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Abstract – This paper proposes an efficient online, hybrid,
Bayesian multi-sensor fusion algorithm for target tracking
in the presence of modelled and unmodelled faults. The al-
gorithm comprises two stages. The first stage attempts to re-
move modelled faults from each individual sensor estimate.
The second stage de-emphasises estimates which have been
subject to unanticipated faults and are still faulty despite un-
dergoing the Stage 1 fault recovery process. The algorithm
is a computationally efficient and decentralisable hybrid of
two standard approaches to fault detection, namely model-
based fault detection and majority voting. The algorithm is
tested on two distinct simulated scenarios (1) when the tar-
get process model does not match reality and (2) in the pres-
ence of simultaneous modelled and unanticipated faults.

Keywords: multi-sensor data fusion, Kalman filter, fault
detection and recovery.

1 Introduction
The deployment of sensor networks to monitor and track
events, objects, and situations, in a variety of environments,
is becoming widespread. This paper is concerned with how
to filter and fuse the uncertain sensor data to ensure it pro-
duces statistically consistent state estimates. Specifically,
three main types of uncertainty are considered:

• Uncertainty associated with noisy sensor measure-
ments.

• Systematic uncertainty, associated with faulty sensor
measurements where the fault parameters are known.

• Epistemic uncertainty, associated with faulty sensor
measurements where the fault parameters are not com-
pletely known.

Uncertainty due to random noise is endemic in sensor
measurements, but its effect can be reduced by standard fil-
tering and fusion processes, such as Kalman filtering. Sen-
sors can generate faulty measurements for a number of rea-
sons, such as power failure, physical damage, and miscal-
ibration, to name but a few. If parameterised models for

the fault types are available, they can be exploited by a
fault recognition algorithm. However, often an explicit fault
model is not known, in which case the algorithm must be
able to deal with model incompleteness. This paper de-
scribes a general data fusion framework that accommodates
all three types of uncertainty.

Recent work has seen an increasing trend in sensor net-
works which decentralise the filtering and fusion processes
to reduce the computational and communication bottlenecks
associated with a centralised process. However, this can ex-
acerbate the problem of a faulty sensor because its measure-
ment may be now fused at multiple sites and then the fused
data is re-propagated to further fusion nodes so its impact
could spread through the network. This means there is a
particularly strong imperative to recognise, remove, or miti-
gate faulty sensor data in a networked sensor fusion system.

The framework presented here incorporates two data pro-
cessing stages. The first stage attempts fault recognition and
removal by hypothesising a number of models to describe
the faults. This enables the fault to be removed from the
data. For each model a recursive estimator is applied to the
data and a Bayesian approach is used to learn the probabil-
ity that the model is correct as well as the probability den-
sity function over the model parameters. The state estimates
are processed by a mixture reduction algorithm to provide a
single summary estimate encompassing all fault types from
each source.

The second stage applies a further data fusion algorithm
to combine state estimates from multiple sources. Robust-
ness is required because the estimates may not be entirely
reliable, due to unmodelled or imprecisely modelled fault
types. A learning stage determines the reliability of each
estimate and a fusion algorithm combines them. The Stage
2 algorithm may be replicated on all fusion nodes within a
decentralised sensor system.

In our framework, if we know what the fault is (i.e. the
known known), we remove it at Stage 1 of our algorithm.
Alternatively, if we assume a closed set of fault types but
we don’t know which one is operating at a given time (i.e.
known unknowns) then we place a distribution over the



faults in Stage 1 of our algorithm. In this case, the distri-
bution is known but the fault is unknown. Finally, if our
world is not closed and there are faults which we haven’t
modelled (i.e. the unknown unknowns) then Stage 2 utilises
a Bayesian voting scheme to remove unreliable sensors.

Two decentralised system architectures are possible. The
architectures differ in the way they perform Stage 1 of the
fault recovery algorithm. One architecture performs Stage
1 at each sensor node before communicating the results to
a fusion centre (see Figure 1). Alternatively, the sensors
can communicate their raw observations to the fusion centre
with the requirement that the fusion centre performs Stage
1 on each sensor input stream. The former architecture is
communication unintensive but places a large computational
burden on the fusion centre. The latter architecture is com-
munication intensive but requires less computation at the fu-
sion centre. We adopt the latter architecture in this paper al-
though our two stage fault recovery algorithm can be applied
to both approaches.

Fault Recovery Fault Recovery Fault Recovery

Sensor 1 Sensor 2 Sensor 3

Consensus Combination

Observation Observation Observation

Fusion Centre

Figure 1: System architecture showing (1) Stage 1 fault re-
covery operating within each sensor and (2) unanticipated
fault processing at Stage 2 performed by the consensus com-
bination algorithm.

Venkatasubramanian et al. [14] classify fault recogni-
tion algorithms into three broad categories: quantitative
model-based methods, qualitative methods and process his-
tory based methods. Particularly related to our work are the
quantitative methods that employ recursive state estimators.
For example, the Kalman filter is commonly used to moni-
tor innovation processes and prediction error [16, 2]. Banks
of Kalman filters have also been applied to fault recogni-
tion, where each filter typically corresponds to a specific
fault mode [8, 1]. In addition, pattern recognition methods,
such as recursive least-squares have been described for on-
line fault parameter estimation, e.g. drifts [6]. For complex
faults, with nonlinear dynamics and discrete/continuous pa-
rameters, a Dynamic Bayesian Network framework may
be more appropriate for fault detection and diagnosis [9].
Voting techniques are frequently used to fuse multi-sensor
data in the presence of faults [16]. Another approach, is

to search, given error bounds on different sensors, for sub-
sets of sensor measurements with different degrees of con-
sistency [4].

Most previous approaches to fault recognition and fusion
in the presence of faults assume the fault modes can be per-
fectly described by a parameterised model. In practice, there
is likely to be some deviation between what the actual faults
look like and what their models predict. This residual may
or may not be important given the sensor system and its ap-
plication. However, as indicated earlier, in a decentralised
network even small residuals can have a significant impact
as they propagate through the fusion network. The frame-
work described in this paper contains the required level of
robustness to ensure that residual errors in fault recogni-
tion/removal do not prevent statistically consistent estimates
from being formed at the sensor fusion nodes.

Our approach uses both model-based and voting-based
approaches to perform fault identification, isolation and
fault removal and presents the user with a consistent esti-
mate of the target’s location. Model-based and voting ap-
proaches to fault identification and isolation are not new.
However, by casting the solution in a Bayesian framework
we are able to use the soft decision making properties of
Bayes to formulate a hybrid model-based/voting approach
for target tracking in the presence of modelled and unmod-
elled faults. Unlike [10], whose Bayesian approach to fault
detection invokes the power set of sensors, we are able to
cast a solution in terms of individual sensor nodes. As a re-
sult, our approach is computationally efficient and also de-
centralisable.

The paper is organised as follows. Section 2 presents a
specification of the multi-sensor estimation problem in the
presence of faults. Section 3 then describes fault models for
an array of faults (drift, shocks, spikes and echos) that sen-
sors can experience. Then, Section 4 describes a Bayesian
approach to inferring fault free estimates given observations
from sensors which are subject to modelled faults. Section 5
describes a Bayesian multi-sensor approach to fault recov-
ery when sensors are subjected to unmodelled faults. These
two approaches can be combined into a two stage fault re-
moval algorithm. The efficacy of our algorithm is illustrated
via examples in Section 6 and then via statistical analysis
in Section 7. Finally, we conclude and offer future research
directions in Section 8.

2 Problem Description
We aim to track a process x over time t where:

x(t) = G(t)x(t− 1) + ωt ,

G(t) is the linear, time dependent plant model and ωt is
zero-mean, Gaussian distributed with covariance Qt. The
process is observed by a set S of potentially faulty sensors.
For each s ∈ S:

zs(t) = x(t) + es(t) + νs,t
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Figure 2: Fault types: Figures show the true target trajectory (solid line) and the crosses show the, sometime faulty, target
observations. Also shown are target trajectory estimates obtained using the approach outlined in Section 4 with the faulty
observations.

where νs,t is zero-mean, Gaussian distributed with covari-
ance Ws,t. We assume uncorrelated noise throughout,
E[ωt1 , ωt2 ] = 0 and E[νs1,t1 , νs2,t2 ] = 0 for s1 6= s2 or
t1 6= t2 and, also, E[ωt1 , νs2,t2 ] = 0 for all t1, t2 and s2.

The error process e(t) is a function of the fault type (ft).
In this paper we consider drift, spike, shock and echo fault
types. These fault types are described in Section 3. Each
fault has a fault start time (fst) and fault end time (fet) which
bound the period over which the fault occurs. Our aim is
to estimate the target’s location, x, using potentially faulty
sensor readings from our network of sensors. Each sensor
tracks the target over time and attempts to remove any faults
from its observations before fusing them with its estimate of
the target’s location. This is the first stage of our algorithm.
A second stage fuses together the fault rectified estimates
supplied by each sensor. This second stage accommodates
inadequacies in each sensor’s fault recovery process when
the sensor’s estimate still encodes some residual fault. This
stage de-emphasises sensor estimates for which the faults
have not been successfully removed.

3 Known knowns: Fault Models
Four fault types are considered (see Figure 2). However, our
approach is not limited to these fault types alone. These fault
types are:

1. Drift: The error gradually increases linearly from zero
over time until there is an abrupt cut-off at which the
sensor bias disappears.

e(t) =

{
∆(t− fst) if fst ≤ t ≤ fet
0 otherwise

The parameter ∆ is the drift rate.

2. Spike: A single observation is offset.

e(t) =

{
∆ if fst ≤ t ≤ fet
0 otherwise

and fst = fet. The parameter ∆ is the spike magnitude.

3. Shock: A constant offset is sustained over a long pe-
riod. For example, a sensor is knocked out of line and

then reset.

e(t) =

{
∆ if fst ≤ t ≤ fet
0 otherwise

and fst < fet. The parameter ∆ is the observation bias
due to the shock.

4. Echo: Two observations are received, one is the true
observation and another is the target image formed by
the signal reflecting from a wall say. The distance be-
tween the observations remains constant. We model the
echo by conflating the observations into a single value,
z = 0.5(z1 + z2). Thus:

e(t) =

{
∆ if fst ≤ t ≤ fet
0 otherwise

The parameter ∆ now describes the offset of z from the
truth. Note, an echo is distinguishable from a shock as
two observation streams are observed for an echo and
only one for a shock.

Note that, in each case, ∆ = 0 describes a fault free sen-
sor.

4 Stage One: Known Unknowns
We shall use a Bayesian approach to remove the faults. In
essence, we learn the current fault characteristics (if a fault
has occurred) online. Then we can remove the fault once
its effect is known. Since there will always be some uncer-
tainty as to the nature of the fault, we integrate over the fault
probabilities and generate a single estimate which captures
the uncertainties in the fault.

Each sensor is dealt with individually and, for ease of rep-
resentation, we omit the sensor index in this section. Let xt

denote the target’s state at time t, zt
1 denote the sensor’s ob-

servations up to time t and let zt denote the sensor’s obser-
vation at time t. Let θ = {ft, fst, fet, ∆} denote the failure
hypothesis [3] with parameters which are, respectively, the
fault type, fault start and end times and the magnitude of the
fault. Our aim is not only to identify which type of fault has
occurred but also when it occurred. We also would like to
remove the fault from the data so that the sensor can supply



an accurate estimate of the target’s location. The target state
given (possibly) faulty observations zt

1 is distributed thus:

p(xt | zt
1) =

∫
dθp(xt | zt

1, θ)p(θ | zt
1) .

The posterior p(xt | zt
1, θ) is Gaussian and can be obtained

from p(xt−1 | zt−1
1 , θ) using the Kalman filter. The mean

and covariance for p(xt | zt
1, θ) are:

x̂θ(t | t) = x̂θ(t | t− 1) + Kθ[z(t)− eθ(t)− x̂θ(t | t− 1)]
Pθ(t | t) = [I −Kθ]Pθ(t | t− 1)

where Kθ is the Kalman gain, Kθ = Pθ(t | t − 1)[Pθ(t |
t− 1) + W (t)]−1. Values for x̂θ(t | t− 1) and Pθ(t | t− 1)
can be obtained in the usual way:

x̂θ(t | t− 1) = G(t)x̂θ(t− 1 | t− 1) ,

Pθ(t | t− 1) = G(t)Pθ(t− 1 | t− 1)G(t)T + Q(t) .

Thus:

x̂(t | t′) =

∫
dθ p(θ | zt′

1 ) x̂θ(t | t′) ,

P (t | t′) =

∫
dθ p(θ | zt′

1 )[Pθ(t | t′) + ∆x̂θ(t | t′)∆x̂θ(t | t′)T ]

where ∆x̂θ(t | t′) , x̂θ(t | t′) − x̂(t | t′) and t′ = t or
t′ = t− 1, the latter corresponding to state prediction. Sim-
ilarly, the parameter probability p(θ | zt

1) can be obtained
thus:

p(θ | zt
1) =

∫
dxtp(θ, xt | zt

1)

=

∫
dxt

p(zt | θ, xt, z
t−1
1 )

p(zt | zt−1
1 )

p(θ | zt−1
1 )p(xt | zt−1

1 , θ)

=

∫
dxt

p(zt | θ, xt)

p(zt | zt−1
1 )

p(θ | zt−1
1 )p(xt | zt−1

1 , θ)

= c p(θ | zt−1
1 )×

N[zt − eθ(t); x̂θ(t | t− 1), Pθ(t | t− 1) + W (t)]

where c is a normalisation constant such that
∫

dθp(θ |
zt
1) = 1. Thus p(θ | ·) can be calculated recursively. The

prior p(θ) should be uninformative (a flat prior is often ade-
quate).

Our Bayesian approach can be implemented in numer-
ous ways. We chose to implement this approach using a
multi-hypothesis dual Kalman filter. Each dual Kalman fil-
ter simultaneously estimates the state x and the parameter
∆ given the fault type, ft, and the fault start and end times,
fst and fet. A multi-hypothesis KF scheme is used to in-
corporate uncertainty in ft, fst and fet. Each KF encodes
a distinct {ft, fst, fet} triplet for discrete values for fst and
fet. To obtain state estimates and state covariances, the ft,
fst and fet parameters are integrated out by merging the hy-
potheses using standard mixture reduction [13]. Probability
distributions over ft and distributions for the fst and fet can
be obtained directly from p(θ | zt

1) via marginalisation. A

Gibbs sampler implementation would be more sophisticated
than the multi-hypothesis implementation. However, details
of how our fault recovery approach is implemented is irrel-
evant to this paper.

The output of our algorithm is called a report and com-
prises the current state estimate, state covariance matrix,
predictions for the current state which exclude current ob-
servations, distributions over fault start and end times and a
probability for each possible fault type.

R(t) = {x̂(t | t), P (t | t), x̂(t | t− 1), P (t | t− 1),
pfst(t), pfet(t), pft(t)} .

Figure 2 shows the efficacy of our approach on each of the
fault types described in Section 3. Note, the fault recov-
ery algorithm is online and does not make use of smoothing
operations. We may obtain an output from the Stage 1 al-
gorithm at any time, even before the fault has ended. The
figures show the actual output from Stage 1 at each time in-
stant.

5 Stage Two: Unknown Unknowns
We use redundancy within the multi-sensor system to re-
move errors caused by unmodelled faults. Like [10] we
compare the estimates from each sensor and remove out-
lier sensors. Unlike [10] we assign reliability to individual
sensors and not sensor groups. The advantage of consider-
ing sensors individually is clear for modular systems where
a new sensor can be added at any time and also for compu-
tational reasons within large multi-sensor systems.

A sensor is unreliable (or untrustworthy) when its output
is still inconsistent even after undergoing fault recovery dur-
ing Stage 1 of the algorithm. The residual faults that may
remain there can be caused by simultaneous multiple faults
within a sensor or can arise when the target is not moving
according to the KF target process model or even when the
particular fault type is not modelled. If a sensor s ∈ S is
unreliable at time t, we write ws(t) = 0. If it is reliable then
ws(t) = 1. The reliability of a sensor at time t is a measure
between 0 and 1 and is defined to be the probability that the
sensor is reliable: p(ws(t) = 1|·).

We assume that sensors become unreliable independently
of each other. This assumption is valid when, for exam-
ple, individual sensors are knocked out of line. However,
the assumption may fail, for example, when sensors share
a common, and yet inappropriate model for the target dy-
namics. Fortunately, as will be demonstrated in Section 5,
even when the failing component is shared between sensors,
the sensor suite can still recover from the fault. We assume,
like [10], at any time the number of reliable sensors exceeds
the number of unreliable sensors. Consequently, the proba-
bility of simultaneous failure of all sensors is zero:

∏
s

p(ws(t) = 0 | ·) = 0 (2)

and therefore, maxs{p(ws(t) = 1 | ·)} = 1.



P1
⊎

2(t | t′) = p(w1(t) = 1 | Rt′
1 )p(w2(t) = 1 | Rt′

1 )[P1⊕2(t | t′) + (x̂1⊕2(t | t′)− x̂1
⊎

2(t | t′))(x̂1⊕2(t | t′)− x̂1
⊎

2(t | t′))T ]

+ p(w1(t) = 1 | Rt′
1 )[1− p(w2(t) = 1 | Rt′

1 )][P1(t | t′) + (x̂1(t | t′)− x̂1
⊎

2(t | t′))(x̂1(t | t′)− x̂1
⊎

2(t | t′))T ]

+ [1− p(w1(t) = 1 | Rt′
1 )]p(w2(t) = 1 | Rt′

1 )[P2(t | t′) + (x̂2(t | t′)− x̂1
⊎

2(t | t′))(x̂2(t | t′)− x̂1
⊎

2(t | t′))T ]
(1)

5.1 Combining Estimates from Unreliable
Sensors

Before describing how reliability is calculated we describe
our consensus algorithm which combines unreliable esti-
mates from multiple sources. The consensus algorithm uses
a combination of Kalman filter fusion and mixture reduction
[13]. Consider combining two estimates, each is assigned a
reliability p(ws(t) = 1 | ·). Four scenarios are possible.

1. Both sensors are reliable in which case we fuse both
estimates.

2. Sensor 1 is unreliable and Sensor 2 is reliable in which
case we keep Sensor 2’s estimate and discard Sensor
1’s estimate.

3. Sensor 1 is reliable and Sensor 2 is unreliable in which
case we keep Sensor 1’s estimate and discard Sensor
2’s estimate.

4. Both sensors are unreliable in which case we discard
both estimates.

Estimates are fused using the KF or even covariance in-
tersection [7] when the estimates are strongly correlated but
their correlation is unknown. Whichever fusion algorithm is
used we will denote the fused estimate as x̂1⊕2 and the fused
estimate covariance as P1⊕2. We shall denote the estimate
and covariance obtained by using the consensus algorithm
as x̂1

⊎
2 and P1

⊎
2, respectively. Taking the expectation

over the above scenarios:

x̂1
⊎

2(t | t′)
= p(w1(t) = 1 | Rt′

1 )p(w2(t) = 1 | Rt′
1 )x̂1⊕2(t | t′)

+ p(w1(t) = 1 | Rt′
1 )[1− p(w2(t) = 1 | Rt′

1 )]x̂1(t | t′)
+ [1− p(w1(t) = 1 | Rt′

1 )]p(w2(t) = 1 | Rt′
1 )x̂2(t | t′)

where either t′ = t or t′ = t − 1, the latter corresponding
to a prediction. Similarly for the covariance (see equation
(1) at the top of this page). The reliability p(w1

⊎
2 = 1 | ·)

assigned to the combined estimates is simply p(w1
⊎

2 = 1 |
·) = p(w1 = 1 | ·) + p(w2 = 1 | ·)− p(w1 = 1 | ·)p(w2 =
1 | ·).

To combine more than two estimates we can iterate over
the entire set of estimates using the scheme described above.
Iteration i combines estimate x̂i+1(·) with the consensus es-
timate x̂1

⊎
2

⊎
...

⊎
i(·), using the consensus procedure de-

scribed above. Note, that the probability that the com-
bined estimates from all the sensors is reliable is unity,
p(w1

⊎···⊎ s | ·) = 1.

5.2 Calculating Sensor Reliability
It remains to describe how a sensor’s reliability is calculated.
Let x̂(t | t) denote the fault recovered estimates from all
sensors supplying reports up to and including time t and let
Rt

1 denote all reports over all times 1 to t, from all sensors.
We assume that the sensor’s reliability process is Markovian
and that the reports at time t depend only on the sensor’s
status at time t and not at previous times. The expression
for the reliability, p(ws(t) = 1 | Rt

1), is shown at the top of
the next page.

Since we assume that the sensors are independently reli-
able then:

p(R(t) | ws(t) = 1, Rt−1
1 )

=
∏
i∈S

p(Ri(t) | ws(t) = 1, Rt−1
1 )

= p(Rs(t) | ws(t) = 1, Rt−1
1 )

∏

i6=s

p(Ri(t) | Rt−1
1 )

=
p(Rs(t) | ws(t) = 1, Rt−1

1 )

p(Rs(t) | Rt−1
1 )

∏
i∈S

p(Ri(t) | Rt−1
1 )

=
p(Rs(t) | ws(t) = 1, Rt−1

1 )

p(Rs(t) | Rt−1
1 )

p(R(t) | Rt−1
1 )

where Rs(t) is the report from sensor s at time t. A value
for p(R(t))

p(R(t)|Rt−1
1 )

can be calculated using max{p(ws(t) = 1 |
·)} = 1 from (2).

Thus, we can recursively calculate the reliability
p(ws(t) = 1 | ·) of each sensor given a model of how its
reliability varies over time, p(ws(t) = 1 | ws(t− 1), Rt−1

1 ),
and a model of the sensor’s likelihood given estimate reports
from the multi-sensor suite:

Ls[Rt
1] , p(Rs(t) | ws(t) = 1, Rt−1

1 )
p(Rs(t) | Rt−1

1 )
.

A sensor’s reliability is assumed not to change unless
there is evidence to indicate otherwise. Thus, the transition
model is:

p(ws(t) = 1 | ws(t− 1) = 1, Rt−1
1 ) = 1 ,

p(ws(t) = 1 | ws(t− 1) = 0, Rt−1
1 ) = 0 .

We are free to choose the form of Ls subject to the
constraint that a greater likelihood is assigned to the sen-
sor failing the further its estimate is away from the truth.
Thus, Ls[Rt

1] must be a monotonically decreasing function
of the distance between the sensor’s estimate x̂s(t | ·) and
the target’s state. An approximation for the target’s state



p(ws(t) = 1 | Rt
1) =

p(R(t) | ws(t) = 1, Rt−1
1 )p(ws(t) = 1 | Rt−1

1 )
p(R(t))

= p(R(t) | ws(t) = 1, Rt−1
1 )

∑

ws(t−1)∈{0,1}

p(ws(t) = 1 | ws(t− 1), Rt−1
1 )p(ws(t− 1) | Rt−1

1 )
p(R(t))

is the consensus estimate x̄ obtained from the sensor suite
{x̂s(t | t − 1)}. The consensus estimate is formed by com-
bining predictions for the current target state from the sensor
reports Rt−1

1 using the procedure outline in Section 5.1. If
x̄ and P are the predicted consensus estimate and its covari-
ance then:

x̄(t) = x̂1
⊎

2
⊎

...
⊎

s(t | t− 1) ,

P (t) = P1
⊎

2
⊎

...
⊎

s(t | t− 1) .

We base Ls on the uniformly best constant power test [15]
which is often used in fault detection [12, 5, 11]. A sensor
is deemed to be faulty if the Mahalanobis distance between
its output and its predicted output is greater than a threshold
value β. We soften this rule so that outliers do not immedi-
ately lead to a sensor being designated unreliable.

Ls[Rt
1] =

{
c if Ms ≤ β ,

c exp(−(Ms − β)2) otherwise.

where:

M2
s = (x̂s(t | t)− x̄(t))T [Ps(t | t) + P (t)]−1(x̂s(t | t)− x̄(t)) .

Note, the constant c does not contribute to the posterior
reliability distribution as it vanishes after normalisation. The
β parameter is chosen according to the problem. For a 1D
track we feel that β = 3 is a sensible value since, with this
choice of β, a report only counts towards a sensor being
unreliable if its estimate is more than 3 standard deviations
from the consensus estimate.

We are free to choose the prior reliability p(ws = 1) for
each sensor provided that at least one sensor is initially trust-
worthy (i.e. p(ws = 1) = 1 for some sensor s). This sen-
sor may not remain reliable but, in this case, another sensor
must be either totally reliable or become reliable.

6 Illustrative Examples
We demonstrate the end-to-end efficacy of our two stage al-
gorithm on a simple single target, 1D tracking problem for
which the target is initially tracked by 10 sensors. These
sensors are subject to various faults outlined in Section 3.

Our target process model is the near constant accelera-
tion model (NCAM). However, we investigate the impact
that this assumption has on the accuracy of our filter by sim-
ulating targets which do not move exactly according to an
NCAM but still follow a smooth trajectory. With this mis-
match between the process model and reality, we find that
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Figure 3: Ten sensors exhibiting various faults. The left
column shows that faulty data (’.’), truth (solid line) and the
fault recovered estimate first standard deviation confidence
intervals (grey region). The right column shows the sensors’
trustworthiness.

the fault recovery algorithm sometimes fails when sensors
are subject to drift. 1

Figure 3 shows 10 sensors exhibiting various faults. The
fault recovered estimates are also shown along with the re-
liability p(ws = 1 | ·) over time for each sensor. A drifting
sensor, Sensor 2, has failed to correct its fault. However,
Stage 2 of our algorithm identifies this failing sensor and
decreases its trustworthiness accordingly. Figure 4 shows
the result of combining the outputs from the sensors using
Stage 2.

In Figures 5 and 6 the above scenario is repeated but with
a reduced set of sensors. We have chosen to use sensors 2, 3
and 7. In this experiment it is these sensors alone which

1The NCAM acceleration process noise covariance is learned and the
acceleration model parameter is represented within θ.
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Figure 4: The result of combining the outputs from the sen-
sors in Figure 3, using the algorithm described at the end of
Section 5.

are used to determine the reliability shown in Figure 4 and
ultimately the combined estimates in Figure 6. Again, the
Stage 2 of our algorithm is able to correct for the deficiencies
of Stage 1.
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Figure 5: Three sensors exhibiting various faults. The left
column shows that faulty data (’.’), truth (solid line) and the
fault recovered estimate first standard deviation confidence
intervals (grey region). The right column shows the sensors’
trustworthiness.

Figures 7 and 8 show the results for a different failure
recovery scenario. In this case, unlike the previous case,
the sensor process models accurately describe the target tra-
jectory. However, part way through monitoring the target,
sensors 2 and 3 are knocked and as a result their observa-
tions incur a constant offset bias on top of any modelled
fault that they are experiencing. Stage 1 fails to correct the
bias induced by the unanticipated sensor knocks. However,
Stage 2 successfully detects the inconsistent output of these
sensors and reduces their trustworthiness accordingly. The
fused estimate is shown in Figure 8.

7 Experiments
We examine the statistical characteristics of our algorithm
and investigate the relative contributions that each stage
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Figure 6: The result of combining the outputs from the sen-
sors in Figure 5, using the algorithm described at the end of
Section 5.

makes to the fault recovery process. We examine four in-
stances of our algorithm:

1. Neither fault recovery stages are employed. The fault
sensor estimates are simply fused together.

2. Only stage 1 of the fault recovery process is used. The
outputs from each sensor, which have been processed
by the Stage 1 algorithm, are fused together.

3. Only state 2 of the fault recover process is used. Sensor
estimates are assumed by each sensor to be fault free
and are passed directly to Stage 2 without attempting
to remove any faults from the estimates.

4. The end-to-end algorithm uses both stages to remove
faults and unreliable sensors.

The system comprises five sensors and two randomly cho-
sen sensors from the five undergo an unmodelled and unan-
ticipated knock at time t = 50. The knock is simulated by
adding a fixed value to the sensor’s observations. This off-
set persists to the end of each run unlike the modelled faults
which have all ended by t = 80. The modelled fault types
and their parameters are chosen randomly.

The fault start times are restrained to lie within the in-
terval [20, 40] and the fault end times are constrained to lie
within the interval [70, 80] except for the spike fault which
lasts for only one time step. Constraining the start and end
times this way gives three distinct temporal regions in which
we can compare our algorithms. Within the first region, up
until time 20, no fault has occurred. Sensors, which have
been fault corrected using the Stage 1 fault recovery algo-
rithm, are reliable until t = 50 when two randomly chosen
sensors are subject to a knock and become misaligned. This
misalignment persists until the end of each run.

We gather 500 runs and calculate the normalised standard
error (NSE) over time:

S(t) = E
[
(x̂(t)− x(t))T P−1(t)(x̂(t)− x(t))

]
.

For an estimator to be consistent the normalised standard
error should be no greater than the cardinality of the state
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Figure 7: Five sensors exhibiting various faults. The left
column shows that faulty data (’.’), truth (solid line) and the
fault recovered estimate first standard deviation confidence
intervals (grey region). The right column shows the sensors’
trustworthiness.

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (t)

T
ra

je
ct

or
y 

(x
)

Figure 8: The result of combining the outputs from the sen-
sors in Figure 7, using the algorithm described at the end of
Section 5.

vector (i.e. 1 in this case). Ideally the value of S should be
close to the cardinality of the state vector indicating that the
estimate covariance is not too conservative. We also deter-
mine the accuracy of the filter. This is obtained from the the
RMS error:

R(t) =
√

E [(x̂(t)− x(t))T (x̂(t)− x(t))] .

Ideally, the RMS error is small indicating that the estimate is
close to the truth. The results for our experiments are shown
in Figures 9 and 10.

Figure 9 demonstrates that up until t = 20, when the
faults set in, the algorithms have similar NSE and RMS
errors. Any differences is caused by Stage 2 reducing the
reliability of the sensors marginally. After t = 20, when
the modelled faults set in, the algorithms which use Stage
1 remain consistent and the others diverge rapidly. The
RMS value, especially in the range [20, 50] is sensitive to the
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Figure 9: Result of Monte-Carlo Simulation showing the
normalised standard error for the four fault recovery algo-
rithms.
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Figure 10: Result of Monte-Carlo Simulation showing the
RMS error for the four fault recovery algorithms.

threshold value, β, for those algorithms which use Stage 2.
As β decreases the RMS value increases. The reason for this
is that Stage 2 of the algorithm is operating throughout the
run. Fault recovered sensor estimates which are very infor-
mative with values very close to the truth can be discounted
by the Stage 2 algorithm when they happen to be statistical
outliers. This happens especially when offset faults have oc-
curred. Algorithms which do not use Stage 2 would simply
fuse these estimates leading to a smaller RMS error. If we
wish to guarantee a consistent estimate throughout the run,
however, then it is necessary to deploy both stages of the al-
gorithm. After t = 50 the algorithm which uses both Stage
1 and Stage 2 is the only one which remains consistent.

8 Conclusions
We have presented a two stage Bayesian fault detection,
identification and removal procedure for robust multi-sensor
tracking in the presence of sensors which experience antici-
pated (i.e. modelled) and unanticipated fault types. Our ap-
proach is modular and decentralisable and computationally
efficient as it performs fault recovery on each sensor indi-
vidually during Stage 1. Stage 2 then de-emphasises sensor
estimates which still contain (unanticipated) faults. Our ap-
proach was tested on two simulated problems, each exhib-
ited a range of modelled fault types and also unanticipated
faults such as mismatched target motion models and sensor



misalignment.
Future work will focus on developing efficient implemen-

tations of our approach and we will also investigate its exten-
sion to sequences of faults and simultaneous faults. Also, we
intend to compare our approach with that of [10] in which
sensor reliability is assigned to groups of sensors.
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