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MULTI-SEASONALITY IN THE TBATS MODEL  

USING DEMAND FOR ELECTRIC ENERGY  

AS A CASE STUDY 
 
 

Abstract. Many researchers are familiar with time series forecasting, yet 

they struggle with specific types of data that require a suitable model of analysis. 

One such type of data might be seasonality. However, one has to note that most 

popular models (e.g. ARIMA and exponential smoothing) only account for one 

seasonality. This article presents the capabilities of the TBATS model which has no 

seasonality constraints, making it possible to create detailed, long-term forecasts. 
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1. Introduction 

Prediction of phenomena is as old as humanity itself; however, the scientific 
approach thereto began only with the development of higher mathematics and the 
derivatives of its teachings. One type of prediction, a time series forecasting, seeks 
to predict the scale of a phenomenon for a given period based on existing 
numerical data recorded at regular intervals.Whether one wants to predict stock 
prices, unemployment rates, or temperatures, it is important to choose the model 
that best describes the phenomenon in the past, and that will best predict it in the 
future. Depending on its nature, a time series may consist of the following 
components: trends, seasonal movements, cyclical movements, and irregular 

mailto:jacek.brozyna@prz.edu.pl
mailto:gmentel@prz.edu.pl
mailto:beata@prz.edu.pl
mailto:strielkowski@berkeley.edu


 
 
 
 
 
 
Jacek Brożyna, Grzegorz Mentel, Beata Szetela, Wadim Strielkowski 
_____________________________________________________________ 

230 

 
DOI: 10.24818/18423264/52.1.18.14 

 
 

fluctuations. Time series are often analyzed using aggregate data in order to obtain 
a single seasonality and an adequate forecast period. For example, monthly data for 
the next year may be predicted on the basis of monthly data from some dozen years 
prior; and data for the next few weeks may be predicted on the basis of data from 
some dozen weeks or months prior.This article will present the capabilities of one 
of the more advanced TBATS models which account for seasonality using specific 
time series, e.g. with hourly data collected over a period of several years, and thus 
generates a medium-term forecast with the specificity of a short-term forecast. For 
this analysis of time series with multi-seasonality, we used hourly data on the 
demand for electric energy in Poland from a 14-year period which made it possible 
to observe and use three seasonalities. The body of this article is divided into three 
sections approximating the model and the forecasts made therewith, starting from 
the most general (with one monthly seasonality), and ending with detailed forecasts 
that account for the triple seasonality resulting from the use of hourly data from the 
entire research period. 

2. Literature review 

The demand for the electric energy and the related issues, such as setting up energy 
tariffs, building autonomous energy systems, Internet of energy, regulation of 
energy, integration of energy systems and the like represents the very important 
and timely questions humanity faces nowadays. Therefore, they are often tackled in 
the research literature that employs the mathematical modelling and econometric 
tools in attempt to answer these issues(Štreimikienė et al., 2016). 
One of the factors in determining correct forecasts for a given phenomenon is 
selection of an appropriate model. Our selection of the TBATS model may seem 
peculiar given the number of other available models((Box, et al., 2016),(Zeliaś, et 
al., 2016),(Armstrong, 2001),(Brockwell & Davis, 1996)). The most frequently 
used models are ARMA/ARIMA/SARIMA, (Box & Jenkins, 1976),(Lee & Ko, 
2011),(de Andrade & da Silva, 2009),(Pappas, et al., 2008),(Chen, et al., 1995); 
and exponential smoothing(Taylor, 2003),(Hyndman, et al., 2008).Using the 
ARIMA and exponential smoothing models is perfectly appropriate as long as they 
are not used for very complicated time series. We have also used these models in 
our previous works, as they were sufficient for the investigation of other 
phenomena(Brożyna, et al., 2016),yet forecasts of more complicated time series 
require more advanced models that employ Bayesian procedures (Cottet & Smith, 
2003),Gaussian processes (Blum & Riedmiller, 2013),ant colony optimization 
(Dongxiao, et al., 2010), and many other methods (Zhou, et al., 2006),(Taylor, et 
al., 2006),(Küçükdeniz, 2010)depending on the specifics of the data. One such 
specific is multi-seasonality. The majority of these models are only good for 
modeling time series with one or two seasonalities. The solution to this problem is 
the TBATS model, introduced a few years ago (De Livera, et al., 2011). By 
applying this model, we can simultaneously account for many seasonalities 
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occurring in a given time series and resulting in a detailed forecast for a longer 
period of time. 

3. Data Profile 

To demonstrate the capabilities of the TBATS model with regard to the seasonality 
of forecasted phenomena, we use data on the demand for electric energy from 
Polskie Sieci Elektroenergetyczne (Polish Electroenergy Networks, an Internet 
service), recorded from January 2002 through October 2015. The values of the time 
series observed have been presented in megawatts, and with 15-minute intervals, 
giving it a length of nearly half a million observations. In order to prepare and 
compare forecasts, the data were aggregated into hourly data (N=121248), daily 
data (N=5052), and monthly data (N=166) by selecting the maximum value for the 
period; moreover, the data are expressed in megawatts [GW] to increase legibility. 
The aggregation of data by selecting maximum values was justified by the need to 
research the energy system's maximum load. Selection of mean values would have 
been more justified from a purely statistical point of view, but would not have 
reflected reality. Selection of maximum values results in a loss of minimal values 
as the aggregation period expands, which in turn has an influence on the remaining 
descriptive statistics1 (Table 1), the shapes of the graph (Figure 1, Figure 2, Figure 
3), and forecasts. 

 
Table 1. Descriptive statistics of maximum energy demand in Poland [GW]. 

Source: The authors' own research. 
Type of aggregation N Min 

[GW] 

1st Quarter 

[GW] 

Median 

[GW] 

Mean 

[GW] 

3rd Quarter 

[GW] 

Max 

[GW] 

Hourly 121248 9.75 15.30 17.39 17.52 19.70 25.84 
Daily 5052 12.75 18.28 20.14 19.99 21.97 25.84 
Monthly 166 15.96 20.37 21.93 21.73 23.30 25.84 

 

                                                      

1Polskie Sieci Elektroenergetyczne, http://www.pse.pl/index.php?dzid=77 (02.11.2015) 
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Figure 1. Maximum hourly demand for energy in Poland. 

Source: The authors' own research. 

 

 
Figure 2. Maximum daily demand for energy in Poland. 

Source: The authors' own research. 

 

 
Figure 3. Maximum monthly demand for energy in Poland. 

Source: The authors' own research. 

[G
W

]

2002 2004 2006 2008 2010 2012 2014 2016

1
0

1
5

2
0

2
5

Time

[G
W

]

2002 2004 2006 2008 2010 2012 2014 2016

1
4

1
6

1
8

2
0

2
2

2
4

2
6

Time

[G
W

]

2002 2004 2006 2008 2010 2012 2014 2016

1
6

1
8

2
0

2
2

2
4

2
6



 
 
 
 
 
Multi-seasonality in the TBATS Model Using Demand for Electric Energy  
as a Case Study 
_________________________________________________________________  

233 

 
DOI: 10.24818/18423264/52.1.18.14 

 
 

The three figures above show annual seasonality, with the lowest demand for 
energy in summer, and the highest in winter. The greater demand for energy in the 
winter can be explained by the shorter days (which call for longer operation of all 
types of lighting), and lower temperatures (which call for heating).  
Further seasonalities are illustrated by the figure below of the hourly demand for 
energy in a sample month (Figure 4). This figure shows weekly and daily 
seasonality, with five business days and two weekend days. Additional analysis of 
source data shows that increased energy usage occurs from dawn till dusk, and is at 
its lowest after midnight. 

 
Figure 4. Maximum hourly demand for energy in Poland in October 2015. 

Source: The authors' own research. 

 
The descriptive statistics in  
Table 1 indicate a significant difference (up to 10 GW) between the minimum and 
maximum demand for energy. Considering that the data only concern a fairly short 
period of 14-years, these are significant differences that testify to the rapid increase 
in energy demand. 

4. Models and forecasts 

Figure 1 - Figure 4 allow us to draw general conclusions about the trends and 
seasonality of the time series studied. Regardless of the frequency of the data 
analyzed, energy use increased during the beginning period, and stabilized in the 
final years. Furthermore, the frequency of the time series affected the occurrence of 
yearly, weekly, and daily seasonality. The seasonalities occurring in time series 
limit the selection of prognostic models. Popular models such as ARIMA, 
exponential smoothing, and homologous period trend estimation may be used for 
smaller amounts of monthly data, and only when there is one annual 
seasonality. But these models do not work well for long series with overlapping 
seasonality, such as in the case of the daily and hourly data presented here, which 
contain two and three seasonalities, respectively. About ten years ago, Taylor 
proposed the double seasonal Holt-Winters model(Taylor, 2006),but it did not 
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account for series with more than 2 seasonalities. The solution to the seasonality 
problem may be the TBATS model, which was introduced in 2011 and accounts 
for multiseasonality (Trigonometric, Box-Cox transform, ARMA errors, Trend, 
and Seasonal components)(De Livera, et al., 2011),with arguments  
TBATS(ω, {p, q}, φ, {<m1, k1>, <m2, k2>,...,<mT , kT>}) 
where: 
ω is a Box-Cox transformation (Box & Cox, 1964), 
p, q are ARMA parameters (Whittle, 1951),(Box & Jenkins, 1976),(Brockwell & 
Davis, 1996), 
φ is a damping parameter (Gardner & McKenzie, 1985),(Snyder, 2006), 
m1,...,mT are seasonal periods, 
k1,...,kTare the number of Fourier series pairs (West & Harrison, 1997),(Harvey, 
1989). 
 
The model can be written as: 𝑦𝑡(𝜔) = 𝑙𝑡−1 + 𝜑𝑏𝑡−1 +∑𝑠𝑡−1(𝑖)𝑇

𝑖=1 + 𝛼𝑑𝑡 𝑏𝑡 = 𝑏𝑡−1 + 𝛽𝑑𝑡 𝑠𝑡(𝑖) =∑𝑠𝑗,𝑡(𝑖)𝑘𝑖
𝑗=1  𝑠𝑗,𝑡(𝑖) = 𝑠𝑗,𝑡−1(𝑖) cos 𝜆𝑗(𝑖) + 𝑠𝑗,𝑡−1∗ sin 𝜆𝑗(𝑖) + 𝛾1(𝑖)𝑑𝑡 𝑠𝑗,𝑡∗(𝑖) = −𝑠𝑗,𝑡−1(𝑖) sin 𝜆𝑗(𝑖) + 𝑠𝑗,𝑡−1∗(𝑖) cos 𝜆𝑗(𝑖) + 𝛾2(𝑖)𝑑𝑡 𝜆𝑗(𝑖) = 2𝜋𝑗𝑚𝑖  

where: 
i=1,…,T 

dt is an ARMA (p,q) process,  
α, β, γ1 and γ2 are smoothing parameters,  
ℓ0 is the initial level, 
and b0 is slope value. 
 
Forecasts using this model will be presented starting from the most general 
monthly data, then daily data, and then hourly data. Forecast errors will be 
determined on the basis of the most commonly used measurements(Bratu, 2012): 

Mean Absolute Error 
n

e

MAE

n

t

t
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as well as less commonly-used measurements (Hyndman & Koehler, 
2006),(Gardner, 1985): 
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where: 
et is the error et = yt - yt

* 
yt is the actual value, 
yt

* is the forecast value, 
m is the seasonal period (Hyndman & Koehler, 2006). 
 
When comparing ME and MAE errors or MPE and MAPE errors, we can tell 
whether the values in the forecast are systematically lower or higher than the 
observed values, and if they are multidirectional. Furthermore, analysis for MSE 
errors may indicate the occurrence of abnormally large errors; whereas extreme 
errors are indicated by significant differences between MAE and RMSE. 
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4.1. Single seasonality in monthly data forecasts 

Decomposition of the series containing monthly data (Figure 5) confirms the 
additive nature of the data. The trend is clearly growing, with a minimum value of 
19.5 GW at the beginning, and 23.63 GW in the last observation from October 
2015. Seasonal fluctuations range from -2.29 to 2.54 GW. 

 
Figure 5. Decomposition of the time series with monthly data for energy demand. 

Source: The authors' own research. 

 
The seasonality of the time series examined is also confirmed by Figure 6, which 
shows a higher demand for energy in winter months, and a lower demand in 
summer months. In analyzing the years on the right side of the graph, we can see 
that in most cases there is an increased demand for energy in each consecutive 
year. Yet what is interesting is that the graphs become flat, which means that in 
recent years, the demand for energy in the summer period is growing faster than 
that in the winter period. 

 
Figure 6. Seasonality of monthly data for energy demand in Poland. 

Source: The authors' own research. 
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The parameters of the TBATS model (1, {1,2}, 1, {<12,5>}) are best-suited to the 
data. Forecasts for the next 12 months using this model are presented in Figure 7.  
 

 
Figure 7. Forecast for the maximum monthly energy demand in Poland. 

Source: The authors' own research. 

 
In this model, Box-Cox transformation equals 1 (doing nothing), ARMA (1,2) 
errors are present, the damping parameter equals 1 (doing nothing), and 5 Fourier 
pairs have a period of m=12. This model can be written as: 𝑦𝑡 = 𝑙𝑡−1 + 𝑏𝑡−1 + 𝑠𝑡−1 + 𝛼𝑑𝑡 𝑏𝑡 = 𝑏𝑡−1 + 𝛽𝑑𝑡 𝑠𝑡 =∑𝑠𝑗,𝑡𝑘

𝑗=1  

𝑠𝑗,𝑡 = 𝑠𝑗,𝑡−1 cos (2𝜋𝑗𝑡12 ) + 𝑠𝑗,𝑡−1∗ sin (2𝜋𝑗𝑡12 ) + 𝛾1𝑑𝑡 𝑠𝑗,𝑡∗ = −𝑠𝑗,𝑡−1 sin (2𝜋𝑗𝑡12 ) + 𝑠𝑗,𝑡−1∗ cos (2𝜋𝑗𝑡12 ) + 𝛾2𝑑𝑡 
 
where dt is an ARMA (1,2) process, and α, β, γ1 and γ2 are smoothing parameters. 
Here the seasonality has been handled with 12 parameters (the ten initial values for 
sj,0 and s*

j,0 and the two smoothing parameters γ1 and γ2). The total number of 
degrees of freedom is 20 (the other 8 come from the two smoothing parameters α 
and β, the four ARMA parameters, and the initial level and slope values ℓ0 and b0).  
These forecasts conform to the trend and amplitude of the series studied. The 
confidence intervals are small and average ±0.80 GW for an 80% confidence 
interval, and ±1.22 GW for a 95% confidence interval. The errors of this model are 
small, and are as follows: 
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-0.012130 0.482416 0.384576 -0.104051 1.786988 0.630386 0.000141 

 
These arguments illustrate the suitability of this model to make realistic forecasts. 

4.2. Double seasonality in forecasts of daily data 

Analysis of a time series for daily data characterized by two seasonalities (yearly 
and weekly) is discussed in a separate article (Brożyna, et al., 2016),and this 
subchapter only contains the fragments most important for comparison with other 
types of seasonalities.  
The decomposition result shown in Figure 8 confirms the yearly seasonality 
(season 2); however, the frequency of the first seasonal component (season 1) in 
relation to the length of the time series makes identification possible only after a 
graph for a shorter period (e.g. one month) has been analyzed. Taken as an 
example, the first seasonal component for October 2015 (Figure 9) clearly shows a 
weekly cycle. 
 

 
Figure 8. Decomposition of the time series with daily data on energy demand. 

Source: Brożyna, J., Mentel, G. and Szetela, B., 2016. Influence of double seasonality 

on economic forecasts on the example of energy demand. Journal of International 

Studies, 9(3), pp. 9-20. 

 
Figure 9. The first seasonal component after the decomposition of daily data. 

Source: ibid. 
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Figure 10. The second seasonal component after the decomposition of daily data. 

Source: ibid. 

Analysis of yearly seasonality for daily data (Figure 8, Figure 10) confirms the 
conclusions of the analysis of monthly data. Furthermore, it allows us to locate the 
decline in maximum demand for energy during December and January, and July 
and August. For daily data, TBATS is the best-suited model 
(1, {5,5}, 0.986, {<7,3>, <365.25,7>}), whose forecasts for the following year are 
shown in Figure 11 and Figure 12. 

 
Figure 11. Historical data and forecasts for the maximum daily energy demand. 

Source: ibid. 

 

 
Figure 12. Forecast for the maximum daily energy demand in Poland. 

Source: ibid. 
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of m2=365.25 (annual). This model, adjusted as such, is characterized by the 
following errors: 

ME RMSE MAE MPE MAPE MASE ACF1 

0.025845 0.758416 0.423351 -0.01815 2.235313 0.301647 -0.00655 

 
In Figure 12 we see that the forecasts retain weekly seasonality with less energy 
demand on weekends, shown in Figure 9; as well as yearly seasonality with a 
decline in demand at the turn of the year and during summer, shown in Figure 10. 
Forecasts of daily data are characterized by confidence intervals more than double 
those for forecasts of monthly data; however, these values do not deviate 
significantly from the forecasts (as far as confidence intervals are concerned), and 
are on average ±1.81 GW for an 80% confidence interval, and ±2.77 GW for a 
95% confidence interval. 

4.3. Triple seasonality in forecasts of hourly data 

Analysis of a time series containing hourly data from a 14-year period is not only 
complicated, but time-consuming. The data presented here include three 
seasonalities: yearly, weekly, and daily. The seasonal components after the 
decomposition of the time series (Figure 13, Figure 14, Figure 15) are not as 
regular as the monthly and daily data, and change in subsequent years. 

 
Figure 13. Decomposition of the time series with hourly data on energy demand. 

Source: The authors' own research. 
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Figure 14. The first seasonal component after the decomposition of hourly data. 

Source: The authors' own research. 

 

 
Figure 15. The second seasonal component after the decomposition of hourly data. 

Source: The authors' own research. 

 

For hourly data, the best model is  
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𝑠𝑗,𝑡(1) = 𝑠𝑗,𝑡−1 cos (2𝜋𝑗𝑡24 ) + 𝑠𝑗,𝑡−1∗ sin (2𝜋𝑗𝑡24 ) + 𝛾1(1)𝑑𝑡 𝑠𝑗,𝑡∗(1) = −𝑠𝑗,𝑡−1 sin (2𝜋𝑗𝑡24 ) + 𝑠𝑗,𝑡−1∗ cos (2𝜋𝑗𝑡24 ) + 𝛾2(1)𝑑𝑡 𝑠𝑡(1) =∑𝑠𝑗,𝑡(2)5
𝑗=1  

𝑠𝑗,𝑡(2) = 𝑠𝑗,𝑡−1 cos (2𝜋𝑗𝑡168) + 𝑠𝑗,𝑡−1∗ sin (2𝜋𝑗𝑡168) + 𝛾1(2)𝑑𝑡 𝑠𝑗,𝑡∗(2) = −𝑠𝑗,𝑡−1 sin (2𝜋𝑗𝑡168) + 𝑠𝑗,𝑡−1∗ cos (2𝜋𝑗𝑡168) + 𝛾2(2)𝑑𝑡 𝑠𝑡(2) =∑𝑠𝑗,𝑡(3)5
𝑗=1  

𝑠𝑗,𝑡(3) = 𝑠𝑗,𝑡−1 cos (2𝜋𝑗𝑡8766) + 𝑠𝑗,𝑡−1∗ sin (2𝜋𝑗𝑡8766) + 𝛾1(3)𝑑𝑡 𝑠𝑗,𝑡∗(3) = −𝑠𝑗,𝑡−1 sin (2𝜋𝑗𝑡8766) + 𝑠𝑗,𝑡−1∗ cos (2𝜋𝑗𝑡8766) + 𝛾2(3)𝑑𝑡 
 
where dt is an ARMA process (0,0), and α, β, γ1

(1), γ2
(1), γ1

(2), γ2
(2), γ1

(3) and γ2
(3) are 

smoothing parameters. Seasonality was approximated by 14 parameters (12 initial 
values for s(1)

j,0 and s*(1)
j,0, and two smoothing parameters, γ1

(1) and γ2
(1)). 

Approximation of weekly and yearly seasonalities consists of 12 parameters (10 
initial values for s(2)

j,0 and s*(2)
j,0, and two smoothing parameters,γ1

(2) and γ2
(2), for 

weekly seasonality; and 12 initial values for s(3)
j,0 and s*(3)

j,0, and two smoothing 
parameters, γ1

(3) and γ2
(3), for yearly seasonality). Taking into account the two 

smoothing parameters α and β,, four ARMA process parameters, as well as initial 
values and slope values ℓ0 and b0, the total number of degrees of freedom is 46. 

 
Figure 16. Historical data and forecasts for the maximum hourly energy demand. 

Source: The authors' own research. 
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Figure 17. Forecast for the maximum hourly energy demand in Poland. 

Source: The authors' own research. 

 
Figure 18. The last month of historical data, and the forecast for the maximum hourly 

energy demand in Poland for November 2015. 

Source: The authors' own research. 
 

 
Figure 19. The last week of historical data, and the forecast for the maximum hourly 

energy demand in Poland for the first week of November 2015. 

Source: The authors' own research. 

 
Figure 16 shows that the forecast based on the hourly data retains the trend of the 
time series, but unlike forecasts made on the basis of monthly or daily data, its 
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confidence intervals have a wide range. This is not a strange phenomenon, as 
forecasts usually include dozens of forward observations; yet in this case, they 
number 8776, which, in spite of the same forecasting period for monthly and daily 
data (1 year), results in an accumulation of "uncertainty." Analysis of successive 
graphs showing only the forecast for the next year (Figure 17), as well as historical 
data and forecasts for one month (Figure 18) and one week (Figure 19), indicates 
that the model is best-suited to the data. The forecasts retained all three 
seasonalities, making them more realistic for both shorter and longer time periods.  
 

5. Conclusion 

In an effort to forecast a given phenomenon, researchers aggregate data so as to 
obtain a time series that suits the horizon of the forecast; for example, hourly data 
for a short-term forecast, or monthly data for a long-term forecast. This is often the 
result of using basic models of ARIMA and exponential smoothing, whose 
limitations lead mainly to an increase in the forecast horizon, and a decrease in its 
level of detail. The solution to this problem is the TBATS model, which allows 
detailed forecasting of time series for longer periods of time. Using specific data on 
the demand for electric energy, this article shows long-term forecasts containing 
one, two, and three seasonalities. What is important is that the seasonality of data is 
not an obstacle for the TBATS model, and even renders the forecast period 
independent of the frequency of the data in the time series. It was thus possible to 
create e.g. a yearly forecast containing detailed hourly data. Of course, data for a 
distant future period may contain more errors, but key is the fact that when 
simultaneously accounting for all three seasonalities in a time series, we right away 
receive short-, medium-, and long-term forecasts. 
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