
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3087555, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 

1 

 

Abstract—Deep learning detection methods use in ship 

detection remains a challenge, owing to the small scale of 

the objects and interference from complex sea surfaces. In 

addition, existing ship detection methods rarely verify the 

robustness of their algorithms on multi-sensor images. Thus, 

we propose a new improvement on the ‘You Only Look 

Once’ version 3 (YOLOv3) framework for ship detection in 

marine surveillance, based on synthetic aperture radar 

(SAR) and optical imagery. First, improved choices are 

obtained for the anchor boxes by using linear scaling based 

on the k-means++ algorithm. This addresses the difficulty 

in reflecting the advantages of YOLOv3’s multi-scale 

detection, as the anchor boxes of a single detection target 

type between different detection scales have small 

differences. Second, we add uncertainty estimators for the 

positioning of the bounding boxes by introducing a 

Gaussian parameter for ship detection into the YOLOv3 

framework. Finally, four anchor boxes are allocated to each 

detection scale in the Gaussian-YOLO layer instead of three 

as in the default YOLOv3 settings, as there are wide 

disparities in an object’s size and direction in remote 

sensing images with different resolutions. Applying the 

proposed strategy to ‘YOLOv3-spp’ and ‘YOLOv3-tiny’, 
the results are enhanced by 2-3%. Compared with other 

models, the improved-YOLOv3 has the highest average 

precision (AP) on both the optical (93.56%) and SAR 

(95.52%) datasets. (2) The improved-YOLOv3 is robust, 

even in the context of a mixed dataset of SAR and optical 

images comprising images from different satellites and with 

different scales. 

Index Terms—Ship detection, deep learning-based object 

detection, YOLOv3, SAR and optical imagery. 
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I. INTRODUCTION 

hip detection, in the context of maritime monitoring 

services, has a large number of potential applications, 

including those in ocean environment monitoring, illegal 

fishing prevention, rescue and disaster relief, irregular 

migration detection, and military reconnaissance. Ship 

detection can be narrowly defined as determining ship 

bounding boxes in images, and then locating the ships. The 

proliferation of remote sensing technology [1] has provided 

rapid data support for ship detection. Synthetic aperture radar 

(SAR) imagery is common in the maritime monitoring 

literature. This is because ships can be easily detected, 

independent of the weather and time [2]. However, SAR ship 

detection has several limitations: (1) it is susceptible to noise 

interference; (2) it is vulnerable to strong winds and waves; (3) 

small objects are difficult to locate and identify, and (4) 

different ship types are difficult to differentiate [3]. Optical 

images are worthy further investigation for ship detection, as 

they provide higher resolution and more visualised content. 

Moreover, many of them are free, and provide copious amounts 

of satellite data. Nonetheless, in optical images, weather 

conditions and sunlight can hinder the ship detection 

performance. An effective detection algorithm should not only 

perform well in various scenarios (such as clouds and fog, 

complex sea conditions, ports, and inshore ships), but should 

also support various forms of satellite sensor data. Therefore, 

optical and SAR data should be consolidated to verify the 

robustness of the algorithm. 

Among existing ship detection methods, the constant false 

alarm rate (CFAR) method is based primarily on the intensity 

differences between ships and sea clutter [4]– [6]. The CFAR 

process depends on the statistical distribution of the cluttered 

backgrounds, and is implemented using a sliding window 

technique. Because of this, it is difficult for CFAR methods to 

efficiently process large collections of remote sensing imagery 

[7], [8]. More importantly, hidden deeper information, such as 

spectra, textures, and geometry, are not fully incorporated. Thus, 

detection effects of conventional ship detection approaches are 

often insufficient for the tasks at hand. 

Object detection based on deep learning methods has 

attracted extensive research in recent years, and has gradually 

supplanted methods based on handcrafted features and machine 

learning. Deep learning uses a set of machine learning 

algorithms to learn deeper features via a deep architecture [9]. 

Thus, it is possible to extract deeper features and richer 

semantic information for ship detection from complex remote 

sensing images by constructing a deep learning model. Object 

detection is a computer vision task of combining object 

localisation and recognition. Currently, there are two major 
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branches in object detection based on deep learning. The first 

branch is based on an object region proposal (usually two-stage 

detector) approach. This includes two stages. First, candidate 

object proposals are generated using a regional generation 

algorithm. Then, features are extracted from the candidate 

object proposals via a CNN. Such as region-based CNN (R-

CNN)[10], Fast R-CNN [11], Faster R-CNN[12], Mask R-

CNN[13], Cascade R-CNN[14], Libra R-CNN[15] algorithms. 

The second branch is a regression-based detection (usually an 

one-stage detector) framework, which converts object detection 

to regression processing to directly predict target’s coordinate 

and category. Such as ‘You Only Look Once’ (YOLO)[16], 

single-shot detection (SSD)[17], Deconvolutional Single Shot 

Detector(DSSD)[18],YOLOv2[19],YOLOv3[20],YOLOv4[21

],CornetNet[22], CenterNet[23]. The development process of 

object detection based on deep learning is shown in Fig. 1. 

 

 

Fig. 1. Development process of two main lines (two-stage detector and one-stage detector) for classic object detection based on deep learning (SSD: Single-shot 

detection; R-CNN: Region-based convolutional neural network; YOLO: You only look once). 

In recent years, deep learning has proved to be more effective 

than traditional detection methods. However, deep learning 

based on object detection tends to underperform when applied 

to remote sensing image-based ship detection. This is the fact 

that it is difficult to determine a detection model for small 

targets (e.g., ships) in remote sensing images with multiple 

scenes and complex backgrounds. A remote sensing image has 

a larger field of view and contains more numerous and complex 

targets than a natural scene image. This is therefore difficult to 

distinguish between small and clustered targets. Furthermore, 

ship detection from SAR and optical images is susceptible to 

noise (such as clouds, waves, and shadows) and ship-like 

objects (such as bridges, docks, and ports). These pose 

challenges to ship location.  

Li et al. [24] improved the accuracy of the Faster R-CNN in 

ship detection by using feature fusion, transfer learning, and 

hard negative mining for SAR imagery. Similarly, Cui et al. [25] 

presented an improved faster R-CNN based on a dense attention 

pyramid network for SAR imagery. Kang et al. [26] detected 

ships by applying a traditional CFAR approach to a faster R-

CNN for SAR imagery. Wang et al. [27] addressed SAR ship 

detection by applying transfer learning from SSD by 

considering the detection accuracy and speed. Chang et al. [28] 

detected ships by utilizing a YOLOv2 model for two SAR ship 

datasets. Cui et al. [29] realized large-scale SAR ship detection 

by adding spatial shuffle-group enhance attention to 

CenterNet[30]. In general, there are fewer reports of ship 

detection based on optical images than there are those based on 

SAR images. Bi et al. [31] introduced an optical ship detection 

method based on visual attention deep salient object detection 

and SSD methods. Li et al. [32] detected multi-scale ships by 

expediting the R-CNN model for optical imagery. Wu et al. [33] 

detected inshore ships by applying CNNs to optical satellite 

images. These methods did not consider whether the models 

supported data from multiple satellite sensors, and were only 

tested on SAR or optical images. An excellent detection 

algorithm should not only have high detection precision and 

recall, but should also consider the detection efficiency. The 

robustness of the model needs to be considered. In other words, 

a detection algorithm should provide fast detection and support 

various types of satellite sensors. It should also serve as suitable 

for the remote sensing of multi-scene, multi-scale, and multi-

resolution images. 

In this study, an improved-YOLOv3 model was utilised for 

ship detection. First, to determine the characteristics of the ships 

(e.g., narrow shapes and small sizes), an improved k-means++ 

[34] algorithm was used to obtain accurate anchor boxes for the 

ships. Second, a Gaussian model was introduced to predict the 

uncertainty of the bounding boxes. Third, four anchors are 

assigned a detection scale in the Gaussian-YOLO detection 

layer to improve the robustness of the model. In addition, the 

algorithm was adjusted to the ship object detection task through 

a reasonable parameter adjustment. We trained and evaluated 

the state-of-the-art detection methods Faster R-CNN, SSD, and 

YOLOv3, and the improved-YOLOv3 on ship detection 

benchmark datasets including multi-scene, multi-resolution, 

and multi-size optical and SAR images. In summary, the 

contributions of this study are as following.  

(1) Anchor boxes generated by a traditional k-means 

clustering method cannot reflect the advantages of 

YOLOv3's multi-scale output. This study addresses the 

problem regarding the centralised distribution of anchor 
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boxes for detecting a single target type in the dataset. The 

improved k-means++ clustering algorithm linearly scales 

the anchor boxes to count the numbers and shapes of the 

anchor boxes from the training dataset, according to the 

characteristics of the ships. 

(2) The original YOLOv3 model only outputs the detection 

object’s location information (𝑥, 𝑦, 𝑤, ℎ ); this is a poor 

reflection of the bounding boxes’ reliability. Therefore, the 

Gaussian model is introduced to output the uncertainty of 

each prediction bounding box, and to improve YOLOv3’s 
detection accuracy.  

(3) Four anchors are assigned to a detection scale in the 

Gaussian-YOLO detection layer to improve the robustness 

of the model for multi-scale object detection.  

(4) Two ship datasets, an SAR dataset and an optical dataset, 

are used to verify the effectiveness of the proposed method. 

In addition, we propose mixing two ship datasets 

(including multi-scale, multi-resolution, and multi-scene 

images) to train and verify the model, so as to verify its 

robustness. 

The remainder of this paper is organised as following. 

Section 2 reviews the experimental dataset. Details of the ship 

detection methodology and its implementation are described in 

Section 3. A series of comparative experimental results are 

presented and discussed in Section 4. The conclusions are 

outlined in Section 5. 

II. EXPERIMENT DATASET 

The ship detection algorithm must be valid for images of 

various sources, sizes, and resolutions. Thus, the experiment 

used two ship datasets: an optical ship dataset, and a SAR ship 

dataset. Two datasets were used to verify the effectiveness of 

the proposed method. Optical and SAR imagery could be used 

individually, or as a source for ship detection datasets. The 

implementation of the datasets used in the experiments is 

detailed in the following sections. 

A. Synthetic aperture radar (SAR) ship dataset 

The public SAR dataset was supplied by Wang et al. [35], in 

a format similar PASCALAL visual object class (VOC) dataset. 

This dataset includes ships in multiple scenarios and resolutions. 

Accordingly, this was adequate experimental data for ship 

detection.  
TABLE I 

SYNTHETIC APERTURE RADAR (SAR) SHIP IMAGERY DETAILS 

Sensor 
Image 

Mode 

Resolution 

(m) 

Swath 

(km) 

Incident 

Angle (°) 
Images 

GF-3 UFS 3 × 3 30 20–50 12 

GF-3 FSI 5 × 5 50 19–50 20 

GF-3 QPSI 8 × 8 30 20–41 20 

GF-3 FSII 10 × 10 100 19–50 30 

GF-3 APSII 25 × 25 40 20–38 20 

Sentinel-1 SM 1.7 to 4.9 80 20–45 98 

Sentinel-1 IW 20 × 22 250 29–46 10 

The data were labelled by SAR experts, and were collected 

from 102 Chinese Gaofen-3 images and 108 Sentinel-1 images. 

They dataset comprised 43,819 ship chips with 256 pixels each 

(for both the range and azimuth). The data included SAR 

imagery at resolutions of 3 m, 5 m, 8 m, and 10 m. Table I 

provide additional details on the SAR ship dataset. 

B. Optical ship dataset 

Optical ship dataset was provided by Kaggle for the ‘Airbus 

Ship Detection Challenge’ [36]. The dataset included tankers of 

various shapes and sizes, and shipping and fishing vessels 

located in open seas, docks, and marinas. Optical ship dataset 

comprised 150,000 ship chips with 768 × 768 pixels each, as 

extracted from SPOT satellite imagery at a resolution of 15 m. 

Many of the images contained no ships. Code was used to 

transform the data into common objects in context (COCO) 

format-data annotations according to a supplemental comma-

separated values file. This approach provided oriented 

bounding boxes around the ships (in a run-length encoding 

format). The four primary steps were: (1) deleting images 

without ships, (2) searching for bad comments, (3) transforming 

the run-length encoding data into COCO format-data 

annotations, and (4) converting the COCO format-data 

annotations into a format identical to that of the PASCAL VOC 

format-data annotations. 

Multi-scale, multi-resolution, and multi-sensor SAR and 

optical images served as the experimental data. These datasets 

contain various scenarios, such as cloudy and rainy weather, 

and complex backgrounds. For the experiment, the SAR and 

optical ship datasets were divided into training and test images 

at a ratio of 7:3. A random selection of images from the training 

images at a ratio of 0.2 served as the validation images. 

Therefore, there were 24,538 training images, 6,134 validation 

images, and 13,148 test images in the SAR ship dataset. For the 

optical ship dataset, 29,070 ship clips were collected after 

processing; 20,349 images were used for training, and 8,721 

images were used for testing. 

In addition, this study considered a mixed dataset of SAR and 

optical images from different satellites, scales, and channel 

modes (three-channel RGB optical images and one-channel 

SAR images). The experiments were performed on this mixed 

dataset, along with the other experiments, provided strong 

evidence for verifying the robustness of the proposed method. 

There were 40,817 training images, 10,205 validation images, 

and 21,867 test images in the mixed (optical + SAR) ship 

dataset. 

III. SHIP DETECTION METHOD 

In this section, principles of object detection based on deep 

learning, current mainstream methods, and the improved-

YOLOv3 approach are discussed.  

A. Object detection network structure 

Deep learning-based object detection usually involves 

related concepts, such as anchor boxes, feature extraction, non-

maximum suppression (NMS), and multi-scale detection. To 

obtain an object in an image, an algorithm must be employed to 

generate anchor boxes with fixed widths and heights, according 

to the characteristics of the target shape in the dataset. This 

improves the detection efficiency, owing to the uncertain 

position and shape of the target object. Feature extraction is a 

process that (traditionally) uses neural networks to propagate 
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candidate regions forward, combines data labels and loss 

functions to obtain position and category information of a 

detection target, and then iteratively updates model parameters 

through back propagation. NMS algorithm filters were 

overlapping boxes with low confidence, aiming to solve the 

problem of duplicate target detection. In a process of feature 

extraction, low-level feature maps usually have higher 

resolution and finer-grained features. This is appropriate for 

detecting small objects. As the receptive field increases, the 

resolution of higher-level feature maps decreases. This allows 

for additional semantic information and coarse representations, 

which are suitable for detecting large objects [37], [38]. 

Therefore, most current multi-scale object detection methods 

either independently detect multiple feature maps extracted 

from different layers of a network (such as in SSD), or fuse 

multiple feature maps extracted from different layers of a 

network (such as YOLOv3) [39].  
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Fig. 2. A comparison of the Faster R-CNN, SSD, CenterNet, and YOLOv3 network frameworks. 

The current mainstream frameworks in object detection 

based on deep learning incorporate the faster R-CNN, SSD, 

CenterNet, and YOLOv3 algorithms. In this study, the working 

principles of these four algorithms and possible corresponding 

problems in ship detection were analysed and compared to 

determine the most suitable framework for ship detection. 

Network structures of Faster R-CNN, SSD, CenterNet, and 

YOLOv3 are shown in Fig.2. The four algorithms are discussed 

in detail in the following sections. 

1) Faster region-based convolutional neural network (R-

CNN) 
The network structure of the faster R-CNN, a two-stage 

object detector model, is shown in Fig. 2(A). First, the feature 

maps are obtained in accordance with the CNN; then, the RPN 

is employed to generate regional proposals. Next, the detection 

subnetwork uses these proposals to refine the detection results. 

In the second stage, the ROI pooling adjusts the object 

proposals into shapes of uniform sizes, and enables 

convolutional feature extraction for each proposal in each 

feature map. Finally, these converted object proposals are 

entered into the fully connected layer to output the object 

category and position of the bounding boxes. However, the 

improvement in detection accuracy comes at the cost of slower 

detection. Therefore, obtaining the results from the two-stage 

detector will be a slow process, and it will be difficult to meet 

real-time ship detection requirements. 

2) Single-shot detection (SSD) 

SSD is an one-stage object detector model. In the initial 

configuration, VGG16[40] was used as the basic network, and 

an anchor box was introduced. Several new convolutions were 

added after VGG16, based on combining low-level features to 

high-level features to enable multi-scale detection. As 

demonstrating in Fig. 2(B), SoftMax is currently used for 

background and object classification processing on each feature 

layer behind conv4_3, and the target is located using border 

regression. After the NMS, the object’ s position is output. 

Regression simplifies the computational complexity of the 

network. However, SSD may miss small targets, such as ships. 

As the low-level features used for detecting small objects in the 

network have only one Conv4_3 layer, the feature expression 

ability and detail provided may be insufficient. 
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3) CenterNet 

CenterNet is an one-stage keypoint-based object detector 

model that detects an object as a triplet, i.e. the top-left corner, 

bottom-right corner, and centre keypoint of a bounding box. 

The stacked hourglass [41] and HRNet-W64 [42] networks are 

used as backbones for comparison experiments. Centre pooling 

and cascade-corner pooling are introduced into CenterNet to 

enrich the centre and corner information. As demonstrating in 

Fig. 2(C), the backbone network uses cascaded corner pooling 

and central pooling to output two corner and centre keypoint 

heatmaps, and predicts the offsets. Then, pairs of corner 

detection are used to identify potential bounding boxes, and 

finally, detected central point is used to determine the final 

bounding box. However, this approach requires more 

complicated post-processing to group keypoints belonging to 

the same object (such as calculating distances). 

4) You only look once (YOLO)v3 

YOLOv3 is an one-stage object–detector model. The feature 

maps are resized to a uniform size, and are divided into S × S 

cell grids. Each cell within a target centre is responsible for the 

object category and position of the bounding boxes. 

Additionally, each grid cell predicts three bounding boxes 

based on three anchors. In YOLOv3, DarkNet-53[20] with 

residual skip connection [43] serves as the backbone network, 

as it can solve the vanishing gradient problem. As shown on the 

left side of Fig. 2(D), FPN is introduced to improve the multi-

scale detection accuracy. The large feature map and up-sampled 

feature map are connected through an up-sampling operation. 

The FPN then forecasts objects from three different scales via a 

top-down pathway and lateral connection structure. Therefore, 

it efficiently constructs a multi-scale feature pyramid for 

obtaining global features from several convolutional layers. As 

shown in Fig. 2(D), YOLOv3 outputs the target coordinates and 

probabilities of classes on three different scales. The three 

detection layers’ predicted information is combined and 
processed, and NMS is performed to eliminate redundant 

detection boxes and perform a local maximum search. Then, the 

final detection result is output.  

The unremitting efforts of scholars have produced a steady 

stream of deep-learning-based object detection models. 

Therefore, it is particularly important to identify a model 

suitable for ship detection. As ships are small and narrow, the 

advantages and disadvantages of the current mainstream object 

detection model based on deep learning can be analysed to 

determine the ideal ship detection model. The detection 

efficiency of the CenterNet and faster R-CNN approaches 

cannot meet ship detection requirements. Although SSD can 

meet the requirements for detection efficiency, it may miss 

small targets, such as ships, owing to the design of its structure. 

Thus, in terms of the trade-off between accuracy and efficiency, 

YOLOv3 is better for ship detection than the other detection 

models. 

B. Improved YOLOv3 for ship detection 

YOLOv3 has produced satisfactory detection results on 

standard dataset detection tasks, such as PASCAL VOC and 

COCO. However, YOLOv3 still requires improvements for 

detecting ships from remote sensing images. There are three 

reasons why this is the case. First, images of natural scenes are 

different from those of remote sensing images. Natural images 

tend to have higher resolution, cleaner backgrounds, and a 

larger proportion of detection targets. Therefore, training with 

YOLOv3's original (default) parameters will have effects on the 

detection time and performance. As most ships appear as small, 

narrow targets in remote sensing images, the accuracy of the 

default anchor boxes assigned to the model should be improved. 

Therefore, an improved k-means++ clustering algorithm is 

proposed to address problems regarding the centralised 

distribution of anchor boxes for detecting a single ship type. 

Second, unlike the case with natural images, the object sizes 

and directions in remote sensing images vary at different 

resolutions. Thus, finer anchors must be assigned to the grid 

cells for the detection layer. Third, each prediction box in the 

original YOLOv3 model only contains the bounding box 

coordinates (i.e., 𝑡𝑥,𝑡𝑦,𝑡𝑤,𝑡ℎ), and cannot reflect the reliability 

of the bounding box. Therefore, we introduce a Gaussian model 

to compensate for this drawback. In this study, we improve the 

YOLOv3-based prior’s anchor, anchor assignment, and 

Gaussian model strategy to solve the problem of multiple 

scenes, ship targets of varying size, and detection accuracy in 

remote sensing imagery ship detection. This makes it more 

suitable for ship detection tasks. 

1) Improved k-means++ clustering for priori anchors 

The purpose of the anchor box in YOLOv3 is to detect 

multiple objects concentrated in a grid cell. This adds another 

dimension to the output label. The numbers and sizes of the 

anchor boxes also affect the detection speed and accuracy. The 

anchor box can be defined as the most likely width and height 

of an object, and can be counted from an object's benchmark 

dataset through a clustering algorithm. Considering this, we 

redesigned the anchor boxes to reduce the matching errors 

occurring during training.  

The k-means++ clustering method was applied to the ground-

truth boxes of the detected object in the training dataset 

automatically determine the bounding box prior. The object’s 

width and height were calculated based on the box size of the 

target from the label file. The number of clusters, k, as the 

number of anchor boxes, was adjustable. More anchors would 

seem to simplify the prediction task; however, they require 

higher computation costs. The more similar the sizes of the 

rectangular boxes between the clustering centroids and ground 

truth, the shorter the distance. The distance matrix was 

constructed based on the intersection over union (IoU) between 

the clustering centroids and ground-truth bounding boxes of the 

training image. The IoU was the crossover rate between the 

clustering of centroid box and ground truth bounding box. The 

IoU can be expressed as follows: 

𝐼𝑜𝑈 = 𝐴𝑟𝑒𝑎(𝐵𝑜𝑥(centroids ) ∩ 𝐵𝑜𝑥(𝑡𝑟𝑢𝑡ℎ))𝐴𝑟𝑒𝑎(𝐵𝑜𝑥(centroids ) ∪ 𝐵𝑜𝑥(𝑡𝑟𝑢𝑡ℎ)) (1) 
The distance metric should satisfy the following relationship. ⅆ𝑖𝑠𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑏𝑜𝑥 = 1 − 𝐼𝑜𝑈𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑏𝑜𝑥 (2) 
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To design anchors of similar size for the ships, a clustering 

method was used to count the size distribution of the bounding 

boxes in the SAR and optical ship datasets. SAR images with 

ship chips of 256 pixels and optical images with ship chips of 

768 pixels used in this study contained ships of various sizes, 

as showed in Fig. 3. However, the anchor box distribution 

concentration was obtained using the k-means++ clustering 

algorithm, and many ships were larger than the obtained anchor 

boxes. This is because the ship datasets had a single category 

and similar size ratios. In addition, the k-means++ clustering 

algorithm calculates the cluster centres of each category, which 

narrows the real range between anchor boxes. This will result 

in small differences between the detection scales. Thus, the 

directly obtained anchor box from a single-detection target type 

would not emphasise the advantages of the model's multi-scale 

detection. 

 
      (a) 

 
     (b) 

Fig. 3. Ship label bounding box size distribution relative to the image: (a) 

is in the synthetic aperture radar (SAR) ship dataset and (b) is in the 

optical ship dataset. The yellow star is the anchor box information 

obtained before the improvement of the k-means++ algorithm, when the 

number of clusters is set to nine. 

Therefore, we used a linear scaling method to stretch the 

anchor box to both sides. The calculation formulae are as 

follows: 

𝑤1′ = 𝑤1 × 𝛼 (3) ℎ1′ = ℎ1 × 𝛼 (4) 𝑤𝑛′ = 𝑤𝑛 × 𝛽 (5) ℎ𝑛′ = ℎ𝑛 × 𝛽 (6) 
𝑤𝑖′ = (𝑤𝑖 −𝑤1𝑤𝑛 −𝑤1) × (𝑤𝑛′ − 𝑤1′ ) + 𝑤1′ (7) ℎ𝑖′ = 𝑤𝑖′ × ℎ𝑖𝑤𝑖 (8) 

In the above, n is the number of anchors, w and h are the 

width and height of the anchor obtained from the k-means++ 

algorithm, respectively. 𝛼 and 𝛽 denote the scaling ratios of 

the minimum and maximum anchors, respectively. In this study, 

the scaling ratios of the maximum and minimum anchors were 

determined based on comparisons between the anchors 

generated by the k-means++ clustering algorithm and the actual 

ship’s width and height distribution. As showed in Table II, the 

box would exceed the size range if the stretching ratio was too 

large, and the effect would not be evident if the stretching ratio 

was too small. Therefore, after comparison in this experiment, 

it was roughly determined that 𝛼 = 0.6 and 𝛽 = 1.4. 𝑤1, ℎ1, 𝑤𝑛, ℎ𝑛, 𝑤1′ , ℎ1′ , 𝑤𝑛′ , and ℎ𝑛′  are the widths and heights of the 

first and last anchor box from the k-means++ and improved k-

means++ algorithms, respectively; 𝑤𝑖′  and ℎ𝑖′  are the width 

and height of the improved anchor box, and can be calculated 

using Equations (3), (4), (5), (6), (7), and (8).  

TABLE II 

ANCHOR BOX RESULTS OBTAINED BY THE IMPROVED K-MEANS ++ APPROACH 

FOR DIFFERENT SCALING RATIOS IN THE OPTICAL DATASET 𝛼, 𝛽 Anchor boxes 

0.9, 1.1 (7,6)(14,13)(42,19)(22,39)(62,35)(46,68)(128,53)(87,120)(171,122) 

0.8, 1.2 (6,5)(14,13)(45,20)(23,40)(67,38)(50,72)(140,58)(95,130)(187,133) 

0.7, 1.3 (5,4)(14,13)(47,21)(23,41)(71,40)(52,76)(151,62)(102,140)(202,144) 

0.6, 1.4 (4,4)(14,13)(50,22)(24,42)(76,43)(56,81)(163,67)(109,150)( 218,155) 

0.5, 1.5 (4,3)(14,13)(53,24)(25,45)(81,46)(59,87)(174,72)(117,160)(234,166) 

0.4, 1.6 (3,2)(14,13)(56,25)(26,46)(86,48)(62,91)(185,77)(124,170)(249,177) 

0.3, 1.7 (2,2)(14,13)(58,26)(26,47)(90,51)(65,95)(197,82)(131,180)(265,188) 

0.2, 1.8 (1,1)(14,13)(61,27)(27,48)(95,54)(68,100)(208,86)(138,189)(280,199) 

0.1, 1.9 (0,0)(14,13)(64,28)(28,49)(100,56)(72,104)(220,91)(146,200)(296,210) 

 Figure 4 shows a schematic diagram of the improved k-

means++ anchor box calculation. Fig. 5 presents an example 

process of selecting nine clusters from the SAR, optical, and 

mixed datasets. 

 

 
 
Fig. 4. Schematic diagram of improved k-means++ anchor box calculation. 𝑤𝑖, ℎ𝑖 represent the width and height of the i-th anchor box before improvement; 𝑤𝑖′ 
and ℎ𝑖′  represent the width and height of the i-th anchor box after improvement. 
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(a) Example of taking nine clusters from SAR dataset 

 
(b) Example of taking nine clusters from the optical dataset 

 
(c) Example of taking nine clusters from mixed dataset 

Fig. 5. Example of using the improved k-mean++ method taking nine clusters 
from the SAR, optical, and mixed datasets. The top and bottom are the 

clustering results of k-means++ before and after the improvement.  

2) Assigning finer anchors to the detector layer  

Unlike natural images, there can be a wide disparity in the 

sizes and directions of an object in remote sensing images of 

different resolutions. Owing to the various methods of 

acquiring images, objects can appear at any scale in the image, 

and images at the same scale may have different sizes [44]. 

Thus, finer anchors must be assigned to the detection layer.  

On the one hand, design the different detection layer 

structures. As shown in figure 6, Structure 1 is the structure 

used by YOLOv3. Structure 2 and Structure 3 add the first and 

second feature scales to the third feature scale without changing 

the original number of 9 anchor boxes. The difference between 

them is that the number of anchor boxes allocated to the second 

detection layer. On the other hand, by increasing the total 

number of anchor boxes to evenly distribute to each detection 

layer. Structure (d) is to add a new detection scale to YOLOv3 

and do not change the preset number of anchors 3 for each 

prediction layer. The structure of (e) is to add an anchor box to 

each detection scale.  

In this study, 12 clusters were selected, and an average of 

four anchor boxes corresponded to the detection layer in the 

proposed method for the SAR, optical, and mixed datasets. We 

sorted these anchors, and distributed clusters evenly among the 

scales. The original nine clusters obtained on the PASCAL 

VOC dataset for YOLOv3 were as follows: (10, 13), (16, 30), 

(33, 23), (30, 61), (62, 45), (59, 119), (116, 98), (156, 98), and 

(373, 326). As showed in Table III, the clusters were more 

concentrated than the original clusters, and the widths and 

heights were smaller than in the original clusters. 

 
Fig. 6. Different detection layer structures. (a) is the structure employed by YOLOv3. (b) indicates add the first and second detection features to the third detection 

feature, and uses all anchor boxes to the third detection layer without changing the total number of preset anchor boxes. The structure of (c) is the same as (b), 

except that the number of anchor boxes in the second detection layer is increased. Structure (d) is to add a new detection scale to YOLOv3 and keep the number of 

anchors of each detection scale is 3. Structure (e) is to allocate one more anchor box to each detection scale more finely. Modified part is shown by the red line and 

font. 
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TABLE III 

ANCHOR BOX RESULTS OBTAINED BY THE IMPROVED K-MEANS++ APPROACH FROM THE TRAINING DATASETS 

Data Source SAR training set Optical training set Mixed training set 

Cluster 9 12 9 12 9 12 

Third detector layer 

(14, 15) (12, 13) (4, 4) (4,3) (5, 4) (5, 4) 

(24, 26) (46, 36) (14, 13) (12,11) (23, 23) (20, 18) 

(62, 41) (22, 46) (50, 22) (35, 18) (64, 41) (29, 51) 

 (99, 46)  (22, 35)  (65, 33) 

Second detector layer 

(36, 104) (32, 89) (24, 42) (70, 29) (35, 76) (68, 64) 

(76, 81) (63, 67) (76, 43) (32,78) (83, 83) (41, 100) 

(120, 60) (127, 76) (56, 81) (60, 50) (137, 56) (132, 55) 

 (93, 106)  (155, 48)  (101, 100) 

First detector layer 

(85, 175) (57,164) (163, 67) (86, 83) (77, 173) (64, 178) 

(140, 109) (176, 118) (109, 150) (101, 158) (148, 112) (179, 102) 

(249, 219) (115, 190) (218, 155) (188, 96) (217, 208) (124, 179) 

 (282, 242)  (207, 184)  (249, 203) 

3)  Gaussian model 

In YOLOv3, an input image is divided into an S × S grid cell, 

and the grid cells are responsible for detecting objects whose 

centre falls into them. Every grid cell predicts the object 

category and position of the bounding boxes. As shown in Fig. 

7, the YOLOv3 prediction map has three prediction boxes per 

grid. Each grid outputs 3 × (( 𝑡𝑥, 𝑡𝑦  , 𝑡𝑤, 𝑡ℎ) + 𝑜𝑏𝑗𝑠𝑐𝑜𝑟𝑒 +𝑐𝑙𝑎𝑠𝑠𝑠𝑐𝑜𝑟𝑒)  information, where 𝑐𝑙𝑎𝑠𝑠𝑠𝑐𝑜𝑟𝑒  refers to the 

probability of the object category, and 𝑜𝑏𝑗𝑠𝑐𝑜𝑟𝑒  refers to 

whether an object is present in the bounding box. However, the 

bounding box only provides coordinates; the results do not 

adequately reflect the reliability of the box (i.e., 𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, and 𝑡ℎ  indicate the centre coordinates, width, and 

height of the predicted bounding box, respectively). 

 

Fig. 7. Attributes of the prediction map in the YOLOv3 architecture. 

Based on this limitation, Choi et al. [45] proposed using 

Gaussian distribution characteristics to evaluate the reliability 

of each bounding box’s coordinate information, to thereby 

improve the accuracy of the network. The output of a bounding 

box after introducing the Gaussian model contains �̂�𝑡𝑥, ∑̂𝑡𝑥,  �̂�𝑡𝑦 , ∑̂𝑡𝑦 , �̂�𝑡𝑤 , ∑̂𝑡𝑤 , �̂�𝑡ℎ , and ∑̂𝑡ℎ , where 𝜇(𝑥) and ∑(𝑥) 
are the mean and variance functions, respectively. The data 

must be transformed as follows: 

𝜎(𝑥) = 1(1 + exp(−𝑥)) (9) 

{   
   
   ∑𝑡𝑥 =  𝜎 (∑𝑡�̂�) ∑𝑡𝑦 =  𝜎 (∑𝑡�̂�)∑𝑡𝑤 =  𝜎 (∑𝑡�̂�)∑𝑡ℎ =  𝜎 (∑𝑡ℎ̂)

(10) 

{  
  𝜇𝑡𝑥 =  𝜎(�̂�𝑡𝑥)𝜇𝑡𝑦 =  𝜎(�̂�𝑡𝑦)𝜇𝑡𝑤 =  𝜎(�̂�𝑡𝑤)𝜇𝑡ℎ =  𝜎(�̂�𝑡ℎ) (11) 

The maximum likelihood estimations μtx , μty , μtw , and μth  obtained from Equations (9), (10), and (11) can be used to 

calculate the coordinates of the bounding box regressions. After 

assigning four anchors to the Gaussian-YOLO detection layer, 

the output information for each grid cell is as follows:      4 × (( 𝜇𝑡𝑥 , ∑𝑡𝑥 , 𝜇𝑡𝑦, ∑𝑡𝑦 , 𝜇𝑡𝑤 , ∑𝑡𝑤 , 𝜇𝑡ℎ , ∑𝑡ℎ )+ 𝑜𝑏𝑗𝑠𝑐𝑜𝑟𝑒 + 𝑐𝑙𝑎𝑠𝑠𝑠𝑐𝑜𝑟𝑒) 
Now, each bounding box coordinate satisfies a Gaussian 

distribution with a mean μ and variance σ, and a loss function. 

Taking the coordinate x of the centre point of the bounding box 

as an example, the modified bounding box x’ coordinate 

prediction error calculation formula also must be modified 

accordingly.  

  𝐿𝑥 = −∑∑∑𝛾𝑛𝑚𝑙𝐾
𝑙

𝐻
𝑚

𝑊
𝑛 × log (𝑁 (𝑥𝑛𝑚𝑙𝐺 |𝜇𝑡𝑥(𝑥𝑛𝑚𝑙), ∑ 𝑥𝑡𝑥 (𝑥𝑛𝑚𝑙))+ 𝜀)                                                               (12) 
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Here, 𝑊 and 𝐻 correspond to each grid’s width and height; 𝐾 is the number of anchors; 𝜇𝑡𝑥(𝑥𝑛𝑚𝑙) is the mean value of 𝑡𝑥 

of the k-th anchor in the (n, m) grid of the output 

layer; ∑ 𝑥𝑡𝑥 (𝑥𝑛𝑚𝑙) is the uncertainty of the corresponding 𝑡𝑥 

value; 𝑥𝑛𝑚𝑙𝐺  is the true value of 𝑡𝑥;  𝛾𝑛𝑚𝑙  is a weight 

parameter; and 𝜀 is a constant, with a value of 10−9. Therefore, 

the detection formula for the bounding boxes is as follows: 𝐶𝑟. = 𝜎(𝑂𝑏𝑗𝑒𝑐𝑡) ×  𝜎(𝐶𝑙𝑎𝑠𝑠𝑖) × (1 − 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑎𝑣𝑒𝑟)(13) 

In the above, 𝜎(𝑂𝑏𝑗𝑒𝑐𝑡) reflects the probability of a box 

containing an object, 𝜎(𝐶𝑙𝑎𝑠𝑠𝑖) indicates the probability of 

the i-th class, and  𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑎𝑣𝑒𝑟  represents the average 

reliability of the predicted bounding box coordinates. 

In addition to the Guassian model, GIoU (Generalized 

Intersection over Union) loss [46], DIoU (Distance Intersection 

over Union) loss [47], and CIoU (Complete Intersection over 

Union) loss [47] can also improve the accuracy of bounding box 

regression. Among them, GIoU Loss introduces the smallest 

bounding rectangle between the predicted and the ground truth 

bounding boxes to deal with the situation that the two bounding 

boxes do not overlap in the IoU loss. DIoU loss takes into 

consideration the distance between the center points of the two 

bounding boxes to speed up the convergence speed of GIoU 

loss. CIoU loss increases the aspect ratio scale of the bounding 

box to improve the regression accuracy of the DIoU loss 

bounding box. 

C. Network architecture of the improved-YOLOv3 for ship 

detection 

In this study, an improved-YOLOv3-based convolutional 

neural network was proposed for improving the performance of 

ship detection. Fig. 8 presents the improved-YOLOv3 network 

architecture.  
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Fig. 8. Architecture of the improved-YOLOv3.The yellow module is the backbone network Darknet-53, the purple module is the feature pyramid network (FPN) 

multi-scale feature detection, and the blue part is the improved module

Darknet-53 served as the backbone network for feature 

extraction from the bottom up. It contained 23 residual units, 

consisting of 3 × 3 and 1 × 1 convolutional layers. Objects were 

detected with the FPN architecture at three different scales to 

improve the multi-scale prediction. In addition, the four anchors 

were used to determine the detection bounding box in the 

Gaussian-YOLO detection layer. The network structure 

comprised inputting the ship image, feature extraction, 

Gaussian-YOLO layer detection, and classification and 

regression based on NMS screening of the candidate boxes to 
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output the ship detection results. These processes are described 

more fully below. 

(1) Image Input: 256×256 pixels SAR ship slices and the 

768×768 pixels optical ship slices were resized to 512×512 pixels 

as the network input, and the processed images were evenly 

divided into S × S cell grids. Every grid cell used three anchor 

boxes to predict the position of the bounding box, confidence 

score, and class probabilities. 

(2) Feature Extraction: The processed unified images were 

sent to DarkNet-53. Using Multi-Scale training way, feature 

map will be randomly changed from 320×320 to 608×608 in a 

step of 32 during the training process. The purpose is to make 

the model adaptable various input sizes to improve the 

robustness of detection. 

(3) Gaussian-YOLO Layer Detection: The 83rd, 61st, and 36th 

layers outputted the feature vector through horizontal and top-

down connections, and then the convolution and up-sampling 

operations were used on the feature vector to obtain the next 

feature vector. Finally, the feature vector outputs (in 

dimensions of 16 × 16, 32 × 32, and 64 × 64) were sent to the 

three Gaussian-YOLO layers for the decode operations, 

calculation of the loss rates, and prediction of the classification 

and boundary regression. 

(4) NMS: NMS filters pout the redundant bounding boxes. The 

steps are as following. Step 1: Arrange the bounding boxes in set 

B according to their confidence. Step 2: Select the bounding box 

with the highest confidence from set B as reserved box M. Step 

3: Calculate the IoU values of the remaining bounding boxes and 

M in set B, and delete the bounding boxes whose IoU values are 

higher than the NMS threshold (0.45). Step 4: Repeat steps 2 and 

3 until set B is empty.  

D. Evaluation metrics 

In the comparison experiments, the detection speed, 

precision-recall curve, precision, recall, and average precision 

(𝐴𝑃) were used to evaluate the performance of the detection 

model. The detection speed was expressed as detection 

time/images (total detection time/number of detected images), 

i.e., the time required to detect each image. The metric 

measured the fraction of detections that were true positives (𝑇𝑃), 

and the metric measured the fraction of positives that were 

correctly identified [49]. True positive ( 𝑇𝑃)  denoted the 

number of ships correctly detected as ships, false positive (𝐹𝑃) 

denoted the number of backgrounds incorrectly detected as 

ships, and false negative (𝐹𝑁)denoted the number of ships 

incorrectly detected as backgrounds.  

 

Fig. 9. Schematic diagram of calculating evaluation indicators of intersection-

over-union (𝐼𝑜𝑈), true positive (𝑇𝑃), false positive (𝐹𝑃), and false negative 

(𝐹𝑁). 

Fig. 9 shows an example calculation of the IoU, 𝐹𝑃, and 𝐹𝑁. 

In general, 𝐴𝑃 calculates the area enclosed by the precision-

recall curve through numerical integration. In object detection, 

precision and recall are generally a pair of contradictory 

indicators. Therefore, 𝐴𝑃  is a common evaluation indicator 

for object detection. 

E. Ship detection workflow 

Fig. 10 presents the overall framework of the improved-

YOLOv3 ship detection. There are three main components of 

the workflow: ship image pre-processing, ship detection, and 

detection model performance evaluation. The first component 

comprises the pre-processing of the SAR and optical ship 

datasets. The images are converted into a unified PASCAL 

VOC data format that can be fed into the detection model, and 

are randomly divided into training, test, and validation sets in 

equal proportions. The second component comprises improved-

YOLOv3 training and prediction process for ship datasets. 

After pre-processing, the test and training images are input into 

the network. Then, the features are extracted from the training 

images using the Darknet-53 neural network. The parameters 

are continuously adjusted through forward and backward 

propagation until the model converges, and the model weight 

file is saved. Finally, the generated weight file is called for 

detection based on the test images, and the candidate boxes are 

filtered by NMS to output the ship detection results. The third 

component of the process comprises evaluating the detection 

model’s ship detection performance according to evaluation 
metrics. 

Ground truth 

Predicted (TP) 

Ground Truth 

Predicted (FP) 

Ground truth 

FN 
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Fig. 10. General framework for ship detection using deep learning techniques: (a) division of the input image into an S × S grid(S can be one of 64, 32 and 16); (b) Each 

grid cell in which the centre of the object falls predicts bounding boxes and confidence intervals for those boxes; (c) Each grid cell into which the centre of the object 

falls predicts the class probability map; (d) final detections are obtained by non-maximum suppression (NMS) filtering. 

IV. EXPERIMENT AND ANALYSIS 

In this section, we discuss the ship detection performance 

based on deep learning algorithms for SAR and optical images. 

To highlight the effectiveness of the proposed method, the 

improved-YOLOv3, YOLOv3, SSD, CenterNet, and Faster R-

CNN are compared on the same dataset and the same 

experimental environment. 

A. Experiment environment 

The configurations of the software and hardware used in the 

experiments are listed in Table IV.  

TABLE IV 

ENVIRONMENTAL PARAMETERS FOR THREE DEEP LEARNING DETECTION 

MODELS 

 YOLOv3 SSD CenterNet Faster R-CNN 

Processor Intel CoreTM i7-9800X CPU @ 3.80GHz × 16 

RAM 31.1GiB 

GPU GeForce RTX 2080Ti 11GB 

Operating 

system 
Ubuntu 16.04 LTS 

Deep learning 

framework 
DarkNet Caffe Keras Tensorflow 1.10 

Programming 

language 
C 

Python 3.5, 

Shell 
Python 3.6 Python 2.7 

For improved-YOLOv3, the batch size is set to 64, and the 

subdivisions are set to 16 to maximise the GPU’s memory 
utilisation and reach a quick convergence. For the network 

training tasks, the learning rate is set to 0.000261, the 

momentum is set to 0.9, and the decay is set to 0.0005. The 

ignore threshold is set to 0.5, and the total training is set at 

approximately 50,200 iterations. Faster-RCNN and SSD 

models iterate are each iterated 500,200 times, the epoch of 

CenterNet is set to 146, and the other parameters remain the 

same as before. Eventually, these detection models converge, 

and save the weight parameters. 

B. Experimental results and evaluation 

The model and data selection influences the ship detection 

performance. In this section, a quantitative representation of 

each comparison is provided for the Faster R-CNN, SSD, 

CenterNet, YOLOv3, and improved-YOLOv3 approaches, on 

both the SAR and optical ship detection datasets. The detection 

accuracy is measured based on the AP, and the detection 

efficiency is measured based on the detection time/image (total 

detection time/number of detected images). Additionally, the 

YOLOv3 and improved-YOLOv3 approaches are trained and 

tested on a mixed SAR and optical dataset, to verify the 

robustness of the proposed method. In addition to the 

quantitative detection accuracy results, we also report 

qualitative forecast results for the Faster R-CNN, SSD, 

CenterNet, YOLOv3, and improved-YOLOv3 ship detection 

methods on different datasets. 

1) Ship detection comparison results for the improved method 

YOLOv3-tiny is a lightweight YOLOv3 with only a 31-layer 

network. Although the detection accuracy is lower, the training 

time is relatively short. On the contrary, YOLOv3-spp has 114 

-layers, and the detection accuracy is relatively high, but it 

needs a longer training time. Therefore, consider adding 

different strategies to YOLOv3-tiny under the same conditions 

to quickly observe the results of the improved method.  

Table V lists the optical ship detection results of five 

structures used in YOLOv3-tiny. Structure 2 and Structure 3 

keep the total number of anchor boxes at 9, and add the first and 

second feature scales to the third feature scale. Structure 4 and 
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Structure 5 increase the total number of anchor boxes to 12, and 

then evenly distribute the anchor boxes to each detection scale 

in two different ways. It can be concluded that among the five 

structures, Structure 5 that assigns finer anchor boxes to each 

detection scale performs best. 

Table VI lists the detection number of small, medium, and 

large scales optical ships before and after increasing the number 

of anchor boxes of the corresponding scale prediction layer 

based on Structure 5. The purpose is to observe which scale ship 

objects are hard to be detected by YOLOv3. Small, medium, 

and large are divided according to the sum of the width and 

height of the extreme value of the anchor box distribution of 

different detection scales. For example, the anchor box 

distribution before improvement is (8, 7), (15, 14), (40, 18), (22, 

39), (58, 33), (64, 62), (118, 49), (81,111), (156,111). Thus, 

width +height≤58 is small-scale ship, 58< width +height≤126 

is medium-scale ship, width +height >126 is large-scale ship. 

In Table VI, O represents the original YOLO. 4𝐴𝑠, 4𝐴𝑚, 

and 4𝐴𝑙  are based on the O model and only increase the 

number of anchors with the small, medium, and large scales 

detection layer, respectively. 4A is a combination of  4𝐴𝑠, 4𝐴𝑚, 

and 4𝐴𝑙  models, increase the number of anchors of each 

detection layer. It can be concluded that the original YOLOv3 

has more missed detection for medium-scale ships and false 

alarms for small-scale ships. It can be seen from the detection 

results of 4𝐴𝑠 , 4𝐴𝑚 , and 4𝐴𝑙  that increasing the number of 

anchor boxes of a certain scale will improve the detection 

results of that scale. From the detection result of 4A, we can see 

that the deviation obtained by increasing the anchor box for 

each detection scale is the smallest. Table VII lists the SAR and 

optical ship detection results using Gaussian model, GIoU loss, 

DIoU loss, and CIoU loss methods in YOLOv3-tiny. It can be 

noticed that adding GIoU loss, DIoU loss, CIoU loss, and 

Gaussian parameters to YOLOv3 can improve the regression 

accuracy of SAR and optical ship bounding boxes, and the 

Gaussian model has the most obvious improvement effect 

compared to other methods. 

 
TABLE V  

DETECTION ACCURACY ON THE OPTICAL SHIP DATASET FOR FIVE STRUCTURES 

 

Detection layer 

structure 
AP(%) Recall(%) Precision(%) 

Structure1 85.91 90.74 56.32 

Structure2 85.94 90.83 56.38 

Structure3 84.39 89.95 55.67 

Structure4 85.92 90.63 63.11 

Structure5 85.97 90.99 57.14 

TABLE VI 

COUNT THE NUMBER OF LARGE, MEDIUM, AND SMALL SCALES SHIPS ON OPTICAL IMAGES SHIP DETECTION

Model AP(%) 
Number of detected ships 

Deviation 
Large Medium Small 

YOLOv3-tiny 

O 85.91 4122(-48) 3753(-604) 8583(+385) 1037 4𝐴𝑠 85.94 4181(+11) 3782(-575) 8299(+101) 687 4𝐴𝑚 85.94 4100(-70) 4065(-292) 8566(+368) 730 4𝐴𝑙 85.96 4201(+31) 3755(-602) 8528(+330) 963 

4A 85.97 3942(-228) 4462(-105) 8062(-136) 469 

YOLOv3-spp 

O 92.08 4148(-22) 3808(-549) 8423(+225) 796 4𝐴𝑠 92.08 4177(+7) 4040(-317) 8287(+98) 422 4𝐴𝑚 92.07 4122(-48) 4116(-241) 8419(+221) 510 4𝐴𝑙 92.06 4155(-15) 3895(-462) 8362(+164) 641 

4A 92.07 4043(-127) 4410(+53) 7968(-230) 410 

Number of real ships 4170 4357 8198 0 

TABLE VII  

DETECTION ACCURACY ON THE OPTICAL AND SAR SHIP DATASETS FOR FIVE 

METHODS 

Method 
AP(%)  

SAR ship dataset Optical ship dataset 

YOLOv3-tiny 91.46 85.91 

GIoU 91.77 85.97 

DIoU 92.09 85.93 

CIoU 92.15 85.96 

Gaussian(IoU) 93.45 85.98 

 

Based on the above experiments, the proposed strategies are 

successively added to YOLOv3-spp and YOLOv3-tiny on the 

optical ship detection dataset to verify the effectiveness of the 

proposed method. To evaluate the proposed method, six 

experiments are conducted in YOLOv3-spp and YOLOv3-tiny. 

The model relationship are as follows: (1) anchor boxes 

obtained by k-means ++; (2) -K: anchor boxes obtained by 

improved K-means++; (3)-4A: four anchor boxes assigned to a 

detection scale, based on Experiment 1; (4)-Gaussian: a 

Gaussian model is introduced, based on Experiment 1; (5) -4A-

K: four anchor boxes are assigned to a detection scale, based on 

Experiment 2; and (6) -4A-Gaussian-K: a Gaussian model is 
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introduced based on Experiment 5. In Table VIII, the model 

‘YOLOv3-tiny-o’ refers to the original YOLOv3-tiny; its 

anchor boxes are produced by clustering with the PASCAL 

VOC dataset. Training settings applied to YOLOv3-spp and 

YOLOv3-tiny are the same. 

As showed in Table VIII, the improved-YOLOv3 has a 2% 

improvement in the accuracy of the optical dataset. It is a well-

known fact that most of the improvements in detection accuracy 

come at the cost of deepening the network and requiring 

additional calculations. However, the addition of the proposed 

strategy in this study has little effect on the detection efficiency. 
 

TABLE VIII 

DETECTION ACCURACY ON THE OPTICAL SHIP DATASET FOR EACH METHOD 

Model  

relationship 
Model 

(AP) 

(%) 

Detection 

times/images(ms) 

0 YOLOv3-tiny-o 84.98 8.7 

1 YOLOv3-tiny 85.91 8.7 

1-1 YOLOv3-tiny-K 86.22 8.7 

1-2 YOLOv3-tiny-4A 85.97 9.2 

1-3 YOLOv3-tiny-Gaussian 85.98 9.8 

1-1-2 YOLOv3-tiny-4A-K 86.79 9.2 

1-1-2-3 YOLOv3-tiny-4A-Gaussian-K 87.91 10.1 

2 YOLOv3-spp 92.08 18.7 

2-1 YOLOv3-spp-K 92.35 18.7 

2-2 YOLOv3-spp-4A 92.07 18.7 

2-3 YOLOv3-spp-Gaussian 93.19 20.0 

2-1-2 YOLOv3-spp-4A-K 92.37 18.6 

2-1-2-3 YOLOv3-spp-4A-Gaussian-K 93.56 21.3 

Figs. 11 and 12 show each curve comparisons between each 

‘added strategy’ and the method before adding (as represented 
by different colours). The solid and dashed lines represent 

YOLOv3-spp and YOLOv3-tiny, respectively. Fig. 11 shows 

the AP values of each method under different iteration times, 

and Fig. 12 shows the PR curves of each method in the optical 

ship detection dataset. As shown, the improved methods 

(indicated in red) are at the top. This indicates that the improved 

methods are effective. 

2) SAR ship detection comparison results 

The detection accuracies of the five SAR ship detection 

models are listed in Table IX. Each of these models achieves a 

higher detection probability and lower false alarm probability 

on the SAR dataset. Improved-YOLOv3 has the highest AP 

(95.52%), and a higher detection precision than YOLOv3.  

Fig. 13 presents the SAR ship detection results for five deep 

learning detection models under different scenarios, in which 

the improved-YOLOv3 refers to YOLOv3-spp-4A-Gaussian-K. 

Most of the orange triangles are distributed in the SSD. This 

indicates that small ships are hard for SSD to detect. As showed 

by the position of the blue circle, CenterNet and Faster R-CNN 

are poor at combating interference. improved-YOLOv3 

misdetection (the blue circle in the second row of Fig. 13(a)) 

and missed ship detection (the orange triangles in the second 

row of Fig. 13(b)) are improved. 

  
Fig. 11. Average precision (AP) values for each method based on improved-

YOLOv3 at different iteration numbers on the optical ship dataset. 

 

 
Fig. 12. Precision-recall (PR) curve of each method based on improved-

YOLOv3 for the optical ship dataset. 

TABLE IX 

SAR SHIP DETECTION FOR THE FOUR DEEP LEARNING DETECTION MODELS 

Model 
AP 

(%) 

Recall 

(%) 

Precision 

(%) 

Detection 

times/image

s(ms) 

Faster-RCNN 90.37 92.84 78.58 51.7 

SSD 89.47 93.48 76.43 10.4 

CenterNet 92.89 95.98 78.09 57.8 

YOLOv3-tiny 91.46 92.55 77.05 8.7 

YOLOv3-tiny-4A-Gaussian-K 94.41 95.03 82.62 10.1 

YOLOv3-spp 92.69 95.16 78.05 18.7 

YOLOv3-spp-4A-Gaussian-K 95.52 95.88 83.70 21.3 

3) Optical ship detection comparison results 

Table X shows five models’ comparison results on the optical 
ship dataset. The overall detection accuracy is lower than that 

of the SAR ship-detection dataset. As optical images have 

higher spatial resolution to facilitate the detection of additional 

details in the image (e.g., smaller ships and various features on 

large ships), a more complex analysis is required. The YOLOv3 

and improved-YOLOv3 approaches still perform better. 
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However, the SSD, CenterNet, and Faster R-CNN approaches 

have poor detection results for the optical dataset. They may 

perform better when the parameters are adjusted, but we kept 

the original parameters of their model for the comparison 

experiments. The improved-YOLOv3 has the highest AP 

(93.59%), approximately 2% higher than that of YOLOv3. 

TABLE X 

OPTICAL SHIP DETECTION FOR FOUR DEEP LEARNING DETECTION MODELS 

Model 
AP 

(%) 

Recall 

(%) 

Precision 

(%) 

Detection 

times/imag

es(ms) 

Faster-RCNN 77.43 86.15 68.80 51.1 

SSD 69.09 87.07 55.21 10.2 

CenterNet 70.98 87.41 62.17 57.5 

YOLOv3-tiny 85.91 90.73 56.31 8.6 

YOLOv3-tiny-4A-Gaussian-K 87.91 89.55 57.49 10.0 

YOLOv3-spp 92.08 92.64 71.43 18.6 

YOLOv3-spp-4A-Gaussian-K 93.56 94.15 67.95 21.2 

 

Fig. 14 presents the verification of the optical ship detection 

results for the five deep learning detection algorithms under 

difficult conditions (‘improved-YOLOv3’ refers to YOLOv3-

spp-4A-Gaussian-K). The distribution of the orange and blue 

triangles shows the same trend as that of the SAR image 

detection. The SSD misses many dense and small ships, as 

showed by the distribution of orange triangles. Ship-like objects 

(such as bridges and docks) both in ports and onshore are easily 

misidentified as ships, as showed in Fig. 14(c). Notably, there 

are fewer cases of false identification as compared with SAR 

image ship detection, owing to the superior optical image 

interpretation. In addition, as showing in the second row in Fig. 

14(c), the CenterNet, SSD, and Faster R-CNN approaches 

cannot differentiate between crowded ships well. In contrast, 

our method shows good detection performance under the 

aforementioned circumstances. 

4) Ship detection comparison results on the SAR-optical 

mixed dataset 

Ideally, a good ship detection algorithm should be effective 

in representative sea conditions for different ship types, 

geographic areas, and sensor data. To compare the data 

suitability and verify the robustness of the proposed method, we 

compared the results from SAR and optical hybrid ship 

detection with YOLOv3 and the improved-YOLOv3 on a 

mixed dataset. The mixed dataset contained multiple 

resolutions, scenes, scales, sizes, data sources, and modes 

(three-channel RGB optical images and one-channel SAR 

images). 

Table XI shows the ship detection accuracy of the YOLOv3 

and improved-YOLOv3 approaches on the optical-SAR remote 

sensing image mixed dataset. The detection precision is lower 

than the training and testing performance based on SAR or 

optical data alone, as the mixed dataset is more heterogeneous. 

However, improved AP of YOLOv3 can still reach 90.91%, and 

it is still increased by 3-4% on the mixed dataset as it is on the 

respective dataset alone.  

We separately recorded the results of ship detection on the 

SAR and optical of the mixed dataset. Judging from the 

experimental results, the optical image has greater interference 

in the mixed data training model. There are two possible 

reasons. The first one may be because the optical image has a 

higher resolution, requiring the model to identify more detailed 

details (such as small boats and large ships with different 

characteristics). The second point may be caused by an 

imbalance in the number, because there are 29,070 optical 

images and 43,819 SAR images in the mixed dataset. The data 

enhancement method can be used to solve the problem of the 

imbalance in the number of optical images.  

In order to verify the second conjecture, the optical ship 

training samples in the mixed dataset were enhanced by random 

combinations of flipping, translation, rotation, mirroring, 

brightness, and cropping. And keep testing samples unchanged 

to compare experiments. Finally, the number of SAR and 

optical ship slices in the mixed dataset is 50,807 and 43,819 

respectively. The experimental results show that addressing the 

issue of data imbalance through data enhancement of optical 

data can improve the accuracy of ship detection with mixed 

dataset. But the optical image still has greater interference than 

SAR image in the mixed dataset. 

TABLE XI 

SHIP DETECTION RESULTS FOR THE OPTICAL-SAR MIXED DATASET 

Model 

AP (%)  

Before optical data enhancement 

AP (%)  

After optical training data enhancement 

Mixed Of with SAR Of with optical  Mixed Of with SAR Of with optical  

YOLOv3-tiny 82.40 92.51 72.29 84.98 91.88 78.08 

YOLOv3-tiny-4A-Gaussian-K 86.00 93.62 78.38 87.36 93.56 81.16 

YOLOv3-spp 87.94 92.77 79.71 89.19 93.32 85.06 

YOLOv3-spp-4A-Gaussian-K 90.91 96.03 85.80 91.24 95.87 86.61 

To the algorithm’s credit, the mixed data training model 

tested the ship detection results on large-scale SAR images, 

most of the ships can be detected as shown in Fig.15. Thus, the 

improved-YOLOv3 provides better ship detection than the 

original YOLOv3. This verifies that the improved-YOLOv3 

has good robustness and generalization ability in various 

complex scenarios.
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Fig. 13. Comparison of SAR image ship detection results for five deep learning detection models under different scenarios. The yellow is the real ship location in 

the images. The blue, green, dark orange, purple and red rectangles indicate corresponding detection results for Faster R-CNN, SSD, CenterNet, YOLOv3 and the 

improved-YOLOv3. Orange triangles and blue circles represent the missing ships and false alarms, respectively. 

 

Ground Truth Faster R-CNN SSD YOLOv3 Improved-YOLOv3 

(a) Multi-target in the ocean scenes 

Ground Truth Faster R-CNN SSD YOLOv3 Improved-YOLOv3 
(b) Like-ships interference in the port scenes 

Ground Truth Faster R-CNN SSD YOLOv3 Improved-YOLOv3 

(c) Noise interference in complex backgrounds 

CenterNet 

CenterNet 

CenterNet 
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Fig. 14. Comparison of optical image ship detection results for five deep learning detection models under difficult conditions. The yellow is the real location of the 

ship in the images. Blue, green, dark orange, purple and red rectangles indicate corresponding detection results for Faster R-CNN, SSD, CenterNet, YOLOv3 and 

the improved-YOLOv3. Orange triangles and blue circles represent missing ships and false alarms, respectively. 

Ground Truth Faster R-CNN SSD YOLOv3 Improved-YOLOv3 

(a) Low contrast in complex sea conditions 

Ground Truth Faster R-CNN SSD YOLOv3 Improved-YOLOv3 

(b) Cloud interference 

Ground Truth Faster R-CNN SSD YOLOv3 Improved-YOLOv3 

(c) Crowded ships and similar interference 

CenterNet 

CenterNet 

CenterNet 
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(a) Ground-Truth  

 
(b) Detection results 

Fig. 15. Results in large-scale SAR images using hybrid data training models for improved-YOLOv3. The yellow is the real ship location in the images and the 

red rectangles indicate detection results for improved-YOLOv3.   

V. CONCLUSION 

This study presents an improved-YOLOv3 for realising 

automatic ship detection from SAR and optical ship datasets. 

Three major modifications to YOLOv3 are proposed. First, 

linear stretching is introduced into the anchor box generation 

clustering algorithm, to solve the problem of the concentrated 

distribution of anchor boxes, and to highlight the advantages of 

YOLOv3’s multi-scale detection for single-type target 

detection. Second, by comparing GIoU loss, DIoU loss and 

CIoU, the Gaussian parameters of the bounding box coordinates 

are introduced to predict the positioning uncertainty. So as to 

address the unreliable bounding box coordinate information in 

YOLOv3. Finally, four anchors are assigned a detection scale 

in the Gaussian-YOLO detection layer to address the variations 

in the directions and sizes of each target in remote sensing 

images at different resolutions. This improves the robustness of 

the model. 

To evaluate the proposed method, three experiments were 

conducted, based on expanded SAR and optical ship detection 
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datasets. The experiments were conducted as following. 

(1) The improved k-means ++ algorithm, Gaussian model, 

and anchor assignment strategy were simultaneously added to 

the YOLOv3-spp and YOLOv3-tiny models to enable 

experimentation on the same dataset. The experimental results 

show that each improved strategy is effective. The final 

improved-YOLOv3 is 2–3% higher than the original YOLOv3. 

(2) Experiments were conducted using a mainstream 

detection model based on deep learning. Optical and SAR ship 

detection datasets in different scenes and complex backgrounds 

were analysed, and the improved-YOLOv3 produced 

satisfactory results in regards to both efficiency and AP. In 

addition, the overall detection accuracy for SAR ship detection 

was higher than that for optical ship detection. This is because 

optical images have a higher spatial resolution, allowing for the 

detection of additional image details. However, there were 

fewer cases of misdetection in optical ship detection, owing to 

the superior interpretations of the optical images. 

(3) A comparison experiment was conducted between the 

YOLOv3 and improved-YOLOv3 approaches on the SAR and 

optical hybrid ship detection datasets. The intent was to verify 

that the improved model was effective under various conditions 

(such as multiple resolutions, scenes, sizes, data sources, and 

models). The results show that the improved-YOLOv3 

approach achieves an AP of 90.91%, even under a mixed SAR-

optical dataset. In addition, the performance of the mixed data 

training model for ship detection is tested in large SAR images, 

which has good robustness. 
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