
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Multi‑scale simulation and finite‑element‑assisted
computation of elastic properties of braided
textile reinforced composites
Ji, Xianbai; Khatri, Aditya M; Chia, Elvin SM; Cha, Ryan KH; Yeo, Bern TB; Joshi, Sunil C;
Chen, Zhong
2013
Ji, X., Khatri, A. M., Chia, E. S., Cha, R. K., Yeo, B. T., Joshi, S. C., et al. (2014). Multi‑scale
simulation and finite‑element‑assisted computation of elastic properties of braided textile
reinforced composites. Journal of composite materials, 48(8), 931‑949.
https://hdl.handle.net/10356/102895
https://doi.org/10.1177/0021998313480198

© 2013 The Author(s).This is the author created version of a work that has been peer
reviewed and accepted for publication by Journal of Composite Materials, SAGE
Publications. It incorporates referee’s comments but changes resulting from the
publishing process, such as copyediting, structural formatting, may not be reflected in this
document. The published version is available at:
[http://dx.doi.org/10.1177/0021998313480198].

Downloaded on 25 Aug 2022 02:29:32 SGT



1 

 

Multi-scale Simulation and FE-Assisted Computation of Elastic 

Properties of Braided Textile Reinforced Composites  

Xianbai Ji
a
, Aditya M. Khatri

a
, Elvin S.M. Chia

b
, Ryan K.H. Cha

c
, Bern T.B. Yeo

d
, 

Sunil C. Joshi
e*

, Zhong Chen
e*

 

a
 Temasek Laboratories@NTU, 50 Nanyang Drive, Singapore 637553 

b
 DSO National Laboratories, 20 Science Park Drive, Singapore 118230 

c 
Singapore Technologies Kinetics Ltd, 249 Jalan Boon Lay, Singapore 619523 

d 
Temasek Polytechnic, 21 Tampines Avenue 1, Singapore 529757 

e
 Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 

ABSTRACT  

    This paper deals with computation of effective elastic properties of braided textile composites 

assisted by finite element analysis (FEA). In this approach, dynamic representative unit cells are 

first constructed to model typical geometry of braided textile preform. Subsequently, after 

establishing the elastic properties of braiding yarns, the effective Young’s moduli, shear moduli 

and Poisson’s ratios corresponding to varying braiding angles are obtained by analysing these 

geometric models of preform with the help of the commercial FEA code Abaqus. Effects of 

fibre volume fraction on the elastic properties of both biaxial and triaxial composite unit cells 

are also examined. Finally, bending behaviour of a simply supported beam with braided 

composite skin is evaluated via the FEA assisted multi-scale modelling, which is further 

verified experimentally. The predicted results compared favourably with the experiment, 

backing the accuracy of the proposed modelling approach.  
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INTRODUCTION 

        Braiding is a traditional process of intertwining strands of fibres into textiles. The principal 

feature of braided textiles is the flexibility to form a wide range of geometric shapes in a cost-

effective way [1]. Because of the preceding decades’ efforts in making structural components 

lighter, stronger and tougher with increased bending strength, impact resistance, chemical 

immunity and torsional integrity, braided textile composites are being increasingly utilised in 

defence, aerospace, transportation, energy and sports industries.  Recently, dry carbon fibres 

composites have been applied favourably to the watch-making industry [2].    

 

 

Figure 1.Basic biaxial braid patterns 

 

    There are two types of two-dimensional (2D) braids, the biaxial and the triaxial. The biaxial 

braid is comprised of two sets of bias yarns intertwining at an angle of 2θ. The angle θ is 

defined as the braiding angle, the single most critical parameters of braided structure. 

Depending on the braiding pattern, braids are distinguished as diamond braid (1 by 1), regular 

braid (2 by 2) and Hercules braid (3 by 3) as shown in Figure 1.  The diamond braid has a 

repetition of one yarn passing under and then over another yarn; the yarns in a regular braid pass 

below two and above two other yarns alternatively and the Hercules braid is characterised by a 

three below and three above interlacing pattern. The triaxial braid has an additional set of axial 

yarns inserted equiangular between +θ and θ bias braiding yarns.  

Diamond Braid (1/1) Regular Braid (2/2) Hercules Braid (3/3)
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To take advantage of the unique features braided textiles and their composites could offer, 

extensive research has been carried out to study the mechanical properties of braided textile 

composites both analytically and experimentally. Naik and Shembekar [3] presented a 2D 

model for the elastic analysis of a plain weave fabric lamina and compared the elastic moduli 

predicted by different analytical models. Quek et al. [4] developed an analytical model for the 

calculation of the effective elasticity of 2D triaxial braided composite and studied the effect of 

initial micro-imperfections. Based on the principle of superposition, Miravete et al. [5] 

formulated an analytical mesomechanical model to predict the properties of braided composites. 

Falzon and Herszberg [6] and Dauda et al. [7] conducted tension, compression and shear tests 

on braided composites to characterise their properties. Littell et al. [8] adopted optical 

measurement techniques to overcome the limitations of strain gauge and correlated the local and 

the global deformations of braided composite under tension. Masters et al. [9] investigated the 

mechanical properties of triaxial braided textile composites by both experimental and analytical 

methods, highlighting the significance of the textile preform architecture in determining the 

composite behaviour.  

Despite being preferred in many cases, the traditional analytical and experimental approach 

lacks the capability to depict the stress and strain distribution throughout the braided structure. 

Many researchers instead implemented finite element analysis (FEA) to investigate braided 

textile composites in recent years. Tsai et al. [10] used a parallelogram spring model to predict 

the effective elastic properties of 2D braided composites in which yarns were modelled by one-

dimensional spring element. Xu et al. [11] predicted the properties of braided textile composites 

by three-dimensional (3D) representative unit cells. Goyal and Whitcomb [12] analysed the 

stress concentration within a tow for regular braided textile composites. Pickett et al. [13] 

systemically simulated the geometries of braiding yarns and braided textiles and a typical 

braiding process with explicit finite element techniques. However, few attempts have been 

reported on the 3D FE models of braided textile composites taking into account the effect of 
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braiding process on the architecture of the textile reinforcement and its influences on the 

mechanical properties of the composite products.  

The main objective of this paper is to build a reliable and versatile FE description of the 

textile hierarchy of structures within which the braiding parameters are reflected, and the change 

in properties is captured at different length scales. Subsequently, computer simulation can be 

used to design and optimize a structure or components made of braided composites based on the 

predicted mechanical and other responses. In this paper, biaxial and triaxial regular braids (2 by 

2) are studied to predict the effective elastic properties for varying braiding angles, from 20° to 

55° at an increment of 5°. The relation between the elastic constants and fibre volume fraction 

(Vf) is examined at the braiding angle of 60°. The verification of simulation results is generally 

conducted through experiments on coupons. However, as pointed out by Littell et al. [8], the 

tests on a small specimen may not truly reflect the actual composite behaviour because a 

number of the bias braiding yarns in the strain gauge section are not gripped by the fixture. 

Therefore, a uniquely designed experiment is adopted for direct comparison between a braided 

composite beam and its FE simulation results to verify the overall accuracy. This correlation is 

achieved through a multi-scale modelling strategy which follows three levels of analysis (see 

Figure 2) that links the properties of constituent materials to unit cell level properties, and these 

to the structural level mechanical behaviour. The micro-level analysis first involves determining 

the properties of matrix-infused yarns from the fibre properties using analytical methods. At the 

meso-level, elastic mechanical properties of the composite unit cells are obtained by FEA. The 

third level of analysis involves replacing the different braided regions within a structural 

component with homogenized elastic properties predicted by the unit cell outputs. Thus built, 

this entire structure subjected to loads then undergoes FEA simulation to predict its elastic 

responses.  
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Figure 2.Geometric hierarchy of the multi-scale modelling approach 

 

GEOMETRIC MODELLING OF BRAIDED TEXTILE PREFORM AND COMPOSITE 

UNIT CELLS 

A braided textile preform consists of interlaced +θ and θ bias yarns in a biaxial braid and an 

additional axial yarn set in a triaxial braid. In creating unit cells using computer aided design 

(CAD) software, these components are modelled separately. Bias yarns are created by sweeping 

a cross section with an elliptical shape along a predefined undulation path. In a typical braiding 

process, the axial yarns are laid first with equal distance and bias yarns deposit on them 

subsequently. In the triaxial models developed in this study, the axial yarn is assumed to be 

perfectly straight and is modelled by extruding an ellipse along a straight line. Then the bias and 
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axial yarns are assembled together, according to certain braiding angle and spacing, to form a 

braided structure. From a careful observation of the complex braided textile, a smaller repeating 

unit can be identified. Figure 3 shows a regular triaxial braid unit cell in diamond shape and the 

geometric parameters, including braiding angle θ, dimension of braiding yarns wa, wb, ta, tb, and 

the gap between neighbouring yarns ε, that used to describe it. 

 

 

 

 

 

Figure 3.Geometric parameters of a regular triaxial braid in diamond shape 

 

    In order to internalise the effect of the braiding machine parameters, the relation of the unit 

cell parameters is governed by the Equation below [14]: 

 cos
2

b

b
N

D
w                                                                      (1) 

where D is the part diameter (approximately equal to the diameter of the mandrel if the braid is 

very thin), and Nb is the number of bias yarn carriers in the track plate of the braiding machine. 

Alternatively, a more flexible model is developed where the user can manually define the value 

θ – Braiding angle 

wa – Axial yarn width 

wb – Bias yarn width 

ta – Axial yarn thickness 

tb – Bias yarn thickness 

ε – Gap between neighbouring bias yarns  
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of the aforementioned geometric parameters. These unit cells are used when the manufacturing 

conditions and information of the braiding process are unknown. Unit cells presented are 

dynamic in nature, exhibiting better flexibility as compared to the work by Xu et al. [11] which 

only takes the tightest configuration into account.    

In terms of solid modelling construction, the unit cell yarn consists of an ellipse-shaped 

profile that is swept through a defined path to create the yarn volume. The yarn profile geometry 

is an ellipse defined by the bias yarn thickness, tb and bias yarn width, wb. The yarn path 

geometry is defined such that it will wind around the neighbouring bias yarns, and is thus 

indirectly affected by the surrounding yarns’ geometry as shown in Figure 4. 

 

Figure 4.The part ellipses and geometry features used to create the yarn path 

The bias yarn path is seen to wind around the neighbouring bias yarns such that the final 

swept yarn volume will not intermix with the surrounding bias yarn volumes. As shown in 

Figure 4, the yarn path consists of flat sections and knee sections (where the yarns transition 

from below-to-above or vice versa). The knee section itself consists of part ellipses connected 

tangentially by straight segments. The shape of these part ellipses take into account the widths 

and thicknesses of the surrounding yarns; whereas, the length of the part ellipses and the 

segment is determined automatically by the solid modelling software such that all points of the 

yarn path and tangential. 

To facilitate the subsequent FEA, the diamond braided textile unit cell is further cut into a 

smaller repeatable unit cell in rectangular shape. Discussed firstly by Sun et al. [15], a reasoning 

Boolean operation based heterogeneous CAD modelling technique is used to convert a braided 

textile preform to a braided textile composite unit cell as shown in Figure 5.  
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Figure 5.Topology and procedures of constructing heterogeneous composite unit cell model 

 

 

MATERIAL PROPERTIES AND ORIENTATIONS OF YARN 

    In this study, the matrix material is assumed to be isotropic and braiding yarns are assumed to 

be transversely isotropic. Since an impregnated braiding yarns consist of fibres and matrix, and 

each material has distinct properties; fibre volume fraction within yarn, VfY, yarn volume 

fraction within a unit cell, VY, and global fibre volume fraction, Vf, are the important parameters 

to characterise the content of reinforcement in a composite. Their relation can be expressed as 

follows: 
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VfY is experimentally determined by the density method to be approximately 80%. This value 

will be used to calculate the equivalent mechanical properties of the braiding yarn on the basis 

of a micromechanical model, Chamis’ Equations [16]:  
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where E11 is the longitudinal modulus of the yarns; E22 and E33 are the transversal moduli of the 

yarn; G12, G13, G23 are the shear moduli of the yarn; ν12, ν13, ν23 are the Poisson’s ratios of the 

yarn; Ef11 is the longitudinal modulus of the fibres; Ef22 and Ef33 are the transversal moduli of the 

fibres; Gf12, Gf13, Gf23 are the shear moduli of the fibres; νf12, νf13, νf23 are the Poisson’s ratios of 

the fibres; Em is the Yong’s modulus of the matrix; Gm is the shear modulus of the matrix; νm is 

the Poisson’s ratio of the matrix; VmY = 1VfY is the volume fraction of matrix in the yarn. VfY 

is set to be 0.8 based on experiments on carbon fibre textile composite coupons.  

Due to the undulation of bias braiding yarns, the material orientation of every single yarn 

varies along its yarn path. Therefore, each bias yarn is segmented at the geometric modelling 

stage into several sub-cells, each of which is corresponded to a unique local coordinate system 
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(CSYS) to indicate the principle material orientation (see Figure 6). It should be noted that the 

whole unit cell is still subject to the global coordinate system.     

 

 

Figure 6.Segmentation of individual bias yarns and local coordinate systems for sub-cell 

 

Table 1 summarises the material properties derived using Equations (3) to (8) and input for 

the FE-assisted unit cell simulations carried out in this study.  

[Insert Table 1 here] 

 

BOUNDARY CONDITION AND MESH ISSUES 

    As a unit cell is a small representative unit of a continuum braided textile composites, the 

periodicity of boundary conditions in FEA is of great concern. Xia et al. [19] devised a periodic 

boundary condition to match the deformation and mesh of neighbouring unit cells. For the unit 

cells studied in this paper, the periodic boundary condition and the minimisation of mesh 

mismatches is achieved through increasing the number of unit cells analysed in a single 

simulation while merging mismatched nodes on contacting faces. This method is 

computationally intensive, but the advantage lies in the relative ease of omitting user 

subroutines without compromising accuracy.      
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    To obtain the material properties of the unit cell, seven independent boundary conditions in 

the form of uniform displacements are specified as shown in Figure 7. For each boundary 

condition, one corner point is held pinned to prevent rigid body motion.  

 

Figure 7.Boundary conditions for finite element analyses 

 

The boundary conditions can be expressed mathematically as follows: 
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where, u1, u2 and u3 are uniform displacement applied in the x, y and z directions, respectively, 

and l, w, and t denote the length, width, and thickness of the unit cell model. A more general 

form can be found in [11]. To obtain homogenised Young’s moduli and shear moduli of the unit 

cell, mean stress,  , is calculated  for relevant boundary condition case by dividing the 

summation of the reaction forces of all the nodes on the face, where the displacement boundary 

condition is applied to, by the area of that displaced face. Whereas, mean strain, , is defined 

when assigning boundary conditions. A component form of linear stress-strain relation for 

braided textile composite unit cell,  C , can be formulated as follows: 
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  Inverting the stiffness matrix C  gives the compliance matrix S . Given the mean stress 

vector and mean strain vector inputs obtained from each boundary condition cases, the 

equivalent engineering constants can be computed from the constituent entities of the 

compliance matrix. With respect to the Poisson’s ratios, two rounds of simulation are conducted. 

The first round of simulation consists of three unidirectional deformations (cases 1-3 in Figure 7) 

to obtain E11, E22 and E33 individually and their values are supposed to be boundary-condition-
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independent; the second round of simulation involves a triaxial deformation (case 7 in Figure 7) 

to extract three mean stress values, σ11, σ22, and σ33 under triaxial loading. All this six 

parameters are subsequently input into the stiffness matrix to compute the value of Poisson’s 

ratios.    

 

RESULTS AND DISCUSSION 

Intuitively, the relation between elastic properties and the braiding angle should be 

symmetrical about θ=45° if everything else being identical, since the longitudinal Young’s 

modulus of a unit cell with braiding angle (θ)  would equal the transverse Young’s modulus of 

another unit cell with braiding angle (90-θ). However, this symmetry will not be observed 

because the unit cells studied in this paper are governed by Equation (1) which links the 

braiding angle with tightness of a unit cell. As the braiding angle increases, the unit cell 

becomes tighter. As such, by rotating a (θ) unit cell will not give a (90-θ) unit cell due to the 

tightness difference. Figure 8 illustrates how the braiding angles determine the geometries of the 

braided textile composite unit cells for θ=20°, 40° and 60°.  

 

                           (a) θ=20°                                   (b) θ=40°                                (c) θ=60° 

Figure 8.The effect of braiding angles on the tightness of braid unit cells 
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The stress distributions of rectangular unit cells with braiding angles 30° and 40° are 

presented in Figure 9 under transverse tensile boundary conditions. It is clearly observed that 

stress concentration mainly occurs along the edges of the yarn, agreeing with [12].  

 

Figure 9. Stress distribution within braiding yarns under tensile loading along transverse 

directions for braiding angles 30° (left) and 40° (right) 

As described earlier, a multi-cell approach is used to represent the periodic boundary 

conditions. If the contour distribution of the multi-cell model can be recognised as a repetition 

of that of the corresponding single unit cell model, the proposed approach is then proved to be 

valid. A comparison of multi and single unit cell models for regular biaxial braids under in-

plane shear displacement is shown in Figure 10. It can be seen that the stress distribution of the 

multi-cell (4×4) model agrees with that of the corresponding single unit cell model, and the 

maximum and minimum stresses are almost identical. Other boundary conditions are verified in 

the same way. 
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Figure 10. Comparison of stress distribution in multi-cell and single unit cell under in-plane 

shear deformations for braiding angle 50° 

The Effect of Braiding Angle on Mechanical Properties  

 

Figure 11.The effect of braiding angle on the Young’s moduli for biaxial unit cell 
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Figure 12.The effect of braiding angle on the Young’s moduli for triaxial unit cell 

 

    As depicted in Figure 11, for biaxial unit cells, the longitudinal Young’s modulus, E22, 

decreases with the increase of braiding angle; whereas, the transverse Young’s modulus, E11, 

increases with the braiding angle θ. This is because braiding yarns contribute more to transverse 

discretion and less to longitudinal direction as braiding angle increases. However, the Young’s 

modulus in through-thickness-direction, E33, only increases slightly and this increase is mainly 

due to the increase in tightness.  Shown in Figure 12, the relation between Young’s moduli and 

braiding angle for triaxial unit cell exhibits a similar trend. The main difference is that, due to 

the presence of axial yarns, the value of longitudinal Young’s modulus E22 is always greater 

than the value of transverse Young’s modulus E11. The differences accurately explain the 

reinforcing effect of axial yarns.  
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Figure 13.The effect of braiding angle on the shear moduli for biaxial unit cell 

 

Figure 14.The effect of braiding angle on the shear moduli for triaxial unit cell 

    The relations between shear moduli and braiding angle for biaxial and triaxial structures are 

depicted in Figure 13 and Figure 14, respectively. The in-plane shear modulus, G12, increases 
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with the braiding angle and peaks at the braiding angle of 45°. It means that woven structure 

(θ=45°) enjoys higher in-plane shear rigidity than their braided counterparts. However, the 

through-thickness-shear moduli, G23 and G13, increase insignificantly with the increase of 

braiding angle. Similarly, this can be explained by the tightness variations.   

 

Figure 15.The effect of braiding angle on the Poisson’s ratio for biaxial unit cell 
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Figure 16.The effect of braiding angle on the Poisson’s ratio for triaxial unit cell 

 

    As delineated in Figure 15 and Figure 16, all the Poisson’s ratios vary in a nonlinear manner 

with the increase of braiding angle. Specifically, the in-plane Poisson’s ratio, ν21, is significantly 

higher than all the other Poisson’s ratios, especially at low braiding angles; contrarily, the 

Poisson’s ratio, ν32, in through-thickness-direction is generally lower than the rest. Unlike the 

traditional isotropic materials which Poisson’s ratio range is between 0.35 and 0.5, some of the 

Poisson’s ratios of braided textile composite have values that are close to 1. In general, for 

anisotropic materials including fibrous and textile reinforced composites, the value of Poisson's 

ratio depend on direction. Poisson's ratios are reported to have large magnitudes of positive [20] 

or negative [10] values. In the specific context of braided textile composite of this paper, the 

reason lies in the fact that great disparity in terms of moduli in longitudinal and transverse 

directions of constituent braiding yarns and the resultant significantly dissimilar reinforcing 

effects of the braided textile preform along different directions lead to a high anisotropy of 

composite material property. For example, a combination of high Young’s modulus in the 

longitudinal direction and low modulus in the transverse direction will lead to a high value of 
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minor Poisson’s ratio.  It is also noticed that at angle of 45°, ν21 = ν12, ν23 = ν32, ν13 = ν31. This is 

due to the unit cell having identical properties in both planar directions at angle of 45°. 

The Effect of Fibre Volume Fraction on The Mechanical Properties 

    For a typical braided structure, Vf can reach 0.5 to 0.6 because of tight braiding architectures 

as a result of net-shape-manufacture technique [11]. In this study, Vf is controlled by the 

thickness of the unit cell. Its range of 0.40 to 0.55 guarantees the practical usefulness of the FE 

model and the results. 

 

Figure 17.The effect of fibre volume fraction on the Young’s moduli for biaxial unit cell 
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Figure 18.The effect of fibre volume fraction on the shear moduli for biaxial unit cell 

 

Figure 19.The effect of fibre volume fraction on the Poisson’s ratios for biaxial unit cell 

 

    The effect of Vf on the equivalent mechanical properties is investigated for unit cells with a 

fixed braiding angle of 60°. As depicted in Figure 17, the Young’s moduli correlate with Vf 

linearly. Similarly, as shown in Figure 18, all the shear moduli, G12, G13, and G23, increase 
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linearly with the increase of Vf, and the in-plane shear modulus, G12, increases more as 

compared to the two through-thickness shear moduli.  

As delineated in Figure 19, the in-plane Poisson’s ratio, ν12, is noticeably higher than all the 

other Poisson’s ratios. The explanation is that the high braiding angle leads to more yarns to 

lean towards the transverse direction. The value of ν12 increases with the increase of Vf, and ν21 

almost remains constant with the increase of Vf. In contrast, the other four Poisson’s ratios, ν31, 

ν32, ν23 and ν13, tend to have an inverse relation with Vf. The linearity demonstrated by the 

relations between elastic properties and Vf indicates that the general principle of rule of mixture, 

which primarily applies to unidirectional fibre laminates, can also be extrapolated to study 

braided textile composites. However, 
Textile

EquivalentM  in Equations (11) and (12) refers to the 

equivalent property of reinforcing braided textile in its composite instead of it consisting of 

individual dry yarns.    
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VERIFICATION OF SIMULATION RESULTS BY A BENDING TEST 

 Bending Test Set-Up 

    The bending test is a basic mechanical test which provides information on the modulus of 

elasticity in bending Ef and the flexural stress-strain response of the material. A beam structure 

which has variable braid angles through the cross-section was intentionally chosen in this study. 

Geometrically, this structure consisted of a rounded leading edge, a sharp trailing edge and an 

asymmetric camber. The beam, which structure consists of foam core enveloped by composite 

skin comprising 2 layers of 2x2 biaxial reinforcement braids, was fabricated using Resoltech 
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2080 M25 foam core and Aksaca carbon fibre braided textile composite skin by wet-layup 

fabrication process.  

 

Figure 20.Beam design and experimental setup 

Loaded in the three-point configuration, the actual test set-up of the beam structures is shown 

in Figure 20 where the assembly was supported by two rods. In contrast to conventional three 

point bending test, the bending force was applied via belt loading where loads were increased 

progressively. Two strain gauges were installed at the bottom to measure the tensile strain 

values. The strain was measured and recorded by a portable data logger TDS-302 while the tip 

deflections were measured by two dial indicators DDP-50A. Both sets of equipment were 

manufactured by Tokyo Sokki Kenkyujo Co., Ltd. The contact area that applies the belt load is 

shaded yellow and the locations of strain gauge applied are shown in Figure 21. The strain 

gauges are shown by the blue rectangles just offset from the central contact area and the contact 

area consists of the curved top surface with a width of 50 mm and a length of 142 mm at the 

centre of the beam. 
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Figure 21. Locations of strain gauges and the area that applies the load 

 

Yarn and Foam Core Properties 

     Aksaca carbon fibre was produced by De Long & Associates LLC with polymer system 

supplied by Momentive Specialty Chemicals, and the properties of the impregnated braiding 

tows were determined by Equations (3) to (8). The properties were E11 = 193.7 GPa, E22 = E33 = 

11.8 GPa, ν12 = ν13 = 0.23, ν23 = 0.25, G12 = G31 = 8.43 GPa, and G23 = 4.71 GPa. Resoltech 2080 

M25 is a typical liquid foaming epoxy, mixed with Hardener 2085M on a weight ratio 100:30, 

to cast low density structural cores.
 
It was treated as an isotropic material with elastic material 

properties: E = 213 MPa, G = 98 MPa.  

Unit Cell Discretisation and Meso-Level Simulation 

 

Figure 22.Discretisation of beam structure based on braiding angle 

    In this analysis, each surface (top and bottom) of the composite skin was subdivided into five 

sections along its chord length (see Figure 22). For top surface unit cells, braiding angles vary 

from 28° to 35° while bottom ones have braiding angles from 34° to 42°. This variation is 

mainly due to changing curvature of the beam profile. But we also anticipate and deliberately 
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carry this out to account for imperfection and uncertainties inherent in the real-world fabrication 

process.     

    All these unit cells were modelled individually with yarn widths of 3 mm, thicknesses of 

0.2875 mm and inter-yarn spacing, ε, of 0.05 mm. The composite skin thickness is maintained 

at 1.3 mm (two layers of braided textile reinforcements). Each unit cell construction was 

optimized to ensure non-conflicting yarns due to the tight textile spatial constraints, details see 

[21]. Determined by FEA on unit cell, the elastic properties of the unit cell with the braiding 

angle of 28° from the top surface were determined to be E11 = 11.7GPa, E22 = 43.6GPa, E33 = 

9.41GPa, ν12 = 0.254, ν13 = 0.233, ν23 = 0.104, G12 = 20.9GPa, G31 = 3.39GPa, and G23 = 4.26GPa. 

By the same procedure, the elastic constant values for the remaining sections on the top surface 

and all sections of the bottom surface were obtained uniquely. 

Macro Level Bending Simulation on the Beam 

Having obtained the elastic properties of the ten sections on the beam structure, a macro level 

simulation of the loaded structure could be carried out. 

 

 

Figure 23.Beam subsection properties and orientations 

As depicted in Figure 23, each partition of the beam structure was assigned the unit cell 

elastic mechanical properties corresponding to their braiding angles. Ten local coordinates 
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perpendicular to the curvature of the top and bottom surfaces of each section were assigned to 

define the material orientation. In the meshes, 3D hexagon 8-node C3D8R elements were used 

for the majority of all the constituents with some small regions being meshed with linear wedge 

elements of type C3D6. There were 55641 nodes in total. The central region of the beam 

experiences a constant pressure load similar to that applied in the actual experiment.  

    The supporting rods (which were created and assembled with the beam in Abaqus) were 

assumed to be rigid bodies supporting the beam structure throughout the analysis. Partitions 

were also made on the beam to isolate the regions of the applied load and the other points of 

interest (i.e., strain gauge locations, contact points of the supporting rods, etc.). The contact 

between supporting rods and the beam was assumed to be frictionless. The translational 

movement in Y direction and rotational degree of freedoms in X and Z directions of the two 

contact points were constrained (U2=UR1=UR3=0) in order to provide optimal constraints to 

the loaded structure. At the same time, they are also the minimal constraint; any lesser 

constraint will lead to either asymmetrical deformation or convergence problems in the 

simulation. 

Results and Discussion 

     The contour plot of the maximum principal stress (Figure 24) shows the stress concentrations 

occur at the centre of the beam structure, which is expected due to the applied load and the 

constraining boundary conditions. The discontinuity in the stress distribution is the result of the 

discretization process and can be mitigated by increasing the density of discretization. And as 

shown in Figure 25, the simulated strain value lies in between the strain value measured by the 

left and right strain gauges. Generally, there is a good correlation between the experimental 

measurements and the FEA predictions of strain.   
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Figure 24.Contour plot of maximum principal stress (top view)

 

Figure 25.Correlation of simulated and tested strain value 

    Another measure of comparison is the tip displacement experienced by the structure. One 

deformed shape of the beam at an applied load is shown in Figure 26. The agreement between 

simulated displacement and actual displacement is very good as shown in Figure 27. 
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Figure 26.Beam tips displacement 

 

Figure 27.Correlation of simulated and tested beam tip displacement value 

    These two positive correlations of the FEA with the experiments at not only within the 

interior of the structure (where the strain gauges lie) but also at the boundaries (tips) exhibit an 

overall agreement in the predicted and the actual elastic behaviour of the structure. The minor 
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divergence in strain and displacement values with the increase of load can be explained by a few 

factors. Notice that a single value of elasticity was adopted in this study according to data 

provided by the supplier, while it was fully acknowledged that the tensile elasticity may 

deviates from compression modulus for porous foam materials; this approximation was a 

possible source of discrepancy between simulation and experimental results. Moreover, the 

resin matrix, epoxy, is a brittle material in which micro cracks can propagate easily once 

initiated under load. In contrast, FEA treats the body as a perfect material, ignoring the possible 

defects in the structure. Therefore, it was likely that the structure’s stiffness degraded slightly 

below the values predicted using the unit cell modelling as the load increased. Additionally, the 

number of discretization of the beam structure (currently 10 sections) may affect the prediction 

as well. More regions would lead to better region-wise property determination and a more 

accurate elastic behaviour simulation. Adding more partitions in regions of particularly high 

curvature (and changing braid angles) might also lead to better results as well. However, the 

computation cost will increase, thus there is always a trade-off between simulation efficiency 

and simulation accuracy.  

CONCLUSIONS 

In this paper, geometric and finite element models of 2D biaxial and triaxial braided textile 

preform and their composite unit cells are systematically developed and analysed. The unit cells 

proposed in this work are highly dynamic and versatile and able to resemble different jamming 

conditions [22]. The variations of elastic mechanical properties of braided composites with the 

increase of braiding angle presented show an expected asymmetry about θ=45°, mainly due to 

the additional constraint of yarn spacing being dependent on braiding angle. It is also found that 

all the in-plane engineering constants are more sensitive to the braiding parameters than the 

properties involve the through-thickness direction. Additionally, it is demonstrated that there 

exist a linear correlation between fibre volume fraction and the elasticity constants for a given 

braiding angle, and this linearity can be harnessed as a rule of thumb to estimate the properties 

of composites with different fibre volume fractions. Acknowledging the shortcomings of small 
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scale coupon testing, another uniqueness of this paper lies in the direct comparison between a 

bending test on a composite structure and FEA obtained via the multi-scale modelling approach. 

The proposed model is shown to be able to predict the mechanical behaviour of braided 

composites accurately and efficiently. 
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Table 1.Material properties of fibre [17], matrix [18] and yarn 

Material properties Fibre Material properties Matrix VfY Material properties Yarn 

Ef11 (GPa) 227.53 Em 3.45 GPa 0.8 E11 (GPa) 182.71 

Ef22=Ef33 (GPa) 16.55 Νm 0.35  E22=E33  (GPa) 11.81 

Gf12=Gf13 (GPa) 24.82    G12=G13 (GPa) 8.43 

Gf23 (GPa) 6.89    G23 (GPa) 4.71 

νf12= νf13 0.20    ν12=ν13 0.23 

νf23 0.25    ν23 0.25 

 

 

 


