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Abstract

Background: The small number of samples and the curse of dimensionality hamper the better application of deep

learning techniques for disease classification. Additionally, the performance of clustering-based feature selection

algorithms is still far from being satisfactory due to their limitation in using unsupervised learning methods. To

enhance interpretability and overcome this problem, we developed a novel feature selection algorithm. In the

meantime, complex genomic data brought great challenges for the identification of biomarkers and therapeutic

targets. The current some feature selection methods have the problem of low sensitivity and specificity in this field.

Results: In this article, we designed a multi-scale clustering-based feature selection algorithm named MCBFS which

simultaneously performs feature selection and model learning for genomic data analysis. The experimental results

demonstrated that MCBFS is robust and effective by comparing it with seven benchmark and six state-of-the-art

supervised methods on eight data sets. The visualization results and the statistical test showed that MCBFS can

capture the informative genes and improve the interpretability and visualization of tumor gene expression and

single-cell sequencing data. Additionally, we developed a general framework named McbfsNW using gene

expression data and protein interaction data to identify robust biomarkers and therapeutic targets for diagnosis and

therapy of diseases. The framework incorporates the MCBFS algorithm, network recognition ensemble algorithm

and feature selection wrapper. McbfsNW has been applied to the lung adenocarcinoma (LUAD) data sets. The

preliminary results demonstrated that higher prediction results can be attained by identified biomarkers on the

independent LUAD data set, and we also structured a drug-target network which may be good for LUAD therapy.

Conclusions: The proposed novel feature selection method is robust and effective for gene selection, classification,

and visualization. The framework McbfsNW is practical and helpful for the identification of biomarkers and targets

on genomic data. It is believed that the same methods and principles are extensible and applicable to other

different kinds of data sets.
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Background
Genomic data, such as gene expression data, have been

widely utilized to explore the mechanisms underlying a

series of disorders [1]. It has the characteristics of imbal-

anced class distribution, a huge number of genes and a

small number of samples. However, only a small subset

of genes is suitable for tumor classification. To address

these issues, some feature selection algorithms have re-

cently been developed for identifying informative genes

from genomic data of cancer [2–5].

Feature selection serves two purposes: to identify a

subset of features that have the most discriminative in-

formation for the classification, to build rapid and robust

predictive models and reduce the dimensionality of the

data and to avoid over-fitting and improve classification

accuracy [6, 7]; and to select relevant genes, and unravel

the underlying biological mechanisms, or to be used as

biomarkers or assess the efficacy of drugs [5, 8].

Based on the availability of labels in data, feature selec-

tion methods can be broadly categorized into unsuper-

vised and supervised [9]. For example, Feng et al.

recently developed a new supervised discriminative

sparse PCA (SDSPCA) method for multiview biological

data, which has been applied to cancer classification and

informative gene selection [2]. Zhao et al. presented su-

pervised and unsupervised spectral feature selection

methods for handling high-dimensional data [10]. Super-

vised learning has been applied to single-cell transcrip-

tion data to determine pathway activity and specific cell

type. For example, Hu et al. described a novel method-

ology for identifying key markers in neocortical cells,

using supervised learning [11]. A neural network-based

approach can also be used to reduce the dimensions of

single-cell RNA-seq data and predict cellular states and

cell types [12].

In the literature, feature selection algorithms can be

roughly grouped into three types: filter, wrapper, and

embedded algorithms [13, 14]. The filter methods are

independent of the classification algorithm, and they

are faster than wrapper methods. Wrapper methods

have higher learning capacity and search for optimal

combinations of features. In general, filter methods

can be considered the principal or auxiliary selection

mechanisms. A better method is to use the univariate

filter method to reduce the search space, and further

apply wrapper or embedded feature selection

methods.

In gene expression analyses, a powerful application of

feature selection is to identify complex disease genes and

biomarkers. Biomarkers can be used for disease early de-

tection, prognosis, and assessment of drug efficacy [15].

Some feature selection methods have been presented for

the identification of biomarkers [16, 17]. Embedding

gene expression data into the network may obtain better

interpretable gene sets and classification performance,

biomarkers, or targets. Since disease development may

involve pathways and genes in multiple biological pro-

cesses, network-based approaches could better under-

stand the deregulated molecular mechanisms of cancer

development and progression [18]. In biological pro-

cesses, certain genes and signaling pathways play central

roles, which can be used as targets for disease therapy

[19, 20]. Some network-based algorithms have been de-

signed to select features or identify highly predictive bio-

markers [1, 21].

First, we designed a multi-scale distance function.

Then, using it, we proposed a new feature selection

method called MCBFS that performs feature weighting

and clustering in a supervised manner for finding the

relevant features and removing the redundant features

from the original feature set. In addition, we developed a

general framework named McbfsNW to identify robust

biomarkers and therapeutic targets for diagnosis and

therapy of diseases. This mixed mechanism takes advan-

tage of filter method, network analysis and wrapper

method. First, candidate informative genes are selected

from the original gene sets through MCBFS proposed in

this work. Then, biomarkers and therapeutic targets are

further identified by network analysis and more accurate

wrappers.

Results
Datasets

To further assess the performance of MCBFS, the sum-

mary of ten publicly gene expression data sets used in

the evaluation processes is tabulated in Table 1. Two-

class cancer data sets and multi-class cancer data sets

were used to compare the MCBFS method with other

popular feature selection methods. Two-class cancer

data set DLBCL, multi-class cancer data set SRBCT and

two single-cell data sets were visualized through the

MCBFS method and principal component analysis

(PCA) to demonstrate our method is effective and widely

applicable.

In order to evaluate the performance of the proposed

biomarker and therapeutic target identification frame-

work, we applied McbfsNW to lung adenocarcinoma

(LUAD) data sets. Three original LUAD gene expression

data sets (GSE10072, GSE7670 and GSE43458) were re-

trieved and downloaded from the Gene Expression

Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).

To screen informative genes between the lung adenocar-

cinoma tissues and adjacent non-tumor tissues and bal-

ance the sample class sizes, we selected GSE10072 (107

samples), GSE7670 (54 samples from GSM185811 to

GSM185864) and GSE43458 (70 samples from

GSM1062805 to GSM1062874). In section 3.3.2, the

combination of GSE10072 and GSE7670 was served as
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the training set, and GSE43458 was used as an inde-

pendent test set to identify and verify biomarkers.

The results of MCBFS

To obtain reliable results of MCBFS and make the re-

sults more representative, in this section, the experiment

is divided into four parts. First, we plotted the MCBFS

average classification error curves. Second, we compared

different feature selection methods, including single dis-

tance method, seven benchmark and six state-of-the-art

supervised feature selection methods. Third, the import-

ance of informative genes selected was validated by vis-

ual assessment. Fourth, the differential expression of

informative genes selected was analyzed by a two-sample

t-test.

For the two-class cancer data sets, the average classifi-

cation performance of the feature selection method was

evaluated by several widely-used evaluation metrics, in-

cluding accuracy (Acc), sensitivity (Sn), specificity (Sp)

and F-score. The average classification performance of

multi-class data sets was evaluated by Cohen’s Kappa co-

efficient (Kappa) [32] and Acc. After achieving a lower-

dimensional representation of the data by feature selec-

tion, we adopted SVM (use RBF kernel) and kNN (k = 5)

classifiers to classify the data, respectively. The cross-

validation is a popular evaluation method and has been

widely used in the field of bioinformatics and related

studies [8, 16, 33]. We performed 10-fold cross-

validation for 10 times to obtain a statistically reliable

predictive performance. In this paper, the MCBFS

method was tested on eight benchmark tumor data sets

and compared with seven benchmark supervised feature

selection methods [34], including Chi Square, Fisher

Score, Information Gain, mRMR, Gini Index, Kruskal

Wallis and Relief-F. In addition, to further evaluate the

performance of MCBFS, we compared it with six state-

of-the-art supervised feature selection methods, includ-

ing supervised discriminative sparse PCA (SDSPCA) [2],

infinite latent feature selection (ILFS) [14], Double

Kernel-Based Clustering method for Gene Selection

(DKBCGS) [3], Infinite Feature Selection (infFS) [6], Su-

pervised Multi-Cluster Feature Selection (SMCFS) [9]

and Spectral Feature Selection (SPEC) [10].

Classification error curves of MCBFS

The average classification error rates were obtained

through 10-fold cross-validation with the kNN and SVM

classifiers on eight data sets respectively. Figure 1 shows

the relationship between the average classification error

rate and the genes selected by the MCBFS method.

From the figure, as the number of genes increases from

1 to 50, the predictable performance greatly improves.

We set the range from 1 to 100 to find the best classifi-

cation results. In general, most feature selection algo-

rithms combine ranking genes with a specific classifier

in the class prediction problems. From the figure, the

kNN classifier has a better performance when fewer

genes are retained. At the same time, the kNN classifier

may be the better classifier for tumor classification with

low-dimensional features [35]. In further work, to iden-

tify biomarkers on LUAD data sets by McbfsNW frame-

work, the kNN classifier was applied in the wrapper.

Comparison of competitive methods

In this section, we compared MCBFS with different fea-

ture selection methods. The experiment is divided into

three parts to obtain the performance of every method.

The first part obtained the top 100 genes by using differ-

ent methods, respectively. The second part used 10-fold

cross-validation for 10 times to obtain the best feature

set from retained the top 100 genes, respectively. In this

part, the first ranked gene was used as the starting point

of generating multiple gene subsets, which can save time

for the generating subsets. The third part used the best

feature subset and the 10-fold cross-validation for 10

times to obtain the average prediction performance of

different methods.

Table 1 Summary of ten gene expression data sets

Types Data sets Samples Genes Classes References

Two-class cancer data sets AMLALL 72 7129 2 [22]

DLBCL 77 7129 2 [23]

Gastric cancer 40 1519 2 [24]

Colon Cancer 62 2000 2 [25]

Multi-class cancer data sets Lymphoma 62 4026 3 [26]

SRBCT 83 2308 4 [27]

Brain-Tumor1 90 5920 5 [28]

Lung-Cancer 203 12,600 5 [29]

Single-cell data sets Pollen 249 14,805 11 [30]

Usoskin 622 17,772 4 [31]
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To compare the performance of multi-scale distance

method and single distance method, the average clas-

sification results were obtained on two-class cancer

data sets and multi-class cancer data sets by SVM

and kNN classifiers, respectively. In Fig. 2, we report

the average performance of different distance methods

for each type of data set. Figure 2a presents the aver-

age experimental results of four two-class data sets of

two distance methods with SVM and kNN classifiers,

respectively. From Fig. 2a, we can observe that multi-

scale distance method achieves higher average results

of four evaluation metrics. Figure 2b shows the aver-

age performance of four multi-class data sets on two

distance methods with SVM and kNN classifiers, re-

spectively. From Fig. 2b, we also can see a similar

performance. It can be obtained that the perfor-

mances of the multi-scale distance method yield bet-

ter than the single distance method on two types of

Fig. 1 The relationship between the average classification error rates and the number of selected genes

Fig. 2 Comparison results of multi-scale distance method and single distance method. a The average results of four methods on four two-class

cancer data sets. b The average results of four methods on four multi-class cancer data sets
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data sets. These results show the ability of the pro-

posed multi-scale distance function and MCBFS.

To validate the classification performance of MCBFS,

we compared it with seven popular supervised feature

selection methods on eight benchmark micro-array data

sets. In Fig. 3, we report the average performance of the

different approaches for each type data set. Figure 3a

and b present the average experimental results of four

two-class data sets of eight feature selection methods

with SVM and kNN classifiers, respectively. Figure 3c

and d show the average performance of four multi-class

data sets of eight feature selection methods with SVM

and kNN classifiers, respectively. It is noteworthy that

the MCBFS method can achieve better prediction per-

formance than other methods, except is highly competi-

tive to the Information Gain method with SVM classifier

on the multi-class data sets.

In addition, we reproduced six state-of-the-art super-

vised feature selection methods and compared them

with our method on two-class and multi-class data sets.

The experimental process is similar to Fig. 3. The com-

parison results have been shown in Fig. 4. From Fig. 4,

we can observe that MCBFS is superior to other

methods. The experimental results can suggest that our

Fig. 3 Comparison results of MCBFS and seven benchmark feature selections. a The average performance of four two-class data sets by different

feature selection methods with SVM classifier. b The average performance of four two-class data sets by different feature selection methods with

kNN classifier. c The average performance of four multi-class data sets by different feature selection methods with SVM classifier. d The average

performance of four multi-class data sets by different feature selection methods with kNN classifier
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method is a reliable and effective method for feature

selection.

Visual assessment

Given the sparsity and high dimensionality of gene ex-

pression data and single-cell sequencing data, the

visualization of samples is used to validate the rationality

of selected informative genes. Here, we displayed scatter

plots with the two largest components of PCA. The

visualization results of four data sets are shown in Fig. 5,

respectively. For each data set, Fig. 5 a shows the PCA

results of using all genes. The visualization results with

the top 100 genes selected by MCBFS are shown in Fig.

5b. From Fig. 5b, we can see distinctly that using the top

100 genes obtained a better clustering result.

We can see tumor or cell populations clearly from Fig.

5b. More specifically, in Fig. 5b, the visualization results

of the DLBCL and SRBCT data sets show that MCBFS

can capture informative genes among tumor populations

and improve the visualization and interpretability of

Fig. 4 Comparison results of MCBFS and six state-of-the-art feature selections. a The average performance of four two-class data sets with SVM

classifier. b The average performance of four two-class data sets with kNN classifier. c The average performance of four multi-class data sets with

SVM classifier. d The average performance of four multi-class data sets with kNN classifier
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tumor gene expression data. Single-cell RNA sequen-

cing can enable us to discover new cell subtypes or

types, and reveal the differences in gene expression

among multiple cell populations [36]. In Fig. 5b, the

visualization results of the Pollen and Usoskin data

sets show that MCBFS is scalable, which can also

capture informative genes among cell populations.

MCBFS may be an effective tool for finding key

markers from genomic data.

Statistical test

Another important application area of feature selection

is to detect the differentially expressed genes. To prove

that the informative genes selected by the MCBFS

method are differential expression and evaluate

differential expression of genes in different phenotypes,

the top 200 informative genes of GSE10072 and

GSE7670 selected by the MCBFS method were analyzed

by two-sample t-test respectively [37]. The results have

been displayed by normal t-score quantile plots,

histograms of t-score and p-value distribution in Figs. 6

and S1 (supplementary data). If the p-value of the gene

is no more than 0.05, this gene will be considered a sig-

nificant difference. The histogram of the t-score can give

a sense of the density of the underlying distribution of

selected genes. Figures 6 and S1 illustrate these inform-

ative genes are differentially expressed in the LUAD

samples. These experimental results prove that MCBFS

has a certain statistical significance and may be efficient

in identifying differentially expressed genes.

Fig. 5 The sample distributions of four data sets are described by PCA. a PCA results of using all genes. b PCA results of using the top 100 genes

Fig. 6 The t-test results of genes. a The t-test results of the top 200 genes selected by MCBFS in GSE10072. b The t-test results of the top 200

genes selected by MCBFS in GSE7670
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Application of McbfsNW on LUAD data

To evaluate the performance of McbfsNW framework

for the identification of biomarkers and therapeutic tar-

gets, we applied it to the LUAD data sets. In lung can-

cer, there are two main pathological types: small cell

lung cancer (SCLC) and non-small cell lung cancer

(NSCLC). NSCLC accounts for approximately 85% of

the total number of lung cancer cases [38]. It is worth

noting that LUAD is one of the most important subtypes

in NSCLC.

Identification of hub informative genes

We selected 200 informative genes by MCBFS in two in-

dependent micro-array data sets, GSE10072 and

GSE7670, respectively. There was an overlap between

two LUAD data sets: a total of 130 shared informative

genes. As shown in Figure S2, the overlapping areas in-

dicate shared informative genes. The complex protein-

protein interaction network formed by proteins encoded

through shared informative genes is shown in Figure S3,

after eliminating disconnected nodes. Ten hub inform-

ative genes were screened by the network recognition

ensemble algorithm, including PECAM1, CDH5, CAV1,

CLDN5, SPP1, AGTR1, ANGPT1, FABP4, TEK and

GJA4. They are shown in yellow in the network. There

is mounting evidence that has reported these genes are

significantly correlated with LUAD or NSCLC. The evi-

dence of ten hub informative genes is tabulated in

Table 2.

Figure 7a displays the heat map of the 10 hub

genes on the GSE43458 data set. It was generated by

the R package “heatmap”. In the ten hub genes, nine

low-expression genes are related to LUAD, including

PECAM1, CDH5, CAV1, CLDN5, AGTR1, ANGPT1,

FABP4, TEK and GJA4. In addition, there is a highly

expressed gene SPP1. From the figure, we can see

that data samples from different classes have distinct-

ive expression profiles that lead to a reasonable classi-

fication performance.

Identification of major genetic changes leading to the

inactivation of tumor suppressor genes and the activa-

tion of oncogenes has the potential to elucidate molecu-

lar mechanisms. We constructed a genetic alterations

network with the 10 hub genes using the cBioPortal

(http://www.cbioportal.org) [49]. Figure 7b demonstrates

the relationship between the 10 hub genes and the other

50 most frequently altered neighbor genes (only CDH5,

SPP1, CAV1, TEK, ANGPT1 and FABP4 have connec-

tion with these 50 genes).

From Fig. 7b, it is worth noting that (1) SPP1 and

CAV1 are relevant to TP53. TP53 is associated with a

variety of human cancers and encodes a tumor suppres-

sor protein. The inactivation of TP53 is one of the most

important genetic abnormalities in lung cancer. (2) In

addition, CDH5 and CAV1 have a direct relationship

with EGFR. EGFR is involved in the regulations of many

oncogenic functions, such as cell differentiation, neovas-

cularization, invasion, metastasis and survival. It is worth

noting that almost all EGFR mutations occur in LUAD.

(3) Beyond that, TEK and ANGPT1 are relevant to

KRAS. The transforming protein of KRAS is implicated

in various malignancies, including LUAD and colorectal

carcinoma. The activating mutation of the KRAS onco-

gene is the most common oncogenic alteration in

LUAD, which occurs in approximately 25–40% of cases.

The details of TP53, EGFR and KRAS can be found in

the lung cancer review paper [38, 50].

More importantly, these results show that the ten hub

informative genes have possible biological relationships

with the development and treatment of LUAD, which

can provide novel insights for the pathogenesis of tumor.

They can serve as candidate biomarkers or promising

targets of LUAD.

Identification of biomarkers

Hub genes with P values no more than 0.05 were fur-

ther screened as key genes in the survival analysis

(Figure S4). We ordered 10 hub genes according to

Table 2 Summary of ten hub informative genes

Gene name Protein name P value Reference

TEK Angiopoietin-1 receptor 8.90e-10 [39]

ANGPT1 Angiopoietin-1 4.30e-05 [40]

CAV1 Caveolin-1 4.90e-05 [41]

SPP1 Osteopontin Secreted phosphoprotein 1 0.0015 [42]

CDH5 Cadherin-5 0.0034 [43]

PECAM1 Platelet endothelial cell adhesion molecule 0.0036 [44]

CLDN5 Claudin-5 0.045 [45]

AGTR1 Type-1 angiotensin II receptor 0.054 [46]

GJA4 Gap junction alpha-4 protein 0.13 [47]

FABP4 Fatty acid-binding protein 0.25 [48]
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their P values in Table 2. Survival analysis suggested that

seven genes were significantly related to the survival time of

patients, including TEK, ANGPT1, CAV1, SPP1, CDH5,

PECAM1 and CLDN5. They were screened as key genes.

To further explore the possibility of some genes

among the key genes as biomarkers, the combination of

GSE10072 and GSE7670 was used as a training set, and

another independent RNA-seq data set, GSE43458, was

Fig. 7 a The cluster heat map of 10 hub gene expressions. b Genetic alterations network of hub genes

Xu et al. BMC Genomics          (2020) 21:650 Page 9 of 17



used as a testing set to determine the classification per-

formances. Apart from Acc, Sn, Sp, and F-score evalu-

ation metrics, we also used the Matthews correlation

coefficient (MCC) for evaluation. The comparison re-

sults and typical combinations of key genes have been

shown in Fig. 8a. The results show that the key genes

can achieve very high classification performance. Specif-

ically, the predictive accuracy of CDH5 and CAV1 is

95.71%, simultaneously. The predictive accuracy of the

combination of CDH5 and CAV1 is 97.14%. The experi-

mental results prove that obtained biomarkers can

achieve higher prediction results and McbfsNW may be

a useful tool for finding possible biomarkers from gen-

omic data.

Using a small number of genes can achieve a good

classification performance. To visualize the GSE43458

data set containing 70 samples, we plotted Fig. 8b by the

expression levels of two genes (SPP1 and CDH5). As

shown in Fig. 8b, most tumor samples and normal tissue

samples are separated. This simple prediction rule with

two genes can help medical doctors to make a simple

pre-clinical diagnosis of the LUAD. A useful function of

the visualization is to detect possible outliers. From Fig.

8b, we can see that sample GSM1062857 is abnormal

and allocated to the normal group, which can be further

studied in the future. The outlier is mainly due to the

heterogeneity among the tumors of different patients

[51]. CDH5 and SPP1 may be served as potential bio-

markers in the early diagnosis of LUAD.

Drug-target network

Given that 10 hub genes or proteins encoded by 10 hub

genes may be promising targets of LUAD, we want to

explore potential therapeutic drugs for effective treat-

ment. We integrated three different aspects to find po-

tential drugs, including the Connectivity Map L1000

platform [52] (https://clue.io), the cBioPortal and related

literature. The drug-target network was plotted in Fig. 9.

The yellow filled nodes represent targets in the drug-

target network.

In this work, we pay more attention to the develop-

ment and application of the algorithm. We verified the

effectiveness of the algorithm in the proven literature. It

is worth mentioning that many drugs have been proven

to be effective for LUAD or NSCLC, including Vandeta-

nib [53], Linfanib [54], Candesartan [55], Telmisartan

[56], Lenalidomide [57], Regorafenib [58], Ponatinib

[59], linoleic-acid [60], BI-D1870 (BID) [61] and Cipro-

floxacin [62], and so on. More work needs to be per-

formed to verify other drugs’ utility. Briefly, these targets

and compounds provide a promising list for researchers

or companies who are interested in the mechanisms of

LUAD treatment.

The experimental results demonstrate that biomarkers

identified by the McbfsNW framework can achieve a

higher prediction performance for LUAD disease. There

some therapeutic targets obtained by the McbfsNW

framework have been proven to be effective for LUAD

therapy. The framework may be a useful tool for finding

possible biomarkers and therapeutic targets from gen-

omic data.

Discussion and conclusion
In this study, we proposed a multi-scale clustering-based

feature selection method for gene expression data,

MCBFS, which performs clustering and feature weight-

ing in a supervised manner. In the algorithm, a multi-

scale distance function designed by us was used as a dis-

similarity measure. Based on the experimental results,

MCBFS has significant advantages in terms of classifica-

tion performance compared with 7 benchmark and 6

state-of-the-art feature selection algorithms. The

Fig. 8 a The classification performances of typical combinations in the key genes. b Expression levels of two genes, SPP1 and CDH5, in LUAD 70

tissue samples
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visualization results and the statistical test show that

MCBFS can capture informative genes among tumor pop-

ulations or cell populations, which can improve the inter-

pretability and visualization and of tumor gene expression

data or single-cell data. The reasons for the effective per-

formance of MCBFS are as follows: multi-scale distance

function dissimilarity measure improves the performance

of the algorithm; the adaptive distance changes at each it-

eration, which is suitable for learning the optimal weight

of genes in the process of non-parametric clustering; fur-

thermore, for a new data set, MCBFS does not require any

parameter to be tuned manually.

Given that biomarkers should have higher specificity

and sensitivity, we developed a general framework

named McbfsNW, which uses gene expression and pro-

tein interaction data to identify biomarkers and thera-

peutic targets. The mixing mechanism of McbfsNW

takes advantage of filter, network and wrapper. First,

candidate informative genes were selected from the ori-

ginal gene sets by MCBFS. Then, biomarkers and thera-

peutic targets were further identified by the network

recognition ensemble algorithm and a more accurate

wrapper with exhaustive best subset search. To evaluate

the performance of McbfsNW, we applied it to LUAD

data sets. The experimental results showed that better

prediction results can be achieved by identified bio-

markers. Many drugs in the drug-target network were

supported by published literature.

The MCBFS algorithm and McbfsNW framework are

scalable and can also be applied to other genomic data

for dimension reduction, identification of differentially

expressed genes, sample classification or identification of

biomarkers and therapeutic targets. Although MCBFS

and McbfsNW have good performances for gene expres-

sion data, there are some limitations in this work.

MCBFS is a method based on multi-scale, which may be

time consuming. For the partial results of McbfsNW,

due to the limitations of laboratory conditions, we can

only verify them in the previous literature. If the labora-

tory conditions permit, we would very much like to fur-

ther validate relevant findings in our later works. The

visualization result of GSE43458 data set based on the

expression levels of two genes can discover the outlier

that does not satisfy the prediction rule. The outlier is

mainly due to heterogeneity among the tumors of differ-

ent patients, and the mutations of the abnormal patient

are almost different from other patients in the founder

cells of the tumor. We could further focus on and study

these abnormal patients in the future.

It is conceivable that the same principles and methods

can be applied to other types of genomic data, for example,

DNA methylation data or copy number variation data,

which play important roles in tumorigenesis. It could even

be possible to integrate all these data into a unified model

to better identify robust biomarkers and therapeutic targets.

We believe that this work provides a refreshing view on the

identification of biomarkers and therapeutic targets by fea-

ture selection and network analysis.

Methods
In this paper, a novel feature selection method named

MCBFS is proposed, which simultaneously performs

model learning and feature selection for high-dimension

data. The details of MCBFS are presented in Fig. 10a

Fig. 9 The integrative drug-target network
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and b. In addition, we develop a general framework

named McbfsNW to identify robust biomarkers and

therapeutic targets for diagnosis and therapy of diseases,

which incorporates feature selection with network ana-

lysis into pattern recognition in the biological process.

The workflow of McbfsNW is shown in Fig. 10.

Feature selection (MCBFS)

Gene expression data set X ∈ Rs ∗ p is comprised of s sam-

ples. Each sample is represented by a row vector Xj ∈ R
p,

and labeled by yj ∈ Y, Y = {1, 2,…, c}, where j = 1, 2, …, s.

MCBFS (Fig. 10a, b) is a supervised learning method. c

classes are taken as c known clusters, so the i th cluster

center vi = (vi1, vi2,…, vip) can be calculated as follows:

vik ¼

P

x jϵci
xjk

cij j
ð1Þ

where i = 1, 2, …, c − 1, c; k = 1, 2, …, p − 1, p; j = 1, 2, …,

|ci| − 1, ∣ ci∣; ∣ci∣ represents the number of samples in

cluster ci.

It is necessary to determine a better dissimilarity

measure before clustering because different measures

may affect the results of clustering. Chen et al. pre-

sented a KBCGS algorithm based on the Gaussian

kernel measure and improved the classification per-

formance on cancer gene expression data [63]. Wang

et al. presented a SIMLR framework for analysis and

visualization of single-cell data, which greatly en-

hanced clustering performance and interpretability via

multi-kernel learning [36]. In the default implementa-

tion of MCBFS, we need to calculate the dissimilarity

between expression values of gene and cluster center.

Thus, to obtain a better dissimilarity measure, one

possible method is to adjust the velocity of decrement

in the range of distance between two values. In this

work, multi-scale distance function with different pa-

rameters is designed to calculate the dissimilarity be-

tween the k th gene expression value of the j th

Fig. 10 The flowchart of McbfsNW. a The workflow of the MCBFS algorithm. b The iterative process of the MCBFS algorithm. c The network

analysis and wrapper of McbfsNW
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sample and the k th dimension expression value of

the i th center. The n th distance function takes the

following form:

dn xjk ; vik
� �

¼ 1 − e − γn xjk − vikð Þ
2

ð2Þ

where n = 1, 2, …, m; where m is the number of dis-

tance functions; the parameters γn can be calculated

as follows:

γn ¼
σn � unð Þmax þ unð Þmin

� �

2
;un

¼ un1; un2;…; unp
� �

;unk ¼ xkð Þmax − xkð Þmin ð3Þ

where set different σn can produce different distance

functions and k = 1, 2, …, p. xk is a vector that consists

of the k th gene expression value of samples.

In the process of clustering, we calculate individually

each gene through each distance function. The general

dissimilarity measure is obtained as sum of different dis-

tance results between sample and cluster center. Then

the sample xj and cluster centroid vi can be calculated

by multi-scale distance function as follows:

d x j; vi
� �

¼
Xm

n¼1

Xp

k¼1
dn xjk ; vik
� �

h i

ð4Þ

In our method, we assume that the same gene has

the same weight in all clusters (global adaptive dis-

tance), taking classes as known clusters. Different dis-

tance functions and genes are assigned different

weights. To select genes that are more related to can-

cer and reduce the number of genes, we introduce

the parameters Pn and Wk into the optimization func-

tion. Based on the clustering method, the objective of

the MCBFS method is obtained by minimizing the

following function:

J ¼
X

m

n¼1

Pn

X

c

i¼1

X

x j∈ci

X

p

k¼1

W kdn xjk ; vik
� �

" #

þ δ
X

p

k¼1

W 2
k þ ρ

X

m

n¼1

PnlogPn;

s:t
W k∈ 0; 1½ �

Xp

k¼1
W k ¼ 1

�

;

Pn∈ 0; 1½ �
Xm

n¼1
Pn ¼ 1

�

ð5Þ

where c represents the number of categories; δ and ρ

are non-negative tuning parameters; Pn represents the

importance of the n th distance function for distin-

guishing tissue samples; Wk denotes the k th gene’s

ability to distinguish tissue samples; vi = (vi1, vi2,…, vip)

is the i th class center. The above optimization prob-

lem needs to solve four variables: Pn, Wk, δ and ρ.

P = (P1, P2,…, Pn,…, Pm) and W= (W1, W2,…, Wk, …,

Wp) are the coefficients to be estimated by optimizing

the objective function (5), which represents the rela-

tive importance for classification of different distance

functions and different genes, respectively.

The objective function has three terms in eq. (5). The

first term in the formula enables us to obtain compact

clusters. The second term represents the sum of the

square of the gene weights. In the third term, the weight

of the distance function is constrained to avoid selecting

a single distance function. This regularization can im-

prove the quality of clustering [36]. By combining three

terms and choosing δ and ρ properly, the minimum

value of the objective function, and optimal weight value

of distance function and gene can be obtained.

To optimize equation (5) with respect to Wk and Pn,

we can obtain the following Lagrange function without

constraint:

J Pn;W k ; λ1; λ2ð Þ ¼
X

m

n¼1

Pn

X

c

i¼1

X

x j∈ci

X

p

k¼1

W kdn xjk ; vik
� �

" #

þ δ
X

p

k¼1

W 2
k þ ρ

X

m

n¼1

PnlogPn

þλ1
X

p

k¼1

W k − 1

 !

þ λ2
X

m

n¼1

Pn − 1

 !

ð6Þ

where λ1 and λ2 are the Lagrangian coefficients.

Using the Lagrange multiplier method, minimization

of equation (6) with respect to Wk and Pn, we obtained

the following equations of variables:

W k ¼
1

p
þ

1

2δ

Pp
k¼1

Pm
n¼1PnAnk

p
−
X

m

n¼1

PnAnk

" #

; ð7Þ

To conveniently describe equation (7), where

Ank ¼
X

c

i¼1

X

x j∈ci

dn xjk ; vik
� �

ð8Þ

In addition, we can obtain the equation of Pn:

Pn ¼

exp −
1

ρ

Xc

i¼1

X

x j∈ci

Xp

k¼1
W kdn xjk ; vik

� �

− 1

� �

Pm
n¼1 exp −

1

ρ

Xc

i¼1

X

x j∈ci

Xp

k¼1
W kdn xjk ; vik

� �

− 1

� � ð9Þ

Therefore, we can update Wk and Pn using equations

(7) and (9). The greater the weight of genes, the greater

the ability to provide information. Thus, top-ranked

genes may be helpful for tumor classification. In equa-

tion (5), the choices of δ and ρ are important in the

MCBFS algorithm. The values of δ and ρ should have

the same order of magnitude as the first term when they

are chosen [64]. We compute δ iteratively as follows:

δ tð Þ ¼ α�

Pm
n¼1P

t − 1ð Þ
n

Pc
i¼1

P

x j∈ci

Pp
k¼1W

t − 1ð Þ
k dn xjk ; vik

� �

h i

Pp
k¼1 W

t − 1ð Þ
k

	 
2
ð10Þ

Similar to the derivation of equation (10), we can ob-

tain ρ as follows:
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ρ tð Þ ¼ β�

Pm
n¼1P

t − 1ð Þ
n

Pc
i¼1

P

x j∈ci

Pp
k¼1W

t − 1ð Þ
k dn xjk ; vik

� �

h i

Pm
n¼1P

t − 1ð Þ
n logP t − 1ð Þ

n

ð11Þ

where α and β are non-negative tuning parameters.

In the experiment, we initialized the weight of distance

functions and genes into uniform distribution vectors;

i.e.

P ¼
1

m
;

1

m
;…;

1

m

� �

;W ¼
1

p
;

1

p
;…;

1

p

� �

ð12Þ

where m is an adjustable parameter and denotes the

number of distance functions. The different scale values

may influence the prediction performance. Wang et at

[36]. proved that the clustering accuracy will increase as

the number of kernels increase. If the number of kernels

achieves a certain, the clustering accuracy will saturate.

They set 55 different kernels and greatly enhanced

clustering performance. In this work, we designed

some comparison experiments to find a suitable value.

The results have been shown in Figure S5. To save

time and obtain better performance, m was set to 50.

p denotes the number of genes. After repeated experi-

ments, we took α = 0.5, β = 0.5. In the MCBFS algo-

rithm, the maximum number of iterations was set to

100. The details of the workflow and iterative process

are shown in Fig. 10a and b.

Network analysis identified hub informative genes

In this work, we downloaded GSE10072 and GSE7670

lung adenocarcinoma data sets from the Gene Expres-

sion Omnibus (GEO) database. All genes of the two data

sets were ranked by MCBFS, and 200 highly ranked

genes were retained as candidate shared informative

genes, respectively. Shared informative genes were

screened using Venn analysis from candidate genes. To

identify possible hub informative genes from shared in-

formative genes, the hub proteins were identified from

the complex protein-protein interaction (PPI) network

formed by proteins encoded through shared informative

genes.

The shared informative genes were uploaded in the

Search Tool for the Retrieval of Interacting Genes

database (STRING) (https://string-db.org) [65]. The

PPI network data were downloaded by setting the

minimum required interaction score at 0.400 and vi-

sualized by Cytoscape software. A plugin app Cyto-

hubba [66] was used to provide aids for further

screening of hub informative genes in the Cytoscape.

Some different methods have been proposed to screen

the key nodes in the network [20, 67]. The ensemble

algorithm has demonstrated its effectiveness and po-

tential [68]. To obtain the best integrated effect, we

developed an ensemble algorithm that integrates 10

individual network recognition algorithms (including

Degree, Maximal Clique Centrality, MNC, Closeness,

BottleNeck, EcCentricity, Radiality, EPC, Betweenness

and Stress) [66] and obtains the weighted average.

Finally, the top 10 genes were screened by the

above network recognition ensemble algorithm as hub

informative genes. They may be potential biomarkers

and therapeutic targets for the precise treatment and

diagnosis of diseases. In the clinical environment, this

means that the diagnosis and prognosis of the dis-

eases are possible, and the eventual treatment of the

disease is clear.

Wrapper identify biomarkers

Biomarkers should have higher sensitivity and specificity,

be good for classification and have an important influ-

ence on the development and occurrence of the diseases

at the same time. The Kaplan Meier plotter (www.

kmplot.com) [69], an online database, was used to evalu-

ate the prognostic value of 10 hub informative genes.

Specifically, genes with logrank P value less than 0.05

were screened out as key informative genes of tumor by

survival analysis in hub informative genes.

In this work, to obtain a better classifier, two popu-

lar classifiers were used to obtain the average classifi-

cation error rate by performing 10-fold cross-

validation on all data sets. Figure 1 demonstrates that

the kNN classifier is potentially better for small gene

set classification problems after feature selection. To

research the possibility of these genes as biomarkers

of identifying the occurrence of tumors, the kNN

classifier was combined as a wrapper to identify the

classification capability of genes and simple gene

combinations. We obtained a small number of key in-

formative genes (no more than 10 genes) by survival

analysis. Since the number of our key informative

genes set is small, exhaustive best subset search (ES)

[70] was used as the feature search algorithm to find

a small subset of genes that could ensure highly reli-

able classification. The results were obtained by a

new data set as an independent test set for correcting

the selection bias to obtain a more reasonable result

for the proposed method and further explore the key

informative genes. In the application process of

McbfsNW framework, the combination of two data

sets (GSE10072 and GSE7670) served as the training

set, and the new data set (GSE43458) served as an in-

dependent testing set. First, we classified the test set

with only one gene. Then, we repeat this process with

all possible 2-gene combinations in the key inform-

ative genes, and so on. The results shown that it is

possible to construct prediction rules from only a few

genes, and the prediction error rate can be negligible.
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