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Abstract. A multi-secret sharing scheme is a protocol to share m arbi- 
trarily related secrets s1,. . . , sm among a set of participants P. In this 
paper we put forward a general theory of multi-secret sharing schemes 
by using an information theoretical framework. We prove lower bounds 
on the size of information held by each participant for various access 
structures. Finally, we prove the optimality of the bounds by providing 
protocols. 

1 Introduction 

A secret sharing scheme is a technique to  share a secret s among a set ‘P of 
participants in such a way tha t  only qualified subsets, pooling together their in- 
formation, can reconstruct t he  secret s; bu t  subsets of participants tha t  are not 
enabled to recover the  secret have no  information on i t .  Secret sharing schemes 
are useful in any important action that requires the  concurrence of several de- 
signed people to  be initiated, as launching a missile, opening a bank vault or 
even opening a safety deposit box. Secret sharing schemes are also used in man- 
agement of cryptographic keys and multi-party secure protocols (see [lo), [2] ). 

Secret sharing schemes were introduced by Shamir [lG] and Blakley [3]. They 
analyzed the  case when only subsets A of P of cardinality IAl 2 k, for a fixed 
integer k, can reconstruct tlie secret. These schemes are called ( I c ,  n) threshold 
schemes, where n = IPl. Subsequently, Ito, Saito, and  Nishizeki [ll] and Benaloh 
and  Leichter [l] described a more general method of secret sharing. They showed 
how to realize a secret sharing scheme for any access structure, where the  access 
structure is the  family of all subsets of participants t ha t  are able to reconstruct 
the  secret. T h e  recent siirvey by Stinson [18] contains a n  unified description of 
recent results in the area of secret sharing schemes. For different approaches to 
the  study of secret sharing schemes, for schemes with “extended capabilities” as 
disenrollment, fault-tolerance, and pre-positioning and  for a complete bibliogra- 
phy we recommend the survey article by Simmons [17]. 
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There are several situations in which more than one secret is to  be shared 
among participants. As an example, consider the following situation, described 
by Simmons [17]: there is a missile battery and not all of the missiles have the 
same launch enable code. The problem is to devise a scheme which will allow 
any one, or any selected subset, of the launch enable codes to be activated in 
this scheme. What is needed is an algorithm such that the same pieces of private 
information could be used to recover different secrets. This problem could be 
trivially solved by realizing different secret sharing schemes, one for each of 
the launch enable codes, but this solution is clearly unacceptable since each 
participant should remember too much information. 

Another scenario in which the sharing of many secrets is important was 
considered by Franklin and Yung [8]. They investigated the communication 
complexity of unconditionally secure multi-party computation and its relations 
with various fault-tolerant models. They presented a general technique for par- 
allelizing non-cryptographic computation protocols, a t  a small cost in fault- 
tolerance. Their technique replaces polynomial-based (single) secret sharing 
with a technique allowing multiple secrets to  be hidden in a single polynomial. 
The technique applies t o  all of the protocols for secure computation which use 
polynomial-based threshold schemes and applies to  all fault-tolerant models. 
Franklin and Yung [8] considered also the case of dependent secrets in which the 
amount of information distributed to any participant is less than the information 
distributed with independent schemes. 

The problem of sharing more than one secret was also considered in [14]. 
Blundo, De Santis, and Vaccaro [5] considered the case in which m secrets 

are shared among participants in P of a single access structure A in such a way 
that:  1) any qualified subset of participants can reconstruct all the secrets, 2) 
any non-qualified subset has absolutely no information on any secret, and 3) any 
non-qualified subset knowing the value of a number of secrets might determine 
some (possibly no) information on other secrets. They proved lower bounds on 
the size of the domains from which the share given to  participants are taken. 
Moreover, they proved that the protocol proposed by Franklin and Yung [S] is 
optimal with respect to  the amount of information given to  each participant. 

Recently Jackson, Martin, and O’Keefe [12] considered the problem where 
participants can reconstruct more than one secret using the information that 
they hold. In particular, they considered the situation in which there is a secret 
associated with each set I< E P ,  where 11<1 = k. This secret can be reconstructed 
by any t ( t  5 k) participants of K .  They proved bounds on the size of information 
that participants must hold in order to ensure that up to w participants (0 5 
w 5 n - k + t - 1) cannot obtain any information about a secret they are 
not associated with. In [12] such schemes are referred as niultisecret threshold 
schemes. Finally, in [13] the authors provide an optimal scheme, with respect 
to  the information given to  each participant, for some value of the parameters t 
and w .  

In this paper we put forward a general theory of multi-secret sharing schemes 
by using an information theoretical framework. We prove lower bounds on the 
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size of information held by each participant for various access structures. Finally, 
we prove the optimality of the bounds. We prove that in some cases the protocol 
consisting of realizing different secret sharing schemes, one for each of the secrets, 
is optimal with respect to the size of the share given to  a single participant. In 
other cases the before mentioned protocol is not optimal and we exhibit schemes 
that give to  participants shares taken from a smaller domain. 

The paper is organized as follows. In Section 2 we formally define multi- 
secret sharing schemes by using information theoretical quantities. We consider 
two possible models of multi-secret sharing schemes. We model secret sharing 
schemes by using the entropy mainly because this leads to a compact and simple 
description of the scheme and because the entropy approach takes into account 
all probability distributions on the secret. Finally, each bound we obtain on 
the entropy of the share of a participant implies a bound on the amount of 
information held by such a participant. In Subsection 2.3  we prove that the two 
models proposed for multi-secret sharing are equivalent. In Section 3 we show 
how to construct perfect multi-secret sharing schemes for two and three secrets 
in which the shares distributed are taken from domains as small as possible. An 
important issue in the implementation of secret sharing schemes is the size of 
the shares given to  participants, since the security of a system degrades as the 
amount of secret information increases. Thus, one of the basic problems in the 
field of secret sharing schemes is to  derive bounds on the amount of information 
t,hat mus t  be kept secret. In Section 4 we prove a lower bound on the information 
distributed to any participant in multi-secret sharing schemes. Finally, in Section 
5 we analyze the case in which all the access structures are threshold structures. 
We prove lower bounds on the size of information held by each participant in 
the scheme and provide optimal protocols for multi-secret sharing in threshold 
structures. 
Due to the space limit on this extended abstract, some proofs are omitted. The 
authors will supply a complete version on request. 

2 The Models 

In this section we give two different definitions of multi-secret sharing schemes 
and show their equivalence. Let us first briefly recall the concept of secret sharing 
scheme. 

A secret sharing scheme permits a secret to be shared among a set P of 
n participants in such a way that only qualified subsets of P can recover the 
secret, but any non-qualified subset has absolutely no information on the secret. 
An access structure A is the set of all subsets of P that can recover the secret. 

Defiiiitioiil. Let P be a set of participants] a monotone uccess structure A on 
P is a subset A 

Definitioii2. Let P a set of participants and A 
by cl(A), is the set cl(A) = {ClB E A and H C C 

Z p ,  such that A E A,  il C A’ C P 3 A’ E A. 

2?. The closure of A, denoted 
P } .  
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For a monotone access structure d we have A = c I ( d ) .  From now on we will 
consider only monotone access structures. 

In multi-secret sharing schemes the problem of sharing many secrets is ad- 
dressed. We consider two models of multi-secret sharing. The first model is a 
natural generalization of single secret sharing: we consider different access struc- 
tures and in each of them we share a different secret. We will refer to  this model 
as Type A .  In the second model, referred to as Type B, each set A C P can 
recover a set SA of secrets, where it can be Sa = 0. This second model gen- 
eralizes the one considered by Jackson, Martin, and O'Keefe [12]. Even though 
it  could appear that, the two models are different, we will show that they are 
indeed equivalent. 

The following setting is common to both models. Let P be a set of partic- 
ipants, let Si be the space from which the i-th secret si can be selected, for 
i = 1, . . . , m, and let SC be the Cartesian product S1 x . . . x S,. Finally, let 
{ p S C ( s 1 ,  . . . , Sm)}(sl,,..,s,,,)~~c be a probability distribution on SC. Let a multi- 
secret sharing scheme for secrets in S C  be fixed. For any participant P E P, let 
us denote by K ( P )  the set of all possible shares given to  participant P .  Given 
a set of participants A = (9, , . . . , $,} C P ,  where i l  < i~ < . . . < i,, set 
K ( A )  = Ii'(9,) x . . .  x I<(?,). Any rriulli-secret sharing scheme for secrets in 
SC and a probability distribution {pSc ( ~ 1 , .  . . , S~)}(~~,,,,,~,,,)~SC naturally induce 
a probability distribution on K ( A ) ,  for a.ny A P.  Denote such a probabil- 
i ty  distribution by { p K ( a ) ( ~ ) } o E ~ ( ~ ) .  Finally, denote by H ( S i )  the entropy' of 
{ P S , ( S ) ) ~ E S ,  and by H ( A )  the entropy of {P~(~)(U)),~X(A), for any A 5 P. If 
SA is a set of secrets { s , ~ ,  . . . , q, },  where s,, E q,, then denote by H ( S A )  the 
entropy of {ps,l x . . , x s  (s,,, . . . ,s,,)}~ ,; E S  'j , j = 1 , . _ . ,  a. To avoid overburdening the 
notation, we will denote with the same symbol both a random variable and the 
set of its possible values. As an example, with Si we will denote both the set in 
which the i-th secret is chosen and the random variable that takes values in the 
set Si with probability distribution { p ~ ~ ( s ) } ~ E s , .  

We will give our two definitions of multi-secret sharing schemes first in terms 
of the probability distribution on the secret and on the shares given to  partici- 
pants, and then using the entropy function as done in [14], [15], and [6]. 

1.3 

2.1 The First Model 

In the first definition of perfect multi-secret sharing scheme, an rn-tuple of secrets 
(s1 , . . . , s,) E 5'1 x . . . x S,,, is shared in an rn-tuple (d1, . I . , A,) of access 
structures on P in such a way that,  for each i = 1, .  . . , nz, the access structure 
s l i  is the set of all subsets of P that can recover secret si E Si. This means 
that only the sets in di can recover the secret si, but any set A @ di has no 
information on it. A multi-secret sharing scheme of Type A is defined as follows. 

For definition and properties of information theoretic quantit,ies w e  refer to [7] and 
[91. 
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Definition 3. Let (A1 , . . . , Am) be an rn-tuple of monotone access structures 
on the set of participants F .  A multi-secret sharing scheme of T y p e  A for 
(A1, . . . ,A,) is a sharing of the secrets (s1 , . . . , s,) E S1 x . . . x S, in such 
a way that,  for i = 1, .  , , , m, 
1. A n y  subset A C P of  participants enabled to recover si can compute S i .  

Formally, if A E di then for all a E K(A)  with P ~ ( ~ ) ( u )  > 0, i t  holds 

2.  A n y  subset A C P of particapants not enabled to recover si ,  even knowing 
some of the other secrets, has no more information on si lhan that already 
conveyed by the known secrets. 
Formally, if A $ Ai then for all a E K ( A )  and t C_ ( ~ 1 , .  . . , s,} \ { S i } ,  it 
holds p ( ~ ;  Id) = p ( ~ i  It). 

Property 1. means that the values of the shares held by A E di completely 
determine the secret s;. Property 2. means that the probability that a secret is 
equal to  si given that any subset of secrets not including si is equal to  t and that  
the shares held by A @ Ai are equal to a,, is the same as the a priori probability 
of the secret si given that any subset of secrets not including si is equal to  t .  In 
case t = 8, this is equivalent to say that no amount of knowledge of shares of 
participants not qualified to  reconstruct a secret enables a Bayesian opponent 
t o  modify an a priori guess regarding which the secret is. 

Now we can restate above conditions 1. and 2.  using information theoretic 
tools. We model secret sharing schemes by using the entropy mainly because 
this leads to  a compact and simple description of the scheme and because the 
entropy approach takes into account all probability distributions on the secret. 
Finally, each bound we obtain on the entropy of the share of a participant implies 
a bound on the amount of information held by such a participant. 

y(s; la)  = 1. 

Definition4. Let (A1, . . . , A,) be an rn-tuple of monotone access structures 
on the set of participants P.  A multi-secret sharing scheme of Type A for 
(d1, . , , ,d,) is a sharing of the secrets ( ~ 1 , .  . . )  s,) E S1 x . . . x S, in such 
a way that,  for i = 1,. . . , rn, 
a .  A n y  subset A C P of participants enabled to  recover si can compute s j .  

Formally, for all A E di, it holds H(S;IA) = 0. 
b. A n y  subset A 5 P of participants not enabled t o  recover si, even knowing 

some of the other secrets, has no more znformatzon on si than that already 
conveyed b y  the known secrets. 
Formally, for all A 4 di and T C (5’1,. . . , Snl} \ {Si}, i t  holds H(S;lA T )  = 
H(S; IT). 

Notice that  H(Si1A) = 0 means that each set of values of the shares in A 
corresponds to a unique value of the secret. In fact, by definition, H(SiIA) = 0 is 
equivalent to the fact that for all a E K(A)  with p K ( A )  (a )  > 0 it holds p ( s i ] a )  = 1. 
Moreover, H(SjlAT) = H(SilT) is equivalent to  state that Sd and K ( A )  are 
statistically independent] given the secrets in T ;  i.e., for all a E K ( A )  and all 
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t E T ,  it holds p(s,(at) = p ( s i ( t ) ,  and therefore the knowledge of a gives no 
information about the secret si that is not already given by t .  Finally, notice 
that in the case the access structures A l l  . . . , A, are all equal t o  the same 
structure A, a multi-secret sharing scheme for secrets sl,. . . , sm reduces to  a 
secret sharing scheme for the secret s = s1 o . . . o s, with access structure A, 
where with x o y we denote the concatenation of x and y. 

2.2 The Second Model 

In our second definition of perfect multi-secret sharing schemes a set S = 
( ~ 1 , .  . . , Sm} of secrets, where each si is chosen in a set Si, is shared among 
a set P of participants in such a way that each subset of P can recover a certain 
subset of S ,  but has absolutely no information on the remaining secrets. 

For each subset of participants A C P, we denote by SA E S the set of 
secrets that can be recovered by A,  referred to  as the A-secrets-set. It should be 
pointed out that in some cases we could have Sa = 8. Since we only consider 
monotone access structures, it turns out that for any A, B E P if A C B ,  then 
S A  S B .  

Definition5. Let P be a set of participants, S be a set of secrets, and {SA}ACP 
be the family of A-secrets-sets. A mulli-secret sharing scheme of T y p e  B Tor 
{SA}AC_P is a sharing of the secrets in S among participants in P in such a way 
that 

1’. Any  subset A P of  participants is enabled to recover the A-secrets-set SA. 
Formally, for all a E K ( A )  with pK(A)(a) > 0 and s E SA, it holds p(sla) = 1. 

2’. Any subset A P ofparticipants has no information on any subset of secrets 
in, S \ SA . 
Formally, for all A C P ,  for all a E I i (A)  and t S\SA, i t  holds p( t la )  = 
p ( t ) -  

Property 1’. mcans that the value of the shares held by A C_ P completely 
determines the secrets in SA. Property 2‘. means that the probability that a 
subset of secrets is equal to  t given that the shares held by A are a ,  is the same 
as the a priori probability of the secrets in  t .  Therefore, no amount of knowledge 
of shares of participants not qualified to reconstruct a subset of secrets enables a 
Bayesian opponent to modify an a priori guess regarding which the secrets are. 

For any A C P ,  if SA = {sil,. . . , s i a } >  then with SA we denote the family 
SA = {Sill.. . , Si,}. Now we can restate above conditions 1’. and 2’. using 
information theoretic tools. 

DefiiiitioiiG. Let P be a set of participants, S be a set of secrets, and {SA}AEP 
be the family of A-secrets-sets. A multi-secret sharing scheme of T y p e  B for 
{ S A } A ~ P  is a sharing of the secrets in S among participants in P in such a way 
that 

a’. Any  subset A P of Participants is enabled t o  recover the A-secrets-set SA. 
Formally, for all A P ,  it holds H(SAIA) = 0. 
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b’. A n y  subset A C P of  participants has no information on any subset of secrets 
i n  S \ SA. 
Formally,€orallAC P a n d T c  {S1, . . . , S , } \ S ~ l i t h o l d s H ( T ~ A ) =  H ( T ) .  

Notice that H ( S A ( A )  = 0 means that each set of values of the shares of 
participants in A corresponds to a unique value of the secrets in SA.  Moreover, 
H(TIA) = H ( T )  is equivalent to  state that  T C {SI,. . . , S,}\SA~ and K ( A )  
are statistically independent and therefore the knowledge of the shares of the 
participants in A gives no information about the secrets in S \ SA. 

2.3 The Equivalence of the Two Models 

In this section we prove that the two definitions presented for perfect multi-secret 
sharing schemes are equivalent; that is, each scheme satisfying one definition 
satisfies also the other as stated by next theorem. 

Theorem 7. Let P be a sei of participants and lei  S1 x . . . x S,  be a probabilzty 
space from which. the secrets (s1, . . . s,) are chosen. The following statements 
hold. 

1. Let dl,. . . ,A, be access structures on the set of participants P. I f  C is a 
secret sharing scheme of Type A for  (d1 ,  . . . , A,), then C is a secret sharing 
scheme of Type B f o r  the family {SA)AEP, where SA = {s i  : A E Ai, i E 

2. Let { S a } ~ c p  be a family of A-secret-sets. If C is a secret sharing scheme 
of Type B for { S A } A ~ ~ ,  then C i s  a secret sharing scheme o f  Type A f o r  
( A i l . .  . , d,), where Ai = { A  C_ P : si E SA} .  

[I, mll .  

Proof: Suppose C is a multi-secret sharing scheme of Type A .  Let (d1, ..., A,) 
be an  m-tuple of access structures on participants P and let (s1, ...) Sm) E SI x 
’ . . x S, be the secrets shared in ( d 1 , .  . . , Am). For any A C_ P let SA = {s; : 
A E Ail i E [ I I  m]}. We prove that conditions u’. and b’. of Definition 6 are 
satisfied. Let us prove that H(SA [ A )  = 0. We have that 

H(SA IA) = H(S j , ,  . . . sj, IA) 
r 

= H ( S j ,  IA) f C H ( S j ;  IS j ,  . . . Sj , - ,A)  
i = 2  

r 

i= l  
= 0. 

Now, we prove that for any T 5 S\SA, it holds H(TJA) = H(T). Suppose that 
T = {Sj,, . . . , Sj,}. We have 

H ( T I A )  = N ( S j , ,  . . . , Sj, [ A )  
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IIence, if C is a multi-secret sharing scheme of Type A for (dl, . . . , dm), then 
C is also a multi-secret sharing scheme of Type B for {SA}AEP.  
Now we prove that statement 2. of the theorem holds. Let {SA)ACP be a family 
of A-secrets-sets. Let (,41! . . . , Am) be an rn-tuple of access s t rktures ,  where 
di = { A  P : si E SA} .  We prove that conditions a. and b .  of Definition 4 are 
satisfied. It is easy to prove that for all A E di it holds H ( S i l A )  = 0. Indeed, 
we get H(SilA) 5 H(SAIA) and since H(SAIA) = 0 from u’. of Definition 6 ,  
it follows that H(Si1A) = 0. Now, we prove that for all A $! di and T C 
{Sl,. . . ,Sm} \ {Si}! it holds H(SilA T )  = H(SilT). Notice that if A $! di then 
si $! SA.  Let T = TI U T2, where TI SA and Tz n SA = 0. We have, 

From previous equalities we get H(SilT2) = H ( $ l A T ) .  From well known prop- 
erties of the entropy function we have H(SilT2) > H(SilT) and H(Si1AT) < 

0 

From now on, the term multi-secret sharing scheme will refer t o  any of the two 
definitions given. 

H ( S i  IT). Thus, the theorem holds. 

3 Sharing Two and Three Secrets 

In this section we describe multi-secret sharing schemes for two and three secrets. 
We are interested in limiting the size of the share of a fixed participant P. The 
scheme we propose are realized, for simplicity of the description, considering 
as qualified sets only pairs of participants, but they can be easily extended to 
handle the general case where instead of participants we have groups of them. 
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3.1 The Case of Two Secrets 

In this section we consider the case where P = { P ,  PI, Pz} and S = (4, Sz}. 
Suppose that {P ,  PI} E d1, { P ,  P2) E Az, {P, PI} @ dz, and { P ,  Pz} @ d1. If 
we use the single-secret sharing construction for S1 and S2, we obtain a perfect 
multi-secret sharing scheme in which the dealer gives P a share such that H ( P )  >_ 
H ( Si sz ) . 

Assume that { P I ,  Pz} E d1 U Aa; we describe a scheme such that, for uni- 
formly and independently chosen 1-bit secrets, distributes shares to  participants 
such that  H ( P )  = H(S1) = N(S2) .  Denote by @ the logical xor between two 
bits. 

The dealer uniformly chooses two independent bits a ,  b and distributes the 
shares as follows: 

- P gets a @ b 
- P1 gets a @ $1 ,  b 
- PZ gets a,  b @ s2. 

In the next section (Corollary 9) we will see that in the case {PI, Pz)  $! di U A 2 ,  
all multi-secret sharing schemes must satisfy H ( P )  2 H(S1Sz). 

3.2 The Case of Three Secrets 

In this section we consider the case where 'P ={ P, P I ,  Pz, P3) and S ={ S1, Sz, 5'3). 

Assume that { P ,  Pj} E dj , for each j = 1 , 2 , 3 .  We distinguish two cases accord- 
ing to  which group of participants can recover a subset of the secrets and for 
each case we describe a multi-secret sharing scheme which gives P a share taken 
from a domain as small as possible. 

1. { P I ,  Pz, P3} E A1 n A2 n As, that is, participants P I ,  Pz, and P3 together 
are able to  recover S1, SZ, and S3 

(b) {Pa, Pj} # A; n dj, for some i ,  j E { 1 , 2 , 3 }  and i # j; 
(a) {PI, Pz} E A1 n A2, {PI, Pa)  E dl n -43, and {Pz, P3) E A2 n A3 

2.  { P I ,  Pz, P3) 6 dl n .A2 n d3, that is, participants Pl, P2, and P3 together 
are not able to  recover at least one of S1 , S2, and S3 
(a) {PilPj} E As ndj, for some i,j E {1,2,3} and i # j; 
(b) { P I , P ~ } @ A I ~ A Z ,  {P11p3}@d1nd3rand {PZ,P3}@d2nd3. 

The above classification partitions the family of all triples of access structures 
we could get in four classes. We construct a multi-secret sharing scheme for each 
class for uniformly and independently chosen 1-bit secrets. 

For all schemes the dealer uniformly chooses three independent bits a ,  b ,  and 
c distributing the shares as follows. 

- Case 1.a: 
P g e t s  a @ b @ c  
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PI gets a @ s1 , b ,  c 
0 P2 gets a,  b @ s2, c 
0 P3 gets a,  b ,  c @ s3 

Inthiscasewehavethat {Pl,P2} E A I ~ A ~ , { P I , P ~ )  ~ d l n d ~ , a n d { P 2 , P 3 }  E 
A2 n As. It is easy to obtain from this scheme all possible schemes for ac- 
cess structures satisfying the conditions of case 1 .a by distributing additional 
shares to participants PI, P2, P3. For example, assume {PI , P2) E A1 n A2 n d3, 

{PI, P3) E dl nd3, and {P2, P3) E A2 nA3. Then, the dealer uniformly chooses 
a bit d and distributes as additional shares d to PI and d @ s3 to P2. 

- Case 1 .b :  
Assume, wlog, that {PI, Pz} # dl n d z .  

P gets a @ c, b 
Pl gets a @ s l ,  b ,  c 
Pz gets be sz, c 

P3 gets a ,  c @ s3 

In this case we have that { P I ,  Pz} E A2 ( P 2 ,  F3) E d3, and {PI, Pa} E A1 nd3. 
It  is easy to obtain from this scheme all possible schemes for access structures sat- 
isfying the conditions of case 1.6 by distributing additional shares to participants 
PI, Pz ,  P3. For example, assume {Pl,P~} E d 2  nd3, {P,,P3} E dl ndz nd3, 
and {Pz, P3) E -41 n d 2  n A3. Then, the dealer uniformly chooses three bits 
d ,  e ,  and f distributing as additional shares d ,  f @ s2 to P I ,  d @ s3, e to Pz, and 
b , e @ s i , f  to P3. 

- Case 2.a:  
Assume, wlog, that { P I ,  4) E dl n A2 

P gets a @ b ,  c 
0 PI gets a @ s1, b 
0 P2 gets a ,  b @ s2 

0 P3 gets a ,  b ,  c @ s3 

In this case we have that { P l , P , }  E d l n d a ,  {P, ,Ps}  E -41, and {Pz,P3} E -42 .  

It is easy to obtain from this scheme all possible schemes for access structures 
satisfying conditions of case 2 .a  by distributing additional shares to  participants 
P I ,  P2, and P3. For example, assume {PI, Pz} E A1 n d 2 ,  { P I ,  P3} E -41 n -42 ,  

and (P2, P3) E A1 n d2. Then, the dealer uniformly chooses two bits d and e 
distributing as additional shares d ,  c @ sz to P3 d @ s1 to Pz, and e to Pi. 

- Case 2.b : 
P gets u , b , c  
PI gets a @ s1 
P2 gets a,  b @ s2 

0 P3 gets u ,  b ,  c @ sg 
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In this case we have that {P1,Pz} E d1, {Pl,P3} E d1, and {Pz,P3} E dz. 
It is easy to obtain from this scheme all possible schemes for access structures 
satisfying case 2.6 by distributing additional shares to  participants PI, P2, and 
P3.Forexamplelassume{P1,P2} E A I , { P ~ , P ~ }  ~ A l n d 2 ,  {Pz,P3)Ed1nA2. 
Then, the dealer uniformly chooses two bits d and e distributing as addit,ional 
shares d @  s~ to PI, e to Pz, and d ,  e @ s1 to P3. 

In the next section we will prove that the above schemes are optimal with 
respect to the entropy of P’s share. 

4 Bounds on the Size of the Shares 

In the previous section we have investigated the possibility of constructing per- 
fcct multi-secret sharing schemes without using necessarily different single-secret 
sharing schemes one for each of the secrets. We have seen that in some cases the 
shares given to participants are taken from smaller domains. In this section we 
give lower bounds on the entropy of the share of a single participant. 

Theorein8. Let ( d 1 , .  . . ,Arn) be an in-tuple of access structures on the set  of 
participants P .  Assume that fur all S; E {SI,. . . , S,) and T E {Si,. . ., Sn2} \ 
{Si} it holds H(SiJT) > 0 .  If  there exist a participant P and j 5 m subsets 
of participants X ; ,  , . . . , X i ,  c P ,  such that {P} u X i ,  u . . .  u Xi, E di, and 
Xjl U . . . U Xi, @ A;, for 1 5 t 5 j ,  then in any multi-secret sharing scheme f o r  
( A l l . .  . , d,,) the entropy of the share given t o  P satisfies 

H ( P )  2 H ( S ; , ,  . . . , Si,) + H ( P I X ; , ,  . . . , X i , ,  Sdl,. . . , .Tij). 

Corollary9. Given the secrets SI, S2 a n d  the set of participants?’={P, PI, pz}, 
let (A1,AZ) be a pair of access structures such tha t  { P ,  PI} E d1, { P ,  Pz} E Az, 
{P,Pl}  $Z d 2 , { P , P z }  $Z d1, and {Pl,Pz) $2 d1 n dz. Then, in any multi- 
secret sharing scheme for (d1,dz) the entropy of the share given to P satisfies 
H ( P )  2 H(S1Sz). 

Proof: Assume { P I ,  Pz} E d1. Thus, PI I$ A1 and {PI ~ P2} I$ An. Participants 
PI and Pz satisfy the hypothesis of Theorem 8, hence H ( P )  2 H(S1Sz). 0 

Corollary10. Given the secrets S1, ,572, and S3, and the set of participants 
P = { P ,  P I ,  P2, P3}, let (d1 ,dZ,AJ)  be a triple of access structures such that 
{P,Pj}  E dj and { P ,  Pj}  edi, for each i , j  E (1, 2 , 3 }  with i # j .  Then, in any 
multi-secret sharing schemes fo r  (A1, dz, A3) the entropy of  the share given to 
P saiisfies 

I. H ( P )  2 H ( S 1 )  in Case 1.a of Sectzon 3.2. 
2, H ( P )  2 H(S1S2) in Cases 1.6 and 2.a of Section 3.2. 
3. N ( P )  >_ H(S1SzS3) in Case 2 .b  of Sectzon 3.2. 

The previous corollaries prove the optimality of the sharing schemes given in 
Sections 3.1 and 3.2 with respect t o  the entropy of P’s share. 
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5 Multi-Secret Schemes for Threshold Structures 

In  this section we consider the problem of sharing secrets in different threshold 
structures. More precisely, we analyze the case in which for each secret sir the 
access structure di is the set of all subsets consisting of at least k ,  participants 
in Pi, and will be denoted by d ( k , , P , ) .  Next corollaries immediately follow from 
Theorem 8. 

Corollary11. Let ( d ( k , p l ) ,  . . . , d ( k , p , ) )  be an m-tuple of threshold structures 
on a set o f  participants P = U E I P i .  If P I  C P2 C . . .  P,, then in a n y  multi- 
secret sharing scheme f o r  (d((;,pl), . . . , d ( k , p , ) )  the entropy of the share given 
to  any participant P E Pj satasfies 

H ( P )  2 H(SjSj+l . . . Sm). 

Proof: Let P be a participant in Pj.  Construct the sets X j ,  . . . X ,  as 
follows. Let the set X j  be equal to  X j  = {Pi,, . . . )  Pik--l}l with Xj Pj\{P}. 
For i = j + 1, . . . , m, let X ;  = Xj . It is easy to  see that the participant P and the 
sets X j ,  X j + l , .  . . X, satisfies the hypothesis of Theorem 8, thus the corollary 
is proved. 0 

Corollary12. Lei ( d ( k l , p , ) ,  . . . , A ( k , , p , ) )  be an rn-tuple of threshold struc- 
tures on a set of participants P = UEIPpi, with kl 5 k 2 . . .  5 km. Suppose 
nz1Pi # 8. Let C < m be the smallest integer such that I n z l  Pi1 < ke .  7'h.en in 
any multi-secret sharing scheme f o r  ( A ~ k , , p , ) ,  - .  . , d ( k . _ , p , , , ) )  the entropy of the 
share given t o  any participant P E nzlPi satisfies 

Remark. If i n  the previous corollary an integer C < m such that I ng=, Pi I < k t  
does not ezast, then it can be easily proved that f o r  any participant P E nzlPi 
the entropy of the share given to P satisfies H ( P )  2 H ( S l S 2 . .  .Sm). 

Corollary 13. Let ( d ( h , , p l ) ,  d ( k z , P z ) ,  A ( k 3 , F 3 ) )  be an m.-tuple of threshold struc- 
tures on a set of participants P = u?=3=,'Ppi. Suppose n?=lPi # 0. Then, in any 
multi-secret sharing scheme f o r  ( d ( k l , p , ) ,  d ( k 2 , P , ) ,  A ( k 3 , P 3 ) )  the entropy of the 
share given to  any participant P E r$L1Pi satisfies 

H ( P )  2 ff(SIS2S3). 

Before to  state a general theorem on a multi-threshold structure we need the 
following two lemmas. They hold for any multi-secret sharing scheme of Type 
A not just for the case of multi-threshold structures. These two lemmas are the 
generalization to multi-secret sharing schemes of the ones proved in [S] for the 
case of single secret sharing. 
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Lemma 14. Let (A1, . . . ,Am) be an m-tuple of access structures on the set of 
participants P .  Let X , Y  E P such that Y $ Ai and X U Y E dj. Then, in any 
multi-secret sharing scheme, it holds H ( X I Y )  = H ( S i )  + H ( X ( Y S a ) .  

An immediate consequence of Lemma 14 is that for any P E UAEA,A it holds 
H ( P )  >_ W(S,).  We will see that under some condition this bound can be im- 
proved when the m-tuple of access structures consists of threshold structures. 

Next lemma proves that the uncertainty on shares of a non-qualified set of 
participants cannot be decreased by the knowledge of the secret. 

Lemma 15. Let (dl, . . , , Am) be an m-tuple of access structures on the set of 
participants P. Let X ,  Y E P such that X,Y $! di Then, in any multi-secret 
sharing scheme f o r  (dl, . . . , A m ) ,  it holds H ( X I Y )  = H ( X I Y S i ) .  

The following theorem states a lower bound on the size of the share held by 
any participant in an m-tuple of threshold structures. In the following we will 
show that if the secrets are uniformly chosen, then the bound is tight. 

Theorem16. Let d ( k , , . p ) ,  . . . , d ( k m , p )  be threshold structures on a set of par- 
ticipants P .  In a n y  multi-secret sharing scheme for  ( d ( k l , p ) ,  . . . , d ( k , , ~ ) )  the 
entropy of the share given to any participant P E P satisfies 

m 

If each secret si  is uniformly chosen in Si = GF(qd), with qi prime, then 
it is possible to  realize a multi-secret sharing scheme that  meets the bound of 
Theorem 16. To accomplish this it is enough to combine n independent threshold 
schemes, say Shamir’s schemes [lG], one for each threshold structure. In the same 
way we can construct an optimal multi-secret sharing sheme for the rn-tuple of 
threshold structures (A(k,.pl), , . . , d ( k , ~ , ) )  considered in Corollary 11. 
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