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in GroEL/GroES Complexes
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Abstract

The biological function of chaperone complexes is to assist the folding of non-native proteins. The widely studied GroEL
chaperonin is a double-barreled complex that can trap non-native proteins in one of its two barrels. The ATP-driven binding
of a GroES cap then results in a major structural change of the chamber where the substrate is trapped and initiates a
refolding attempt. The two barrels operate anti-synchronously. The central region between the two barrels contains a high
concentration of disordered protein chains, the role of which was thus far unclear. In this work we report a combination of
atomistic and coarse-grained simulations that probe the structure and dynamics of the equatorial region of the GroEL/GroES
chaperonin complex. Surprisingly, our simulations show that the equatorial region provides a translocation channel that will
block the passage of folded proteins but allows the passage of secondary units with the diameter of an alpha-helix. We
compute the free-energy barrier that has to be overcome during translocation and find that it can easily be crossed under
the influence of thermal fluctuations. Hence, strongly non-native proteins can be squeezed like toothpaste from one barrel
to the next where they will refold. Proteins that are already fairly close to the native state will not translocate but can refold
in the chamber where they were trapped. Several experimental results are compatible with this scenario, and in the case of
the experiments of Martin and Hartl, intra chaperonin translocation could explain why under physiological crowding
conditions the chaperonin does not release the substrate protein.
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Introduction

Proteins that have not yet folded to their native state may

interfere with the machinery of the cell. For this reason,

prokaryotic and eukaryotic cells have evolved special macro-

molecular ‘‘chaperone’’ complexes that capture and refold

partially folded proteins, thereby preventing them from indulging

in cellular mischief [1,2,3,]. An important class of chaperone

complexes are the cage chaperones or chaperonins. These complexes

can efficiently trap partially folded proteins in a cavity that is

barely larger than the target protein, and assist in the folding of an

entire class of proteins with different amino acid sequences.

Hence, the chaperonin is able to distinguish partly folded states

from the native state, independently of the specific amino-acid

sequence. It is important to stress that in the presence of molecular

crowding (similar to the one present in a cell) the chaperonin

complex has been demonstrated to not release the substrate

protein before it reaches the native state [4]. Below, we report a

detailed numerical study of protein dynamics inside the so-called

GroEL-GroES chaperone complex. The GroEL complex consists

of two barrel-shaped protein complexes joined at the bottom (see

Figure 1). Non-native proteins can be captured in an open GroEL

‘‘barrel’’. The GroES ‘‘lid’’ can then cap a protein-containing

barrel, thereby initiating the refolding process. After about

15 seconds and several refolding cycles, the GroES cap is released

and the other barrel is capped (if it contains a protein). A single

‘‘cycle’’ of the GroEL-GroES chaperone hydrolyses seven ATPs

[5]. This energy is presumably used to compress the protein in a

smaller, more hydrophilic GroEL cavity, thus increasing the

thermodynamic driving force to expel this protein. Recently we

reported simulations of the kinetics of chaperone-induced protein

refolding, using a lattice model for the GroEL-GroES complex [6].

This study suggested that proteins may refold either inside the

cavity in which it has been captured or, surprisingly, by

translocating from one barrel of the GroEL dimer to the other

(see Figure 2). This second route is unexpected because it is

generally believed that proteins cannot cross the equatorial plane

that separates the joined GroEL barrels [7,8,9].

In the present paper we use atomistic and mesoscopic

simulations to test whether such a translocation scenario is

compatible with the available structural information on the

GroEL complex. Our simulation studies focus on the equatorial

regime of the GroEL complex that might be expected to act as a

barrier against translocation. Crystallographic studies indicate that
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most protein units in the chaperonin complex have a fairly rigid

structure both in the open and closed configurations [5]. However,

low-resolution small-angle neutron scattering experiments [7] and

cryo-electron microscopy [8,9] indicate the presence of disordered

residues in a central cavity of the equatorial region. These chains

do not show up in the X-ray crystallographic structure of the

GroEL complex.

Figure 1. Space-filling representation of the X-Ray structure of the GroEL/GroES/ADP complex [5]. Colours represent the type of surface:
all hydrophobic amino acids (A, V, L, I, M, F, P, Y) are in yellow, while the polar ones (S, T, H, C, N, Q, K, R, D, E) are red. The sphere in the equatorial
region has a radius of 40 Å and models the cavity between the cis and the trans chamber. In the inset we show the actual simulation setup,
consisting of: the confining sphere, the chains (orange) anchored the GroEL amino acids in the equatorial region (blue), and a test alpha helix (red)
allowed only to rotate around the center of mass, and to translate.
doi:10.1371/journal.pcbi.1000006.g001

Figure 2. The present simulations suggest that non-native
proteins may reach their native state either by the standard
‘‘intra-chamber’’ folding or by translocation through the
equatorial region. The two pathways are shown in the schematic
drawing above. In the initial configuration (1), the chaperonin barrel is
open and exposes a hydrophobic rim for binding partially folded
proteins. After a non-native protein is captured, the GroEL-GroES
complex closes (i.e., the barrel gets capped) (2). After that, the protein
can either refold in the original barrel (3A) or, if their structure is far
from native [6], translocate to the other side (3B). The early stages of
translocation cost free energy, as the protein must locally unfold to
initiate the translocation. This implies that the translocation route will
be preferentially followed by relatively unstable non-native conforma-
tions. The gain in free energy as a result of folding facilitates the
subsequent translocation process, when the protein enters the other
barrel of the chaperonin complex (4). If, after translocation, the protein
is still in a non-native state, it will remain trapped, as the surface of the
open barrel can bind to the hydrophobic surface of non-native proteins.
In this way the folding cycle can start again, with the capping of the
second cavity and the opening of the first. The process (shuttling)
continues until folding is completed.
doi:10.1371/journal.pcbi.1000006.g002

Author Summary

Chaperonin complexes capture proteins that have not yet
reached their functional (‘‘native’’) state. Non-native
proteins cannot perform their function correctly and
threaten the survival of the cell. The chaperonins help
these proteins to reach their native state. The prokaryotic
GroEL-GroES chaperonin is an ellipsoidal protein complex
that is approximately 16 nm long. It consists of two
chambers that are joined at the bottom. Interestingly,
protein repair by this chaperonin is not a one-step process.
Typically, several capture and release steps are needed
before the target protein reaches its native state. It is
commonly assumed that substrate proteins cannot trans-
locate, i.e., move inside the complex from one chamber to
the other. In the absence of translocation, proteins that
have not yet reached their functional conformation have
to be released into the cytosol before being recaptured by
a chaperonin. We present multi-scale simulations that
show that it is, in fact, surprisingly easy for substrate
proteins to translocate between the two chambers via an
axial pore that is filled with disordered protein filaments.
This finding suggests that non-native proteins can be
squeezed like toothpaste from one chamber to the other:
the incorrect structure of the protein is broken up during
translocation and the protein has an increased probability
to find its native state when it reaches the other chamber.
The possibility for intra-chaperonin translocation obviates
the need for a potentially dangerous release of non-native
proteins.

GroEL/GroES Intramolecular Translocation Pathway
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The presence of disordered protein chains in the pore that joins

the two GroEL chambers will certainly affect the permeability of

the equatorial plane, but they need not block translocation. There

are, in fact, examples [10] where disordered protein chains near a

pore act to enhance the selectivity of the translocation process.

Interestingly, the chemical composition of the disordered chains in

the GroEL complex is similar to that of chains in known

translocation channels in the nuclear pore complex.

Results

We have performed fully atomistic and coarse-grained simula-

tions that do reproduce the structural data of [7], and allowed us

to bridge the computational cost of computing the translocation

free energy barrier of a short alpha helix. For the fully atomistic

simulations in explicit water we used the GROMACS Molecular

Dynamics (MD) simulation package [11]. MD simulations of 10 ns

were performed on the structure of the central region at which

time the system had equilibrated (Figure S1). In order to compute

the scattering profile we used the program CRYSON from

Svergun et al. [12]. Figure 3 shows that the neutron-scattering

form factor computed on the basis of equilibrated structure of the

trans ring agrees well with the experimental data of Krueger et al.

[13]. Interestingly, the simulations show that chains on the cis ring

do not obstruct the passage between the two GroEL chambers (see

Figure 4 and Figure S2). The chains in the trans ring fluctuate in a

region between 5 and 15 Å from the center, in agreement with

hollow-cylinder model proposed by Krueger et al. on the basis of

their experimental data [13].

To compute the free-energy barrier for protein translocation,

the MD approach described above would have been prohibitively

expensive. We therefore performed Monte Carlo simulations on a

suitably coarse-grained model for the GroEL complex. We focused

on the structural fluctuations within a spherical region (diameter

40 Å) around the trans side of the equatorial cavity (Figure 1),

because the cis chains did not appear to represent an obstacle to

translocation. The disordered chains in the cavity (22 monomeric

units long) were rigidly anchored on a circular rim around the

trans hole of ,30 Å radius (Figure 1 inset). To this end, we

represented all peptide backbones using a model that keeps track

of the positions of 5 distinct types of backbone atoms (H, N, Ca, C,

and O). Side chains are represented as hard spheres with a radius

of 2.5 Å, centred on the Ca atoms. Neighbouring spheres along the

chain are allowed to overlap (see Figure S3). We used this coarse-

grained model to estimate the free-energy cost associated with the

insertion of a short and rigid helix, 21 monomeric units long, in

the region of disordered protein chains. We sampled the free

energy as a function of a reaction coordinate Qs that measures the

progress of the translocation process. Qs is defined as the total

number of Ca atoms that have passed the entrance of the trans

ring. We define the entrance as a plane through the average

position of the hydrogen atoms in the anchoring amino acid of the

chains. In order to translocate, a protein must first ‘‘find’’ the

translocation hole. From our study of a lattice model GroEL [6],

we know that this first step is relatively easy. The key question is

therefore whether or not the free-energy cost for the subsequent

translocation is prohibitive. The present calculations address this

issue by computing the free energy difference involved in moving

an a-helix from the entrance of the pore region to the inside. Of

course, the free-energy barrier depends on the interaction between

the a-helix and the disordered chains that consist mainly of Gly

and Met.

Analysis
We start by considering a very naive estimate that has the

advantage that it is based on the fully atomistic simulations. From

these simulations, we know the density profile of Ca atoms in the

trans ring (see Figure 4). If, in the spirit of the Flory model, we

assume that the density fluctuations of independent polymer Kuhn

segments are Poisson distributed, we can estimate the probability

P0 that a tube with the diameter of an a-helix contains no Ca atoms

at all. This would lead us to an estimate of the free energy barrier

that is equal to 2kTlnP0. Using the density profile of Figure 4 and

an estimate [14] for the persistence length of a protein filament, we

obtain a translocation barrier of approximately 4 kBT. If we make
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Figure 3. Validity test of the full atomistic run. The plot shows the experimental scattering intensity of solution of single ring GroEL obtained
with SANS (o). Fitted over the data with the program Cryson [12], we plotted the scattering intensity of the MD equilibrated structure (___) and of the
X-Ray structure obtained by Brag et al. [26] (- - -). The fit of the simulated data is significantly better than the one from the X-Ray structure indicating
that the representation of the C-Terminal chains is accurate.
doi:10.1371/journal.pcbi.1000006.g003
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the (unrealistic) assumption that all Ca’s in a single chain are fully

correlated, then we estimate the barrier height to be only 1 kBT,

which should be a significant underestimate. To see whether such

a rough estimate is at all reasonable, we can repeat the same

procedure for the coarse-grained model where we can also

perform direct free-energy calculations. To be consistent with the

previous case, we assume that the there are only excluded-volume

interactions between the (mainly Gly) chains and the helix residues.

In terms of the interaction matrix of [15] this is equivalent to

assuming that the helix consist entirely of Thr residues. Assuming

all Kuhn segments fluctuate independently, we estimate the

barrier to be 4 kBT, and the assumption of fully correlated

fluctuations will again yield an estimate of order 1 kBT. The good

agreement between the fully atomistic and coarse grained

estimates is, of course, somewhat fortuitous, in view of the fact

that the two density distributions are not identical. However, it

suggests that the coarse-grained model may be of practical use.

Next, we compute the free energy barrier for the coarse-grained

model system using the MC method described in the Methods.

First we considered the case of pure steric interactions between

both the chains and the helix. In Figure 5 we plot the free energy

F(QS) as a function of the reaction coordinate QS that measures the

number of Ca’s that have entered the pore region. The plot shows

a symmetric barrier with a height of approximately 2 kBT, which is

surprisingly close to the estimate obtained assuming fully

correlated fluctuations of protein segments. In other words: the

chains tend to move as a whole in an out of the central area of the

pore. This picture is supported by the snapshot of the pore region

(Figure S4). The main conclusion that we can draw from the

coarse-grained free-energy calculations is that the presence of

seven protein chains in the central core region of the trans ring is

not enough to obstruct translocation on steric grounds alone.

Of course, the interaction between a typical translocation

protein segment and the ring chains is not purely steric. To

consider the effect of both attractive and repulsive interactions, we

consider the two cases separately. As the chains consist

predominantly of Gly, we consider the scenarios that the

interactions between the filament residues and the Ca atoms of

the helix are all equal to the twice the average of all attractive

(resp. repulsive) interaction energies of Gly in the Betancourt-

Thirumalai interaction matrix [15] (20.1kBT and +0.1kBT,

respectively). The strength of attractive/repulsive interactions

between the Ca’s of the helix and the filament is therefore 20.2kBT

(resp +0.2kBT). By taking an interaction that is double the average

attractive/repulsive interaction strength, we are presumably

modeling rather extreme cases that should put bounds on the

actual translocation barrier.

Figure 5 shows the computed free-energy barriers for

translocation in the case of attractive (resp. repulsive) interactions.

The translocation barrier is appreciably lower when the chains

attract the a helix (2 kBT) than in the opposite limit (4.5 kBT).

However, the most striking observation is that the barrier is quite

small in either case - a barrier of 4.5 kBT can easily be crossed due

to the action of thermal fluctuations.

In fact, in the case of attractive interactions, there is virtually no

barrier for translocation. This absence of a barrier may provide a

rationale for the experimental observation that Krueger et al.

observed in their SANS experiments [13] that a non-native

protein (DPJ-9) was partially sucked into isolated trans rings. If

proteins can indeed translocate through the GroEL equatorial

plane then this may also be relevant for the mechanism by which

the GroEL/GroES chaperonin can help the refolding of proteins

that are too big to be encapsulated. In such cases, portions of the

protein could be attracted to the inside of the pore and perform

either a complete or a partial translocation (Figure S5). According

to [6] either process can enhance the refolding efficiency.

The translocation of encapsulated non-native proteins is most

likely in cases where the initial structure is far native. The reason is

two fold: first of all, for such conformation there should be a low

free-energy cost associated with partial unfolding—a necessary
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Figure 4. Plot of the density profile r[r] of the filament’s Ca as a function of the radial distance from the central axis of the hole r. The
data are obtained with the caterpillar model of the chains in the trans ring (circles), and with GROMACS full atomistic simulations for the trans
(squares) and cis (diamonds) chains. The remarkable overlap between the distributions indicates that we do reproduce the static picture of a blocked
hole. The density distribution generated by the coarse-grained model is more peaked than the one generated in the atomistic simulations. This
indicates that, if anything, the coarse-grained model will overestimate the extent to which the disordered peptide chains hinder translocation. The
coarse-grained model predicts that the chains in the cis region are far from the center of the hole and do not impede the passage of an a-helix.
doi:10.1371/journal.pcbi.1000006.g004

GroEL/GroES Intramolecular Translocation Pathway

PLoS Computational Biology | www.ploscompbiol.org 4 2008 | Volume 4 | Issue 2 | e1000006



first step in translocation. Secondly, non-native chains that are

trapped in a hydrophilic cage tend to be compressed. They can

lower their free energy by translocating out of the cage. The

simulations of [6] suggest that the driving force for such

translocation can be as much as 0.5 kBT per amino-acid residue.

Such a free-energy gradient is enough to completely remove a

small free-energy barrier that might oppose translocation

(Figure S6).

Discussion

In conclusion, our simulation results are not compatible with the

assumption that the disordered protein chains in the cis or trans

rings provide an effective barrier against translocation. The

present findings may help explain a puzzling experimental finding

concerning refolding experiments in the presence of crowding

agents [4]. The experiments of [4] demonstrated that, under

physiological crowding conditions, the substrate protein does not

escape from the chaperonin until it has reached its native state.

This phenomenon is difficult to reconcile with the standard

scenario where a protein (folded or not) is expelled from the cis-

chamber as another non-native protein binds to the ATP-trans

chamber. However, if it is not another protein that binds to the

hydrophobic rim of the trans chamber, but the original protein

that has translocated from the cis-chamber (see Figure 2), then it

becomes clear why non-native proteins are unlikely to escape. We

stress that the present findings do not rule out the possibility that

non-native proteins fold into the native state without translocation

[16]—translocation is simply an added route for protein folding.

Such a route maybe very important for proteins that folds co-

translationally, where confinement in a optimal size tunnel is

crucial for efficiently reaching the native state [17].Our simula-

tions suggest that it would be interesting to carry out refolding

experiments on GroEL with mutated chains that would strongly

stick to each other (or that could be cross-linked). Such mutation

would impede the translocation and should thereby reduce the

efficiency of the GroEL/GroES complex.

Materials and Methods

Atomistic Molecular Dynamics
The flexible nature of this region prevented accurate X-ray

determination of the chains filling the interconnecting pore. To

obtain a full-atomistic model, the program MODELLER [18] has

been used to generate a starting configuration of the chains

missing in the X-ray structure (PDB code: 1AON) of the GroEL/

GroES complex loaded with ADP. The reconstructed fragments

(sequence KNDAADLGAAGGMGGMGGMGGM) are added at

the C-term extremity of each monomeric building block of the

chambers. In order to avoid steric clashes between the chains, the

procedure has taken into account of the quaternary assembly of

the chains. After the generation of the chains structures, three

steepest-descent minimisations were performed, using the program

GROMACS [11] (energy minimisation tolerance: 0.1, 0.05 and

0.01 kJ/mol21nm21). Molecular Dynamics (MD) simulations

were subsequently performed with the GROMACS [11] package

by using GROMOS96 force field with an integration time step of

2 fs. Non-bonded interactions were accounted for by using the

particle-mesh Ewald method (grid spacing 0.12 nm) [19] for the

electrostatic contribution and cut-off distances of 1.4 nm for Van

der Waals terms. Bonds were constrained by LINCS [20]

algorithm. The system was simulated in the NPT ensemble by

keeping constant the temperature (300 K) and pressure (1 atm); a

weak coupling [21] to external heat and pressure baths was

applied with relaxation times of 0.1 ps and 0.5 ps, respectively. As

we intended to simulate a solution at a pH-value of 7 the

protonation states of pH sensitive residues were assigned as follow:

Arg and Lys were positively charged, Asp and Glu were negatively

charged and His was neutral. The protein’s net charge was

neutralised by the addition of Cl2 and Na+ ions. It would have

been prohibitively expensive to simulate the entire chaperonin plus

surrounding water. However, this was not necessary, as our aim

was to study the structure and dynamics of the strongly fluctuating

the equatorial rings, rather than the relatively rigid remainder of

the GroEL ‘‘chamber’’. We therefore immobilised the chamber
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Figure 5. Translocation free energy as a function of the number of translocated amino acids Qs, for the different interaction scenarios.
For steric interactions (circles), the profile is rather symmetrical and presents a small barrier of 2 kT. In the presence of mutual attraction between chains
and the helix (squares), the barrier is very small and there is a symmetry breaking that favours the binding of the helix to the chains inside the cavity (small
values of Qs). The final scenario is for repulsive helix-chains interactions (diamonds) where we have a symmetric barrier 4 kT high.
doi:10.1371/journal.pcbi.1000006.g005
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atoms that are not directly connected to the pore chains. Of

course, the equatorial chains were free to move and relax in the

pore. In order to further reduce the number of degrees of freedom

treated, we only considered water molecules (SPCE [22]) inside

the GroEL chamber. We achieved this by imposing a strong

repulsive external potential outside the GroEL chamber.

Ignoring the water outside the cage is not an unreasonable

simplification, as we found that the disordered chains were

completely solvated by water molecules and never moved outside

the atoms of the internal surface of the chamber. We assumed

periodic boundary conditions only along the symmetry axis of the

GroEL complex (‘‘z-axis’’).

Coarse-Grained Monte Carlo Simulations
The Caterpillar model is a modification of the tube model of

Maritan and co-workers [14,23,24]. The main differences are that

we treat the structure of the backbone in more detail and that our

scheme to account for self avoidance by means of bulky side

groups is computationally cheaper than the approach of Maritan

et al. who introduced a three-body interaction to achieve the same.

The interaction between amino acids with different side chain ECA

is given by the following expression

ECa
rCa
½ �~e 1{

1

1:0ze2:5� rmax{rCað Þ

� �
ð1Þ

where rCa
is the distance between nonadjacent Ca atoms in the

protein and rmax is the distance at which the potential has reaches

half e . For e we use the 20620 matrix derived with the method of

Betancourt and Thirumalai [15].Although these interaction

energies are strictly speaking neither energies nor free energies,

they do provide a reasonable representation of the heterogeneity

in the interactions between different amino acids. We modeled the

hydrogen bonds between the hydrogen and the oxygen of the

backbone with a 10-12 Lennard-Jones potential:

ELJ~{3:1 5
s

r

� �12

{6
s

r

� �10
� �

, ð2Þ

where the minimum is at s= 2.0 Å and ELJ = 3.1 kBT. The

directionality of the hydrogen bond was taken into account by

multiplying the Lennard-Jones potential by a pre-factor

EAlignment~ cos h1 cos h2ð Þ2, ð3Þ

where h1 and h2 are the angles between the atoms COH and

OHN respectively. The large hard spheres centered on the Ca

atoms ensure that the orientation factor is maximum only for

angles close to p. Apart from rotations around the dihedral angles w1

and w2 (Figure S3), the backbone is rigid. We have verified that

this model can indeed reproduce typical protein motifs such as

alpha helices and beta sheets, depending on the amino-acid

sequence.

Folding
To sample the conformations of the protein chains anchored on

the trans ring, we use two basic Monte-Carlo moves: branch

rotation and an improved version of the biased Gaussian step [25],

while for the translocating alpha helix we allow only translation

moves and rotation around the center of mass.

Supporting Information

Figure S1 Root mean square displacement of the Ca atoms of

the equatorial chains compared to the initial condition. The time

scale starts from 7 ns and goes all the way to 11 ns. The plateau

demonstrates that the dynamics reached equilibrium.

Found at: doi:10.1371/journal.pcbi.1000006.s001 (0.15 MB EPS)

Figure S2 Schematic representation of the model used for the

GROMACS full atomistic simulations. The part of the protein

that was kept constrained in space is shown in grey. The chains

that were free to fluctuate are shown in light blue. The water

molecules that fully solvated the protein complex are not shown.

The axes are drawn to indicate the coordinate system used in the

calculation of the filament density profiles.

Found at: doi:10.1371/journal.pcbi.1000006.s002 (0.71 MB EPS)

Figure S3 Real-space representation of the backbone of the

caterpillar model. The large blue sphere represents the self-

avoidance area of the Ca atoms in with a radius of 2.5 Å. The H

and O atoms interact through a 10-12 Lennard-Jones potential

tuned with a quadratic orientation term that selects for alignment

of the C H O and N atoms involved in a bond. The backbone

fluctuates only around the torsional angles W1 and W2.

Found at: doi:10.1371/journal.pcbi.1000006.s003 (1.11 MB EPS)

Figure S4 Real space snapshot of one configuration of the

chains in the equatorial region equilibrated with the Monte Carlo

simulation of the caterpillar model. The top and side view shows a

fully blocked pore as seen in X-ray crystallography or Cryo-EM

reconstruction.

Found at: doi:10.1371/journal.pcbi.1000006.s004 (2.23 MB EPS)

Figure S5 Plot of translocation free energy F (Q,Q s) as a function

of the number of Helix-chains contacts Q and of the number of

translocated residues Q s. We plot F (Q,Q s) for an attractive

(20.2 kT) interaction between the alpha helix and the chains. In

this scenario the alpha helix is pulled towards the middle of the

hole, and it is subject to two choices, either to stay there

surrounded by the chains (low values of Q S and high values of Q)

or directly translocate (low values of Q S). The small barrier

(,2 kBT) separating these two states suggests that the translocation

can occur in one step (all the way down) or in two steps (first

trapped for a while in the hole and then escaping).

Found at: doi:10.1371/journal.pcbi.1000006.s005 (0.21 MB EPS)

Figure S6 Plot of translocation free energy F9 (Q s) = F

(Q s)20.5Q S where Q s is the number of translocated residues,

and F (Q s) is the translocation free energy with repulsive (0.2 kT)

helix-chains interactions. The correction added to the free energy

comes from the fact that the protein feels a gradient towards a a

folded and translocated state. We extrapolated the coefficient

20.5 kBT per amino acids translocated, from previous work on

lattice proteins [6].

Found at: doi:10.1371/journal.pcbi.1000006.s006 (0.07 MB EPS)
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