature

of the used ND(·) operator overlooks the diversity of the selected nodes for expan-

sion. On the other hand, MO-DIRECT exhibits a slow yet consistent performance

especially on separable and/or high dimensional problems. This can be attributed

to MO-DIRECT’s partitioning procedure, which samples on the order of 2n points

around present solutions, exhausting the search space, inefficiently.

Furthermore, the performance of the indicator-based SMS-EMOA validates the

efficacy of indicator-based techniques. Incorporating such methods within the MSO

framework is straightforward and may be studied as a future investigation.

Besides the numerical assessment, this chapter has presented the Black-box

Multi-objective Optimization Benchmarking (BMOBench) platform consolidating
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Figure 6.6: Data profiles aggregated over problem categories for the generational
and inverted generational distance quality indicators computed. The symbol ×
indicates the maximum number of function evaluations.
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Figure 6.7: Data profiles aggregated over all the problems across all the quality
indicators computed for each of the compared algorithms. The symbol × indicates
the maximum number of function evaluations.
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100 MOPs from the literature. It is hoped that this platform provides the commu-

nity with a unified environment to test their methods in a reproducible manner.
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Chapter 7

Conclusions and Future Works

”People dont like to think, if one thinks, one must reach conclusions.

Conclusions are not always pleasant.”

- Helen Keller

The present thesis has focused on the development and analysis of a special

family of continuous black-box optimization methods. Throughout the research

conducted, several lessons have been learned and promising future directions have

been identified. In this final chapter, a conclusion to these findings is presented.

7.1 Summary of Contributions

Fueled by the emergence of continuous black-box optimization problems in real-

world applications, the numerical optimization community has been actively de-

veloping black-box mathematical programming (or so-called derivative-free opti-

mization) techniques through the present and past decades. In line with the

community’s ongoing effort, the present study is concerned with a class of space-

partitioning methods, which we referred to as Multi-scale Search Optimization

(MSO) algorithms since they look for the (or one) optimal solution over multiple

scales of the decision space. Three key topics within the MSO framework have been

particularly addressed, namely i). finite-time convergence; ii). expensive optimiza-

tion; and iii). multi-objective optimization. In essence, the major contributions of

this thesis are:

• Consolidation and validation of a theoretical methodology to study the finite-

time convergence of single-objective as well as multi-objective MSO algo-

rithms based on three basic assumptions about the objective smoothness
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and the decision space partitioning. First time in literature, a deterministic

finite-time performance bound is established for multi-objective continuous

optimization.

• Development and analysis of an MSO algorithm for expensive continuous

black-box single-objective optimization, to which we refer as the Naive Multi-

scale Search Optimization (NMSO) algorithm.

• Development and analysis of two MSO algorithms for continuous black-box

multi-objective optimization, viz. the Multi-Objective DIviding RECTan-

gles (MO-DIRECT) and Multi-Objective Simultaneous Optimistic Optimization

(MO-SOO) algorithms.

• Thorough benchmarking of classical, recent, as well as commercial single-

objective MSO algorithms.

• Development of a test suite—which we referred to as the Black-box Multi-

objective Optimization Benchmarking (BMOBench)—for continuous black-

box multi-objective optimization, consolidating 100 problems from the liter-

ature.

Based on the above contributions, the major conclusions of this thesis are sum-

marized as follows.

A Theoretical Framework for Finite-Time Analysis. In Chapter 3, a the-

oretical methodology to analyze the finite-time behavior of MSO methods was

presented. The presented methodology was built on three assumptions with roots

in the field of machine learning (multi-armed bandits), to quantify how much search

(or how many samples) is required to achieve near-optimal solutions, and was val-

idated empirically using symbolic math. Under the three assumptions of local

Hölder continuity of the objective function f , partitions boundedness and parti-

tions sphericity, the worst-case convergence rate of several established MSO algo-

rithms, including LO [54, 55], DOO [34], DIRECT [56], MCS [27] and SOO [34], is pre-

sented/incorporated. While the work of Torczon [118] consolidated the theoretical

foundations to analyze and develop direct search methods, the presented theoret-

ical tool in this thesis seeks the same goal with respect to MSO algorithms—i.e.,

space-partitioning tree search algorithms.
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A Finite-Time Pareto-Compliant Indicator Bound. By restricting the smooth-

ness assumption on the objectives (from local to global Hölder continuity assump-

tion A5.1), the theoretical framework described in Chapter 3 is extended in Chap-

ter 5 to establish a finite-time upper bound on the additive ǫ-indicator of the

approximation solution set obtained by the proposed MO-SOO algorithm as a func-

tion of the number of iterations. However, obtaining such a quantity, which can

be expressed in terms of the objective-wise loss bounds, is not always an easy

task to do for multi-objective MSO algorithms (e.g., MO-DIRECT). Furthermore,

the presented—first in literature—deterministic finite-time analysis for continu-

ous multi-objective optimization characterizes the performance by the problem in

hand, where the bound holds down to the conflict dimension of the problem.

Exploitative Multi-Scale Search Algorithm for Expensive Optimization.

Apart from some approaches such as BB-LS [52] and MCS [27], which couple

their space-partitioning search with a local search procedure, MSO methods are

biased towards exploration due to their systematic sampling of the decision space.

In Chapter 4, the NMSO algorithm is presented as an exploitation-biased MSO al-

gorithm whose local search component is integrated within the MSO framework,

rather than being a separate procedure. This distinctive feature makes NMSO an

attractive candidate for optimization problems with limited/expensive evaluation

budgets. Besides its asymptotic optimality, NMSO’s finite-time analysis provides

a generic template to analyze exploitative MSO algorithms with different restart

strategies. The efficacy of NMSO has been recently validated on the BBComp com-

petition held within the GECCO’16 conference, emerging third out of twenty-eight

black-box solvers.

Multi-Scale Search Algorithms for Multi-Objective Optimization. In

Chapter 5, the present thesis extended the frontier of MSO framework to multi-

objective problems. Two multi-objective algorithmic instances, namely MO-DIRECT

and MO-SOO, were proposed by integrating the non-dominance concept with the no-

tion of the single-objective MSO algorithms, DIRECT and SOO, respectively. Both

algorithms are optimal in the limit, converging to the Pareto front. However, the

inclusion of the subspace size as a criterion for further partitioning in MO-DIRECT
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complicates its finite-time analysis compared to MO-SOO’s. Furthermore, the perfor-

mance of MO-DIRECT is adversely affected by its partitioning procedure, whereas

the simple coordinate-wise partitioning strategy of MO-SOO appears to be more

efficient in using its evaluation budget. Besides its theoretically proven conver-

gence, MO-SOO’s performance, in general, is comparable with the state-of-the art

algorithms, especially in limited-budget scenarios. Problems with multi-modal

objectives impose a challenge on the proposed MSO solvers as the amount of ex-

ploration required scales proportionally.

Comprehensive Benchmarking of Multi-Scale Search Algorithms. While

the present thesis sought to establish a theoretical tool to analyze MSO algorithms,

a thorough empirical performance validation of several MSO algorithms from the

literature (BB-LS [52], DIRECT [56], MCS [27], SOO [34], and BaMSOO [5]) has been

presented in comparison to the proposed NMSO algorithm using the COCO platform.

Overall, NMSO is most suitable in low-budget settings for most of the problems,

especially those with separable or multi-modal objectives; BB-LS for ill-conditioned

problems, MCS for weakly-structured functions, but it performs poorly on multi-

modal problems; BaMSOO’s performance improves slowly yet consistently with more

function evaluations.

A New Benchmark for Multi-Objective Optimization. The present the-

sis proposed, in Chapter 6, BMOBench: a benchmarking platform for continuous

black-box multi-objective optimization. Coded in MATLAB/C, BMOBench is

built around 100 problems from the literature reflecting several real-world difficul-

ties. The platform records the approximation set generated by a multi-objective

solver in the course of its run and reports its performance as a function of the num-

ber of function evaluations used. The performance report is presented in terms of

data profiles of four popular quality indicators (hypervolume, additive epsilon, gen-

erational distance, and inverted generational distance) capturing different aspects

of the solver’s runtime performance. In line with other established testbeds by

the community, BMOBench serves the purpose of reproducible research and bet-

ter understanding of multi-objective algorithms with different evaluation budgets

or problem categories. The platform is released as an open source and is flexible

enough to incorporate new benchmark problems in the future.
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7.2 Future Directions

Based on the present research, we mention here several promising directions for

future work with regard to the MSO framework for continuous black-box optimiza-

tion. One should note that some of these propositions were discussed already in

the previous chapters.

Towards Adaptive Partitioning. The bulk of MSO algorithms typically par-

tition the search space along its dimensions/coordinates, giving them equal im-

portance. As evident from the empirical validation (e.g., ill-conditioned problems

in Chapter 4), this is not always an efficient strategy to follow. In the literature,

there have been some attempts to address such a problem. Proposed by Hansen

[192], the adaptive encoding procedure seeks an independence from the problem’s

coordinates by building a transformed system where the new coordinates are as

de-correlated as possible with regard to the objective function. This procedure

has been employed by Loshchilov et al. [193] to realize an adaptive variant of the

coordinate descent algorithm outperforming the baseline algorithm in solving cer-

tain problems. It is therefore interesting to investigate how this and other similar

techniques can be incorporated within the MSO framework to break away from

boxlike partitions.

Towards Assisted Multi-Scale Search. Given a finite evaluation budget, one

seeks to evaluate as few solutions (samples) as possible on the objective function

of the problem in hand. To this end, surrogate modeling [66] has been a powerful

ingredient for several algorithms tailored towards computationally-expensive op-

timization problem. With regard to the MSO framework, BaMSOO [5] represents

a step towards that direction. One can incorporate—besides surrogate models—

emerging artificial intelligence (e.g., meta-cognitive [235] and reinforcement learn-

ing [179]) techniques to guide the exploratory and exploitative search components

of MSO algorithms. Likewise, online parameter tuning can be employed [236].

In the light of recent advances in online learning algorithms, handling general

constraints—which has been studied to an extent by Gablonsky [139] for the

DIRECT [56] algorithm, e.g., the artificial assignment rule—can be re-examined.

Furthermore, indicator-based search techniques (e.g., [220]) for multi-objective
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problems have witnessed an experimental success and it is worthwhile to assess

its applicability with respect to MSO.

Towards Large-Scale Problems. On the one hand, real-world problems are

increasingly dealing with a high number of decision variables (e.g., training an

artificial neural network). On the other hand, the performance of MSO algorithms

is adversely affected by the problem dimensionality. Therefore, there is a need

for techniques that make the MSO framework scalable. Besides parallelization

techniques, methods transforming high-dimensional problems to low-dimensional

ones such as space-filling curves [237] and random embedding [194] represent an

intriguing topic to explore and apply.
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[107] A. L. Custódio, M. Emmerich, and J. F. A. Maderia. Recent developments in

derivative-free multiobjective optimization. Computational Technology Re-

views, 5:1–30, 2012.

[108] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.

Athena Scientific, Belmont, MA, 1996.

[109] I. M. The Morgridge Institute for Research. Bound constrained optimiza-

tion. http://www.neos-guide.org/content/bound-constrained-optimization,

December 2013.

[110] R. M. Lewis and V. Torczon. Pattern search algorithms for bound constrained

minimization. SIAM Journal on Optimization, 9(4):1082–1099, 1999.

[111] C. T. Kelley. Detection and remediation of stagnation in the nelder–mead

algorithm using a sufficient decrease condition. SIAM J. on Optimization,

10(1):43–55, May 1999. ISSN 1052-6234. doi: 10.1137/S1052623497315203.

URL http://dx.doi.org/10.1137/S1052623497315203.

[112] M. J. D. Powell. The NEWUOA software for unconstrained optimization

without derivatives. Large Scale Nonlinear Optimization, pages 255–297,

2006.
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[134] F. Archetti and B. Betrò. A priori analysis of deterministic strategies for

global optimization problems. Towards Global Optimization, 2:31, 1978.

[135] D. Mayne and E. Polak. Outer approximation algorithm for nondifferentiable

optimization problems. Journal of Optimization Theory and Applications,

42(1):19–30, 1984. ISSN 0022-3239. doi: 10.1007/BF00934131. URL http:

//dx.doi.org/10.1007/BF00934131.

http://dx.doi.org/10.1007/s11081-016-9307-4
http://dx.doi.org/10.1007/s11081-016-9307-4
https://hal.inria.fr/hal-00758379
http://dx.doi.org/10.1007/BF00934131
http://dx.doi.org/10.1007/BF00934131


[136] R. Horst and H. Tuy. On the convergence of global methods in multiextremal

optimization. Journal of Optimization Theory and Applications, 54(2):253–

271, 1987.

[137] J. Pintér. Globally convergent methods for n-dimensional multiextremal

optimization. Optimization, 17(2):187–202, 1986.

[138] R. J. Vanderbei. Extension of piyavskii’s algorithm to continuous global

optimization. Journal of Global Optimization, 14(2):205–216, 1999.

[139] J. Gablonsky. Modifications of the Direct Algorithm. PhD thesis, North

Carolina State University, Raleigh, North Carolina, 2001.

[140] R. Carter, J. Gablonsky, A. Patrick, C. Kelley, and O. Eslinger. Algorithms

for noisy problems in gas transmission pipeline optimization. Optimization

and engineering, 2(2):139–157, 2001.

[141] F. H. Mladineo. An algorithm for finding the global maximum of a multi-

modal, multivariate function. Math. Program., 34(2):188–200, March 1986.

ISSN 0025-5610. doi: 10.1007/BF01580583. URL http://dx.doi.org/10.

1007/BF01580583.

[142] G. L. N. Laurence A. Wolsey. Integer and Combinatorial Optimization. Wiley,

New York, 1988.

[143] J. M. Fowkes, N. I. Gould, and C. L. Farmer. A branch and bound algorithm

for the global optimization of hessian lipschitz continuous functions. Journal

of Global Optimization, 56(4):1791–1815, 2013.

[144] Y. Evtushenko and M. Posypkin. A deterministic approach to global box-

constrained optimization. Optimization Letters, 7(4):819–829, 2013.

[145] Y. D. Sergeyev. A one-dimensional deterministic global minimization algo-

rithm. Computational mathematics and mathematical physics, 35(5):705–717,

1995.

[146] Y. D. Sergeyev and R. G. Strongin. A global minimization algorithm with

parallel iterations. USSR Computational Mathematics and Mathematical

Physics, 29(2):7–15, 1990.

http://dx.doi.org/10.1007/BF01580583
http://dx.doi.org/10.1007/BF01580583


[147] R. G. Strongin and Y. D. Sergeyev. Global multidimensional optimization

on parallel computer. Parallel Computing, 18(11):1259–1273, 1992.

[148] Y. G. Evtushenko, V. Malkova, and A. Stanevichyus. Parallel global opti-

mization of functions of several variables. Computational Mathematics and

Mathematical Physics, 49(2):246–260, 2009.

[149] J. Gablonsky. An implementation of the direct algorithm. Technical Report

CRSC-TR98-29, North Carolina State University, Centre for Research in

Scientific Computing, August 1998.

[150] J. M. Gablonsky and C. T. Kelley. A locally-biased form of the direct algo-

rithm. Journal of Global Optimization, 21(1):27–37, 2001.

[151] Y. D. Sergeyev and D. E. Kvasov. Global search based on efficient diagonal

partitions and a set of lipschitz constants. SIAM Journal on Optimization,

16(3):910–937, 2006.

[152] D. E. Kvasov and Y. D. Sergeyev. Lipschitz gradients for global optimization

in a one-point-based partitioning scheme. Journal of Computational and

Applied Mathematics, 236(16):4042–4054, 2012.
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Web Resource. URL http://mathworld.wolfram.com/HoelderCondition.

html.

http://mathworld.wolfram.com/HoelderCondition.html
http://mathworld.wolfram.com/HoelderCondition.html


[188] F. H. Clarke. Nonsmooth analysis and optimization. In Proceedings of the

International Congress of Mathematicians (Helsinki, 1978), pages 847–853,

1983.

[189] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff. COCO:

A Platform for Comparing Continuous Optimizers in a Black-Box Setting.

arXiv preprint arXiv:1603.08785, 2016.
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