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Multi-Sensor Multi-Object Tracking With the

Generalized Labeled Multi-Bernoulli Filter
Ba-Ngu Vo , Ba-Tuong Vo , and Michael Beard

Abstract—This paper proposes an efficient implementation of
the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter.
Like its single-sensor counterpart, such implementation requires
truncating the GLMB sum. However the single-sensor case requires
solving 2-D ranked assignment problems whereas the multi-sensor
case require solving multi-dimensional ranked assignment prob-
lems, which are NP-hard. The proposed implementation exploits
the GLMB joint prediction and update together with a new tech-
nique for truncating the GLMB filtering density based on Gibbs
sampling. The resulting algorithm has a quadratic complexity in
the number of hypothesized objects and linear in the total number
of measurements from all sensors.

Index Terms—State estimation, Filtering, Random finite sets,
Multi-dimensional assignment, Gibbs sampling.

I. INTRODUCTION

T
HE objective of multi-object tracking is to jointly estimate

the number of objects and their trajectories from sensor

data [1]–[4]. Amongst a host of algorithms, Joint Probabilistic

Data Association (JPDA) [1], Multiple Hypotheses Tracking

(MHT) [2], and Random Finite Set (RFS) [3], [4] are regarded

as the three main paradigms for multi-object tracking. Using

data from multiple sensors, in principle, reduces uncertainty

on the number of objects and their states, yielding improved

multi-object tracking performance [1]–[4]. For a comprehensive

overview of multi-sensor multi-object tracking techniques, we

refer the reader to [5] and references therein. In this work, we are

interested in multi-object filters that compute estimates on-line

as data arrives, since these are well-suited for time-critical

applications.

Many of the recent multi-sensor multi-object filters use the

random finite set (RFS) framework [3], [4]. One of the few

exceptions is a JPDA type filter that is quadratic in the number of

targets, linear in the number of sensors, and linear in the number

of measurements per sensor [6] . Multi-sensor versions of RFS-

based filters such as the Probability Hypothesis Density (PHD)

[7], Cardinalized PHD (CPHD) [8], multi-Bernoulli [3], [9],

have been developed in [4], [10], and recently in [11] for hybrid
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multi-Bernoulli. These solutions have numerical complexities

that are combinatorial in the number of measurements, and

(with the exception of the hybrid multi-Bernoulli filter) linear

in the number of objects. The earliest and conceptually simplest

approximate multi-sensor PHD, CPHD (and multi-Bernoulli)

filters are the heuristic “iterated corrector” versions that apply

single-sensor updates, once for each sensor in turn [12], [13].

This approach yields final solutions that depend on the order in

which the sensors are processed. Principled approximations of

the multi-sensor PHD and CPHD filters that are computationally

tractable, and independent of sensor order have been proposed

in [4] (Section 10.6). However, this approach and the heuristic

“iterated corrector” involve two levels of approximations since

the exact multi-sensor PHD, CPHD and multi-Bernoulli filters

are in fact approximations of the Bayes multi-sensor multi-

object filter. Note that the multi-object filters discussed thus

far are not trackers in the sense that only the current states are

estimated, not their trajectories.

An analytic Bayes multi-object filter that estimates multi-

object trajectories is the Generalized Labeled Multi-Bernoulli

(GLMB) filter [14], [15]. The major hurdle in the multi-sensor

GLMB filter implementation is the NP-hard multi-dimensional

assignment problem. In principle, the “iterated corrector” strat-

egy would yield the exact solution if all GLMB components

are kept. However in practice truncation is performed at each

single-sensor update, and an extremely large number of GLMB

components at each single-sensor update would be needed, even

if the final GLMB filtering density only contains a small num-

ber of significant components. Worse, insignificant components

after one single-sensor update, which could become significant

in the final GLMB filtering density, are discarded and cannot

be recovered. An implementation of the two-sensor GLMB

filter was developed in [16] using Murty’s algorithm with a

complexity of O((M (1)M (2))4), where M (s) is the number

of measurements from sensor s. A multi-sensor version of an

approximate GLMB filter, known as the marginalized GLMB

filter, was proposed in [17]. This solution has a complexity of

O(
∏V

s=1(M
(s))4), where V is the number of sensors. While

this approach is scalable in the number of sensors [17], it

still involves two levels of approximations: the truncation of

the GLMB density; and the functional approximation of the

truncated GLMB density.

The multi-sensor multi-object filters discussed above were

developed for a centralized fusion architecture, where measure-

ments are sent to a central node for processing. Alternatively,

in a decentralized setting, estimates and/or statistics computed
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from individual sensors are fused together [18], [19]. Several

decentralized multi-sensor fusion algorithms based on Gener-

alized Covariance Intersection (GCI) [20] and its variants have

been proposed for the PHD/CPHD filters [21]–[24] and multi-

Bernoulli filter [25]–[28]. For multi-object tracking filters, GCI

fusion rules for labeled multi-Bernoulli (LMB) and marginalized

GLMB were derived and applied to distributed multi-sensor

multi-object tracking via a sensor network in [29]. In [30] a new

fusion rule for LMB was proposed by modifying the GCI fusion

rule in [29] based on a Cauchy-Schwarz divergence criterion.

However, tracking performance of GCI fusion can be sensitive to

label inconsistencies between nodes, quantified by the so-called

label inconsistency indicator [31]. A remedy was developed

in [32] by seeking the best matching labels (that minimize the

label inconsistency indicator) and performing label-wise GCI

fusion with the matched multi-object densities. While fusion of

multi-object densities alleviates the computational complexity

associated with the centralized multi-sensor update and facili-

tates distributed multi-object tracking, the relationship between

the fused density and the multi-sensor updated density is difficult

to establish.

In this paper we present an efficient implementation of the

(centralized) multi-sensor GLMB filter with the same quadratic

complexity in the number of hypothesized objects as [16],

[17], but linear in the total number of measurements from all

sensors. The key lies in efficient solutions to multi-dimensional

assignment problems. Unlike the multi-scan GLMB [33], in

multi-sensor GLMB the multi-dimensional assignment prob-

lems can be solved by exploiting certain structural properties

and suitable adaptation of the 2-D assignment Gibbs sampler

of [34]. This approach generalizes our preliminary result in [35],

and is generally quadratic in the number of hypothesized objects

and linear in the product of the number of measurements. More

importantly, we further develop a very practical and scalable

solution that drastically reduces the complexity to being linear

in the total number of measurements across the sensors.

The remainder of this article is organized as follows.

Section II presents the background on GLMB filtering and its

multi-sensor extension. In Section III we present our proposed

Gibbs sampling based approach to the truncation of the multi-

sensor GLMB filtering density, and the resulting implementation

of the multi-sensor GLMB filter. Numerical studies are pre-

sented in Section IV, followed by some concluding remarks in

Section V.

II. BACKGROUND

This section summarizes the multi-object state space models

and the GLMB filter. Adhering to the single-sensor GLMB

filter implementation in [34] we adopt the following notation;

the inner product 〈f, g〉 �
∫

f(x)g(x)dx, the list of variables

Xm:n � Xm, Xm+1, . . . , Xn, and the generalized Kroneker

delta that takes arbitrary arguments

δY [X] �

{

1, if X = Y

0, otherwise
.

For a given set A, we denote its indicator function by 1A(·), and

the class of finite subsets of A by F(A). For a finite set X , we

denote its cardinality (or number of elements) by |X|, and the

product
∏

x∈X f(x) by fX , with f ∅ = 1.

A. Multi-Object State

An existing object at time k is represented by a vector xk

in some state space X, and a unique label ℓk consisting of an

ordered pair (t, α), where t is the time of birth and α is the index

of individual objects born at the same time [14]. The label space

for all objects up to time k (including those born prior to k) is

the disjoint union Lk =
⊎k

t=0 Bt, where Bt denotes the label

space for objects born at time t, (note that Lk = Lk−1 ⊎ Bk).

Formally, the labeled state of an object at time k is a vector

xk = (xk, ℓk) ∈ X× Lk, and the trajectory of an object is a

sequence of consecutive labeled states with a common label [14].

Suppose that there are Nk objects at time k, with states

xk,1, . . . ,xk,Nk
, in the context of multi-object tracking, the

collection of states, referred to as the multi-object state, is

naturally represented as a finite set

Xk = {xk,1, . . . ,xk,Nk
} ∈ F (X× Lk) .

We denote the (set of) labels of X , i.e. {ℓ : (x, ℓ) ∈ X}, by

L(X). Note that since no two objects in a multi-object state

have the same label, δ|X|(|L(X)|) = 1. Hence, we define the

distinct label indicator as

∆(X) � δ|X| [|L (X)|] .

In what follows, we use the convention that single-object

states are represented by lower-case letters (e.g. x, x), while

multi-object states are represented by upper-case letters (e.g.

X , X), symbols for labeled states and their distributions are

bold-faced to distinguish them from unlabeled ones (e.g. x, X ,

π, etc.), spaces are represented by blackboard bold (e.g.X, Z,L,

N, etc.). Also, for notational compactness, we drop the subscript

k for the current time, the next time is indicated by the subscript

‘+’.

B. Standard Multi-Object Dynamic Model

Given the multi-object state X (at time k), each (x, ℓ) ∈
X either survives with probability PS(x, ℓ) and evolves to a

new state (x+, ℓ+) (at time k + 1) with probability density

f+(x+|x, ℓ)δℓ[ℓ+] or dies with probability 1− PS(x, ℓ). The set

B+ of new objects (born at time k + 1) is distributed according

to the labeled multi-Bernoulli (LMB) density1

fB,+ (B+) =

∆ (B+)
[

1B+
rB,+

]L(B+)
[1− rB,+]

B+−L(B+) p
B+

B,+,

where rB,+(ℓ) is the probability that a new object with label ℓ is

born, and pB,+(·, ℓ) is the distribution of its kinematic state [14].

The multi-object state X+ (at time k + 1) is the superposition

1Note that in this work we use Mahler’s set derivatives for multi-object
densities [3], [8]. While these are not actual probability densities, they are
equivalent to probability densities relative to a certain reference measure [36].
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of surviving objects and new born objects. Using the standard

assumption that, conditional onX , objects move, appear and die

independently of each other, the expression for the multi-object

transition density f+ is given by [14], [15]

f+ (X+|X) =

fS,+ (X+ ∩ (X× L) |X)fB,+ (X+ − (X× L))

where

fS,+ (W |X) = ∆ (W )∆ (X) 1L(X) (L (W )) [Φ (W ; ·)]X

Φ(W ;x, ℓ) =
(

1− 1L(W ) (ℓ)
)

(1− PS (x, ℓ))

+
∑

(x+,ℓ+)∈W

δℓ [ℓ+]PS (x, ℓ) f+ (x+|x, ℓ) .

C. Standard Multi-Object Observation Model

Suppose that there are V sensors, numbered from 1 to V . For

a given multi-object state X , each x ∈ X is either detected by

sensor s ∈ {1 : V }, with probabilityP
(s)
D (x) and generates a de-

tection z(s) ∈ Z(s) with likelihood g
(s)
D (z(s)|x) or missed with

probability 1− P
(s)
D (x). The multi-object observation from

sensor s is the superposition of the observations from detected

objects and Poisson clutter with intensity κ(s). The standard

multi-object likelihood function for sensor s is given by [14],

[15]

g(s)(Z(s)|X) ∝
∑

θ(s)∈Θ(s)

1Θ(s)(L(X))(θ
(s))

[

ψ
(s,θ(s)◦L(·))

Z(s) (·)
]X

(1)

where: Θ(s) is the set of positive 1–1 maps θ(s) : L → {0 :
|Z(s)|}, i.e. maps such that no two distinct arguments are

mapped to the same positive value; Θ(s)(I) is the subset of Θ(s)

with domain I; θ(s)◦L(x) = θ(s)(L(x)); and

ψ
(s,j)

{z1:M(s)}
(x) =

⎧

⎨

⎩

P
(s)
D

(x)g(s)(zj |x)

κ(s)(zj)
, j = 1:M (s)

1− P
(s)
D (x) , j = 0

. (2)

The map θ(s) specifies that object ℓ generates detection zθ(ℓ) ∈

Z(s), with undetected objects assigned to 0. The positive 1–1

property means that θ(s) is 1–1 on the set of detected labels,

i.e. {ℓ : θ(s)(ℓ) > 0}, and ensures that any detection in Z(s) is

assigned to at most one object.

Using the following abbreviations

Z � (Z(1), . . . , Z(V )), (3)

Θ � Θ(1) × · · · ×Θ(V ), (4)

Θ(I) � Θ(1)(I)× · · · ×Θ(V )(I), (5)

θ � (θ(1), . . . , θ(V )), (6)

1Θ(I) (θ) �

V
∏

s=1

1Θ(s)(I)(θ
(s)), (7)

ψ
(j(1),...,j(V ))
Z (x, ℓ) �

V
∏

s=1

ψ
(s,j(s))

Z(s) (x, ℓ) , (8)

and the standard assumption that the sensors are conditionally

independent,2 the multi-sensor likelihood is given by

g (Z|X) =

V
∏

s=1

g(s)(Z(s)|X)

∝
∑

θ∈Θ

1Θ(L(X)) (θ)
[

ψ
(θ◦L(·))
Z (·)

]X

, (9)

which has the same form as its single-sensor counterpart. The

multi-sensor association map θ is said to be positive 1–1, since

all constituent θ(1), . . . , θ(V ) are positive 1–1.

D. Generalized Label Multi-Bernoulli (GLMB)

A GLMB density, or simply GLMB, is a labeled multi-object

density of the form3

π (X) = ∆ (X)
∑

I,ξ

ω(I,ξ)δI [L (X)]
[

p(ξ)
]X

, (10)

where: I ∈ F(L); each ξ ∈ Ξ represents a history of (multi-

sensor) association maps, i.e. ξ = (θ1:k); each p(ξ)(·, ℓ) is a

probability density on X; and each ω(I,ξ) is non-negative with

∑

I,ξ

ω(I,ξ) = 1.

The cardinality distribution of a GLMB is given by

Pr (|X| = n) =
∑

I,ξ

δn [|I|]ω
(I,ξ),

while the existence probability and probability density for the

track with label ℓ ∈ L are respectively given by

r (ℓ) =
∑

I,ξ

1I (ℓ)ω
(I,ξ),

p (x, ℓ) =
1

r (ℓ)

∑

I,ξ

1I (ℓ)ω
(I,ξ)p(ξ) (x, ℓ) .

Various multi-object estimators for GLMBs are discussed

in [14], [15]. The most popular is a suboptimal version of the

marginal multi-object estimator [3], which: first, determines the

pair (L, ξ) with the highest weight ω(L,ξ) such that |L| coin-

cides with the mode (most probable) cardinality; and second,

compute the state estimate for each object (with label) ℓ ∈ L
from p(ξ)(·, ℓ), e.g. the mode or the mean.

Remark: For GLMBs with ξ = (θ1:k), this estimator encom-

passes the entire trajectory of each object, because for each

ℓ = (t, α) ∈ L the initial state distribution is given by pB,t(·, ℓ)
in the LMB birth model, and the sequence of associated mea-

surements is given by θ1:k(ℓ). Such information is sufficient to

2More concisely, given the (multi-object) state, the uncertainty (due to mea-
surement noise, misdetections, and clutter) from each sensor is independent from
the others. This condition is valid when the sensors do not interfere nor influence
each other in the process of obtaining the measurements or detections.

3In fact this is the δ-form of the GLMB, known as the δ-GLMB. In this paper
we only use this form and hence, the prefix δ is omitted.
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determine the joint density of the states along the object’s trajec-

tory. Moreover, all marginals of this joint density can be com-

puted recursively from p(ξ)(·, ℓ) using the forward-backward

algorithm.

E. Multi-Sensor GLMB Recursion

All information on the multi-object state is captured in the

multi-object filtering density, which can be propagated forward

recursively by the (multi-object) Bayes filter [3], [4]. Usually

this recursion is decomposed into two separate steps, namely

prediction and update [3], [4]. This work employs the joint

prediction and update form that combines these two steps into a

single expression

π+ (X+) ∝ g (Z+|X+)

∫

f+ (X+|X)π (X) δX, (11)

where: π and π+ denote the multi-object filtering densities at

times k and k + 1, respectively; while the integral is the set

integral given in [14]. Note that for notational compactness we

have omitted the measurement histories from these densities.

The GLMB filter is an analytic solution to the Bayes multi-

object filter (11) under the standard multi-object dynamic and

observation models [15]. Since the multi-sensor likelihood func-

tion has the same form as the single-sensor case, it follows

from [34] that given the filtering density (10) at time k, the

filtering density at time k + 1 is given by

π+ (X) ∝

∆(X)
∑

I,ξ,I+,θ+

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

δI+ [L (X)]
[

p
(ξ,θ+)
Z+

]X

(12)

where I ∈ F(L), ξ ∈ Ξ, I+ ∈ F(L+), θ+ ∈ Θ+(I+), and

ω
(I,ξ,I+,θ+)
Z+

= 1Θ+(I+) (θ+)
[

1− P̄
(ξ)
S

]I−I+
[

P̄
(ξ)
S

]I∩I+

× [1− rB,+]
B+−I+ r

B+∩I+
B,+

[

ψ̄
(ξ,θ+))
Z+

]I+
(13)

P̄
(ξ)
S (ℓ) =

〈

p(ξ) (·, ℓ) , PS (·, ℓ)
〉

(14)

ψ̄
(ξ,θ+)
Z+

(ℓ+) =
〈

p̄
(ξ)
+ (·, ℓ+) , ψ

(θ+(ℓ+))
Z+

(·, ℓ+)
〉

(15)

p̄
(ξ)
+ (x+, ℓ+)

= 1L (ℓ+)

〈

PS (·, ℓ+) f+ (x+|·, ℓ+) , p
(ξ) (·, ℓ+)

〉

P̄
(ξ)
S (ℓ+)

+ 1B+
(ℓ+) pB,+ (x+, ℓ+) (16)

p
(ξ,θ+)
Z+

(x+, ℓ+) =
p̄
(ξ)
+ (x+, ℓ+)ψ

(θ+(ℓ+))
Z+

(x+, ℓ+)

ψ̄
(ξ,θ+)
Z+

(ℓ+)
. (17)

The number of components in the GLMB filtering density

grows exponentially with time, and needs to be truncated at every

time step. Truncation by retaining components with the largest

weights minimizes the L1 approximation error [15], and can be

formulated as a multi-dimensional assignment problem [37].

This problem is NP-hard for more than two dimensions. A

multi-dimensional assignment problem with 5 dimensions and

20 measurements per dimension is equivalent to an integer

linear programming problem with 3.2 million variables, see for

example [38] and the references therein.

III. MULTI-SENSOR GLMB FILTER IMPLEMENTATION

This section presents efficient implementations of the multi-

sensor GLMB filter based on truncation of the filtering density

(12). Following [34], we consider truncation by sampling the

GLMB components (I, ξ, I+, θ+) from a discrete probability

distribution π. Specifically, we consider

π (I, ξ, I+, θ+) ∝ ω(I,ξ)π (I+, θ+|I, ξ) , (18)

where, for a given (I, ξ), π(I+, θ+|I, ξ) is approxi-

mately proportional4 to ω
(I,ξ,I+,θ+)
Z+

. The rationale is that

π(I, ξ, I+, θ+) would then be approximately proportional to

the weight ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

of component (I, ξ, I+, θ+) in the

GLMB filtering density (12), thereby ensuring that sampling

from π(I, ξ, I+, θ+) would generate high-weight components.

To draw a sample from (18), we first sample (I, ξ)
from π(I, ξ) ∝ ω(I,ξ), and second sample (I+, θ+) from

π(I+, θ+|I, ξ). The first operation is straight forward, the chal-

lenge lies in the second, which we address in subsection III-B

and III-C via Gibbs sampling. Details of the multi-sensor GLMB

filter implementation are outlined in subsection III-D.

To facilitate the Gibbs sampling formulation, we first start

with a convenient representation of association maps in the

following subsection.

A. Extended Association Map

Recall the single-sensor case [34], where there are M mea-

surements. Given a component (I, ξ), the pair (I+, θ+) is rep-

resented by the extended association map

γ : I ⊎ B+ → {−1 : M} ,

defined by: γ(ℓ) = θ+(ℓ), if ℓ ∈ I+, i.e. a live label; and γ(ℓ) =
−1, if ℓ is a dead/unborn label. An obvious generalization of

extended association map to the multi-sensor case (where each

sensor has M (s) measurements) is

γ : I ⊎ B+ → {−1 : M (1)} × · · · × {−1 : M (V )}.

defined by γ(ℓ) = (γ(1)(ℓ), . . . , γ(V )(ℓ)), where: γ(s)(ℓ) =

θ
(s)
+ (ℓ), if ℓ ∈ I+; and γ(s)(ℓ) = −1, otherwise. However, this

representation allows pathological cases, e.g. extended asso-

ciation maps with γ(ℓ) = (−1, 1) in a two-sensor scenario,

meaning that label ℓ is dead/unborn but generated measurement

1 in sensor 2. Hence, additional constructs are needed to design

Gibbs samplers that do not generate such pathological extended

association maps.

This problem can be avoided altogether by representing each

pair (I+, θ+) ∈ F(L+)×Θ+(I+) of a given component (I, ξ),

4We say that two (unnormalized) distributions are approximately proportional

when their normalized versions are approximately equal.
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as the extended association map

γ � (γ(1), . . . , γ(V )) : I ⊎ B+ → {−1} V ⊎ Λ(1:V ),

where

γ (ℓ) �

{

(θ
(1)
+ (ℓ) , . . . , θ

(V )
+ (ℓ)), if ℓ ∈ I+

(−1, . . . ,−1) otherwise
,

Λ(s:t) � {0 : M (s)} × · · · × {0 : M (t)}.

Note that γ(ℓ) is a V -tuple that either belongs to Λ(1:V ) when ℓ
is a live label, or {−1}V when ℓ is a dead/unborn label, in which

case γ(s)(ℓ) = −1 for all s ∈ {1 : V }. Given any γ in the set Γ
of all positive 1–1 extended association maps, we can recover

I+ and θ+ : I+ → Λ(1:V ), respectively, by

I+={ℓ ∈ I ⊎ B+ : γ(ℓ)∈Λ(1:V )} and θ+ (ℓ) = γ (ℓ) . (19)

Thus, there is a 1–1 correspondence between the spacesΘ+(I+)
and Γ, moreover

1Γ (γ) = 1Θ+(I+) (θ+) .

Hereon, we enumerate I ⊎ B+ = {ℓ1:P }, and abbreviate

γ(s)
n � γ(s) (ℓn) ∈ {−1 : M (s)}

γn � (γ(1)
n , . . . , γ(V )

n ) ∈ {−1} V ⊎ Λ(1:V ),

for n ∈ {1 : P}, so that an extended association map γ can be

represented as a P × V array in ({−1}V ⊎ Λ(1:V ))P ,

γ =

⎡

⎢

⎢

⎢

⎢

⎣

γ1

γ2
...

γP

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

γ
(1)
1 γ

(2)
1 · · · γ

(V )
1

γ
(1)
2 γ

(2)
2 · · · γ

(V )
2

...
...

. . .
...

γ
(1)
P γ

(2)
P · · · γ

(V )
P

⎤

⎥

⎥

⎥

⎥

⎦

. (20)

The positive 1–1 property means that for each s ∈ {1 : V } there

are no distinct i, j with γ
(s)
i = γ

(s)
j > 0.

Similar to the single-sensor case, assuming that for each

ℓ in I ⊎ B+, the expected probabilities P̄
(ξ)
S (ℓ) ∈ (0, 1) and

P̄
(s,ξ)
D (ℓ) �

〈

P
(s)
D (·, ℓ), p̄

(ξ)
+ (·, ℓ)

〉

∈ (0, 1), then it follows from

(13) and (19) that

ω
(I,ξ,I+,θ+)
Z+

= 1Γ (γ)

P
∏

n=1

ηn (γn) (21)

where

ηn(j
(1:V )) � (22)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1− P̄
(ξ)
S (ℓn) , ℓn ∈ I, j(1:V ) ∈ {−1} V

P̄
(ξ)
S (ℓn) ψ̄

(ξ,j(1:V ))
Z+

(ℓn) , ℓn ∈ I, j(1:V ) ∈ Λ(1:V )

1− rB,+ (ℓn) , ℓn ∈ B+, j
(1:V ) ∈ {−1} V

rB,+ (ℓn) ψ̄
(ξ,j(1:V ))
Z+

(ℓn) , ℓn ∈ B+, j
(1:V ) ∈ Λ(1:V )

ψ̄
(ξ,j(1:V ))
Z+

(ℓn) =
〈

p̄
(ξ)
+ (·, ℓn) , ψ

(j(1:V ))
Z+

(·, ℓn)
〉

(23)

The assumptions on the expected survival and detection proba-

bilities, P̄
(ξ)
S (ℓ) and P̄

(s,ξ)
D (ℓ), eliminate trivial and ideal sens-

ing scenarios, as well as ensuring ηn(j
(1:V )) > 0. Note that

ηn(j
(1:V )) depends on the given (I, ξ) andZ+, which have been

omitted for compactness.

Remark: In the single-sensor case, γ is a P-tuple, and GLMB

truncation requires solving 2-D assignment problems [34]. In

the multi-sensor case, γ is a P × V array, and hence GLMB

truncation would require solving multi-dimensional assignment

problems. Nonetheless, these problems can be solved by adapt-

ing the 2-D assignment Gibbs sampler of [34], and treating

the rows of γ (which are elements of {−1}V ⊎ Λ(1:V )) in the

same way as the entries of γ for the single-sensor case (which

are elements of {−1 : M}). In general, a multi-dimensional

assignment problem may not necessarily be solved by the

2-D assignment Gibbs sampler. However, this is possible for

multi-sensor assignment because for any live label there is no

constraint between the columns of γ (representing the sensors).

In contrast, the multi-dimensional assignment problems for

multi-scan GLMB truncation have constraints on the columns

(representing time) [33], and the 2-D assignment Gibbs sampler

is no longer applicable.

B. GLMB Truncation via Gibbs Sampling

Recall that to generate high-weight components via sampling

from (18), we first sample (I, ξ) from π(I, ξ) ∝ ω(I,ξ), and

second sample (I+, θ+) from a distribution approximately pro-

portional to ω
(I,ξ,I+,θ+)
Z+

. This subsection presents an approach

for the second sampling step.

The extended association map representation (20) treats

each(I+, θ+) as aP × V array in the space ({−1}V ⊎ Λ(1:V ))P .

Hence, sampling (I+, θ+) from a distribution approximately

proportional toω
(I,ξ,I+,θ+)
Z+

amounts to sampling from a distribu-

tion on ({−1}V ⊎ Λ(1:V ))P that is approximately proportional

to (21). Additionally, keeping in mind that all generated samples

must be positive 1–1, we restrict ourselves to distributions of the

same form as (21). Specifically, we consider distributions of the

form

π (γ) ∝ 1Γ (γ)

P
∏

n=1

ϑn (γn) , (24)

where each ϑn : {−1}V ⊎ Λ(1:V ) → [0,∞) is chosen to ap-

proximate ηn, including the special case ϑn = ηn.

Gibbs sampling for a stationary distribution π requires

constructing a Markov chain with transition kernel [39],

[40]

π (γ′|γ) =
P
∏

n=1

πn

(

γ′
n|γ

′
1:n−1, γn+1:P

)

,

where πn(γ
′
n|γ

′
1:n−1, γn+1:P ) ∝ π(γ′

1:n, γn+1:P ). In other

words, given the current state γ of the chain, the components

γ′
1, . . . , γ

′
P of the next state γ′ are distributed according to the
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sequence of conditionals

π1 (γ
′
1|γ2:P ) ∝ π (γ′

1, γ2:P )

...

πn

(

γ′
n|γ

′
1:n−1, γn+1:P

)

∝ π (γ′
1:n, γn+1:P )

...

πP

(

γ′
P |γ

′
1:P−1

)

∝ π (γ′
1:P ) .

Proposition 1: Let n̄ = {1 : P} − {n}, and γn̄ =
(γ1:n−1, γn+1:P ) ∈ ({−1}V ⊎ Λ(1:V ))P−1 be positive 1–1.

Then, the n-th conditional of the stationary distribution (24) is

given by

πn(j
(1:V )|γn̄) ∝ ϑn(j

(1:V ))
V
∏

s=1

β(s)
n (j(s)|γ

(s)
n̄ ) (25)

for j(1:V ) ∈ {−1}V ⊎ Λ(1:V ), where

β(s)
n (j(s)|γ

(s)
n̄ ) = 1− 1

{1:M(s)}
⋂
{γ

(s)
1:n−1,γ

(s)
n+1:P }

(j(s)). (26)

The proof is given in Appendix A.

The above result shows that sampling from the conditional

πn(·|γn̄) amounts to sampling from a categorical distribution

on {−1}V ⊎ Λ(1:V ). Moreover, given a positive 1–1 γn̄, the

conditional πn(·|γn̄) only generates γn such that γ is positive

1–1, otherwise the product in (25) vanishes and πn(γn|γn̄) = 0.

Hence, starting with a positive 1–1 γ, all iterates of the Gibbs

sampler, summarized in Algorithm 1, are also positive 1–1. Note

from (25), (26) that πn(j
(1:V )|γn̄) ∝ ϑn(j

(1:V )) for j(1:V ) ∈
{−1}V , and hence in Algorithm 1 we only need the for-loop

over j(1:V ) ∈ Λ(1:V ).

Further, as the number of iterates, T , tends to infinity the

samples generated by Algorithm 1 are distributed according to

the stationary distribution.

Proposition 2: If ϑn > 0 on {−1}V ⊎ Λ(1:V ) for each n,

then starting from any positive 1–1 state, the Gibbs sampler

defined by the family of conditionals (25) converges to the sta-

tionary distribution (24) at an exponential rate. More concisely,

let πj denote the j-th power of the transition kernel, then

max
γ,γ ′∈Γ

(∣

∣πj (γ′|γ)− π (γ′)
∣

∣

)

≤ (1− 2β) ⌊
j

2⌋,

where β � minγ,γ ′∈Γ π
2(γ′|γ) > 0 is the least likely 2-step

transition probability.

The proof follows along the same lines of arguments as

Proposition 4 in [34].

Similar to the single-sensor case, increased efficiency can be

achieved by using annealing or tempering techniques to modify

the stationary distribution so as to induce the Gibbs sampler to

seek more diverse samples [41], [42].

1) Optimal Stationary Distribution: Since each ϑn in the

stationary distribution (24) should be chosen to approximate

ηn, the optimal stationary distribution is obtained by setting

ϑn (γn) = ηn (γn) . (27)

Algorithm 1: Gibbs (Optimal).

Inputs: T, V, γ(1) = [γ
(1,s)
n ], ϑ = [ϑn(j

(1:V ))]
Outputs: γ(1), . . . , γ(T )

P = size(ϑ, 1), c = −1*ones(1, V ),
for s = 1 : V

M (s) = size(ϑ, 1 + s)− 2
end for

for j(1:V ) = zeros(1, V ) : [M (1:V )]
c = [c; [j(1:V )]]

end for

[pn(j
(1:V ))] = [ϑn(j

(1:V ))]
for t = 2 : T

φ(t) = [ ]
for n = 1 : P

for j(1:V ) = zeros(1, V ) : [M (1:V )]

pn(j
(1:V )) = pn(j

(1:V ))
V
∏

s=1
β
(s)
n

(j(s)|φ
(t,s)
1:n−1, γ

(t−1,s)
n+1:P )

end for

φ
(t)
n ∼ Categorical(c, pn), φ(t) = [φ(t);φ

(t)
n ]

end for

γ(t) = φ(t)

end for

In this case, the conditional πn(·|γn̄) is a categorical distri-

bution with 1 +
∏V

s=1(M
(s) + 1) categories. Hence, sampling

πn(·|γn̄) in Algorithm 1 requires at least 1 +
∏V

s=1(M
(s) +

1) memory locations. For example, 5 sensors with 15 mea-

surements per sensor requires over 165 ≃ 1 million mem-

ory locations. Moreover, Algorithm 1 incurs a complexity of

O(TP
∏V

s=1 M
(s)), since sampling from a categorical distri-

bution is linear in the number of categories [43]. While this is

orders of magnitude cheaper than Murty-based solutions [16],

[17] such computational load is still prohibitive.

Sampling from the categorical distribution in Algorithm 1

can be replaced by a single iteration of the Metropolis-Hastings

algorithm on the same stationary distribution. Other alternatives

include adaptive rejection sampling [44], [45], [46]. However,

the resultant samplers take longer to carry out each iteration,

and much longer to converge because the conditionals have been

replaced by their approximations.

C. Markovian Stationary Distribution

This subsection introduces suboptimal stationary distribu-

tions that drastically reduces memory requirement/complexity.

Sampling γn = j(1:V ) directly from a distribution on

{−1}V ⊎ Λ(1:V ), as per the optimal stationary distribution, in-

curs large memory and computational costs. One strategy to cir-

cumvent such problems is to sample j(1), . . ., j(V ) individually

from respective distributions on {−1 : M (1)},...,{−1 : M (V )},

provided that these distributions are inexpensive to compute.

This can be accomplished by imposing the Markov property on
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ϑn in (24), i.e.

ϑn(j
(1:V )) =

V
∏

s=2

ϑ(s)
n (j(s)|j(s−1))ϑ(1)

n (j(1)) (28)

where ϑ
(1)
n :{−1 : M (1)} → [0,∞), and for s ∈ {2 : V },

j(s−1) ∈ {−1 : M (s−1)}, ϑ
(s)
n (·|j(s−1)) : {−1 : M (s)} →

[0,∞).
Effectually, we are considering a so-called Markovian sta-

tionary distribution

π (γ) ∝ 1Γ (γ)
P
∏

n=1

(

V
∏

s=2

ϑ(s)
n (γ(s)

n |γ(s−1)
n )

)

ϑ(1)
n (γ(1)

n ), (29)

whose conditionals have the Markov property as shown in the

following Proposition (see Appendix B for proof). Note that

when each ϑ
(s)
n (·|j(s−1)) is independent of j(s−1), the resultant

ϑn is not a distribution on {−1}V ⊎ Λ(1:V ) (because there is no

mechanism to ensure that if j(1) is negative/non-negative then

j(2:V ) are also negative/non-negative), and hence (29) would not

be a distribution on ({−1}V ⊎ Λ(1:V ))P .

Proposition 3: If ϑ
(1)
n , ϑ

(s)
n (·|·), s ∈ {2 : V } are such that

(29) is a distribution on ({−1}V ⊎ Λ(1:V ))P , then its n-th

conditional, given a positive 1–1 γn̄ = (γ1:n−1, γn+1:P ) in

({−1}V ⊎ Λ(1:V ))P−1, is

πn(j
(1:V )|γn̄) =

V
∏

s=2

π(s)
n (j(s)|j(s−1), γn̄)π

(1)
n (j(1)|γn̄) (30)

where

π(1)
n (j(1)|γn̄) =

K
(2)
n (j(1))β

(1)
n (j(1)|γ

(1)
n̄ )ϑ

(1)
n (j(1))

∑M(1)

j=−1 K
(2)
n (j)β

(1)
n (j|γ

(1)
n̄ )ϑ

(1)
n (j)

(31)

π(s)
n (j(s)|j(s−1), γn̄)

=

⎧

⎨

⎩

1, j(s), j(s−1) = −1
K

(s+1)
n (j(s))β

(s)
n (j(s)|γ

(s)
n̄ )ϑ

(s)
n (j(s)|j(s−1))

K
(s)
n (j(s−1))

, j(s), j(s−1) > −1

(32)

K(s)(j(s−1)) =

M(s)
∑

j=0

K(s+1)
n (j)β(s)

n (j|γ
(s)
n̄ )ϑ(s)

n (j|j(s−1))

(33)

for s ∈ {2 : V }, with K
(V+1)
n (j(V )) = 1.

Thus, sampling j(1:V ) from the n-th conditional, i.e. (30), of

a Markovian stationary distribution, can be achieved by

j(1) ∼ π(1)
n (·|γn̄),

j(2) ∼ π(2)
n (·|j(1), γn̄),

...

j(V ) ∼ π(V )
n (·|j(V −1), γn̄).

This strategy only requires 2 + maxs M
(s) memory locations to

store the categories, instead of 1 +
∏V

s=1(1 +M (s)) as per the

optimal stationary distribution. This means, for 5 sensors with

15 measurements per sensor, we only need 17 memory locations

instead of over a million.

While the memory requirement has been addressed, sam-

pling the n-th conditional is not necessarily scalable. For

each s ∈ {2 : V } we need to compute 2 +M (s−1) normal-

izing constants K
(s)
n (j(s−1)), j(s−1) ∈ {−1 : M (s−1)} with

O(M (s)) complexity each, which incurs a net complexity of

O(M (s−1)M (s)). Hence, sampling the n-th conditional gener-

ally incurs O(
∑V

s=2 M
(s−1)M (s)) complexity, since sampling

a categorical distribution is linear in the number of categories.

Nonetheless, the following special case requires only one

normalizing constant for each s (see Appendix C for proof),

thereby achieving a complexity of O(
∑V

s=1 M
(s)).

Corollary 4: In addition to the premises of Proposition 3, if

the stationary distribution (29) is minimally-Markovian, i.e.

ϑ(s)
n (j(s)|j(s−1)) = ϑ(s)

n (j(s))1{−1}2⊎Λ(s−1:s)(j(s−1), j(s)),
(34)

then (31) and (32) reduce to

π(1)
n (j(1)|γn̄)=

⎧

⎨

⎩

1− Pn(Λ
(1:V )), j(1) = −1

Pn(Λ
(1:V ))β

(1)
n (j(1)|γ

(1)
n̄ )ϑ

(1)
n (j(1))

Υ
(1)
n

, j(1) > −1

(35)

π(s)
n (j(s)|j(s−1), γn̄)

=

⎧

⎨

⎩

1, j(s), j(s−1) = −1

β
(s)
n (j(s)|γ

(s)
n̄ )ϑ

(s)
n (j(s))

Υ
(s)
n

, j(s), j(s−1) > −1
(36)

for s ∈ {2 : V }, where

Υ(s)
n �

M(s)
∑

j(s)=0

β(s)
n (j(s)|γ

(s)
n̄ )ϑ(s)

n (j(s)) (37)

Pn(Λ
(1:V )) �

∏V
s=1 Υ

(s)
n

∏V
s=1 ϑ

(s)
n (−1) +

∏V
s=1 Υ

(s)
n

. (38)

The pseudocode for Gibbs sampling based on minimally-

Markovian stationary distributions is given in Algorithm 2,

MM-Gibbs, which has a complexity of O(TP
∑V

s=1 M
(s)). In

general, the conditionals, and hence performance depend on the

sensor ordering, except in the following special case.

1) Suboptimal Stationary Distribution: Again, recall that

each ϑn should be chosen to approximate ηn. This can be

achieved with a minimally-Markovian stationary distribution by

setting ϑ
(s)
n (j(s)) to

η(s)n (j(s)) �
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

1− P̄
(ξ)
S (ℓn)

)δ1[s]

, ℓn ∈ I, j(s) = −1
(

P̄
(ξ)
S (ℓn)

)δ1[s]

ψ̄
(ξ,s,j(s))
Z+

(ℓn), ℓn ∈ I, j(s) ∈ Λ(s)

(1− rB,+(ℓn))
δ1[s] , ℓn ∈ B+, j

(s) = −1

(rB,+(ℓn))
δ1[s] ψ̄

(ξ,s,j(s))
Z+

(ℓn), ℓn ∈ B+, j
(s) ∈ Λ(s)

(39)
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Algorithm 2: MM-Gibbs (Suboptimal).

Inputs: T, V, γ(1) = [γ
(1,s)
n ], ϑ = {[ϑ

(s)
n (j(s))]}Vs=1

Outputs: γ(1), . . . , γ(T )

P = size(ϑ, 1)
for s = 1 : V

M (s) = size(ϑ(s), 2)− 2, c(s) = [0 : M (s)]
end for

for n = 1 : P
Compute Pn(Λ

(1:V )) via (38), Qn(Λ
(1:V )) =

1− Pn(Λ
(1:V ))

end for

for t = 2 : T
φ(t) = [ ]

for n = 1 : P
in ∼ Categorical([“+, ”“− ”], [Pn(Λ

(1:V )),
Qn(Λ

(1:V ))])
if in = “ + ”

for s = 1 : V
for j(s) = 0 : M (s)

p
(s)
n (j(s)) = ϑ

(s)
n (j(s))β

(s)
n (j(s)|φ

(t,s)
1:n−1, γ

(t−1,s)
n+1:P )

end for

φ
(t,s)
n ∼ Categorical(c(s), p

(s)
n )

end for

φ
(t)
n = [φ

(t,s)
n ]Vs=1

else if

φ
(t)
n = −1*ones(1, V )

end if

φ(t) = [φ(t);φ
(t)
n ]

end for

γ(t) = φ(t)

end for

where

ψ̄
(ξ,s,j(s))
Z+

(ℓn) �
〈

p̄
(ξ)
+ (·, ℓn) , ψ

(s,j(s))
Z+

(·, ℓn)
〉

, (40)

in which case,

ϑn(j
(1:V )) =

⎧

⎨

⎩

η
(1)
n (−1), j(1:V ) ∈ {−1} V

∏V
s=1 η

(s)
n (j(s)), j(1:V ) ∈ Λ(1:V )

. (41)

Equation (41) can be verified by substituting (39) for ϑ
(s)
n (j(s))

into (34), and the resulting ϑ
(s)
n (j(s)|j(s−1)) into (28).

To gain an intuition into how ϑn in (41) approximates ηn,

note firstly that, for j(1:V ) ∈ {−1}V , it is straightforward to

verify ϑn(j
(1:V )) = η

(1)
n (−1) = ηn(j

(1:V )), by inspecting (22)

and (39). Secondly, for j(1:V ) ∈ Λ(1:V ), note from (22), (41),

and (39) that the approximation of ηn(j
(1:V )) boils down to

ψ̄
(ξ,j(1:V ))
Z+

(ℓn) ≃
V
∏

s=1

ψ̄
(ξ,s,j(s))
Z+

(ℓn).

Conditional on the history ξ and measurement Z+: the left hand

side, given by (23), can be interpreted as the probability that

label ℓn jointly generates measurements z
(1)

j(1)
, . . . , z

(V )

j(V ) , i.e.

Pr(z
(1)

j(1)
, . . . , z

(V )

j(V ) ∼ ℓn); the s-th term of the product, given

by (40), can be interpreted as the probability that ℓn generates

measurement z
(s)

j(s)
, i.e. Pr(z

(s)

j(s)
∼ ℓn) (with z

(s)
0 representing a

misdetection by sensor s). In essence, the suboptimal strategy

approximates Pr(z
(1)

j(1)
, . . . , z

(V )

j(V ) ∼ ℓn) by Pr(z
(1)

j(1)
∼ ℓn)×

. . .×Pr(z
(V )

j(V ) ∼ ℓn), which is reasonable, because intuitively

the events “ℓn generates measurement z
(s)

j(s)
” and “ℓn generates

measurement z
(t)

j(t)
” are almost independent of each other when

s �= t. Note also that for a single sensor ϑn = ηn = η
(1)
n .

Remark: In (41), both
∏V

s=1 η
(s)
n (j(s)) and η

(1)
n (−1) (the

latter only depends on P̄
(ξ)
S (ℓn) and rB,+(ℓn)), are independent

of the sensor ordering. Hence (41), and consequently Algo-

rithm 2 with the suboptimal distribution defined by (41), are

independent of the order of the sensors. Additionally, since

each η
(s)
n (j(s)) > 0, it follows that ϑn(j

(1:V )) > 0, hence the

convergence result of Proposition 2 holds.

The support of the (minimally-Markov) suboptimal station-

ary distribution contains the support of the optimal stationary

distribution. To verify this, suppose that there exists an s such

that ψ̄
(ξ,s,j(s))
Z+

(ℓn) = 0. Then it follows from (40) that

p̄
(ξ)
+ (·, ℓn) = 0, or ψ

(s,j(s))
Z+

(·, ℓn) = 0.

Each of the above conditions implies ψ̄
(ξ,j(1:V ))
Z+

(ℓn) = 0. The

implication of the first condition follows from (15), while that of

the second follows from (8) and (15). Therefore, it follows from

(39) and (22) that
∏V

s=1 η
(s)
n (j(s)) = 0, implies ηn(j

(1:V )) = 0,

i.e. the suboptimal stationary distribution is zero implies the

optimal is also zero. Thus, the suboptimal stationary distribution

is positive whenever the optimal is positive. This means the

support of suboptimal stationary distribution contains that of

the optimal.

The suboptimal sampling strategy can be viewed as impor-

tance sampling [47], with the suboptimal stationary distribution

as the “proposal” or “importance function” since its support

contains that of the optimal. As such, a larger number of itera-

tions T would be needed to achieve the same effective number

of samples as per the optimal stationary distribution [47]. The

number of additional samples depends on how well the sub-

optimal stationary distribution approximates the optimal. The

better the approximation the smaller the additional number of

samples. Nonetheless, for GLMB truncation, the total number

of distinct samples with significant weights is more relevant than

the effective number of samples. As such, the optimal stationary

distribution is not necessarily the most desirable in terms of

sample diversity [34]. Indeed, the rationale behind tempering is

to modify the stationary distribution to generate more diverse

samples [34].

D. Multi-Sensor GLMB Filtering

A GLMB is completely characterized by parameters

(ω(I,ξ), p(ξ)), (I, ξ) ∈ F(L)× Ξ, which can be enumerated as
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Algorithm 3: Multi-Sensor GLMB Filter.

Inputs: {(I(h), ω(h), p(h))}Hh=1, Z+, H
max
+

Inputs: {(r
(ℓ)
B,+, p

(ℓ)
B,+)}, PS , f+(·|·)

Inputs: {(κ
(s)
+ , P

(s)
D,+, g

(s)
+ (·|·))}Vs=1

Outputs: {(I
(h+)
+ , ω

(h+)
+ , p

(h+)
+ )}

H+

h+=1

Sample counts [T
(h)
+ ]Hh=1 from multinomial distribution

with Hmax
+ trials and weights [ω(h)]Hh=1

for h = 1 : H
Initialize γ(h,1)

Compute ϑ(h) = η(h) using(22) AND

{γ(h,t)}T̃
(h)

t=1 = Unique(Gibbs(T
(h)
+ , V, γ(h,1), ϑ(h)))

OR

Compute ϑ(h) = {η(h,s)}Vs=1using(39), AND

{γ(h,t)}T̃
(h)

t=1 =

Unique(MM-Gibbs(T
(h)
+ , V, γ(h,1), ϑ(h)))

for t = 1 : T̃
(h)
+

Compute

I
(h,t)
+ = {ℓn ∈ I(h) ∪ B+ : γ

(h,t)
n ≥ 0}

ω
(h,t)
+ ∝ ω(h)

|I(h)∪B+|
∏

n=1
η
(h)
n (γ

(h,t)
n )

p
(h,t)
+ (·, ℓn) ∝ p̄

(h)
+ (·, ℓn)ψ

(γ
(h,t)
n )

Z+
(·, ℓn)

end for

end for

({(I
(h+)
+ , p

(h+)
+ )}

H+

h+=1,∼, [Uh,t])

= Unique({(I
(h,t)
+ , p

(h,t)
+ )}

(H,T̃
(h)
+ )

(h,t)=(1,1))

for h+ = 1 : H+

ω
(h+)
+ =

∑

h,t:Uh,t=h+

ω
(h,t)
+

end for

Normalize weights {ω
(h+)
+ }

H+

h+=1

{(I(h), ξ(h), ω(h), p(h))}Hh=1, where

ω(h) � ω(I
(h),ξ(h)), p(h) � p(ξ

(h)).

Implementing the GLMB filter amounts to propagating forward

the parameter set {(I(h), ω(h), p(h))}Hh=1.

The multi-sensor GLMB filter implementation is the same as

single-sensor case in [34], with the single-sensor Gibbs sampler

and update replaced by their multi-sensor versions. For com-

pleteness the proposed multi-sensor GLMB filter is summarized

in Algorithm 3. Note that to be consistent with the indexing by

h instead of (I, ξ), we abbreviate

η(h)n (j(1:V )) � ηn(j
(1:V )),with (I, ξ) = (I(h), ξ(h))

η(h)(j(1:V )) �
[

η
(h)
1 (j(1:V )), . . . , η

(h)
P (j(1:V ))

]

P̄
(h)
S (ℓi) � P̄

(ξ(h))
S (ℓi)

p̄
(h)
+ (x, ℓi) � p̄

(ξ(h))
+ (x, ℓi)

ψ̄
(h,j(1:V ))
Z+

(ℓi) � ψ̄
(ξ(h),j(1:V ))
Z+

(ℓi)

η(h,s)n (j(s)) � η(h,s)n (j(s)),with (I, ξ) = (I(h), ξ(h))

ψ̄
(h,s,j(s))
Z+

(ℓi) � ψ̄
(ξ(h),s,j(s))
Z+

(ℓi)

Computing p̄
(h)
+ (·, ℓi), P̄

(h)
S , ψ̄

(h,j(1:V ))
Z+

(ℓi), ψ̄
(h,s,j(s))
Z+

(ℓi),

p
(h,t)
+ (·, ℓi), can be done as in subsection IV.B of [15].

IV. NUMERICAL EXPERIMENTS

In this section, we present simulation results that demonstrate

the performance of the multi-sensor GLMB filters discussed in

Section III. The results are presented in two parts. In the first

part, we use a scenario with a small number of sensors, and

compare the following three algorithms:
� suboptimal multi-sensor GLMB filter (Gibbs sampling

with suboptimal distribution, Subsection III-C1),
� optimal multi-sensor GLMB filter (Gibbs sampling with

optimal distribution, Subsection III-B1), and
� iterated-corrector multi-sensor GLMB filter (standard pre-

diction and iterated update implementation).

The aim is to show that the suboptimal multi-sensor GLMB

filter can achieve near-optimal results, but at a significantly

smaller computational cost. The scenario used for this com-

parison is limited to four sensors, because the optimal version

does not scale well to a large number of sensors (see Subsection

III-B1). In the second part, we compare the suboptimal multi-

sensor GLMB filter with the iterated-corrector GLMB filter, on

a scenario with a larger number of sensors with different types.

This is designed to demonstrate the scalability and versatility of

the suboptimal version.

Throughout this section a common ground truth is used with

various scenarios of different sensor combinations. The ground

truth involves a maximum of 10 objects simultaneously within a

2-D surveillance region over a period of 100 seconds. The objects

move according to a discrete white noise acceleration model, and

the number of objects in the surveillance region varies over time,

as new objects can appear and existing objects can disappear.

The state of an object at time k is represented by its 2-D position

and velocity vectors, i.e. xk = [px,k, py,k, ṗx,k, ṗy,k], and the

single-object transition density is given by

f (xk+1|xk) = N (xk+1;Fkxk, Qk) ,

where

Fk =

[

1 ∆

0 1

]

⊗ I2, Qk = σ2
a

[

∆4

4
∆3

3
∆3

3 ∆2

]

⊗ I2,

I2 is the 2× 2 identity matrix, ∆ = 1s is the sampling period,

and σa = 0.15 m/s2 is the standard deviation of the process

noise. The survival probability is PS = 0.98. Object births are

modeled by an LMB with parameters {(rB,k, p
(i)
B,k)}

6
i=1 where

rB,k = 0.05, p
(i)
B,k(x) = N (x;m

(i)
B,k, QB,k),

m
(1)
B,k = (100, 100, 0, 0), m

(2)
B,k = (100, 500, 0, 0),
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m
(3)
B,k = (100, 900, 0, 0), m

(4)
B,k = (900, 100, 0, 0),

m
(5)
B,k = (900, 500, 0, 0), m

(6)
B,k = (900, 900, 0, 0),

and QB,k = diag([25, 25, 5, 5]2). Ten objects appear near

these locations at various times during the first 40 steps. Seven

of these disappear at various times over the last 40 steps.

Each sensor has a fixed position. If sensor i at position s(i) =

(s
(i)
x , s

(i)
y ) with type t(i)generates a detection z

(i)
k for an object

with state xk, then z
(i)
k is distributed according to

g(i)(z
(i)
k |xk, s

(i), t(i)) = N (z
(i)
k ;ht(i)(xk, s

(i)), σ2
t(i)).

Based on the following measurement functions (bearing,

range, range rate and position)

hθ(xk, s
(i)) = arctan

(

px,k − s
(i)
x

py,k − s
(i)
y

)

,

hr(xk, s
(i)) =

√

(px,k − s
(i)
x )2 + (py,k − s

(i)
y )2,

hrr(xk, s
(i)) =

(px,k − s
(i)
x )ṗx,k + (py,k − s

(i)
y )ṗy,k

hr(xk, s(i))
,

hp(xk) =

[

px,k
py,k

]

,

we simulate four different types of sensors (i.e. t(i) ∈
{1, 2, 3, 4}) according to the following models:
� Type 1: Bearings only (e.g. passive radar)

h1(xk, s
(i)) = hθ(xk, s

(i))

� Type 2: Bearing and range (e.g. Doppler insensitive active

radar)

h2(xk, s
(i)) =

[

hθ(xk, s
(i))

hr(xk, s
(i))

]

� Type 3: Bearing, range and range-rate (e.g. Doppler sensi-

tive active radar)

h3(xk, s
(i)) =

⎡

⎣

hθ(xk, s
(i))

hr(xk, s
(i))

hrr(xk, s
(i))

⎤

⎦

� Type 4: Position (e.g. drone-mounted camera)

h4(xk, s
(i)) = hp(xk)

All three algorithms are run with approximately 3000 com-

ponents during the update, which are pruned to approximately

300 best post-update. To examine the tracking performance, we

consider both the OSPA [48] and OSPA(2) [49], [50] distances

between the set of estimated tracks and the set of ground truth

tracks. The OSPA distance is an instantaneous per-object er-

ror, accounting for estimation errors in both localization and

cardinality, but does not capture track labelling errors, as can

occur when objects are close together or cross each other in the

measurement space. The OSPA(2) metric addresses this by using

the OSPA distance with a suitable base-distance between two

tracks (rather than vectors) [50]. Note that the OSPA(2) distance

Fig. 1. Scenario 1: ground truth and sensor layout. The triangles are
the locations of bearing-only sensors, the green circles indicate the object
starting positions, and the red squares are the final positions.

assesses multi-object tracking error over a time window (for

window of one instant, OSPA(2) reduces to OSPA) [50]. Hence,

an OSPA(2) versus time curve would show at each time k, the

OSPA(2) error over a window ending at k.

A. Scenario 1

For the first experiment, we compare all three tracking al-

gorithms on a scenario with up to four Type-1 (bearing-only)

sensors. Each sensor has measurement noise standard deviation

σ1 = π/180 rad, and a fixed detection probability ofPD = 0.67.

Each sensor also generates a set of false alarms at each time step,

all with a Poisson cardinality distribution of mean 7. The false

alarms are uniformly distributed on the interval [0, 2π] rad. The

sensor positions and ground truth are shown in Figure 1.

Each algorithm was tested on the following three configura-

tions; 2 sensors (1 and 2), 3 sensors (1, 2 and 3), and 4 sensors

(1, 2, 3 and 4). We ran 100 Monte Carlo (MC) trials, each with

the same ground truth trajectories, but a different realization of

sensor noise. The MC average OSPA (with cutoff c = 100m,

order p = 1) and OSPA(2) (with the same c, p, and window

length w = 20) distances are plotted against time in Figure 2.

The relative execution times (wrt. the suboptimal filter on sensor

1) of the algorithms are shown in Table I.

As expected, both the OSPA and OSPA(2) results (Figure 2)

demonstrate that the optimal multi-sensor GLMB filter outper-

forms the suboptimal version. However, a comparison of the

execution times (Table I) shows that such improved performance

comes at a very large computational cost. The computational cost

of the optimal version scales exponentially with the number of

sensors, whereas the suboptimal version scales linearly. Despite

being allocated an equal number of components, the iterated-

corrector GLMB filter performs poorly compared to the other

two algorithms. Note that the reduction in execution time of the

iterated-corrector at the 4th sensor is due to component depletion

in the previous updates.
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Fig. 2. Scenario 1: OSPA, OSPA(2) plots for different number of sensors.

TABLE I
SCENARIO 1: ALGORITHM EXECUTION TIMES

B. Scenario 2

To demonstrate the scalability and versatility of the sub-

optimal multi-sensor GLMB filter, we now study its tracking

performance on a far more challenging scenario with unreliable

sensors (considerably lower detection probability than Scenario

1), in larger number and more diverse types. All sensors have

a detection probability of PD = 0.5, and generate Poisson false

alarms with a mean of 5 per scan. This is quite an adverse signal

environment since there is only a 50% chance of detecting an

object. The measurement noise standard deviation and the false

alarm spatial distribution for each sensor type is given in Table II.

We test two different cases: the first with a total of 7 sensors

(two each of Type-1, Type-2, Type-3, and one Type-4); and

the second with a total of 13 sensors (four each of Type-1,

Type-2, Type-3, and one Type-4). Ground truths and sensor

configurations for the 7-sensor and 13-sensor cases are shown

TABLE II
SCENARIO 2: SENSOR MODEL PARAMETERS

Fig. 3. Scenario 2: ground truth and sensor layout, 7-sensor configuration
(black sensors), 13-sensor configuration (all sensors).

in Figure 3. In this experiment, we can only compare with the

iterated-corrector multi-sensor GLMB filter, since the optimal

version becomes computationally infeasible for more than four

sensors. Note that even the latest scalable solution for multi-

sensor multi-object filtering, see for example [11], can only

cope with 3 sensors on a less challenging scenario (than this

experiment) with a PD of 0.6 (rather than 0.5), and up to 5

objects (rather than 10).

Again, we carried out 100 MC trials for each case with the

same ground truth and different realizations of sensor noise. The

MC average OSPA and OSPA(2) distances (with the same pa-

rameters as Scenario 1) are plotted against time in Figure 4. The

mean (and one-sigma bounds) of the cardinality for the 7-sensor

and 13-sensor cases are plotted in Figures 5 and 6, respectively.

The relative execution times (wrt. the iterated-corrector strategy

on the 7-sensor case) of the algorithms are shown in Table III.

The OSPA and OSPA(2) plots (Figure 4) indicate that the

suboptimal multi-sensor GLMB filter significantly outperforms

the iterated-corrector implementation in both the 7-sensor and

13-sensor cases. This concurs with the cardinality statistics

(Figures 5 and 6), which show the iterated-corrector producing

significantly less accurate estimates and with higher variability.
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Fig. 4. Scenario 2: OSPA, OSPA(2) plots for 7-sensor and 13-sensor cases.

Fig. 5. 7-sensor case: true and mean cardinality (with 1-sigma bounds).

Note that the tracking performance of the iterated-corrector

implementation depends on the order in which the sensors are

processed. In our experiments the iterated-corrector processes

the bottom left sensor first, and progresses anti-clockwise to

the last sensor. The first sensor is a Type-3 sensor (bearing,

Fig. 6. 13-sensor case: true and mean cardinality (with 1-sigma bounds).

TABLE III
SCENARIO 2: ALGORITHM EXECUTION TIMES

range and range rate), which is the most informative amongst

the sensors. The performance could be far worse by starting

with a less informative sensor. Finding the best the performance

over all sensor permutations is infeasible for large number of

sensors, not to mention such optimal sensor permutation is data

dependent.

The suboptimal (and optimal) multi-sensor GLMB filter uses

the joint prediction and update, which simultaneously integrates

information from the survival model as well as measurements

from all sensors to generate significant components. In contrast,

the iterated-corrector uses information from the survival model

first, followed by information from the measurements of each

sensor, one at a time. Due to such lack of information prior to

each update, components that would be significant after subse-

quent updates are likely to be discarded, leading to component

depletion. This explains the iterated-corrector’s poorer track-

ing performance (compared to the suboptimal) while having a

slower increase in execution times as the number of sensors

increases.

V. CONCLUSIONS

This paper proposed an efficient implementation of the multi-

sensor GLMB filter by integrating the prediction and update

into one step along with an efficient algorithm for truncating the

GLMB filtering density based on Gibbs sampling. The resulting

algorithm is an on-line multi-sensor multi-object tracker with

linear complexity in the total number of measurements across

the sensors, and quadratic in the number of hypothesized tracks.

Numerical studies verify the scalability of the proposed solution

with respect to the total number of measurements.
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The proposed multi-sensor GLMB implementation is also

applicable to approximations such as the labeled multi-Bernoulli

(LMB) and marginalized GLMB filters, since these filters re-

quire full GLMB updates to be performed [17], [51]. Con-

ceptually, the proposed the multi-sensor solution can also be

extended to the multi-scan case [33]. However, the multi-sensor

multi-scan GLMB filtering problem is far more computationally

intensive, and the key challenge lies in achieving real-time speed

for practical applications.

APPENDIX

A. Proof of Proposition 1

Let n̄ = {1 : P} − {n} and Γ(n̄) be the set of all γn̄ =
(γ1:n−1, γn+1:P ) ∈ ({−1}V ⊎ Λ(1:V ))P−1 that are positive 1–1

(i.e. γn̄ such that for each s ∈ {1 : V } there are no distinct

i, j ∈ n̄ with γ
(s)
i = γ

(s)
j > 0). We are interested in the func-

tional dependence of πn(γn|γn̄) on γn, while its dependence on

all other variables is aggregated into the normalizing constant:

πn (γn|γn̄) �
π (γ)

π (γn̄)
∝ π (γ)

∝ 1Γ (γ)

P
∏

j=1

ϑj (γj)

= ϑn (γn) 1Γ (γ)
∏

j∈n̄

ϑj (γj) .

Factorizing 1Γ(γ) using Lemma A, gives

πn (γn|γn̄)

∝ ϑn (γn)

V
∏

s=1

∏

i∈n̄

(

1− 1{1:M(s)}(γ
(s)
n )δ

γ
(s)
n

[γ
(s)
i ]

)

× 1Γ(n̄) (γn̄)
∏

j∈n̄

ϑj (γj)

∝ ϑn (γn)
V
∏

s=1

∏

i∈n̄

(

1− 1{1:M(s)}(γ
(s)
n )δ

γ
(s)
n

[γ
(s)
i ]

)

. (42)

If j(1:V ) ∈ Λ(1:V ), then it follows from (42) that

πn(j
(1:V )|γn̄)∝ ϑn(j

(1:V )), unless there exist i ∈ n̄ and s with

γ
(s)
i = j(s) > 0, in which case πn(j

(1:V )|γn̄) = 0 (because

1{1:M(s)}(j
(s))δj(s) [γ

(s)
i ] = 1). Thus, for j(1:V ) ∈ Λ(1:V )

πn(j
(1:V )|γn̄)

∝ ϑn(j
(1:V ))

V
∏

s=1

(

1− 1
{1:M(s)}

⋂
{γ

(s)
1:n−1,γ

(s)
n+1:P }

(j(s))
)

.

On the other hand, if j(1:V ) ∈ {−1}V , then 1{1:M(s)}(j
(s)) = 0

for all s, and (42) implies πn(j
(1:V )|γn̄)∝ ϑn(j

(1:V )). Hence

the above equation holds on {−1}V ⊎ Λ(1:V ).

Lemma A:

1Γ (γ) = 1Γ(n̄) (γn̄)

V
∏

s=1

∏

i∈n̄

(

1− 1{1:M(s)}(γ
(s)
n )δ

γ
(s)
n

[γ
(s)
i ]

)

.

(43)

Proof: Note that the condition γ
(s)
i = γ

(s)
j > 0 is equivalent

to δ
γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 1. Hence, γ(s) is positive 1–1

iff for any distinct i, j, δ
γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 0. Also,

γ(s) is not positive 1–1 iff there exists distinct i, j such that

δ
γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 1. Similarly, γ

(s)
n̄ is positive 1–1 iff

for any distinct i, j ∈ n̄, δ
γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 0.

We will show that; (a) if γ is positive 1–1 then the right hand

side (RHS) of (43) equates to 1, and (b) if γ is not positive 1–1,

then the RHS of (43) equates to 0.

To establish (a), assume that γ is positive 1–1, then γn̄
is also positive 1–1, i.e., 1Γ(n̄)(γn̄) = 1, and for any i �= n,

δ
γ
(s)
n

[γ
(s)
i ]1{1:M(s)}(γ

(s)
n ) = 0 for all s. Hence the RHS of (43)

equates to 1.

To establish (b), assume that γ is not positive 1–1. If γn̄
is also not positive 1–1, i.e., 1Γ(n̄)(γn̄) = 0, then the RHS of

(43) trivially equates to 0. It remains to show that even if γn̄
is positive 1–1, the RHS of (43) still equates to 0. Since γ
is not positive 1–1, there exist an s and distinct i, j such that

δ
γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 1. Further, either i or j has to equal

n, because the positive 1–1 property of γn̄ implies that if such

(distinct) i, j, are in n̄, then δ
γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 0 and

we have a contradiction. Hence, there exist an s and i �= n such

that δ
γ
(s)
n

[γ
(s)
i ]1{1:M(s)}(γ

(s)
n ) = 1, and thus the RHS of (43)

equates to 0. �

B. Proof of Proposition 3

Let us make the following abbreviations,

ϑ̃(1)
n (j(1)) � β(1)

n (j(1)|γ
(1)
n̄ )ϑ(1)

n (j(1)),

K(1)
n �

M(1)
∑

j(1)=−1

ϑ̃(1)
n (j(1))K(2)

n (j(1))

ϑ̃(s)
n (j(s)|j(s−1)) � β(s)

n (j(s)|γ
(s)
n̄ )ϑ(s)

n (j(s)|j(s−1)),

K(s)
n (j(s−1)) �

M(s)
∑

j(s)=−1

ϑ̃(s)
n (j(s)|j(s−1))K(s+1)

n (j(s)).

for s ∈ {2 : V }, with K
(V+1)
n (j(V )) = 1.

Substituting K
(2)
n (j(1)) into K

(1)
n gives

K(1)
n =

∑

j(1:2)

ϑ̃(1)
n (j(1))ϑ̃(2)

n (j(2)|j(1))K(3)
n (j(2)).

Further, repeating this substitution with K
(3)
n (j(2)),..., and

K
(V −1)
n (j(V −2)) gives

K(1)
n =

∑

j(1:V )

ϑ̃(1)
n (j(1))ϑ̃(2)

n (j(2)|j(1)) . . . ϑ̃(V )
n (j(V )|j(V −1))
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Using (25), the n-th conditional is

πn(j
(1:V )|γn̄) =

ϑn(j
(1:V ))

∏V
s=1 β

(s)
n (j(s)|γ

(s)
n̄ )

∑

j(1:V ) ϑn(j(1:V ))
∏V

s=1 β
(s)
n (j(s)|γ

(s)
n̄ )

=

∏V
s=2 ϑ̃

(s)
n (j(s)|j(s−1))ϑ̃

(1)
n (j(1))

∑

j(1:V )

∏V
s=2 ϑ̃

(s)
n (j(s)|j(s−1))ϑ̃

(1)
n (j(1))

=
1

K
(1)
n

V
∏

s=2

ϑ̃(s)
n (j(s)|j(s−1))ϑ̃(1)

n (j(1))

=
ϑ̃
(V )
n (j(V )|j(V −1))

K
(V )
n (j(V −1))

×
K

(V )
n (j(V −1))ϑ̃

(V −1)
n (j(V −1)|j(V −2))

K
(V −1)
n (j(V −2))

× . . .

×
K

(3)
n (j(2))ϑ̃

(2)
n (j(2)|j(1))

K
(2)
n (j(1))

×
K

(2)
n (j(1))ϑ̃

(1)
n (j(1))

K
(1)
n

=

V
∏

s=2

π(s)
n (j(s)|j(s−1), γn̄)π

(1)
n (j(1)|γn̄),

where π
(1)
n (j(1)|γn̄) = K

(2)
n (j(1))ϑ̃

(1)
n (j(1))/K

(1)
n , which is in-

deed (31), and

π(s)
n (j(s)|j(s−1), γn̄) =

K
(s+1)
n (j(s))ϑ̃

(s)
n (j(s)|j(s−1))

K
(s)
n (j(s−1))

.

Note that the normalizing constants K
(1)
n , K

(s)
n (j(s−1)), s ∈

{2 : V }, are all positive, otherwise (29) is not a probability

distribution on ({−1}V ⊎ Λ(1:V ))P .

Additionally, for (29) to be a probability distribution on

({−1}V ⊎ Λ(1:V ))P , each conditional πn(j
(1:V )|γn̄), must be

a probability distribution on {−1}V ⊎ Λ(1:V ), which in turn

implies that for each s ∈ {2 : V },

π(s)
n (−1| − 1, γn̄) = 1

π(s)
n (j(s)| − 1, γn̄) = 0, j(s) > −1

π(s)
n (−1|j(s−1), γn̄) = 0, j(s−1) > −1

Otherwise, we would have realizations from πn(j
(1:V )|γn̄) that

are outside of {−1}V ⊎ Λ(1:V ), the very space on which it is

defined. Further, the last condition means that for j(s−1) > −1,

K
(s+1)
n (−1)ϑ̃

(s)
n (−1|j(s−1)) = 0, and hence

K(s)
n (j(s−1)) =

M(s)
∑

j=−1

K(s+1)
n (j)ϑ̃(s)

n (j|j(s−1))

=
M(s)
∑

j=0

K(s+1)
n (j)ϑ̃(s)

n (j|j(s−1)).

Therefore π
(s)
n (j(s)|j(s−1), γn̄) is given by (32).

C. Proof of Corollary to Proposition 3

Using (34), and noting that β
(s)
n (−1|γ

(s)
n̄ ) = 1, the normaliz-

ing constants (33) can be written as

K(V )
n (j(V −1))

=

{

ϑ
(V )
n (−1) , j(V −1) = −1
∑

j β
(V )
n (j|γ

(V )
n̄ )ϑ

(V )
n (j), j(V −1) > −1

=

{

ϑ
(V )
n (−1) , j(V −1) = −1

Υ
(V )
n , j(V −1) > −1

K(V −1)
n (j(V −2))

=

{

ϑ
(V )
n (−1)ϑ

(V −1)
n (−1) , j(V −2) = −1

Υ
(V )
n

∑

j β
(V −1)
n (j|γ

(V −1)
n̄ )ϑ

(V −1)
n (j), j(V −2) > −1

=

{

ϑ
(V )
n (−1)ϑ

(V −1)
n (−1) , j(V −2) = −1

Υ
(V )
n Υ

(V −1)
n , j(V −2) > −1

...

K(s)
n (j(s−1))

=

{

ϑ
(V )
n (−1)ϑ

(V −1)
n (−1) . . . ϑ

(s)
n (−1) , j(s−1) = −1

Υ
(V )
n Υ

(V −1)
n . . .Υ

(s)
n , j(s−1) > −1

.

Hence, (31) becomes

π(1)
n (j(1)|γ

(1)
n̄ )

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϑ
(1)
n (j(1))

∏V
s=2 ϑ

(s)
n (−1)

ϑ
(1)
n (−1)

∏V
s=2 ϑ

(s)
n (−1)+

∏V
s=2 Υ

(s)
n

∑M(1)

j=0 β
(1)
n (j|γ

(1)
n̄ )ϑ

(1)
n (j)

,

j(1) = −1

β
(1)
n (j(1)|γ

(1)
n̄ )ϑ

(1)
n (j(1))

∏V
s=2 Υ

(s)
n

ϑ
(1)
n (−1)

∏V
s=2 ϑ

(s)
n (−1)+

∏V
s=2 Υ

(s)
n

∑M(1)

j=0 β
(1)
n (j|γ

(1)
n̄ )ϑ

(1)
n (j)

,

j(1) > −1

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∏V
s=1 ϑ

(s)
n (−1)

∏V
s=1 ϑ

(s)
n (−1)+

∏V
s=1 Υ

(s)
n

j(1) = −1

∏V
s=2 Υ

(s)
n β

(1)
n (j(1)|γ

(1)
n̄ )ϑ

(1)
n (j(1))

∏V
s=1 ϑ

(s)
n (−1)+

∏V
s=1 Υ

(s)
n

j(1) > −1

=

⎧

⎨

⎩

1− Pn(Λ
(1:V )), j(1) = −1

Pn(Λ
(1:V ))β

(1)
n (j(1)|γ

(1)
n̄ )ϑ

(1)
n (j(1))

Υ
(1)
n

, j(1) > −1
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and (32) becomes

π(s)
n (j(s)|j(s−1), γ

(s)
n̄ )

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, j(s), j(s−1) = −1
∏V

t=s+1 Υ
(t)
n β

(s)
n (j(s)|γ

(s)
n̄ )ϑ

(s)
n (j(s))

∏V
t=s+1 Υ

(t)
n

∑M(s)

j(s)=0
β
(s)
n (j(s)|γ

(s)
n̄ )ϑ

(s)
n (j(s))

,

j(s), j(s−1) > −1

=

⎧

⎨

⎩

1, j(s), j(s−1) = −1

β
(s)
n (j(s)|γ

(s)
n̄ )ϑ

(s)
n (j(s))

Υ
(s)
n

, j(s), j(s−1) > −1

for s ∈ {2 : V }.
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