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Multi-sensor longitudinal control with fault tolerant guarantees

John J. Martṍnez, Marṍa M. Seron and José A. De Doná

Abstract� This paper deals with the problem of obtaining
fault-tolerant guarantees of a multi-sensor switching strategy
for longitudinal control. The strategy selects, at each instant
of time, the sensor (belonging to a collection of sensors) that
provides the best closed loop performance, as measured by a
control-performance criterion. It is assumed that each sensor
has an associated feedback controller that has been designed
such that the sensor-controller pair stabilises the closed loop
system under normal operation conditions. Recent reÞnements
for constructing ultimate-bound invariant sets allow obtaining
less conservative fault-tolerant guarantees. Stability of the
switching system under fault-free operation conditions and
under presence of sensor failures are established in the main
results of this paper.

I. INTRODUCTION

The problem of longitudinal control in automotive appli-

cations has attracted considerable recent attention from the

control research community [4]. The problem consists in

automatically keeping, within certain safe range, the distance

of a follower car with respect to a leader car.1 This distance

must be kept despite the possible driving maneuvers of the

leader car while, at the same time, maintaining the level of

comfort of the passengers of the follower vehicle [5].

A longitudinal controller is generally composed by two

loops: an inner control loop which compensates the nonlinear

vehicle dynamics (throttle and brake), and an outer control

loop which ensures good tracking of the desired inter-

distance reference. Here we are only interested in the outer

inter-distance control loop.

In general, the vehicle inter-distance is measured using

sensors of different nature, bandwidth, accuracy and noise

levels. Examples of sensors are automotive lasers, radars and

stereo-vision (see Figure 1). Each of these types of sensors

has a good performance in speciÞc operating or environmen-

tal conditions. However, during certain periods of time one

sensor could fail or operate outside its speciÞed operating

conditions. Vision systems, in particular, are not reliable for

inter-distance detection in bad weather conditions because of

misinterpretation problems and operation faults. For instance,

stereo-vision fails when the car is travelling inside a tunnel.

On the other hand, radar systems offer relatively accurate

inter-distance information and robustness in bad weather, but

their performance in terms of spatial resolution is poor. Thus,
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1The problem could also comprise more than two cars, however this paper
concentrates on the two-vehicle problem.

a single sensor is not adequate to provide reliable information

for autonomous driving guidance in real time due to changing

weather, ambient lighting, and other limitations.

The problem is then how to negotiate these difÞculties in

order to guarantee that the complete system is still stable and

the performance is still maintained within acceptable values.

A sensible approach is to use multiple sensors with different

characteristics so as to improve the performance of individual

sensors and obtain a better estimation of the plant states. A

classical way of combining multiple sensors has been the

fusion of sensors in a unique overall state estimator [6]�

[8]. However, in automotive control, the operation conditions

or the environment constraints could change frequently and

it is very difÞcult to predict how the sensors will work at

each instant of time. For example, a particular sensor could

fail and, if the sensor fusion scheme does not recognize this

situation, the results could be potentially disastrous.

Another possible approach that could solve some of the

difÞculties associated with using multiple sensors is to use

models of healthy plant-sensor in order to identify when

a sensor fails and commute to another one, preserving the

operability of the system. This approach is extensively cited

in the fault-tolerant control literature (a survey is given

in [10], and an example is given in [9]). However, the

main drawback of this method is related to the necessity

to calculate all possible controllers for all possible operation

failures, see for example [11].

This paper deals with the problem of obtaining fault-

tolerant guarantees of a multi-sensor switching strategy for

longitudinal control. The strategy selects, at each instant of

time, the sensor (belonging to a collection of sensors) that

provides the best closed loop performance, as measured by a

control-performance criterion. It is assumed that each sensor

has an associated feedback controller that has been designed

such that the sensor-controller pair stabilises the closed loop

system under normal operation conditions. Stability of the

switching system under normal (fault-free) operation and in

the presence of sensor failures is established in this paper.

This paper follows similar lines as the scheme already

presented by the authors in [1], [2] and [14]. The main

differences are as follows:

(i) The control design proposed here is based on Lyapunov

techniques (see (16)�(17)), instead of requiring to solve a

Riccati equation. This shows the generality of the scheme,

afforded by the use of invariant sets for the determination of

fault tolerance guarantees, which are expressed in terms of

a separation condition on these sets.

(ii) The design of the estimators is simpliÞed, since here

we utilise standard estimators in predictor form, instead of
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Fig. 1. Multi-sensor regions for automotive longitudinal control.

requiring prediction-correction schemes. This allows to sim-

plify the stability and fault tolerance analyses and, moreover,

to obtain less conservative set separation conditions.

(iii) We make use, in the simulation example, of tech-

niques recently developed by the authors in [13] to reÞne

the construction of the invariant sets.

As a consequence of the ensuing reduction of conser-

vatism, we are in this work able to tackle more demand-

ing operation conditions in the vehicle longitudinal control

example studied. In effect, in this paper we present fault

tolerant guarantees for a stop-and-go driving scenario. Such

driving situations, in the presence of sensor faults, had

not been analysed theoretically in [1] and, in that sense,

this paper completes that work. On the other hand, the

theoretical analysis done in [2] and [14] only covered the

car-following scenario for longitudinal control, hence that

work is completed by the present paper as well.

II. SWITCHING CONTROL SCHEME

In this section we describe the proposed switching control

scheme, depicted in Figure 2.

A. The inter-distance dynamics - The plant

The inter-distance dynamics can be represented as a dou-

ble integrator driven by the difference between the leader

vehicle acceleration al and the follower vehicle acceleration

af , i.e.,

d̈ = al − af , (1)

where d is the distance between the two vehicles.

DeÞning the control input u � âl − af , where âl stands

for an estimation of the leader vehicle acceleration, (1) can

be expressed as

d̈ = u + ãl, (2)

where ãl � al − âl is seen as a perturbation signal.

Finally, deÞning x � [d ḋ]′ and w � ãl, and discretising

the system, the inter-distance dynamics can be described by

the following linear discrete-time model:

x+ = Ax + Bu + Ew, (3)

where x ∈ R
2 and x+ ∈ R

2 are, respectively, the current and

successor system states, u ∈ R
1 is the input, and w ∈ R

1 is

a bounded process disturbance.

Remark 2.1: The pair (A, B) is stabilisable. ◦
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Fig. 2. Multisensor switching scheme with plant P , sensors S1, . . . SN ,
estimators F1, . . . , FN and feedback gain K .

B. The reference model

The inter-distance reference model is taken as an exo-

system describing a virtual vehicle dynamics which is po-

sitioned at a distance dr (the reference distance) from the

leader vehicle. The reference model dynamics are given by

d̈r = âl − ar
f (dr, ḋr), (4)

where ar
f (dr, ḋr) is a nonlinear function of the inter-distance

reference dr and its time-derivative ḋr. This function can

be designed to meet safety and comfort requirements, as is

proposed in [5]. Here we will assume that the function ar
f (.)

is given. Taking uref � âl − ar
f (dr, ḋr), we have

d̈r = uref . (5)

Thus, deÞning xref � [dr ḋr]′, and analogously to the step

from (2) to (3) above, the reference system will be described

by the following linear discrete-time model:

x+

ref = Axref + Buref . (6)

Notice that we have conserved the same structure for both

the inter-distance dynamics and the inter-distance reference

model, with same matrices A and B.

Assumption 2.2: (Reference bounds). The reference sig-

nals uref and xref in (6) are bounded. In particular, constant

vectors x0
ref ∈ R

2 and x̄ref ∈ R
2 are known such that

xref (k) ∈ Xref � {xref ∈ R
2 : |xref − x0

ref | ≤ x̄ref}. ◦
Note that, since matrix A has eigenvalues on the unit

circle, uref must be obtained from a stabilising feedback

controller for system (6).

C. Inter-distance control objective

The control objective is for the state of the plant (3) to

track an inter-distance reference signal xref that satisÞes (6).

We will study the plant tracking error deÞned as

z � x − xref . (7)

In addition, we deÞne the tracking error for the input as

v � u − uref . (8)

Then, from (3), (6), (7) and (8), the plant tracking error

dynamics is described by

z+ = Az + Bv + Ew. (9)
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The control objective could be then re-interpreted as follows:

Find at each time instant an appropriate control input v

such that the tracking error z is bounded in the presence of

bounded disturbances w. From a practical point of view, the

full state is not always available. Then, we will analyse the

control of the system (9) by means of sensors and estimators.

In the following section, we propose a multi-sensor switching

control scheme to achieve this objective.

D. Multi-sensors and Multi-estimators

We assume that the output of system (3) is measured via

a family of N sensors

yi = Cix + ηi, i = 1, · · · , N, (10)

where, yi ∈ R
pi is the measured output and ηi ∈ R

pi is a

bounded measurement disturbance.

Assumption 2.3: The pairs (A, Ci) are detectable for i =
1, . . . , N . ◦

We consider N state estimators, each of which estimates

the states of the plant. The estimators are described by the

following equations, for i = 1, · · · , N :

x̂+

i = Ax̂i + Bu + Li(yi − Cix̂i), (11)

Assumption 2.4: The gains Li are such that

ALi
� A − LiCi (12)

for i = 1, · · · , N , have their eigenvalues strictly inside the

unit circle [this is always possible by Assumption 2.3]2. ◦
Remark 2.5: The estimation errors, deÞned as

x̃i � x − x̂i, i = 1, · · · , N, (13)

satisfy, using (3), (10), (11), and (12),

x̃+

i = ALi
x̃i + Ew − Liηi (14)

Hence, it follows from Assumption 2.4 that x̃i are bounded

whenever w and ηi are bounded. ◦

E. Multi-controllers

We deÞne the tracking error for the state estimates as:

ẑi � x̂i − xref , i = 1, · · · , N. (15)

Then, to each sensor-estimator pair we associate a feedback

controller of the form:

vi = −Kẑi, i = 1, · · · , N. (16)

Assumption 2.6: The gain K is stabilising, that is, the

matrix (A−BK) has all its eigenvalues inside the unit circle,

and the pair (K, P ) satisÞes the Lyapunov equation

(A − BK)′P (A − BK) − P = −Q (17)

for a given positive deÞnite matrix Q. ◦

2If the estimators are steady-state Kalman Þlters then Li is obtained
via an algebraic Riccati equation. More generally, Li can be computed by
placement of the poles of ALi

in some desired location.

F. Switching strategy

We propose a switching strategy that at each time instant

selects a suitable feedback control as follows:

v = −Kẑl, (18)

for l deÞned as

l � arg min
i=1,··· ,N.

{ẑ′iP ẑi}, (19)

where P satisÞes Assumption 2.6. In the sequel we refer to

the index l as the switching signal.

Thus, at each time instant, the switching strategy selects

the feedback control (18) that achieves the smallest value

ẑ′lP ẑl of the �switching performance criterion� in (19).

III. STABILITY IN PRESENCE OF BOUNDED

DISTURBANCES

In this section we prove closed-loop stability of the

switching scheme described in Section II. From (7), (13)

and (15), the estimation tracking error can be expressed as

ẑi = z − x̃i, i = 1, · · · , N. (20)

Then, system (9) in feedback with (18) can be written as

z+ = (A − BK)z + BKx̃l + Ew. (21)

Hence, it follows from Assumption 2.6 that z is bounded

whenever x̃l and w are bounded.

On the other hand, from deÞnition (15), and using (6), (8),

(10), (11), (12), (13), (18) and (20) we have:

ẑ+

i = ALi
ẑi + (LiCi − BK)z + BKx̃l + Liηi, (22)

for i = 1, · · · , N . Hence, it follows from Assumption 2.4

that ẑi are bounded whenever z, x̃l and ηi are bounded.

A. Ultimate bounds

We present below a theorem (see [12], [14]) that will

allow us to compute ultimate bounds for the closed-loop

system�s states. In the sequel, |M | denotes the elementwise

magnitude of a (possibly complex) matrix M ; x ≤ y

(x < y) denotes the set of elementwise (strict) inequalities

between the components of the real vectors x and y; if

Wl =
[

w1
l . . . wn

l

]′
, l ∈ {1, . . . , N}, are vectors in R

n then

maxl∈{1,...,N} Wl denotes the elementwise maximum, whose

ith element, i = 1, . . . , n, is deÞned as
(

max
l∈{1,...,N}

Wl

)

i

� max{wi
1, . . . w

i
N}. (23)

Theorem 3.1: Consider the system x(k + 1) = Ax(k) +
Blνl(k), where A ∈ R

n×n, Bl ∈ R
n×m, l ∈ {1, . . . , N},

and A has eigenvalues strictly inside the unit circle. Let

V ΛV −1 be the Jordan matrix decomposition of A. As-

sume that, for all l ∈ {1, . . . , N}, | νl(k) | ≤ ν̄l for

all k ≥ 0, where ν̄l ∈ R
m, ν̄l > 0, and let ν̄ �

maxl∈{1,...,N}

∣

∣V −1Bl

∣

∣ ν̄l. For ǫ ∈ R
n, ǫ ≥ 0, deÞne

Sǫ �
{

x ∈ R
n :

∣

∣V −1x
∣

∣ ≤ (I − |Λ |)−1ν̄ + ǫ
}

. (24)

Then:
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1) For any ǫ ≥ 0, the set Sǫ is (positively) invariant. That

is, if x(0) ∈ Sǫ, then x(k) ∈ Sǫ for all k ≥ 0.

2) Given ǫ ∈ R
n, ǫ > 0, there exists k∗ ≥ 0 such that

x(k) ∈ Sǫ for all k ≥ k∗. ◦
Remark 3.2: Part 1 of Theorem 3.1 characterises invariant

sets in the state space, the smallest being the set S0 obtained

by taking ǫ = 0 in (24). Part 2 shows that the state trajectories

asymptotically converge to the invariant set Sǫ for ǫ ≥ 0
(in particular, S0) from any initial condition. In addition,

for ǫ > 0, the state trajectories enter Sǫ in Þnite time.

Note that an elementwise ultimate bound on the state can

be obtained from Theorem 3.1 using the fact that |x(k) | ≤
|V |

∣

∣ V −1x(k)
∣

∣. ◦
Remark 3.3: If the eigenvalues of A = V ΛV −1 are real,

then the sets Sǫ in (24) are polyhedral sets. ◦
Remark 3.4: Assume that bounds on the measurement

disturbances |ηi| ≤ η̄i, for i = 1, . . . , N , and process distur-

bance |w| ≤ w̄ are problem data.3 Applying Theorem 3.1 to

the estimation error subsystems (14), we obtain the following

invariant sets in which each subsystem�s trajectories will

remain if started inside or towards which the trajectories will

asymptotically converge if started outside:

S̃i �
{

x̃i ∈ R
2 :

∣

∣ V −1

i x̃i

∣

∣ ≤

(I − |Λi|)
−1

∣

∣V −1

i [E − Li]
∣

∣

[

w̄

η̄i

]}

, (25)

for i = 1, . . . , N , where ALi
= ViΛiV

−1

i is the Jordan

decomposition of ALi
. From (25), we can compute ultimate

bounds on x̃i, as suggested in Remark 3.2:

|x̃i| ≤ |Vi|(I − |Λi|)
−1

∣

∣V −1

i [E − Li]
∣

∣

[

w̄

η̄i

]

. (26)

Then, from (20)�(22) and the bounds (26), we can obtain

ultimate bounds on z and ẑi, again using Theorem 3.1 and

Remark 3.2,

Ŝi �
{

ẑi ∈ R
2 :

∣

∣ V −1

i ẑi

∣

∣ ≤

(I − |Λi|)
−1

∣

∣V −1

i [LiCi − BK BK Li]
∣

∣ ν̄li

}

, (27)

where |νli| ≤ ν̄li with νli � [z′ x̃′
l η′

i]
′. ◦

Remark 3.5: The ultimate-bound invariant sets of the

form (25) and (27) are constructed using techniques devel-

oped in [12]. A reÞnement of those techniques was presented

in [13], where a procedure was developed to obtain arbitrar-

ily close approximations of the minimal robust positively

invariant (mRPI) set for a stable system driven by bounded

disturbances. ◦

IV. CLOSED-LOOP STABILITY UNDER SENSOR FAULT

A. Closed-loop dynamics during the fault

Our fault model is described in the following deÞnition.

We consider abrupt faults that lead to sensor outage.

3In the sequel, if ν(k) ∈ R
m is a discrete-time signal and ν̄ ∈ R

m,
ν̄ ≥ 0, then |ν| ≤ ν̄ denotes the elementwise bound |ν(k)| ≤ ν̄ for all
times k ≥ k∗, for some k∗ ≥ 0.

DeÞnition 4.1: A sensor is operational (or �healthy�)

when its measured output is given by (10). When a jth sensor

fails its measured output during the fault is given by

yj = ηF
j , (28)

where ηF
j is a bounded noise. ◦

In the following subsections we shall establish closed-

loop stability under sensor fault by providing conditions

that guarantee that the switching scheme never selects faulty

sensors to implement the control law.

Assumption 4.2: (working hypothesis) The switching

scheme (19) always selects only healthy sensors whose

estimation errors satisfy (26). ◦
1) Healthy sensors: Provided only healthy sensors are

selected by the switching controller, the closed-loop dy-

namics of the estimator tracking errors for each of the ith

sensors that remain healthy continue to obey (22), that is,

do not change in the event a jth sensor fails. Moreover, the

bounds that deÞne the sets Ŝi, namely |νli| ≤ ν̄li, remain

valid while (26) holds for the selected sensor (see (27)).

Thus, under Assumption 4.2, if the trajectories of healthy

sensors (22) are evolving in the corresponding invariant

set Ŝi, then they remain in this set.

2) Faulty sensors: Assuming that the switching scheme

only selects healthy sensors l ∈ {1, · · · , N}, l �= j, then

using equations from Sections II and III together with (28),

we have the following closed-loop estimator tracking error

subsystems during the fault:

ẑ+

j = ALj
ẑj + γF

lj , j = 1, . . . , N, (29)

where γF
lj � −BKz + BKx̃l + Ljη

F
j − LjCjxref with l

varying in {1, . . . , N}, l �= j.

Comparing (29) with (22), we observe that some of the

inputs to the estimation tracking error subsystems have

changed after the fault. However, under Assumption 4.2, the

signals z, x̃l, for all operational sensors l ∈ {1, . . . , N},

l �= j, satisfy the same bounds as before the fault. In addition,

ηF
j , for j = 1, . . . , N , and xref are bounded by assumption.

Hence, as before, we can use these different bounds to obtain

a bound ν̄F
lj such that |νF

lj | ≤ ν̄F
lj . Using (24) (with ǫ = 0)

we can then compute the �under-fault� set

ŜF
j �

{

ẑj ∈ R
2 :

∣

∣V −1

j ẑj

∣

∣ ≤

(I − |Λj|)
−1 max

l∈{1,...,N}
|V −1

j Bj |ν̄
F
lj

}

⊕ {ẑF,0
j }, (30)

where ⊕ denotes the Minkowski sum of sets, Bj �

[−BK BK Lj − LjCj ], ν̄F
lj � [z̄′ ¯̃x′

l (η̄F
j )′ x̄′

ref ]′, with

x̄ref as in Assumption 2.2, and where the offset ẑ
F,0
j , due

to the offset x0
ref of xref , is computed as:

ẑ
F,0
j = −(I − ALj

)−1LjCjx
0
ref . (31)

Thus, it follows from Theorem 3.1 and the previous analy-

sis that, under Assumption 4.2, the trajectories of (29) remain

in ŜF
j deÞned in (30) if started inside or will asymptotically

converge towards ŜF
j if started outside.
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We are now ready to establish conditions to ensure that

our working hypothesis (Assumption 4.2) is satisÞed.

B. Conditions for closed-loop stability

The analysis of Section IV-A motivates us to impose the

following assumption, which describes the less conservative

fault scenario that allows us to obtain fault tolerance guar-

antees within the proposed framework.

Assumption 4.3 (Fault scenario):

1) At any time instant, at least one sensor is operational;

in addition, all operational sensors have estimation

errors inside the invariant sets S̃i (25) and estimation

tracking errors inside the invariant sets Ŝi (27).

2) Any time a jth sensor fails, for any j ∈ {1, . . . , N},

the states of the corresponding estimator tracking error

subsystem (29), at the following sampling time, belong

to the invariant set ŜF
j (30). ◦

We will now provide a way to verify Condition 2) of

Assumption 4.3, using set deÞnitions.

From (21) we can compute, using the techniques described

in Section III, an invariant set, Z , such that z ∈ Z , when-

ever the chosen sensors are healthy. We can also construct

bounding sets, NF
j , for the bounded noises, such that ηF

j ∈
NF

j , j = 1, ..., N . Then, assuming that the jth sensor has

been healthy for sufÞciently long time, so that ẑj ∈ Ŝj , we

can see from (29) that, the instant after the occurrence of

a fault, the variable ẑj will be in the following after fault

transitional set:

ŜH→F
j � ALj

Ŝj ⊕ (−BK)Z ⊕ BK

N
⋃

l=1

S̃l

⊕ LjN
F
j ⊕ (−LjCj)Xref . (32)

Finally, the following pre-checkable condition guarantees,

in combination with Condition 1) of Assumption 4.3, that

Condition 2) of Assumption 4.3 is satisÞed.

Assumption 4.4: The sets (30) and (32) satisfy ŜH→F
j ⊆

ŜF
j , for all j = 1, ..., N . ◦

The following theorem provides conditions to guarantee

closed-loop stability under sensor fault.

Theorem 4.5: Suppose that bounds on the sensor noises

ηi, and on the �fault noises� ηF
i for i = 1, . . . , N , are given

in the form ηi ∈ Ni, and ηF
i ∈ NF

i , respectively, where Ni

and NF
i are polyhedral sets. Suppose that Assumption 4.4

is satisÞed and that the following conditions hold for all

j = 1, . . . , N :

max
i

{Jmax
i : i ∈ {1, . . . , N}, i �= j} < Jmin

j , (33)

where

Jmax
i � max

{

(ẑi)
′P ẑi : ẑi ∈ Ŝi

}

(34)

Jmin
j � min

{

(ẑj)
′P ẑj : ẑj ∈ ŜF

j

}

. (35)

Then, under the fault scenario of Assumption 4.3, the

closed-loop dynamics of the multisensor switching scheme

described in Section II remain stable in the event any sensor

fails.

Proof: Suppose that a jth sensor fails. At the sampling

instant following the fault, Condition 1) of Assumption 4.3

guarantees that there exists at least one operational lth

sensor that has the states of the corresponding estimator

tracking error subsystem (22) in the invariant set Ŝl. In

addition, Assumption 4.4 guarantees that Condition 2) of

Assumption 4.3 is fulÞlled at the sampling instant following

the time of the fault, i.e., the states of the estimator tracking

error subsystem corresponding to the failed sensor are in ŜF
j .

Conditions (33)�(35) then ensure that the lth sensor has

smaller cost than the failed jth sensor and thus the latter can-

not be selected by the switching mechanism (19). It follows

that at the sampling instant following the time of the fault

the controller selects any of the available healthy sensors

(not necessarily the lth sensor) which, by Condition 1) of

Assumption 4.3 have estimation errors inside S̃i (25), hence

satisfying the bounds (26). Thus Assumption 4.2 holds at

the sampling instant following the time of the fault and the

analysis of Section IV-A shows that the states of the estimator

tracking error subsystems corresponding to healthy sensors

and to the failed jth sensor remain in Ŝi and ŜF
j , respectively.

The previous argument can be repeated inductively for the

duration of the fault, concluding that the switching controller

never selects faulty sensors to implement the control law and

that the resulting dynamics remain in the respective invariant

sets. The result then follows.

Remark 4.6: Note that Fault Detection and IdentiÞcation

(FDI), a feature normally needed in fault tolerant control,

is performed implicitly via the switching mechanism (19),

through satisfaction of the pre-checkable conditions of As-

sumption 4.4 and (33)�(35). (In effect, as was proven in

the previous theorem, under those conditions the switching

mechanism exclusively selects healthy sensors.)

V. NUMERICAL EXAMPLE

We consider here the longitudinal control problem for

a stop-and-go scenario. In this scenario, the follower car

follows the leader car at a safe reference inter-distance [5];

the sudden accelerations and decelerations produce important

variations of the inter-distance and its time-derivatives. The

interdistance dynamics are represented by the discretisation

of a double integrator plant, for a sample period of 0.1s,

and satisfy (3) with A =

[

1 0.1
0 1

]

, B = [0 0.1]
′
, E = B

and |w| ≤ 0.01. For simplicity, the two sensors have the

same characteristics, i.e. Ci = C = [1 0]. The sensor

noises are bounded as follows: |ηi| ≤ 0.02, |ηF
i | ≤ 0.02

[cf. (28)], for i = 1, 2. The estimators are given by (11)

with Li = [1.5 5.4]′, (computed by pole placement). The

Jordan decompositions ALi
= ViΛiV

−1

i are computed using

Matlab�s eig function. The controller is designed as in

Section II-E, with K = [20 9.0]. Using the interdistance

reference model of [5] the problem data gives an elementwise

bounded reference tracking signal [3 − 3]
′
≤ xref ≤ [18 3]

′
.

With the above data, Assumption 4.4 and Conditions

(33)�(35) are satisÞed. Hence the system is guaranteed to

be closed-loop stable under sensor fault. A geometric inter-
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Fig. 4. a) Inter-distance reference signal (dotted) and actual inter-distance
(solid) b) Switching sequence.

pretation of Conditions (33)�(35), is illustrated in Figure 3.

The distance between Jmin
j and Jmax

i may be interpreted as

a robust margin for fault-tolerance.

In the simulation, each sensor fails for a period of 10s

and then recovers, with no fault periods overlapping between

sensors (since we require at least one operational sensor at

all times). Sensor 1 fails during 10 ≤ t ≤ 20 and sensor 2

fails during 35 ≤ t ≤ 45. Figure 4a) depicts the interdis-

tance reference signal (dotted) and the actual interdistance

between vehicles (solid). The switching sequence, shown in

Figure 4b), commutes between both sensors in the absence of

fault and chooses exclusively the healthy sensor during faults.

Figure 5 depicts the individual costs corresponding to each

sensor, used in equation (19) to implement the switching law.

Notice that the switching system exhibits a stable behaviour.

VI. CONCLUSIONS

We have presented a multi-sensor switching strategy for

automotive longitudinal control. The proposed switching

strategy is able to maintain the performance and the stability

of the system, even under the occurrence of severe faults
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Fig. 5. Individual costs corresponding to each sensor.

in some of the sensors, by selecting, at each time instant, a

sensor (belonging to a family of sensors) that provides the

best closed loop performance according to an optimisation

criterion. An important property of this approach is that

the individual controllers (estimators plus state feedback

gain) are designed for the fault-free case without taking into

account the possibility of fault occurrence.

The construction of ultimate-bound invariant sets is a key

issue for establishing fault-tolerant properties. Recent reÞne-

ments for constructing such sets (e.g. [12], [13]), introduce

less conservatism in the set-invariance analysis. This paper

has illustrated the applicability of the proposed scheme.
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