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Abstract Operational water resources management needs to adopt operational strategies to

re-allocate water resources by manipulating hydraulic structures. Model Predictive Control

(MPC) has been shown to be a promising technique in this context. However, we still need to

advance MPC in the face of hydrological uncertainties. This study makes the first attempt to

combine Multi-Scenario MPC (MSMPC) with a Genetic Algorithm (GA) to find Pareto op-

timal solutions for a multi-scenario operational water resources management problem. Then

three performance metrics are adopted to select the solution to be implemented. In order to

assess the performance of the proposed approach, a case study of the North Sea Canal in

the Netherlands is carried out, in which ensemble discharge forecasts are used. Compared

with classic MSMPC approaches that deal with uncertainty by the weighted sum approach,

GA-MSMPC can better fulfill management goals although it may also be computationally
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expensive. With the rapid development of multi-objective evolutionary algorithms, our study

suggests the potential of GA-MSMPC to deal with a wide range of operational water man-

agement problems in the future.

Keywords Model Predictive Control · genetic algorithms · multiple scenarios · water level

regulation · ensemble forecasts

1 Introduction

To fulfill water resources planning and management, hydraulic structures are designed and

operated in many modern water systems (Loucks et al., 2005). Water resources planning

(WRP) usually deals with problems with long-term forecast horizons, e.g., years or decades,

which can be solved either by simulation-based or optimization-based decision-making ap-

proaches. Key issues, such as trade-offs between conflicting objectives, uncertainties, ro-

bustness, and adaptability are commonly included in WRP problems (Vogel et al., 2015).

Nevertheless, the speed of the decision-making process is often of the least importance. On

the other hand, water resources management (WRM), which deals with operations of hy-

draulic structures, cannot neglect computational efficiency because structures are often ma-

nipulated hourly or sub-hourly. To that end, a family of real-time control (RTC) methodolo-

gies has been developed for water systems, based on systems and control theory (Malaterre

et al., 1998; Schuurmans et al., 1999).

Although some rationales and principles differ in these two branches of water resources,

there are still relevant commonalities. First, both planning and management need to face

the multi-objective nature of challenges in regard to water resources (Reed et al., 2013;

Beh et al., 2015). Second, the uncertainty plays a critical role in decision-making in both

branches (Vogel et al., 2015; Maier et al., 2016). Specifically, while WRP usually needs

to consider a large range of uncertainties that may influence behaviors of the system in

the distant future (Matrosov et al., 2015; Walsh et al., 2016), WRM mainly focuses on the

uncertainty derived from system inputs and disturbances, assuming that the system settings

do not change significantly in the near future (Raso et al., 2014; Ficchı̀ et al., 2016). Third,

optimization-based algorithms are currently the most popular and effective tool to solve

problems in both branches.

Multi-objective Evolutionary Algorithms (MOEAs) are one of the primary breakthroughs

in the last five years in water resources (Reed et al., 2013; Maier et al., 2014; Giuliani et al.,

2016). For examples, popular algorithms include the non-dominated sorting genetic algo-

rithm II (NSGA-II) (Deb et al., 2002), strength-Pareto evolutionary algorithm II (SPEA-

II) (Kim et al., 2004), and Multi-objective Particle Swarm Optimization (MOPSO) (Coello

Coello and Lechuga, 2002). The MOEAs, aiming to find a Pareto front from conflicting ob-

jectives, have been widely applied to WRP problems (see (Reed et al., 2013; Maier et al.,

2014) for a comprehensive review). Meanwhile, the RTC also entered a new era using the

optimization-based methodology – Model Predictive Control (MPC) – to deal with large-

scale and distributed problems (Maestre and Negenborn, 2014; Maciejowski, 2002; Cama-

cho and Bordons, 1999). More importantly, MPC is a proactive approach that uses water

system models and hydrological forecasts to anticipate future states and maximize the per-

formance of operations. As a result, MPC has shown satisfactory performance in multiple

WRM applications, including irrigation and drainage canal control (Negenborn et al., 2009),

drinking and sewer networks (Joseph-Duran et al., 2014; Grosso et al., 2014), and reservoir

operations and flood defense (Tian et al., 2014; Raso and Malaterre, 2016; Galelli et al.,

2014; Ficchı̀ et al., 2016).
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To represent the uncertainty involved in an RTC-WRM problem, Ensemble Forecasts

(EFs) are usually used. Such EFs can be generated from statistics of historical time-series

(Loucks et al., 2005; Katz et al., 2002). However, decision-making with EFs is still not well

addressed with respect to RTC. Past studies either used Multi-Scenario MPC (MSMPC)

(van Overloop et al., 2008; Tian et al., 2017) or tree-based MPC (Raso and Malaterre, 2016;

Raso et al., 2014; Maestre et al., 2013), both of which are scenario-oriented. In other words,

the decision is inclined to one single scenario or the average of all the scenarios. Inspired

by the successful application of MOEAs in WRP, this study attempts to apply NSGA-II,

as one of the most efficient EAs, to cope with multiple scenarios in RTC-WRM. It should

also be noted that very few studies use EAs in the context of RTC except a recent one

(Vermuyten et al., 2018), which proposed a reduced form to find discrete solutions but only

considered deterministic scenarios. In this study, we propose an approach that takes each

scenario into account in an individual optimization problem and finds a set of non-dominated

solutions for all scenarios. Finally, a score matrix, which considers the overall performance,

is implemented to determine the final solution.

This paper is organized as follows. Section 2 describes the frameworks of MSMPC and

GA-MSMPC that can be applied to WRM problems with ensemble streamflow forecasts. In

Section 3, both approaches are tested on a water level regulation problem for a case study

– the North Sea Canal in the Netherlands. Performances of both approaches are shown in

Section 4. Section 5 further discusses the two approaches and their limitations. Conclusions

are presented in Section 6.

2 Solving Multi-Scenario WRM Problems by MSMPC and GA-MSMPC

This section describes the frameworks of MSMPC and GA-MSMPC and the way to apply

them to WRM problems, with the given ensemble streamflow forecasts.

2.1 Generic MPC Applied to Open Water Systems

In this section, we briefly introduce the rationale of generic MPC applied to practical wa-

ter resources management problems of open water systems. For detailed formulations and

descriptions, see (van Overloop, 2006a; Tian, 2015).

As an optimization-based control technique, MPC is composed of three main compo-

nents: an objective function that contains management goals (Eq. 1), an internal model cal-

culating system dynamics (Eq. 2), and constraints representing physical and operational

limits (Eq. 3). The formulation of an MPC controller at every time instant is commonly

given by (Maciejowski, 2002):

min
u(1),...,u(Np)

J(k) =
Np

∑
k=1

f (x(k+1),u(k)) (1)

subject to

for k = 1, ...,Np

x(k+1) = s(x(k),u(k),d(k)) (2)

g(x(k+1),u(k))≤ b(k) (3)
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where Np ∈ R
+ is the length of the forecasting horizon, x ∈ R

n is the state vector com-

prised of water levels and flows with the initial condition x(1), u ∈ R
m is the control vari-

able vector which is the change in structure flows, d ∈ R
n is the system disturbance vector

composed of exogenous (non-controllable) variables, f : Rn+m → R is the cost function de-

rived from management goals, s :Rn+m+n →R
n is the function describing system dynamics,

g : R(n+m)×l → R
l and b(k) ∈ R

l are the constraint function and constraint vector, respec-

tively. The feasible optimal or sub-optimal solution is found by solving the optimization

problem (1)-(3). Note that the formulation of the optimization problem is defined at every

control step and MPC works in a receding-horizon way. In other words, the MPC controller

only adopts the first control action of the control variable vector, which corresponds to the

current time step. When moving to the next step with new measurements and new forecasts,

the optimization problem (1)-(3) is to be solved again and only the first control action of the

control variable vector is applied at the next step.

To tackle a problem involving setpoints, the cost function f in (1) is often expressed in

a quadratic form as (van Overloop, 2006b):

f (x(k+1),u(k)) =

[

x(k+1)− r(k+1)
u(k)

]T [
Q 0

0 R

][

x(k+1)− r(k+1)
u(k)

]

(4)

where Q ∈R
n×n, and R ∈R

m×m are positive and definite matrices that implement quadratic

penalties on states and control variables, and r ∈ R
n is the setpoint vector. In this study, the

values of Q and R are determined by the Maximum Allowed Value Estimate (van Overloop,

2006b, Chapter 3).

Although the Saint-Venant equations describe the dynamics of open water systems well,

we often consider its simplified and discretized form for computational efficiency when

applying MPC (van Overloop, 2006b). In this study, we adopt a numerical scheme developed

by (Stelling and Duinmeijer, 2003; Xu, 2013) to describe the system dynamic function s in

Eq. (2) as follows:

x(k+1) = Ax(k)+Buu(k)+Bdd(k) (5)

where the matrices A ∈ R
n×n, Bu ∈ R

n×m and Bd ∈ R
n×l have cofficients derived from the

discretization of the Saint-Venant equations. Readers can find the detailed elements of these

three matrices in Appendix B of (Xu, 2013). Note that the MPC formulation is deterministic

if the evolution of d (or x) in Eq. (2) is known while it becomes stochastic if it is uncertain.

2.2 Multi-Scenario MPC with EFs

To characterize plausible future states owing to stochastic hydrological and meteorological

processes, EFs are commonly used. Each time series of EFs presumably carries that like-

lihood of occurrence in forecasting models. Based on the likelihood, Multi-Scenario MPC

(MSMPC) sums the weighted objective functions of all scenarios (i.e. EFs) into a single one

as follows (van Overloop et al., 2008):

min
u(1),...,u(Np)

Ns

∑
i=1

piJi(k) =
Ns

∑
i=1

pi

(

Np

∑
k=1

fi(xi(k+1),u(k))

)

subject to

for k = 1, ...,Np, i = 1, ...,Ns

xi (k+1) = Axi (k) +Buu(k) +Bddi (k)
g(xi(k+1),u(k))≤ b(k)

(6)
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where the subscript i∈R
+ represents the i-th scenario, pi ∈R is the likelihood of occurrence

for i-th scenario, and Ns ∈ R
+ is the number of scenarios. Note that we obtain a collection

of states xi because of different forecasting disturbances di. However, the control vector u

is identical in all scenarios, which implies that we can make only one decision at every

decision-making moment.

By both merging multi-objective optimization problems and solving a single-objective

optimization problem, MSMPC gains efficiency to a large extent for WRM problems (Tian

et al., 2017). However, the way to define a weight is strongly subjective, which requires a

sound forecasting model to estimate the likelihood of occurrences. In addition, we lose the

chance to find Pareto-optimal solutions and make a decision by trading off multiple plausible

scenarios.

2.3 GA-MSMPC with EFs

Alternatively, this paper proposes a GA-based MSMPC (GA-MSMPC) method to cope with

the situation when we need to deal with different scenarios. We formulate an individual

optimization problem with respect to each scenario. In other words, for Ns scenarios, we

build Ns-objective optimization problems as follows:

{

min
u(1), ... ,u(Np)

Np

∑
k=1

f1(xi(k+1),u(k)), ..., min
u(1),...,u(Np)

Np

∑
k=1

fNs(xi(k+1),u(k))

}

subject to

for k = 1, ...,Np, i = 1, ...,Ns

xi (k+1) = Axi (k)+Buu(k)+Bddi (k)
g(xi(k+1),u(k))≤ b(k)

(7)

where the internal model and the constraint are still the same as those of Eq. (6).

This multi-objective optimization problem can be solved by a family of evolutionary al-

gorithms. Our study adopts one of the most popular algorithms – the Non-Dominated Sort-

ing Genetic Algorithm (NSGA-II) – for solving the multi-objective optimization problem

(7). The NSGA-II is a fast and elitist MOEA algorithm (Deb et al., 2002), which potentially

meets the requirement of computational efficiency in RTC problems.

The NSGA-II approach has greatly improved the traditional NSGA approach by incor-

porating elitism, excluding a specific sharing parameter, and decreasing the computational

complexity from a cubic order of the population size to a quadratic order (Deb et al., 2002).

The NSGA-II approach generates offspring using a specific type of crossover and muta-

tion and then selects the next generation according to nondominated-sorting and crowding

distance comparison. The key steps to apply NSGA-II to a multi-objective optimization

problem are as follows (Deb et al., 2002):

i) Select parents from the population by using binary tournament selection based on a pre-

defined fitness (rank) function, crowding distance, and constraints. Note the crowding

distance measures the closeness between a given individual and the rest. Therefore, large

crowding distance implies a more diverse distribution of the selection.

ii) Generate offspring from selected parents by using crossover and mutation operators.

iii) Sort the current population and offspring based on a non-domination rule. Eventually,

we obtain Nl individuals, corresponding to the Pareto optimal solutions. We denote U =
{

uuu1, ...,uuuNl

}

as the set of all Pareto optimal solutions where the bold symbol represents

the solution vector, i.e., uuu111= [u1(1), ...,u1(Np)]
T.
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2.4 Selecting a Solution from Pareto Optimal Solutions

Most decision-making techniques, including real-time control, only need one solution for

implementation. To select the solution from the Pareto optima set, we first calculate a matrix

(Eq. 8) to represent the cost of a given cost function based on each Pareto optimal solution.







f1(u1) fNs(u1)
...

. . .
...

f1(uNl
) fNs(uNl

)






(8)

The i-th column of matrix (8) represents a vector of costs when substituting the Pareto

optimal solution vector {uuu1, ...,uuuNl
} into the objective function fi while the j-th row repre-

sents a series of costs when substituting uuu j into functions f1 to fNs . We then use the following

metrics to determine the solution that leads to a desired performance.

2.4.1 Minimax Criterion

The minimax criterion for a minimization problem is equivalently the maximin criterion

for a maximization problem. This approach targets the worst outcome by minimizing the

maximum possible costs, which is usually adopted when the decision maker expects to avoid

the worst situation and achieve robustness. Mathematically, it can be expressed as follows

(Giuliani et al., 2016):

min
i
( max

j
( f j(ui))

worst outcome w.r.t ui

) (9)

2.4.2 Minisum Criterion

The minisum, or equivalently minimean, considers the overall performance by calculating

the total outcome of all Ns scenarios for a give solution. This approach is usually adopted

when the solution is expected to have a generally good performance in all scenarios. Its

mathematical form can be expressed as follows:

min
i
( ∑

j

( f j(ui))

total outcome w.r.t. ui

) (10)

2.4.3 Score Matrix

We also propose a score matrix, which is a mini-weighted-sum metric, to assess the general

performance of a given solution in all scenarios. By ranking the costs of the i-th column

from lowest to highest, we first calculate the t-th percentiles. We then define a score matrix

∆ whose element δ (i, j) is expressed as follows:

δ (i, j) =























1 if f j(ui)<= Fj
15th

0.25 if Fj
15th < f j(ui)<= Fj

30th

0 if Fj
30th < f j(ui)<= Fj

70th

−0.25 if Fj
70th < f j(ui)<= Fj

85th

−1 if f j(ui)> Fj
85th

(11)



GA-MSMPC for Water Level Regulation under EF 7

where Fj
t−th is the t-th percentile of the column vector { f j(u1), ..., f j(uNl

)} sorted from the

minimum to the maximum. Specifically, the score matrix ∆ implies the degree to which all

Pareto optimal solutions perform with respect to each objective. In other words, the contri-

bution of a solution to each objective is considered. If one solution leads to the minimum, it

gains a score of 1, while if another solution leads to a cost which is larger than most other

costs, it loses a score of 1. If its performance is still smaller than the 30th percentile, it gains

0.25. In doing so, the sorted solutions that are the best in some scenarios (with a score of 1)

and not bad in some other scenarios (with a score of 0.25) are to be adopted.

Finally, by summing the matrix ∆ row by row and multiply it by the likelihood of oc-

currence, we obtain the total performance index of every Pareto optimal solution on all

objectives, as shown in Eq. (12). In other words, the final solution is the one that has the

highest total score, considering all scenarios.

max
i





























Ns

∑
j=1

p1δ (1, j)

...
Ns

∑
j=1

pNs δ (Nl , j)





























(12)

3 Case Study

To compare the performances of MSMPC and GA-MSMPC for an RTC-WRM under uncer-

tainty, we conducted a case study based on the North Sea Canal in the Netherlands, which

is a major navigation canal connecting the North Sea, Amsterdam, and central Europe. The

main controllable structure in this area is a pumping station at the river mouth IJmuiden,

whose capacity of 260 m3/s is one of the largest in Europe. We chose a wet period of sixty

days in 2003 as the test period. Water flowing into the North Sea Canal from rivers and

canals were resampled. We retrieved historical data from the Dutch live web water ser-

vice1 and generated twenty replicates at each simulation step. Using the mean value and the

standard deviation of the historical time series, a Gaussian distribution was considered for

resampling. It should be noted that we do not aim to show how accurately we can forecast

the future. Instead, the concern of this study is to show how different future scenarios can be

embedded and tackled in the proposed approach. The twenty inflow replicates are shown in

Fig. 1-(a). Although twenty plausible scenarios are all considered for decision-making, there

is only one possibility that may happen in reality and will impact our decisions. Therefore,

three scenarios are selected as the actual case to assess the performance of control actions.

Scenario 1 is an event with the highest discharge, Scenario 2 has stochastically high and low

discharges, and Scenario 3 has the lowest discharge, as shown in Fig. 1-(b).

Two management goals were considered in our water level regulation problem:

(a) Safety. Water levels of the canal is expected to be regulated between -10 m and 3.5 m

to ensure the safety. This safety requirement can be met by setting a constraint in two

optimization problems (6) and (7).

(b) Navigation. Water level is expected to be maintained at a predetermined target level, 0 m.

Low water levels result in an increased number of barges and ships for the same load of

goods, and an increased total waiting time at locks as well. High water levels cause more

1https://waterinfo.rws.nl.

https://waterinfo.rws.nl.
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(a) Scenarios used in decision-making

(b) Selected scenarios considered as actual cases for assessing model performance

Fig. 1 (a) Twenty resampled flows into the North Sea Canal. The test period is sixty days, equvilantly 1440

hours. (b) Three selected scenarios for assessing model performance.

frequent operations of drawbridges and risks at harbors. This navigation requirement can

be met by setting a setpoint in the objective function. In our study, water level outside

the range of -1 m and 1 m is regarded as a violation of navigation requirements.

The MSMPC and GA-MSMPC problems with multiple scenarios were run on a 3.50

GHz Intel R©CoreTM2 Quad processor computer. The multi-objective optimization prob-

lems were coded in Matlab (Mathworks, 2018) and solved by the interior-point method

in MSMPC and NSGA-II in GA-MSMPC, respectively. The algorithms for solving the op-

timization problem were embedded in the water system simulator SOBEK 2.13 (Deltares,

2013), with a specific real-time module to take in user-defined routines. SOBEK 2.13 is a

software package for river management, using the De Saint-Venant equations as its basic

governing equations. All the parameters used in the simulation are shown in Table 1.

4 Results

In this section, we examine the regulated water level in three selected scenarios by using

the four proposed methods, namely, MSMPC, GA-MSMPC with the minimax criterion

(GA max), GA-MSMPC with the minisum criterion (GA sum), and GA-MSMPC with the

score matrix (GA score). The controlled water levels of three selected scenarios are shown
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Table 1 Simulation parameters.

Parameters Symbols Values

Storage capacity of North Sea Canal S 3.1·107 (m3)

Number of scenarios Ns 20

Control time step Tc 1 (h)

Forecast horizon Np 6 (h)

Simulation horizon N 1440 (h)

Setpoint of the water level r 0 (m ASL)

Quadratic penalty on u R 1/260

Quadratic penalty on the target level r Q 10000

Occurrence likelihood of i−th scenario pi 5%

Initial population in GA P 70

Fig. 2 Water levels of the canal using MSMPC and GA-MSMPC for three selected scenarios. Note GA max,

GA sum, and GA score stand for the GA-MSMPC method using the minimax, minisum, and score matrix

criteria, respectively.

in Fig. 2 and the overall performance is also shown in a cumulative probability distribution

diagram (Fig. 3).

4.1 Scenario 1

In Scenario 1, in which the inflow discharge is very high (even higher than the pump capacity

at some steps), a method that can lower the water level to the greatest extent is desired.

Among all the proposed methods, GA max shows the best performance, as shown in Fig.

2 (Scenario 1). During several high discharge periods, for example, between steps 1200

and 1300, only GA max can regulate the water level below 2 m, much lower than that of

other methods. MSMPC shows the second best performance. It pumps water out ahead of

the high discharge to create storage space, for example, at steps 800 and 1100. However,

the decision-making in MSMPC takes the average of all twenty scenarios into account so
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Fig. 3 Cumulative probability distribution of water levels of the canal using MSMPC and GA-MSMPC for

three selected scenarios.

the controller is not able to avoid the worst case, resulting in a high water level of 3 m at

step 1200. Besides, both GA sum and GA score do not show a satisfactory performance in

Scenario 1. Similar to MSMPC, the decision-making in GA sum and GA score focuses on

the overall performance of all scenarios, rather than the worst-case scenario. In other words,

they are not good methods to deal with EFs if the actual case is a high-discharge event.

In Fig. 3 (Scenario 1), we can see that GA max significantly outperforms other methods

although they all meet the first management goal (safety). Regarding the second manage-

ment goal (navigation), 93% of all steps in GA max can regulate the water level within 1 m

from the setpoint. However, only 84%, 80%, and 76% can meet the same target in MSMPC,

GA score, and GA sum, respectively.

4.2 Scenario 2

Scenario 2 has stochastic inflows. Therefore, a method that detects and controls the variation

of the system state is desired. As shown in Fig. 2 (Scenario 2), GA max still has the best

performance among all the methods, which avoids the sudden change in water levels and

keeps them close to the setpoint well. The remaining methods do not preform satisfactorily.

MSMPC overacts to the high discharge, lowering the water level to nearly -1 m at step 800

and jeopardizing the navigation. GA sum and GA score show a similar problem to Scenario

1. They are insensitive to the high discharge, whose water level is about 1 m higher than that

of GA max, for instance, at step 1100.

Fig. 3 (Scenario 2) shows that the performances of these four methods are similar to

that of Scenario 1. In other words, GA max greatly outperforms the other methods while

GA sum has the worst performance. It should be noted that although all four methods have

different performances, they all meet the navigation goal during more than 97% of the sim-

ulation.

4.3 Scenario 3

Scenario 3 has the lowest discharge of all the scenarios, which implies the system needs to

deal less with the high discharge nuisance. Instead, a method that can regulate the water level

to be close to the setpoint is desired. Fig. 2 (Scenario 3) shows that GA sum can regulate the
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water level near the reference level and that most of the level deviations are positive (i.e. the

actual water level is higher than the reference level) while the remaining three methods tend

to have negative level deviations. GA max, which shows the best performance in Scenarios

1 and 2, does not remain the same in Scenario 3. For instance, GA max results in the largest

negative level deviation between steps 400 and 700. This is because a decision focusing on

the high discharge (as the worst case), rather than actual low discharge, is made in GA max.

We can also see that MSMPC over-estimates the inflow discharge and lowers the water level

to -1.5 m approximately, showing the worst performance of four methods.

Additionally, Fig. 3 (Scenario 3) further shows the overall performance of the whole

simulation. GA sum outperforms other methods in terms of the controlled water level, being

lower than 0.7 m during 95% of the simulation. GA max also does best in terms of the

controlled water level higher than 0.7 m. In general, GA score is the second best method,

whose overall performance is slightly lower than that of GA sum and much higher than that

of MSMPC.

5 Discussion

In this section, we further discuss the performance, computational efficiency, and limitation

of MSMPC and GA-MSMPC.

5.1 MSMPC versus GA-MSMPC for RTC problems

The simulation of three scenarios shows rather different results, although they all use the

same information in decision-making. The difference occurs due to two factors: (i) which

scenario being the actual case is differently assumed; (ii) solutions are selected following

different criteria at each step. Those two factors can significantly impact the performance of

the decision. In addition, MPC works in a receding-horizon fashion which implies that the

system state, decision, and disturbances are updated at each step (hourly in our case) and in

a closed loop. As a result, the accumulative change in water levels can be fairly different by

using multiple methods (e.g., see Fig. 2 and Fig. 3).

MSMPC is currently one of the most commonly used methods to deal with multiple sce-

narios in RTC-WRM problems. Its decision is made upon ‘the average (second-order) im-

pact of all scenarios’. In other words, a high-impact event (i.e., a high-discharge scenario as

in our case) can possibly drive the average impact away and over-estimate the consequence.

However, it is still a universal method that can be used for all kinds of scenarios with an

intermediate outcome. As shown in Fig. 4, which counts the steps for a given method out-

performing other methods, MSMPC shows insignificantly different performances for three

scenarios. It is not the best nor the worst among all the four methods.

GA max is a very effective method that can avoid negative consequences caused by

high-impact events. It achieves the best performance for Scenarios 1 and 2. Therefore, the

method is recommended for decision-making if negative consequences are likely to occur

and expected to be avoided. However, since it is a method focusing on the worst-case sce-

nario, we also need to pay attention to its over-estimation if the high-impact event does not

actually happen, such as Scenario 3. In this case, the performance of GA sum is rather low.

GA sum is a method that considers the overall performance of all solutions. In other

words, its decision is made upon ‘the average impact of all solutions’. GA sum shows the

best performance when only low-impact events occur (Scenario 3) but the worst in terms
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Fig. 4 Bar chart that shows the number of steps that a given method outperforms others for three scenarios.

of the occurrence of any high-impact event (Scenarios 1 or 2). Therefore, it is only rec-

ommended for RTC-WRM applications unless the decision maker ensures that high-impact

events are unlikely to happen in the future.

GA score is a weight-sum method that is developed based on the minisum criterion.

Compared to GA sum, its performance increases in Scenario 1 but decreases in Scenario 3.

It is recommended to replace GA sum if decisions need to be made by taking high-impact

events into account.

It should be noted that GA max, GA sum, and GA score are based on the same opti-

mization framework of GA-MSMPC but they use different ways to select the solution from

the Pareto optima set. GA max shows a better performance than MSMPC with respect to all

three scenarios while GA sum and GA score only show a better performance than MSMPC

with respect to Scenario 3. Therefore, GA-MSMPC with the minimax criterion can replace

MSMPC in order to makie better decisions in the face of different scenarios. However, it is

difficult to conclude which method between GA max, GA sum, and GA score is the abso-

lute best because we usually do not know which scenario may happen in the future.

5.2 Implication for RTC Applications

Another concern of importance for RTC applications is the computational complexity. The

current popular algorithm to solve a single-objective optimization problem, the interior-point

algorithm, is in a cubic order of the forecast horizon and the number of control variables

(Wang and Boyd, 2010). When taking a longer forecast horizon into account, the compu-

tation time greatly increases for the interior-point algorithm as used in MSMPC (Fig. 5).

On the other hand, the computational complexity of NSGA-II only depends on the number
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Fig. 5 Log-log plot of the computation time versus the forecast horizon.

of objectives and the second order of population size (Deb et al., 2002). When applying

NSGA-II to solve problems of a long forecast horizon, its computation time varies insignif-

icantly as the objectives and the population size are fixed (Fig. 5). Our study used six hours

as the forecast horizon to test the performance of both real-time control approaches. Both

MSMPC and GA-MSMPC were able to solve the problem within one minute. However,

even if the computation time increased, MSMPC still ran much faster than GA-MSMPC for

events with 72-hour forecasts, which were usually the maximum length for most weather

nowcasting models. Therefore, MSMPC can suit an RTC problem better than GA-MSMPC

at this stage in terms of computational efficiency. However, GA-MSMPC has greater poten-

tial when forecasting models are able to better predict more long-term weather.

5.3 Limitation of This Study

Our study is the first attempt to solve multi-scenario WRM problems by coupling MOEA

and MPC. We adopted the NSGA-II algorithm due to its computational speed, which is re-

quired for RTC problems. Besides, we used twenty ensemble forecasts to represent plausible

future states. With the development of weather radar, rainfall and runoff forecasting models

are becoming more precise in many catchments. A better forecasting model will lead to a

better controller. However, the approaches proposed in our study are generic and they can

be combined with any forecasting model of a specific catchment.

Without additional preference information, no single solution can be determined for

an optimization problem with conflicting objectives or scenarios. Improving one objective

commonly deteriorates one or more remaining objectives. Therefore, although we are able

to find a set of Pareto optimal solutions, it is still an open question about how to choose one

solution from the solution set. For instance, no method in our study has the best performance

in all scenarios.
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6 Conclusions and Future Research

This study proposed a multi-scenario Model Predictive Control approach based on a genetic

algorithm to cope with hydrological uncertainty in a real-time water level regulation prob-

lem. A case study of the North Sea Canal was conducted. Compared to the classic MSMPC

approach based on the weighted sum approach, GA-MSMPC with the minimax criterion

can better meet the management objectives although it has a heavier computational burden.

In practice, GA-MSMPC benefits a bunch of problems that involve ensemble hydrological

forecasts and multiple management objectives. With the rapid development of the MOEAs,

GA-MSMPC has great potential to be applied to more RTC problems, which will be the

direction of our future research.
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