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ABSTRACT Compared with the single sensor tracking system, the multi-sensor tracking system has several

advantages in target tracking, such as a larger field of view and higher tracking accuracy. Different from

the multi-sensor filters based on the random finite set (RFS) theory, the product multi-sensor probability

hypothesis density (PM-PHD) filter with a modified cardinality coefficient performs well in estimating the

number of targets. Since the PM-PHD filter employs the iterative fusion structure, its state estimation is

sensitive to the sensor parameters. Furthermore, to improve the cardinality estimation, the PM-PHD filter

may estimate some false targets when miss-detection occurs. Addressing the above problems, this paper

changes the fusion structure of the PM-PHD filter and presents a novel version of the PM-PHD filter. The

main idea of the proposed algorithm is the combinations of measurement subsets and other factors. Both

the cardinality estimation and the state estimation are obtained by fusing the target numbers and normalized

PHDs of these combinations. Compared with other multi-sensor PHD filters, the proposed algorithm can

handle the problems of miss-detection and false alarm effectively. Moreover, the simulation results and the

theoretical analysis indicate that the new PM-PHD filter can deal with a harsh tracking environment.

INDEX TERMS Multi-sensor fusion, multi-target tracking, randomfinite set, probability hypothesis density.

I. INTRODUCTION

The multi-target tracking (MTT) algorithms have been used

to deal with the measurement uncertainties and estimate

the location, velocity, acceleration, number and trajectory

of targets. The traditional MTT algorithms are mainly

based on data association, such as global nearest neigh-

bor (GNN) [1], [2], joint probabilistic data association

(JPDA) [3], [4], multiple hypothesis tracking (MHT) [5], [6]

and their variances [7], [8]. In general, above MTT algo-

rithms can track the targets effectively. However, in the

tracking environments with high target density and clutter

density, the large computational complexity caused by data

association has become the biggest obstacle to such algo-

rithms. In this regard, Mahler combined the random finite

set (RFS) [9], [10] theory with the MTT algorithms, and pro-

posed several methods to estimate the characteristics of tar-

gets without data association. At present, the most commonly

used RFS filters are probability hypothesis density (PHD)
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filter [11], [12], cardinality probability hypothesis den-

sity (CPHD) filter [13] and cardinality balanced MeM-

Ber (CBMeMBer) filter [14], [15]. The PHD filter is an

approximate multi-target Bayesian filter. It is difficult to

get the analytical solution of the PHD filter for the rea-

son that the updating formulas of the PHD filter contain

multiple integrals. To implement the PHD filter, Mahler

and B.N. Vo proposed sequential Monte Carlo PHD (SMC-

PHD) filter [16], [17] and Gaussian mixture PHD (GM-PHD)

filter [18], [19] under nonlinear and linear conditions, respec-

tively. With the increase of false alarms and miss detec-

tion, the cardinality estimation of the PHD filter becomes

unstable. Therefore, Mahler proposed the CPHD filter which

could update multi-target posteriori density and posterior

cardinality distribution simultaneously. Although the CPHD

filter performs better than the PHD filter in estimating the

number of targets, it has a high computational complexity and

delayed cardinality estimation. The MeMber filter [20], [21],

which is originally proposed by Mahler, has the advantages

of easy implementation and low computational cost. But it

is only applicable to the tracking environment with high
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probability of detection and low clutter density. Furthermore,

B.N. Vo indicated that the number of targets was overes-

timated by the MeMber filter and proposed the commonly

used CBMeMBer filter. Although the MTT algorithms based

on RFS can avoid data association, it is difficult to get

the complete track of targets. Thus, the track maintenance

issues are gradually noticed. In [22]–[24], B.T. Vo and B.N.

Vo combined the label space with the state space, and intro-

duced the Labeled RFS and the Labeled Multi-Bernoulli

RFS. Additionally, the Labeled MeMber (LMB) [25] and the

Generalized Labeled MeMber (GLMB) [26] were proposed

to estimate the state and track of targets simultaneously.

The above mentioned MTT algorithms are only applica-

ble to single sensor. The single sensor tracking system is

unstable and vulnerable to the tracking environment. There-

fore, the multi-sensor solutions [27] attract the attention of

researchers. The multi-sensor filters based on RFS are mainly

applied to centralized fusion system [28]–[33]. In [28],

a multi-sensor PHD filter based on measurement clustering

is proposed to handle the lack of statistical knowledge of

the sensors. In [29], a two-sensor PHD filter is proposed

by Mahler, named General PHD filter. However, Mahler

only gave the theoretical proof and updating formulas of

the General PHD filter, and he did not implement the filter.

In [30], Nannuru derived the general form of the General

PHD filter and proposed the General CPHD filter, and he

also gave the Gaussian mixture implementation of these two

filters. The General PHD and CPHD filters need to partition

the measurements received by all sensors and traverse all

possible measurement partitions. As the numbers of sensors

and measurements increase, the computational burden of the

filters increases rapidly. It affects the application of such

filters seriously. In [11], besides the PHD filter, Mahler also

proposed an approximate multi-sensor PHD filter, named the

iterated-corrector PHD (IC-PHD) filter. To avoid the data

association in multi-sensor fusion, multiple single-sensor

Bayesian filters are used in the IC-PHD filter to replace the

multi-sensor multi-target estimation. Although the IC-PHD

filter performs well in most cases, it still has some draw-

backs. Comparing the tracking results under different sen-

sor parameters, the performance of the IC-PHD filter is

affected by the sensor order and probability of detection [31].

Addressing these problems, Mahler added a coefficient to the

update formula of the IC-PHDfilter and proposed the product

multi-sensor PHD (PM-PHD) filter [32]. Although the coef-

ficient can improve the cardinality estimation effectively, it is

very difficult to be computed. In this regard, we presented

an approximate solution for the coefficient and the Gaussian

implementation for the PM-PHD filter [33]. Additionally,

to deal with the problem that the coefficient had a negative

impact on state estimation, a modified method was proposed

by using the relationships between the Gaussian components,

named the cardinality modified PM-PHD (CM-PM-PHD) fil-

ter. But limited by the assumptions of linear Gaussianmixture

model (GMM), the CM-PM-PHD filter could not achieve

good performance in the harsh tracking environment.

This paper studies on the fusion structure of the PM-PHD

filter, and a heuristic multi-sensor fusionmethod is presented.

Measurements received by sensors and other factors are

divided into several combinations. The cardinality estimation

and the state estimation can be obtained by fusing the number

of targets and the normalized PHD of the combinations,

respectively. Compared with other multi-sensor PHD filters,

the proposed algorithm is insensitive to the sensor parameters

and not limited to the assumptions of linear GMM. The

benefits of the proposed PM-PHD filter are verified by the

simulations and theoretical analysis.

The rest of this paper is organized as follows. The RFS

theory and the PHD filter are described briefly in Section II.

The PM-PHD filter and the problem of state estimation are

introduced in Section III. The heuristic multi-sensor fusion

method based on the combination of factors is presented in

Section IV. Simulation results and theoretical analysis are

performed in Section V. Finally, Section VI gives the con-

clusions.

II. BACKGROUND

The MTT algorithms are mainly used to deal with the uncer-

tainty of the target and measurement. The former refers to the

change in the number of targets caused by target birth, spawn,

miss-detection and death. The latter means that the source

of the measurement cannot be determined. In other words,

it is unable to determine that a measurement is generated by

the target or clutter. Traditional MTT algorithms based on

data association have a heavy computational burden. How-

ever, algorithms based on the RFS theory can weaken data

association, and they can quickly and accurately estimate the

state and number of targets. In this section, a brief description

of RFS and the PHD filter is given.

In the multi-target motion model, the state set and

the observation set at time k are represented by Xk =

{x1, . . . , xNk } andZk = {z1, . . . , zMk }, respectively. Here,Nk
and Mk denote the numbers of targets and measurements at

time k .

Given a state RFS Xk−1 at time k − 1, the state RFS Xk at

time k can be expressed by

Xk =





⋃

ξ∈Xk−1

Sk|k−1(ξ )



∪





⋃

ξ∈Xk−1

Bk|k−1(ξ )



 ∪ Ŵk (1)

Here, Sk|k−1(ξ ) represents the RFS of targets which still

survive at time k from ξ ∈ Xk−1. Bk|k−1(ξ ) represents the

RFS of targets spawned by ξ ∈ Xk−1. Ŵk represents the RFS

of new targets which appear instantly at time k .

Given a state RFS Xk at time k , the observation RFS Zk
can be expressed by

Zk = Kk ∪





⋃

ξ∈xk

2k (ξ )



 (2)

Here, Kk represents the observation set of clutter, and 2(ξ )

represents the observation set generated by the state ξ .
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Let Dk|k−1(x) and Dk (x) denote the PHDs of the predicted

density pk|k−1 (x) and the posterior density pk (x) at time k ,

respectively. Then the posterior intensity can be derived by

the PHD recursion,

Dk|k−1 (x)

=

∫

pS,k (ξ) fk|k−1 (x|ξ)Dk−1 (ξ) dξ

+

∫

bk|k−1 (x|ξ)Dk−1 (ξ) dξ + γk (x) (3)

Dk|k (x)

=
[

1 − PD,k (x)
]

Dk|k−1 (x)

+
∑

z∈zk

PD,k (x) gk (z|x)Dk|k−1 (x)

κk (z) +
∫

PD,k (ξ) gk (z|ξ)Dk|k−1 (ξ) dξ
(4)

Here, γk ( · ) denotes the PHD of the birth RFS Ŵkat time k ,

bk|k−1 ( · |ξ) denotes the PHDof the spawnedRFSBk|k−1 (ξ)

at time k , and κk ( · ) denotes the intensity of the clutter RFS

Kk . pS,k ( · ) and PD,k ( · ) are the probabilities of survival

and detection, respectively. fk|k−1 ( · |ξ) and gk ( · | · ) are

the state transition function and the observation likelihood

function, respectively.

III. THE PRODUCT MULTI-SENSOR PHD FILTER

A. BASIC THEORY

Assume that there is a homogeneous sensor network with

s sensors. The field of view (FoV) of all sensors is com-

pletely overlapping. The sensor network has been calibrated

in time and space. Measurements received by the sensors

in their respective coordinate systems have been converted

to the same time and spatial reference system. Suppose that
1,...,s

D k|k−1 (x) is the predicted PHD, and the measurement set

of the ith sensor is denoted by Z
i
k = {z1, . . . , z i

m
}, i =

1, . . . , s, where
i
m is the number of measurements.

The IC-PHD filter can be represented as

Dik|k (x) = L1
z1k

(x) · Di−1
k|k (x) i = 1, 2, . . . , s (5)

1,...,s

D k|k (x) ≈ Dsk|k (x) ,D0
k|k (x) =

1,...,s

D k|k−1 (x) (6)

Here, L i
zik

(x) is the pseudo-likelihood of the ith sensor, and

L i
zik

(x)=1 −PiD,k (x)+
∑

z∈zik

PiD,k (x)gk (z |x )

κ ik (z)+
1,...,s

D k|k−1

[

PiD,kgz

]

(7)

Combining (5) and (6), the update formula of the IC-PHD

filter can be rewritten as

1,...,s

D k|k (x) = L1
z1k

(x) · · · Lszsk
(x) ·

1,...,s

D k|k−1 (x) (8)

Furthermore, the updated formulas of the PM-PHD filter

can be described as

1,...,s

D k|k (x)

= φ ·

L1
z1k

(x) · · · Ls
zsk

(x)

v1k|k · · · vsk|k
·
1,...,s

D k|k−1 (x) (9)

φ =

∑

n≥0

ℓ1
z1k

(n+ 1) · · · ℓs
zsk

(n+ 1) ·

(

1,...,s
N k|k−1 ·η

)n

n!

∑

n≥0

ℓ1
z1k

(n) · · · ℓs
zsk

(n) ·

(

1,...,s
N k|k−1 ·η

)n

n!

(10)

ℓi
zik

(n)

=

l̂in
∑

lin=0

l in ! · C
lin
n ·

1...s

Dk|k−1

[

1 − PiD,k

]n−lin
σ̂ i
lin

(

Zik
)

(

1...s

Nk|k−1

)n (11)

σ̂ i
lin

(

zik

)

= σ i
m,lin











1,...,s

D k|k−1

[

PiD,kgzi1

]

κ ik

(

zi1

) , . . . ,

1,...,s

D k|k−1

[

PiD,kgzi
i
m

]

κ ik

(

zi
i
m

)











(12)

C
lin
n

def .
=

n!

l in ! ·
(

n− l in
)

!
(13)

η =

1,...,s
χ k|k−1

[

L1
z1k

· · · Ls
zsk

]

v1k|k · · · vsk|k
(14)

vik|k =
1,...,s
χ k|k−1

[

L i
zik

]

(15)

l̂ in = min(n,
i
m) (16)

Here, n is the possible number of targets, l in, i = 1, . . . , s

is the possible number of detected targets of the ith sensor,

σ i
m,lin

[ · ] is the elementary symmetric function [13]. More-

over, for any function h (x), we have

Dk|k−1 [h] =

∫

h (ξ) · Dk|k−1 (ξ) dξ (17)

and

υk|k−1 [h] =

∫

h (ξ) · υk|k−1 (ξ) dξ (18)

1,...,s
υ k|k−1 (x) =

1,...,s

D k|k−1 (x)

1,...,s

N k|k−1

(19)

1,...,s

N k|k−1 =

∫

1,...,s

D k|k−1 (ξ) dξ (20)

In the above equations, the superscript i denotes the sensor

index, and a parameter with the superscript 1, . . . , s indicates

that the parameter is determined by all sensors.

B. THE PROBLEM OF STATE ESTIMATION

Comparing the update formulas of the IC-PHD filter and the

PM-PHD filter, it can be found that the biggest difference
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between the two filters is the coefficient φ
/(

v1k|k · · · vsk|k

)

.

Although the coefficient can improve the cardinality estima-

tion, it has uncertain effects on the state estimation. Because

the coefficient is a scalar and only changes the amplitude

of the updated PHD. For example, there are four targets

in the surveillance region, ‘Target 3’ and ‘Target 4’ are

undetected by the sth sensor. This situation is described

in Fig. 1.

FIGURE 1. Updated PHD for four targets.

In Fig. 1, the updated PHD without φ
/(

v1k|k · · · vsk|k

)

is

denoted by red line, and the updated PHD of the PM-PHD

filter is denoted by blue line. Suppose that the uncorrected

weights of ‘Target 1’ and ‘Target 2’ are approximate 0.9,

the uncorrectedweights of ‘Target 3’ and ‘Target 4’ is approx-

imately 0.1. Hence, the estimated number of targets is 2.

The ‘Target 3’ and ‘Target 4’ cannot be estimated, because

their weights are small than the threshold [19]. To maintain

the cardinality estimation, φ
/(

v1k|k · · · vsk|k

)

may be equal

to 2. Then, the corrected number of targets is 4. However,

‘Target 3’ and ‘Target 4’ are still not estimated, because their

weights are 0.2. Furthermore, in order to be consistent with

the estimated number of targets, the PM-PHD filter estimates

two false targets from ‘Target 1’ and ‘Target 2’.

IV. THE TWO STEPS PM-PHD FILTER

A. CARDINALITY ESTIMATION

Then, (10) can be rewritten as

φ =

∑

n≥0

n · L (n)

∑

n≥0

L (n)
·

1

1,...,s

N k|k−1 · η

(21)

L (n) =

s
∏

i=1

ℓi
zik

(n) ·

(

1,...,s

N k|k−1 · η

)n

n!
(22)

Based on (14), (18), (19), and (21), (9) can be rewritten as

1,...,s

D k|k (x)

=

∑

n≥0

n · L (n)

∑

n≥0

L (n)
·

L1
z1k

(x) · · · Ls
zsk

(x) ·
1,...,s

D k|k−1 (x)

∫

L1
z1k

(ξ) · · · Ls
zsk

(ξ) ·
1,...,s

D k|k−1 (ξ) dξ

=





∑

n≥0

1,...,s
w n ·

1,...,s

N n



 · υ1,...,s
k|k (x) (23)

Here,

1,...,s

N n = n (24)

1,...,s
w n =

L (n)
∑

n≥0

L (n)
(25)

1,...,s
υ (x) =

1,...,s

D (x)

∫ 1,...,s

D (ξ) dξ

(26)

1,...,s

D (x)
def .
= L1

z1k
(x) · · · Lszsk

(x) ·
1,...,s

D k|k−1 (x) (27)

Integrating both sides of (23), we have

1,...,s

N k|k =
∑

n≥0

1,...,s
w n ·

1,...,s

N n (28)

Here,
1,...,s

N n denotes the number of targets, and
1,...,s
w n is the

weight that
1,...,s

N n is correct. It can be seen that the cardinality

estimation is computed by (28) directly, and the state estima-

tion is determined by
1,...,s
υ (x). From (8) and (27), it can be

observed that
1,...,s
υ (x) is obtained by the IC-PHD filter, and

thus the state estimation of the PM-PHDfilter is still sensitive

to the probability of detection and sensor order. To address

the problem of state estimation, a new calculation method for
1,...,s
υ (x) is described below.

B. THE PROBLEM OF STATE ESTIMATION

1) The combination of factors

To facilitate description, (11) can be rewritten as

ℓi
zik

(n) =

l̂in
∑

lin=0

ϕin

(

l in

)

S i
n,lin

(

zik

)

(29)

ϕin

(

l in

)

=
l in ! · C

lin
n

(

1,...,s

N k|k−1

)n (30)

S i
n,lin

(

Zik

)

=
∑

W i

r,lin
∈Di

lin
4zik

∏

z∈W i

r,lin

D
[

L iz

]

(31)

L iz (x) =











(

1 − PiD,k (x)
)

z = zi0

PiD,k (x) gk (z |x )

κ ik (z)
z 6= zi0

(32)
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Here, zi0 denotes the measurement of miss-detection of the ith

sensor. The measurement division Di

lin
4 Zik denotes a pro-

cess which consists of two parts: 1) dividing Zik into different

measurement subsets Ŵ i

r,lin
, r = 1, . . . ,C

lin
i
m
; 2) combining

each Ŵ i

r,lin
with Ŵlin

. The combined set is denoted by W i

r,lin
,

andW i

r,lin
= Ŵ i

r,lin
∪Ŵlin

. Here, Ŵlin
is a set that consists of zi0,

and Ŵlin
= {zi0, . . . z

i
0}, the number of measurements in Ŵlin

is |Ŵlin
| = l̂ in − l in . Thus, Di

lin
4 Zik = {W i

1,lin
, . . . ,W i

C
lin

i
m

,lin

}.

For example, suppose that Zik = {zi1, z
i
2, z

i
3},

i
m = 3, l̂ in = 3

and l in = 0, 1, 2, 3. Then, Ŵ i

r,lin
, r = 1, . . . ,C

lin
i
m
are given by

Ŵ i
1,0 = {∅}

Ŵ i
1,1 =

{

zi1

}

, Ŵ i
2,1 =

{

zi2

}

, Ŵ i
3,1 =

{

zi3

}

Ŵ i
1,2 =

{

zi1, z
i
2

}

, Ŵ i
2,2 =

{

zi1, z
i
3

}

, Ŵ i
3,2 =

{

zi2, z
i
3

}

Ŵ i
1,3 =

{

zi1, z
i
2, z

i
3

}

(33)

and Di
0 4 Zik , . . . ,D

i
3 4 Zik are given by

Di
0 4 Zik = {{zi0, z

i
0, z

i
0} ∪ {∅}}

Di
1 4 Zik = {{zi1} ∪ {zi0, z

i
0}, {z

i
2} ∪ {zi0, z

i
0}, {z

i
3} ∪ {zi0, z

i
0}}

Di
2 4 Zik = {{zi1, z

i
2} ∪ {zi0}, {z

i
1, z

i
3} ∪ {zi0}, {z

i
2, z

i
3} ∪ {zi0}}

Di
3 4 Zik = {{∅} ∪ {zi1, z

i
2, z

i
3}} (34)

From (22), (28), (29), and (31), it can be seen that
1...s

Nk|k is

the result of multiple fusion process. Expanding the symbols
∑

and
∏

in (22), (28), (29), and (31),
1...s

Nk|k can be rewritten

in the following form

1,...,s

N k|k = wc1 · Nc1 + wc2 · Nc2 + · · · + wcT · NcT

=

T
∑

t=1

wct · Nct (35)

wct =

(

1,...,s

N k|k−1 · η

)n

n! ·
∑

n≥0

L (n)
·

s
∏

i=1

ϕin

(

l in

)

·
∑

z∈W i

r,lin

D
[

L iz

]

(36)

Here, ct denotes the t
th possible combination that consists

of different factors, and it is expressed by

ct
def .
= n, l1n , . . . , l

s
n,W

1
r,l1n

, . . . ,W s
r,lsn

(37)

To further explain the idea of combinations, an exam-

ple is given below. Suppose that there are two targets and

two sensors. The measurement sets of two sensors are z1k =

{z11, z
1
2, z

1
3} and z2k = {z21, z

2
2}, respectively. Here, z

1
1 and z21

are the measurements of ‘Target 1’, z12 is the measurement

TABLE 1. The possible combinations.

of ‘Target 2’, z13 and z22 are the measurements of clutter. The

measurements of miss-detection of two sensors are denoted

by z10 and z20, respectively. The combinations c1, c2, . . . , cT
are given in Table 1. Here, T is the number of combinations.

In all combinations c1, c2, . . . , cT , there is only one correct

combination. Here, wct is the weight that ct is the correct

combination. Moreover, Nct is the number of targets corre-

sponding to ct .

2) The solution of state estimation

Suppose that ct , t = 1, . . . , T has a corresponding normal-

ized PHD υc1 (x) , t = 1, . . . , T . Then,
1...s
υ (x) in (23) can be

obtained by

1,...,s
υ k|k (x)=wc1 · υc1 (x)+·wc2υc2 (x)+· · ·+wcT · υcT (x)

(38)

In the factors n, l1n , . . . ,l
s
n,W

1
r,l1n

, . . . ,W s
r,lsn

, onlyW 1
r,l1n

, . . . ,

W s
r,lsn

affect υct (x) , t = 1, . . . , T . Assumed υ1
W 1

r,l1n

(x) , . . . ,

υs
W s
r,lsn

(x) are the normalized PHDs of W 1
r,l1n

, . . . ,W s
r,lsn

,

respectively. υct (x) , t = 1, . . . , T can be obtained by fusing

υ1
W 1

r,l1n

(x) , . . . , υs
W s
r,lsn

(x), and we have

υct (x) =

s
∑

i=1

win · υ i
W i

r,lin

(x) (39)

Here, win denotes the weight of the ith sensor, and it indi-

cates the accuracy of measurements received by the ith

sensor. However, it is difficult to determine the accuracy

of measurements in W 1
r,l1n

, . . . ,W s
r,lsn

and the accuracy of

υ1
W 1

r,l1n

(x) , . . . , υs
W s
r,lsn

(x). Therefore, υc1 (x) , t = 1, . . . , T

is computed as the average of υ i
W i

r,lin

(x), and win is set to be
1
s
.

Then, we have (40)-(42).

υct (x) =

s
∑

i=1

1

s
· υ i

W i

r,lin

(x) (40)
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υ i
W i

r,lin

(x) =

∑

z∈W i

r,lin

υ iz (x)

∫
∑

z∈W i

r,lin

υ iz (ξ)dξ
(41)

υ iz (x) =
L iz (x) ·

1,...,s

D k|k−1 (x)

∫

L iz (ξ) ·
1,...,s

D k|k−1 (ξ) dξ

(42)

Here, υ iz (x) is the normalized PHD of measurement

z ∈ W i

r,lin
.

Since the factor n (n ≥ 0) is infinite, the number of com-

binations T is infinite, too. Therefore,
1,...,s
υ k|k (x) cannot be

obtained by (38) directly. To calculate
1,...,s
υ k|k (x), the terms

in (38) are merged, and we have

1,...,s
υ k|k (x) =

∑

n≥0

1,...,s
w n ·

1,...,s
υ n (x) (43)

1,...,s
υ n (x) =

1

s
·

s
∑

i=1

υ in (x) (44)

υ in (x) =

l̂in
∑

lin=0

ϕin
(

l in
)

· S i
n,lin

(

zik
)

· υ i
Di

lin
4 zik

(x)

l̂in
∑

lin=0

ϕin
(

l in
)

· S i
n,lin

(

zik
)

(45)

υ i
Di

lin
4 zik

(x) =

∑

W i

r,lin
∈Di

lin
4zik

υ i
W i

r,lin

(x) ·
∏

z∈W i

r,lin

D
[

L iz
]

∑

W i

r,lin
∈Di

lin
4zik

∏

z∈W i

r,lin

D
[

L iz
] (46)

In (43)-(46),
1,...,s
υ n (x), υ in (x) and υ i

Di

lin
4 zik

(x) are the nor-

malized PHDs of target number n, the ith sensor andDi

lin
4 zik .

For the sake of clarity, the proofs of (43)-(46) are given in

Appendix.

3) The Multiple Fusion Process

In [33], it is proved that the value range of n can be approxi-

mated by [nmin, nmax]. Thus, (21) can be rewritten as

φ =

nmax
∑

n=nmin

n · L (n)

nmax
∑

n=nmin

L (n)

·
1

1,...,s

N k|k−1 · η

(47)

Similarly, (28) and (43) can be given by

1,...,s

N k|k =

nmax
∑

n=nmin

L (n)
nmax
∑

n=nmin

L (n)

·
1,...,s

N n (48)

1,...,s
υ k|k (x) =

nmax
∑

n=nmin

L (n)
nmax
∑

n=nmin

L (n)

·
1,...,s
υ n (x) (49)

Then, the updated PHD at time k can be calculated by

1,...,s

D k|k (x) =
1,...,s

N k|k · υ1,...,s
k|k (x)

=

nmax
∑

n=nmin

1,...,s
w n ·

1,...,s

N n·

nmax
∑

n=nmin

1,...,s
w n · υ1,...,s

nk|k (x) (50)

To explain the process of the Two Steps PM-PHD (TS-PM-

PHD) filter, (28) and (43) are rewritten as (51) and (52), as

shown at the bottom of this page.

From (52), we have

1,...,s

N k|k (x) =
∑

n≥0

1,...,s
w n ·

1,...,s

N n (x) (53)

1,...,s
υ k|k (x) =

∑

n≥0

1,...,s
w n ·

1,...,s
υ n (x) =

∑

n≥0

1,...,s
w n ·

s
∑

i=1

1

s
·

l̂in
∑

lin=0

ϕin
(

l in
)

· S i
n,lin

(

Zik
)

ℓi
zik

(n)
·

∑

W i

r,lin
∈Di

lin
4zik

∏

z∈W i

r,lin

D
[

L iz
]

· υ i
W i

r,lin

(x)

S i
n,lin

(

Zik
)

=
∑

n≥0

1,...,s
w n ·

s
∑

i=1

win ·

l̂in
∑

lin=0

wi
Di

lin
4 zik

·
∑

W i

r,lin
∈Di

lin
4zik

wi
W i

r,lin

· υ i
W i

r,lin

(x) (51)

1,...,s

N k|k =
∑

n≥0

w1,...,s
n ·

1,...,s

N n =
∑

n≥0

1,...,s
w n ·

s
∑

i=1

1

s
·

l̂in
∑

lin=0

ϕin
(

l in
)

· S i
n,lin

(

Zik
)

ℓi
zik

(n)
·

∑

W i

r,lin
∈Di

lin
4zik

∏

z∈W i

r,lin

D
[

L iz
]

· N i

W i

r,lin

S i
n,lin

(

Zik
)

=
∑

n≥0

1,...,s
w n ·

s
∑

i=1

win ·

l̂in
∑

lin=0

wi
Di

lin
4 zik

·
∑

W i

r,lin
∈Di

lin
4zik

wi
W i

r,lin

· N i

W i

r,lin

(52)
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FIGURE 2. The block diagram of the TS-PM-PHD filter.

1,...,s

N n (x) =
1

s
·

s
∑

i=1

N i
n (x) (54)

N i
n (x) =

l̂in
∑

lin=0

ϕin
(

l in
)

· S i
n,lin

(

Zik
)

· N i

Di

lin
4 Zik

(x)

l̂in
∑

lin=0

ϕin
(

l in
)

· S i
n,lin

(

Zik
)

(55)

N i

Di

lin
4 Zik

(x) =

∑

W i

r,lin
∈Di

lin
4Zik

N i

W i

r,lin

(x) ·
∏

z∈W i

r,lin

D
[

L iz
]

∑

W i

r,lin
∈Di

lin
4Zik

∏

z∈W i

r,lin

D
[

L iz
] (56)

Here,
1,...,s

N n (x), N i
n, N

i

Di

lin
4 zik

and N i

W i

r,lin

denote the target

numbers of target number n, the ith sensor, Di

lin
4 zik , and

W i

r,lin
, respectively. N i

W i

r,lin

= |W i

r,lin
|, and |W i

r,lin
| denotes the

number of measurements in W i

r,lin
.

Note that the proof of (52)-(56) is similar to that of

(43)-(46), and it will not be given here. Based on (51) and

(52), Fig. 2 shows the block diagram of the TS-PM-PHD

filter.

From (51), (52), and Fig. 2, it can be seen that the posterior

PHD
1,...,s

D k|k (x) consists of
1,...,s

N k|k and
1...s
υk|k (x). Both

1...s

Nk|k

and
1,...,s
υ k|k (x) are the results of multiple fusion process. They

are independent of each other in the calculation, but there is a

one-to-one correspondence between them. The measurement

sets Z1
k , . . . ,Z sk and the predicted PHD

1,...,s

D k|k−1 (x) don’t

directly affect N i

W i

r,lin

, N i

Di

lin
4 zik

, N i
n,

1...s

Nn and
1...s

Nk|k , but rather

through the weights. In the multiple fusion process, weights

corresponding to the correct factors are much larger than the

others. Thus,
1,...,s

D k|k (x) can be correctly estimated by the

numbers of targets and the normalized PHDs that correspond-

ing to the correct factors.

V. SIMULATION RESULTS

The state transition model is described as

xk = Fxk−1 + Ŵwk (57)

Here, xk = [xk , ẋk , yk , ẏk ]
T is target state vector, xk and yk

represent the planar position coordinates of the target, ẋk and

ẏk represent their velocities, respectively. And

F =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









,Ŵ =









T 2
/

2 0

T 0

0 T 2
/

2

0 T









,wk ∼

N

(

0,

[

σ 2
w 0

0 σ 2
w

])

Here, (s) is the sampling period, and σw = 10 is the

standard deviation of wk .

The measurements of four sensors are given in Cartesian

coordinates as follow

zlk =
[

x lk y
l
k

]T
+ vlk , l = 1, 2, 3, 4 (58)

Here, the covariance matrix of observation noise vlk is

Rl
k = diag

{

[

δ2v , δ
2
v

]T
}

, l = 1, 2, 3, 4.

The Gaussian mixture implementations [19] of the

TS-PM-PHDfilter and other filters are compared in the simu-

lation. In order to prune and merge the Gaussian components,

the pruning and merging thresholds are set as Tp = 1× 10−5

and U = 4, respectively. The maximum number of Gaussian

components is Jmax = 100.

The optimal sub-pattern assignment (OSPA) [34] distance

is used to evaluate the multi-target tracking performance,

d̄ (c)
p (X,Y)=

(

1

n

(

min
π∈
∏

n

m
∑

i=1

d (c)
(

xi, yπ(i)

)p
+c p (n−m)

))1/p

(59)

Here, X = {x1, · · · , xm} and Y = {y1, · · · , yn} are arbitrary

finite subsets, 1 ≤ p < ∞, c > 0 (see [34] for the meanings

of these parameters). If m > n, d̄
(c)
p (X,Y) = d̄

(c)
p (Y ,X).

In our simulations, two parameters are set as p = 2 and

c = 2000, respectively. The simulation results are obtained

by averaging the results of 200 Monte Carlo runs.
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TABLE 2. Initial position and moving duration.

FIGURE 3. True target trajectory. ‘1’ — locations at which targets are born;
‘�’ — locations at which targets die.

A. EXPERIMENT

The surveillance region is set at [−8000, 8000] ×

[−8000, 8000]
(

m2
)

, and the probability of survival is pS,k =

0.97. Six targets with different initial positions move in

the surveillance region, and the setting of targets is shown

in Table 2. Fig. 3 shows the target trajectories.

The intensity of the birth Poisson RFS is described as

Ŵk (x) =

4
∑

j=1

0.1N
(

x;mj
γ ,Pjγ

)

(60)

Here, P1
γ = P2

γ = P3
γ = P4

γ = diag{[104, 104, 104, 104]T },

and

m1
γ = [−6000, 0, 0, 0]T , m3

γ = [−3000, 0, 0, 0]T , m2
γ =

[0, 0, 6000, 0]T ,m4
γ = [4000, 0, 2000, 0]T .

The intensity of the clutter RFS is assumed to be

κ ik = λikU
(

zik

)

, i = 1, 2, 3, 4 (61)

Here, λik is the clutter rate of the i
th sensor, and U ( · ) is the

uniform density over the surveillance region.

In this experiment, different parameters are used to verify

the effectiveness of the TS-PM-PHD filter, such as the prob-

ability of detection, observation noise, and clutter rate. The

setting of these parameters is given in Table 3.. In Case 1-3,

only one parameter is variable, and the other two parameters

are fixed. Additionally, two different sensor orders are also

considered here. In the first situation, the sensor with PD,k =

0.9 is the last update sensor, while in the second situation,

TABLE 3. The setting of different parameters.

TABLE 4. The weights of Targets 1-4 at 29s.

TABLE 5. The running time with different clutter rates.

it is the second one. The probabilities of detection of the other

three sensors are PD,k = 0.99.

The estimated number of targets, OSPA distance and mean

squared error (MSE) of number of targets for different sensor

orders are shown in Fig. 4(a)-(c), respectively. The Gaus-

sian components estimated by different filters at k = 29s

in the first sensor order (1 → 4) are illustrated in Fig. 5.

Table 4 gives the weights of ‘Target 1-4’ at k = 29s. The sim-

ulation results of different probabilities of detection, clutter

rates, and observation noises are shown in and Fig. 6-Fig. 8,

respectively. The running time of the IC-PHD filter, the PM-

PHDfilter, the CM-PM-PHDfilter and the TS-PM-PHDfilter

is given in Table 5.

Since the TS-PM-PHD filter contains two complex mul-

tiple fusion processes, its running time is higher than other

algorithms’. However, in Table 5, the TS-PM-PHD filter can

still meet the real-time requirements of multi-target tracking

system. In Fig. 6(a) and (b), it can be observed that the accu-

racy of state estimation of the CM-PM-PHD filter decreases

rapidly when PD,k < 0.9. The TS-PM-PHD filter is insensi-

tive to a changing probability of detection and performs well

in estimating the state of targets. In Fig.4, Fig. 6 - Fig. 8,

the influence of different parameters and sensor orders on the

TS-PM-PHD filter are lower than those of the other filters.

Fig. 4 shows that the IC-PHD filter is seriously affected by

the sensor order. In the IC-PHD filter, measurement set of

each sensor updates the predicted PHD in turn. The updated

PHD of one sensor is the predicted PHD of the next sensor.

Therefore, the performance of the IC-PHD filter is mainly

depends on the sensor at the end of the update order [31].

In other words, if one target is undetected by the last update
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FIGURE 4. Tracking results with different updated sensor orders
(a) Estimated number of targets (b) OSPA Distance (c) MSE.

sensor, it will still be undetected by the multi-sensor tracking

system even if the target is detected by other sensors. In this

experiment, targets are more likely to be undetected by the

sensor with PD,k = 0.9 than other sensors. Since the sensor

with PD,k = 0.9 is the last update sensor in the IC-PHD

(1234) filter, targets are easily undetected by the multi-sensor

system. Moreover, in the IC-PHD (1432) filter, targets unde-

tected by the sensor with PD,k = 0.9 will be detected by the

other two sensors. Therefore, the performance of the IC-PHD

(1432) filter is much better than that of the IC-PHD (1234)

filter. From Fig. 5(a) and (b), we found that ‘Target 1’ is

undetected by the sensor with PD,k = 0.9 at k = 29s,

FIGURE 5. The updated Gaussian components of four filters at 29s (a) The
IC-PHD filter (b) The PM-PHD filter (c) The CM-PM-PHD filter (d) The
TS-PM-PHD filter.
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FIGURE 6. Tracking results with different probabilities of detection
(a) OSPA distance (b) MSE.

and it cannot be correctly estimated by the PM-PHD filter.

However, Fig. 5(c) and (d) show that the CM-PM-PHD filter

and the TS-PM-PHDfilter can estimate ‘Target 1’ effectively.

In Table 4, the weight of ‘Target 1’ estimated by the TS-PM-

PHD filter is 0.8032, and the weight of other targets is larger

than 1. It seems that the TS-PM-PHD filter has the same

disadvantage of the PM-PHD filter. To further explain this

question, the difference between the PM-PHD filter and the

TS-PM-PHD filter is discussed in detail below.

B. Difference between TS-PM-PHD and PM-PHD

Assume that there is one target, the probability of detection is

independent of the state, the observation noise and the clutter

rate are low. It is known by the update formula (4) of the PHD

filter that the weight of targets can be approximated by
{

wtarget, undetected ≈ 1 − pD,k

wtarget, detected ≈ 1
(62)

Then, for the case described in Fig. 8, the weight of

‘Target 1’ estimated by the PM-PHD filter is approximated

as

W PM − PHD
Miss-detection

=
wtarget, undetected

nd · wtarget, detected + nm · wtarget, undetected
· n

FIGURE 7. Tracking results with different clutter rates (a) OSPA distance
(b) MSE.

=
1 − PD,k

(n− 1) · 1 + 1 ·
(

1 − PD,k

) · n

=
1 − PD,k

n− PD,k
· n (63)

The weights of ‘Target 2’ - ‘Target 4’ estimated by the

PM-PHD filter are approximated as

W PM − PHD
Miss-detection

=
wtarget, detected

nd · wtarget, detected + nm · wtarget, undetected
· n

=
1

(n− 1) · 1 + 1 ·
(

1 − PD,k

) · n

=
1

n− PD,k
· n (64)

The weight of ‘Target 1’ estimated by the TS-PM-PHD

filter is approximated as

W TS − PM − PHD
Detection

=
wtarget, detected

nd · wtarget, detected + nm ·
wtarget, undetected·sm+wtarget, detected·sd

s

· n

=
1

(n− 1) +
(1−PD,k)+(s−1)

s

· n =
s

n · s− PD,k
·n (65)
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FIGURE 8. Tracking results with different observation noises (a) OSPA
distance (b) MSE.

The weights of ‘Target 2’ - ‘Target 4’ estimated by the

TS-PM-PHD filter are approximated as

W TS − PM − PHD
Miss-detection

=

wtarget, undetected·sm+wtarget, detected·sd
s

nd · wtarget, detected + nm ·
wtarget, undetected·sm+wtarget, detected·sd

s

·n

=

(1−PD,k)+(s−1)

s

(n− 1) +
(1−PD,k)+(s−1)

s

· n =
s− PD,k

n · s− PD,k
· n (66)

Here, nd and nm are the numbers of targets detected and

undetected, and nm = 1,nd + nm = n. n is the number of

targets, and n = 4. sd and sm denote the numbers of sensors

which detect andmiss detect the target, and sm = 1, sd+sm =

s. s is the number of sensors, and s = 4. PD,k is the probability

of detection of the last updated sensor. Fig. 9 shows the effects

of PD,k on (63) - (65).

In Fig. 9, when PD,k = 0.9, the weights of targets

calculated by (63) - (65) are basically consistent with that

in Table 5. It can be seen that PD,k has the greatest impact

on W PM − PHD
Miss-detection

, and the second impact on W PM − PHD
Detection

.

Contrarily, the impact of PD,k on W TS − PM − PHD
Miss-detection

and

W TS − PM − PHD
Detection

is relatively small. No matter what the

value of PD,k is, ‘Target 1’ can always be estimated by

FIGURE 9. Weight of targets estimated by the PM-PHD filter and the
TS-PM-PHD filter.

FIGURE 10. The curves of weights of targets estimated by the PM-PHD
filter with different 1n. (a) Undetected target. (b) Detected target.

the TS-PM-PHD filter. Fig. 9 only considers the situation

that single target is undetected by the last updated sensor.

The following part will further study the situation that mul-

tiple targets are undetected by multiple sensors. To facili-

tate discussion, the probabilities of detections of all sensors

are assumed to be the same and denoted by P̄D,k . Then,

the weights estimated by the PM-PHDfilter of the undetected

targets can be approximated as

W PM − PHD
Miss-detection

=

(

1 − P̄D,k

)sm

nd + nm ·
(

1 − P̄D,k

)sm
· n (67)
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TABLE 6. The effect of different variables on the weights of targets.

FIGURE 11. The curves of weights of targets estimated by the TS-PM-PHD
filter with different 1n (1s = 1). (a) Undetected target (b) Detected target.

Note that the PM-PHD filter is an improved IC-PHD fil-

ter. It is mainly determined by the last updated sensor that

whether one target can be estimated or not. Therefore, nd and

nm in (67) are the numbers of targets detected and undetected

by the last updated sensor respectively, and nd + nm = n.

sm is the number of sensors which miss detect the target con-

tinuously in reverse order. (67) indicates that w
PM-PHD
Miss-detection

decreases rapidly and becomes extremely inaccurate with the

increase of sm (sm ≪ s). Since the PM-PHD filter with larger

sm performs poor, sm is set to be 1 here. Then, (67) can be

rewritten as

W PM − PHD
Miss-Detection

=
1 − P̄D,k

nd + nm ·
(

1 − P̄D,k

) · n

=
1 − P̄D,k

n− nm · P̄D,k

· n (68)

FIGURE 12. The curves of weights of targets estimated by the TS-PM-PHD
filter with different 1n (1s = 0.25). (a) Undetected target. (b) Detected
target.

Similarly, the weight estimated by the PM-PHD filter of

the detected targets can be approximated as

W PM − PHD
Detection

= =
1

nd + nm ·
(

1 − P̄D,k

)sm
· n

=
1

n− nm · P̄D,k

· n (69)

For the TS-PM-PHD filter, the weights of the undetected

and detected targets can be approximated as

W TS − PM − PHD
Miss-detection

=

(1−P̄D,k)·sm+sd
s

nd + nm ·
(1−P̄D,k)·sm+sd

s

· n

=
s− sm · P̄D,k

n · s− nm · sm · P̄D,k

· n (70)

W TS − PM − PHD
Detection

=
1

nd + nm ·
(1−P̄D,k)·sm+sd

s

· n

=
s

n · s− nm · sm · P̄D,k

· n (71)

In (70) and (71), nd denotes the number of targets

detected by all sensors, nm denotes the number of targets

undetected by at least one sensor, and nd + nm = n.

For a target, sd and sm denote the numbers of sensors

which detect and miss detect the target, respectively, and
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FIGURE 13. The curves of weights of targets estimated by the TS-PM-PHD
filter with different 1s (1n = 0.25). (a) Undetected target. (b) Detected
target.

sd + sm = s. Table 6 gives the influences of variables

(nd , nm, n, sd , sm, s, P̄D,k ) in (68)-(71).

In Table 6, ↑ and ↓ denote increase and decrease respec-

tively, and — denotes unchanged. To illustrate Table 6 intu-

itively, (68)-(71) can be rewritten by

W PM − PHD
Miss-detection

=
1 − P̄D,k

1 − 1n · P̄D,k

(72)

W PM − PHD
Detection

=
1

1 − 1n · P̄D,k

(73)

W TS − PM − PHD
Miss-detection

=
1 − 1s · P̄D,k

1 − 1n · 1s · P̄D,k

(74)

W TS − PM − PHD
Detection

=
1

1 − 1n · 1s · P̄D,k

(75)

Here, 1n = nm
/

n denotes the ratio of undetected targets in

all targets, and 1s = sm
/

s denotes the ratio of the sensors

whichmiss detect targets in all sensors. The curves of weights

of targets estimated by the PM-PHD filter and the TS-PM-

PHD filter with 1n and 1s are shown in Fig. 10- Fig. 13.

As shown in Fig. 10(a), the weight of the undetected targets

increases with the increase of 1n, and the PM-PHD filter

begins to estimate the undetected targets correctly. However,

in Fig. 10(b), with the increase of 1n, the weight of the

detected targets increases much faster than that of the unde-

tected targets. And thus the PM-PHD filter may estimate

multiple false targets. Fig. 10 and Fig. 11 show that the

performance of the TS-PM-PHD filter is the same as that

of the PM-PHD filter at the extreme case of 1s = 1. (74)

and (75) indicate that the performance of the TS-PM-PHD

filter is improved with the decrease of 1s. In Fig. 12, when

1s = 0.25, the TS-PM-PHD filter can estimate the weights

of the undetected targets and the detected targets effectively.

Furthermore, false targets are not estimated by the TS-PM-

PHD filter. In Fig. 13, the undetected targets cannot be esti-

mated by the TS-PM-PHD filter in a few cases (1s ≥ 0.6

and PD,k ≥ 0.7), but the weight of the detected target is still

within a normal range. Therefore, targets can be estimated

correctly by the TS-PM-PHD filter in most situations.

VI. CONCLUSION

In this paper, an improved version of the PM-PHD filter is

proposed to modify state estimation. The proposed algorithm

is dependent on the combination of factors, instead of the

measurements. Firstly, the number of targets and normal-

ized PHDs of all combinations are fused, respectively. Then,

the state and the number of targets can be estimated by

the fusion results, simultaneously. Theoretical analysis and

simulation show that the proposed method is insensitive to

the sensor parameters and performs well in both the state esti-

mation and cardinality estimation. Some assumptions have

been made to facilitate the implementation of the TS-PM-

PHD filter, but these assumptions limit the application of

the algorithm. In the future work, the proposed method will

be used to deal with more practical engineering problems,

such as partially/non-overlapped FoV [35] and heterogeneous

sensor networks [36]. Therefore, we will take the detection

probability, FoV, and observation noise of sensors into con-

sideration when designing (40) and (44).

APPENDIX

In (38), each combination consists of n, l1n , . . . , l
s
n and

W 1
r,l1n

, . . . ,W s
r,lsn

. If n, l1n , . . . , l
s
n and W 1

r,l1n
, . . . ,W i′−1

r,li
′−1
n

,

W i′+1

r,li
′+1
n

, . . . ,W s
r,lsn

are given, the measurement subsets in

Di′

li
′
n

4 Zi
′

k will generate C
li

′
n

i′
m

combinations. Then, the fusion

result of the C
li

′
n

i′
m

combinations is computed by (76), as shown

at the top of the next page.

υ i
′

Di′

li
′
n

4Zi
′

k

(x) =

∑

W i′

r,li
′
n

∈Di′

li
′
n

4Zi
′

k

υ i
W i

r,lin

(X) ·
∏

z∈W i′

r,li
′
n

D
[

L i
′

z

]

∑

W i′

r,li
′
n

∈Di′

li
′
n

4Zi
′

k

∏

z∈W i′

r,li
′
n

D
[

L i
′

z

]

=
∑

W i′

r,li
′
n

∈Di′

li
′
n

4Zi
′

k

wi
W i

r,lin

· υ i
W i

r,lin

(X) (77)
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n,l1n ,...,l

s
n,W

1

r,l1n
,...,W i′−1

r,li
′−1
n

,W i′+1

r,li
′+1
n

,...,W s
r,lsn

,Di′

li
′
n

4 Zi
′

k

=

(

1...s

Nk|k−1 · η

)n

n! ·
∑

n≥0

L (n)
·

s
∏

i=1

ϕin

(

l in

)

·
∏

1 ≤ i ≤ s

i 6= i′

∏

z∈W i

r,lin

D
[

L iz

]

·

×
1

s
·











∑

W i′

r,li
′
n

∈Di′

li
′
n

4Zi
′

k

∏

z∈W i′

r,li
′
n

D
[

L i
′

z

]

· υ
∑

1 ≤ i ≤ s

i 6= i′

si
W i

r,lin

(x) +
∑

W i′

r,li
′
n

∈Di′

li
′
n

4Zi
′

k

υ i
W i

r,lin

(x) ·
∏

z∈W i′

r,li
′
n

D
[

L i
′

z

]











=

(

1...s

Nk|k−1 · η

)n

n! ·
∑

n≥0

L (n)
·

s
∏

i=1

ϕin

(

l in

)

·
∏

1 ≤ i ≤ s

i 6= i′

∏

z∈W i

r,lin

D
[

L iz

]

· S i
′

n,li
′
n

(

Zi
′

k

)

·









∑

1 ≤ i ≤ s

i 6= i′

υ i
W i

r,lin

(x) + υ i
′

Di′

li
′
n

4Zi
′

k

(x)









s
(76)

9
n,l1n ,...,l

i′−1
n ,li

′+1
n ...,lsn,l̂

i′
n

=

(

1,...,s

N k|k−1 · η

)n

n! ·
∑

n≥0

L (n)
·

∏

1 ≤ i ≤ s
i 6= i′

ϕin

(

l in

)

· S i
n,lin

(

Zik

)

·

×
1

s
·











l̂i
′
n
∑

li
′
n =0

ϕi
′

n

(

l i
′

n

)

· S i
′
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′
n

(

Zi
′

k

)

·
∑

1 ≤ i ≤ s
i 6= i′

υ i
Di

lin
4Zik

(X) +

l̂i
′
n
∑

li
′
n =0

ϕi
′

n

(

l i
′

n

)

· S i
′

n,li
′
n

(

Zi
′

k

)

· υ i
′

Di′

li
′
n

4Zi
′

k

(X)











=

(

1,...,s

N k|k−1 · η

)n

n! ·
∑

n≥0

L (n)
·

∏

1 ≤ i ≤ s
i 6= i′

ϕin

(

l in

)

· S i
n,lin

(

Zik

)

· ℓi
′

Zi
′

k

(n) ·









∑

1 ≤ i ≤ s
i 6= i′

υ i
Di

lin
4Zik

(X) + υ i
′

n (X)









s
(79)

In (77), the weighted sum of υ i
W i

r,lin

(x) is υ i
′

Di′

li
′
n

4Zi
′

k

(x), and

υ i
′

Di′

li
′
n

4Zi
′

k

(x) is the normalized PHD of Di

lin
4 Zik . w

i

W i

r,lin

is

the weight of υ i
W i

r,lin

(x).

When i′ = 1, . . . , s, the fusion result of the combinations

that have the same factors n, l1n , . . . , l
s
n can be obtained by

9n,l1n ,...,l
s
n,D

1

l1n
4 Z1

k ,...,D
s
lsn

4 Zsk

=

(

1,...,s

N k|k−1 · η

)n

n! ·
∑

n≥0

L (n)
·

s
∏

i=1

ϕin

(

l in

)

·

×S i
n,lin

(

Zik

)

·

s
∑

i=1

υ i
Di

lin
4Zik

(x)

s
(78)

If factors n and l1n , . . . , l
i′−1
n , l i

′+1
n . . . , lsn are given,

the number of detected targets l i
′

n of the i′th sensor will

generate l̂ i
′

n combinations. Then, the fusion result of these

combinations is computed by (79), as shown at the top of this

page, and (80).

υ i
′

n (x) =

l̂i
′
n
∑

li
′
n =0

ϕi
′

n

(

l i
′

n

)

· S i
′

n,li
′
n

(

Zi
′

k

)

· υ i
′

Di′

li
′
n

4Zi
′

k

(x)

l̂i
′
n
∑

li
′
n =0

ϕi
′

n

(

l i
′
n

)

· S i
′

n,li
′
n

(

Zi
′

k

)

=

l̂i
′
n
∑

li
′
n =0

wi
′

Di′

li
′
n

4Zi
′

k

· υ i
′

Di′

li
′
n

4Zi
′

k

(x) (80)
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In (80), the weighted sum of υ i
′

Di′

li
′
n

4zi
′

k

(x) is υ i
′

n (x), and

υ i
′

n (x) is the normalized PHD of the i′th sensor. wi
′

Di′

li
′
n

4zi
′

k

is

the weight of υ i
′

Di′

li
′
n

4zi
′

k

(x).

When i′ = 1, . . . , s, the fusion result of the combinations

that have the same factor n can be obtained by

9
n,l̂1n ,...,l̂

s
n

=

(

1,...,s

N k|k−1 · η

)n

n! ·
∑

n≥0

L (n)
·

s
∏

i=1

ℓi
zik

(n) ·
1,...,s
υ n (x)

=
1,...,s
w n ·

1,...,s
υ n (x) (81)

1,...,s
υ n (x) =

s
∑

i=1

1

s
· υ in (x) =

s
∑

i=1

win · υ in (x) (82)

Then, for n ≥ 0, we have

1,...,s
υ k|k (x) =

∑

n≥0

9
n,l̂1n ,...,l̂

s
n

=
1,...,s
w n ·

1,...,s
υ n (x) (83)

The proofs of (43)-(46) are complete.
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