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Abstract

A family of loss functions built on pair-based computa-

tion have been proposed in the literature which provide a

myriad of solutions for deep metric learning. In this pa-

per, we provide a general weighting framework for under-

standing recent pair-based loss functions. Our contribu-

tions are three-fold: (1) we establish a General Pair Weight-

ing (GPW) framework, which casts the sampling problem of

deep metric learning into a unified view of pair weighting

through gradient analysis, providing a powerful tool for un-

derstanding recent pair-based loss functions; (2) we show

that with GPW, various existing pair-based methods can be

compared and discussed comprehensively, with clear differ-

ences and key limitations identified; (3) we propose a new

loss called multi-similarity loss (MS loss) under the GPW,

which is implemented in two iterative steps (i.e., mining and

weighting). This allows it to fully consider three similarities

for pair weighting, providing a more principled approach

for collecting and weighting informative pairs. Finally, the

proposed MS loss obtains new state-of-the-art performance

on four image retrieval benchmarks, where it outperforms

the most recent approaches, such as ABE[14] and HTL

[4], by a large margin, e.g., 60.6% → 65.7% on CUB200,

and 80.9% → 88.0% on In-Shop Clothes Retrieval dataset

at Recall@1. Code is available at https://github.

com/MalongTech/research-ms-loss

1. Introduction

Metric learning aims to learn an embedding space, where

the embedded vectors of similar samples are encouraged to

be closer, while dissimilar ones are pushed apart from each

other [22, 23, 39]. With recent great success of deep neural

networks in computer vision, deep metric learning has at-

tracted increasing attention, and has been applied to various

tasks, including image retrieval [37, 8, 5], face recognition
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Figure 1. Objective of the proposed multi-similarity loss, which

aims to collect informative pairs, and weight these pairs through

their own and relative similarities.

[36], zero-shot learning [42, 1, 15], visual tracking [19, 31]

and person re-identification [41, 9].

Many recent deep metric learning approaches are built

on pairs of samples. Formally, their loss functions can be

expressed in terms of pairwise cosine similarities in the

embedding space1. We refer to this group of methods as

pair-based deep metric learning; and this family includes

contrastive loss [6], triplet loss [10], triplet-center loss [8],

quadruplet loss [18], lifted structure loss [25], N-pairs loss

[29], binomial deviance loss [40], histogram loss [32], an-

gular loss [34], distance weighted margin-based loss [38],

hierarchical triplet loss (HTL) [4], etc. For these pair-based

methods, training samples are constructed into pairs, triplets

or quadruplets, resulting a polynomial growth of training

pairs which are highly redundant and less informative. This

gives rise to a key issue for pair-based methods, where train-

ing with random sampling can be overwhelmed by redun-

dant pairs, leading to slow convergence and model degener-

ation with inferior performance.

Recent efforts have been devoted to improving sampling

schemes for pair-based metric learning techniques. For ex-

1For simplicity, we use a cosine similarity instead of Euclidean dis-

tance, by assuming an embedding vector is L2 normalized.
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ample, Chopra et al. [3] introduced a contrastive loss which

discards negative pairs whose similarities are smaller than a

given threshold. In triplet loss [10], a negative pair is sam-

pled by using a margin computed from the similarity of a

randomly selected positive pair. Alternatively, lifted struc-

ture loss [25] and N-pairs loss [29] introduced new weight-

ing schemes by designing a smooth weighting function to

assign a larger weight to a more informative pair. Though

driven by different motivations, these methods share a com-

mon goal of learning from more informative pairs. Thus,

sampling such informative pairs is the key to pair-based

deep metric learning, while precisely identifying these pairs

is particularly challenging, especially for the negative pairs

whose number is quadratic to the size of dataset.

In this work, we cast the sampling problem of deep met-

ric learning into a general pair weighting formulation. We

investigated various weighting schemes of recent pair-based

loss functions, attempted to understand their insights more

deeply, and identify key limitations of these approaches.

We observed that a key factor that impacts pair weight-

ing is to compute multiple types of similarities for a pair,

which can be defined as self-similarity and relative similar-

ity, where the relative similarity is heavily dependent on the

other pairs. Furthermore, we found that most existing meth-

ods only explore this factor partially, which limits their ca-

pability considerably. For example, contrastive loss [6] and

binomial deviance loss [40] only consider the cosine sim-

ilarity of a pair, while triplet loss [10] and lifted structure

loss [25] mainly focus on the relative similarity. We pro-

pose a multi-similarity loss which fully considers multiple

similarities during sample weighting. The major contribu-

tions of this paper are summarized as follows.

– We establish a General Pair Weighting (GPW) frame-

work, which formulates deep metric learning into a

unified view of pair weighting. It provides a general

formulation for understanding and explaining various

pair-based loss functions through gradient analysis.

– We analyze the key factor that impacts pair weight-

ing with GPW, where various pair-based methods can

be analyzed comprehensively, with main differences

and key limitations clearly identified. This allows us

to define three types of similarities for a pair: a self-

similarity and two relative similarities. The relative

similarities are computed by comparing to other pairs,

which are of great importance to existing pair-based

methods.

– We propose a new multi-similarity (MS) loss, which is

implemented using two iterative steps with sampling

and weighting, as shown in Fig. 1. MS loss consid-

ers both self-similarity and relative similarities which

enables the model to collect and weight informative

pairs more efficiently and accurately, leading to boosts

in performance.

– MS loss is evaluated extensively on a number of bench-

marks for image retrieval, where it outperforms cur-

rent state-of-the-art approaches by a large margin, e.g.,

improving recent ABE [14] with +5.0% Recall@1 on

CUB200, and HTL [4] with +7.1% Recall@1 on In-

Shop Clothes Retrieval dataset.

2. Related Work

Classical pair-based loss functions. Siamese network

[6] is a representative pair-based method that learns an em-

bedding via contrastive loss. It encourages samples from a

positive pair to be closer, and pushes samples from a neg-

ative pair apart from each other, in the embedding space.

Triplet loss was introduced in [10] by using triplets as train-

ing samples. Each triplet consists of a positive pair and a

negative pair by sharing the same anchor point. Triplet loss

aims to learn an embedding space where the similarity of a

negative pair is lower than that of a positive one, by giving

a margin. Extended from triplet loss, quadruplets were also

applied in recent work, such as histogram loss [32].

Recently, Song et al. [25] argued that both contrastive

loss and triplet loss are difficult to explore full pair-wise re-

lations between samples in a mini-batch. They proposed

a lifted structure loss attempted to fully utilize such pair-

wise relations. However, the lifted structure loss only sam-

ples approximately an equal number of negative pairs as

the positive ones randomly, and thus discards a large num-

ber of informative negative pairs arbitrarily. In [40], Dong

et al. proposed a binomial deviance loss by using a bino-

mial deviance to evaluate the cost between labels and sim-

ilarity, which emphasizes harder pairs. In this work, we

propose a multi-similarity loss able to explore more mean-

ingful pair-wise relations by jointly considering both self-

similarity and the relative similarities.

Hard sample mining. Pair-based metric learning of-

ten generates a large amount of pair-wise samples, which

are highly redundant and include many uninformative sam-

ples. Training with random sampling can be overwhelmed

by these redundant samples, which significantly degrade the

model capability and also slows the convergence. There-

fore, sampling plays a key role in pair-based metric learn-

ing.

The importance of hard negative mining has been dis-

cussed extensively [28, 7, 38, 4]. Schroff et al. [28] pro-

posed a semi-hard mining scheme by exploring semi-hard

triplets, which are defined to have a negative pair farther

than the positive one. However, such semi-hard mining

method only generates a small number of valid semi-hard

triplets, so that it often requires a large batch-size to gener-

ate sufficient semi-hard triplets, e.g., 1800 as suggested in
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[28]. Harwood et al. [7] provided a framework named smart

mining to collect hard samples from the whole dataset,

which suffers from off-line computation burden. Recently,

Ge et al. [4] proposed a hierarchical triplet loss (HTL)

which builds a hierarchical tree of all classes, where hard

negative pairs are collected via a dynamic margin. Sam-

pling matters in deep embedding learning was discussed in

[38], and a distance weighted sampling was proposed to col-

lect negative samples uniformly with respective to the pair-

wise distance. Unlike these methods which mainly focus on

sampling or hard sample mining, we provide a more gener-

alized formulation that casts sampling problem into general

pair weighting.

Instance weighting. Instance weighting has been

widely applied to various tasks. For example, Lin et al.

[20] proposed a focal loss that allows the model to focus on

hard negative examples during training an object detector.

In [2], an active bias learning was developed to emphasize

high variance samples in training a neural network for clas-

sification. Self-paced learning [17], which pays more at-

tention on samples with a higher confidence, was explored

to design noise-robust algorithms [12]. These approaches

[20, 13, 2, 17] were developed for weighting individual in-

stances that are only depended on itself (referred as self-

similarity), while our method aims to compute both self-

similarity and the relative similarities, which is a more com-

plicated problem that requires to measure multiple sample

correlations within a local data distribution.

3. General Pair Weighting (GPW)

In this section, we formulate the sampling problem of

metric learning into a unified weighting view, and provide

a general pair weighting (GPW) framework for analyzing

various pair-based loss functions.

3.1. GPW Framework

Let xi ∈ R
d be a real-value instance vector. Then we

have an instance matrix X ∈ R
m×d, and a label vector

y ∈ {1, 2, . . . , C}m for the m training samples respec-

tively. Then an instance xi is projected onto a unit sphere

in a l-dimension space by f(·;θ) : Rd → Sl, where f is a

neural network parameterized by θ. Formally, we define the

similarity of two samples as Sij
..=< f(xi;θ), f(xj ;θ) >,

where < ·, · > denotes dot product, resulting in an m ×m

similarity matrix S whose element at (i, j) is Sij .

Given a pair-based loss L, it can be formulated as a func-

tion in terms of S and y: L(S,y). The derivative with

respect to model parameters θ at the t-th iteration can be

calculated as:

∂L(S,y)

∂θ

∣

∣

∣
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∣

∣
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.

(1)

Eq. 1 is computed for optimizing model parameters θ in

deep metric learning. In fact, Eq. 1 can be reformulated

into a new form for pair weighting through a new function

F , whose gradient w.r.t. θ at the t-th iteration is computed

exactly the same as Eq. 1. F is formulated as below:

F(S,y) =

m
∑

i=1

m
∑

j=1

∂L(S,y)

∂Sij

∣

∣

∣

∣

t

Sij . (2)

Note that
∂L(S,y)
∂Sij

∣

∣

t
is regarded as a constant scalar that

not involved in the gradient of F w.r.t. θ.

Since the central idea of deep metric learning is to en-

courage positive pairs to be closer, and push negatives apart

from each other. For a pair-based loss L, we can assume
∂L(S,y)
∂Sij

∣

∣

t
> 0 for a negative pair, and

∂L(S,y)
∂Sij

∣

∣

t
6 0 for a

positive pair. Thus, F in Eq. 2 can be transformed into the

form of pair weighting as follows:

F =

m
∑

i=1





m
∑

yj 6=yi
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∂Sij
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∣
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t
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m
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wijSij −
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(3)

where wij =

∣

∣

∣

∣

∂L(S,y)
∂Sij

∣

∣

t

∣

∣

∣

∣

.

As indicted in Eq. 3, a pair-based method can be for-

mulated as weighting of pair-wise similarities, where the

weight for pair {xi,xj} is wij . Learning with a pair-based

loss function L is now transformed from Eq. 1 into comput-

ing the weight of pairs in Eq. 3. It is a general pair weighting

(GPW) formulation, and sampling is only one of its special

cases.

3.2. Revisit Pair­based Loss Functions

To demonstrate the generalization ability of GPW frame-

work, we revisit four typical pair-based loss functions for

deep metric learning: contrastive loss [6], triplet loss [10],

binomial deviance loss [40] and lifted structure loss [25].

Contrastive loss. Hadsell et al. [6] proposed a Siamese

network, where a contrastive loss was designed to encour-

age positive pairs to be as close as possible, and negative

pairs to be apart from each other over a given threshold, λ:

Lcontrast
..= (1− Iij)[Sij − λ]+ − IijSij , (4)
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where Iij = 1 indicates a positive pair, and 0 for a neg-

ative one. By computing partial derivative with respect to

Sij in Eq. 4, we can find that all positive pairs and hard

negative pairs with Sij > λ are assigned with an equal

weight. This is a simple and special case of our pair weight-

ing scheme, without considering any difference between the

selected pairs.

Triplet loss. In [10], a triplet loss was proposed to learn a

deep embedding, which enforces the similarity of a negative

pair to be smaller than that of a randomly selected positive

one over a given margin λ:

Ltriplet := [San − Sap + λ]+, (5)

where San and Sap denote the similarity of a negative pair

{xa,xn}, and a positive pair {xa,xp}, with an anchor sam,

eplxa. According to the gradient computed for Eq. 5, a

triplet loss weights all pairs equally on the valid triplets

which are selected by San + λ > Sap, while the triplets

with San+λ 6 Sap are considered as less informative, and

are discarded. Triplet loss is different from contrastive loss

on pair selection scheme, but both methods consider all the

selected pairs equally, which limits their ability to identify

more informative pairs among the selected ones.

Lifted Structure Loss. Song et al. [25] designed a lifted

structure loss, which was further improved to a more gener-

alized version in [9]. It utilizes all the positive and negative

pairs among the mini-batch as follows:

Llifted
..=

m
∑

i=1

[

log
∑

yk=yi

eλ−Sik + log
∑

yk 6=yi

eSik

]

+

, (6)

where λ is a fixed margin.

In Eq. 6, when the hinge function of an anchor xi returns

a non-zero value, we can have a weight value, wij , for the

pair {xi,xj}, by differentiating Llifted on Sij , according

to Eq. 3. Then the weight for a positive pair is computed as:

w+
ij =

eλ−Sij

∑

yk=yi
eλ−Sik

=
1

∑

yk=yi
eSij−Sik

, (7)

and the weight for a negative pair is:

w−
ij =

eSij

∑

yk 6=yi
eSik

=
1

∑

yk 6=yi
eSik−Sij

. (8)

Eq. 7 shows that the weight for a positive pair is determined

by its relative similarity, measured by comparing it to the

remained positive pairs with the same anchor. The weight

for a negative pair is computed similarly based on Eq. 8.

Binomial Deviance Loss. Dong et al. introduced bino-

mial deviance loss in [40], which utilizes softplus function

instead of hinge function in contrastive loss:

Lbinomial =
m
∑

i=1

{

1

Pi

∑

yj=yi

log
[

1 + eα(λ−Sij)
]

+

1

Ni

∑

yj 6=yi

log
[

1 + eβ(Sij−λ)
]

}

,

(9)

where Pi and Ni denote the numbers of positive pairs and

negative pairs with anchor xi, respectively. λ, α, β are fixed

hyper-parameters.

The weight for pair {xi,xj} is wij in Eq. 1, which can

be derived from differentiating Lbinomial on Sij as:

w+
ij =

1

Pi

αeα(λ−Sij)

1 + eα(λ−Sij)
, yj = yi

w−
ij =

1

Ni

βeβ(Sij−λ)

1 + eβ(Sij−λ)
, yj 6= yi

(10)

As can be found, binomial deviance loss is a soft version

of contrastive loss. In Eq. 3, a negative pair with a higher

similarity is assigned with a larger weight, which means that

it is more informative, by distinguishing two similar sam-

ples from different classes (which form a negative pair).

4. Multi-Similarity Loss

In this section, we first analyze three types of similarities

that impact sample selection and weighting in deep met-

ric learning. Then we propose a multi-similarity loss that

jointly considers all three similarities with iterative sample

mining and weighting.

4.1. Multiple Similarities

Though with diverse formulations, various pair-based

loss functions, which commonly focus on learning from

more informative pairs, can be cast into a pair weighting

problem within our GPW framework. Furthermore, we ob-

served that most pair-based approaches weight the pairs

based on either self cosine similarities or relative similar-

ities compared with other pairs. For simplicity, we take a

negative pair as an example to describe three different types

of similarities we defined. Analysis of a positive pair is

similar. The three similarities for pair-based methods are

described as follows.

S: Self-similarity. A self-similarity is computed from

the pair itself, which is the most important similarity. A

negative pair with a larger cosine similarity means that it

is harder to distinguish two paired samples from differ-

ent classes. Such pairs are referred as hard negative pairs,

which are more informative and meaningful to learn dis-

criminative features. Contrastive loss [6] and binomial de-

viance loss [40] are based on this criterion. As shown in

case-1 of Fig. 2, the weights of three negative pairs are in-

creased, when the negative samples come closer.
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Figure 2. Violations of the three similarities for negative pairs. Case-1: The negative pairs’ cosine similarities increase as they come closer

to the anchor; case-2: Relative similarity compared with negatives decreases as the other negatives’ cosine similarities increase; case-3:

Relative similarity decrease as relevant positive pairs become closer.

N-pairs NCA Histogram contrastive Triplet LiftedStruct Binomial BinLifted MS

S ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

N ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

P ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

Table 1. This table shows similarities that these pair-based methods utilize to assign weight on one negative pair. In the first column of this

table is the three perspectives ‘S’ : the Similarity of itself; ‘N’: similarity compared with remaining Negative pairs shared the anchor point;

‘P’: similarity compared with Positive pairs of the same anchor.

Obviously, self-similarity is difficult to fully describe

sample distribution in an embedding space, and correlations

of other pairs can make significant impact to similarity mea-

surement. We introduce relative similarities by considering

all pairs which have a same anchor with current pair, and

define two type of relative similarities.

N: Negative relative similarity. It is computed by con-

sidering the relationship from neighboring negative pairs.

As described in case-2 of Fig. 2, the relative similarity

of a pair is decreased, even when its self-similarity is un-

changed. This is because its neighboring negative samples

move closer, which increases the self-similarities of these

neighboring pairs, and thus reduce the relative similarity.

Lifted structure loss [25] is based on this relative similarity,

as shown in Eq. 8.

P: Positive relative similarity. Similarly, the relative

similarity also considers the relationship from other positive

pairs (with a same anchor). As shown in case-3 of Fig. 2,

when these positive samples become closer to the anchor,

the relative similarity of current pair is decreased, and thus

the pair weight should be reduced accordingly. Triplet loss

is computed based on this similarity, as indicated in Eq. 5.

With our GPW framework, we analyze a number of ex-

isting pair-based loss functions based on the three similari-

ties defined, and compare them in Table 1. Detailed formu-

lations of these functions are presented in Supplementary

Material. As can be found, lifted structure loss only con-

siders the negative relative similarity, by comparing with

the negative neighboring pairs for weighting. The weight

of current pair will be unchanged, when all positive sam-

ples (in case-1 of Fig. 2) or all negative samples (in case-3

of Fig. 2) move synchronously to the anchor. This conclu-

sion can also be derived directly from Eq. 8, which only de-

pends on
∑

yk=yi
eSij−Sik . Obviously, such relevant sam-

ples (positive or negative) often include meaningful infor-

mation, and are of great importance to learning discrimi-

native features, but are discarded arbitrarily, which may re-

duce model capability considerably. While a weighting or

sampling method based on each individual similarity has

been explored previously, to the best of our knowledge,

none of existing pair-based methods have assigned weights

on pairs making full use of all the three similarities.

4.2. Multi­Similarity Loss

As discussed, unlike sampling or weighting schemes de-

veloped for classification and detection tasks in [2, 20],

where the weight of an instance is computed individually

based on a cross entropy loss, it is difficult to precisely mea-

sure the informativeness of a pair based on its individual co-

sine similarity. Pair-wise similarity between relevant sam-

ples or pairs should be considered, making the measurement

and weighting problems more complicated and challenging.

As shown in Table 1, each of the listed approaches can

consider one or two of the three similarities. To the best

our knowledge, none of the existing pair-based methods

can consider all of the three similarities simultaneously. To

this end, we propose a Multi-Similarity (MS) loss, which

consider all three perspectives by implementing a new pair

weighting scheme using two iterative steps: mining and

weighting. (i) informative pairs are first sampled by mea-
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suring Similarity-P; and then (ii) the selected pairs are fur-

ther weighted using Similarity-S and Similarity-N jointly.

Details of the two steps are described as follows.

Pair mining. We first select informative pairs by com-

puting Similarity-P, which measures the relative similar-

ity between negative↔positive pairs having a same anchor.

Specifically, a negative pair is compared to the hardest posi-

tive pair (with the lowest similarity), while a positive pair is

sampled by comparing to a negative one having the largest

similarity. Formally, assume xi is an anchor, a negative pair

{xi,xj} is selected if Sij satisfies the condition:

S−
ij > min

yk=yi

Sik − ǫ, (11)

where ǫ is a given margin.

If {xi,xj} is a positive pair, the condition is:

S+
ij < max

yk 6=yi

Sik + ǫ. (12)

For an anchor xi, we denote the index set of its se-

lected positive and negative pairs as Pi and Ni respectively.

Our hard mining strategy is inspired by large margin near-

est neighbor (LMNN) [35], a traditional distance learning

approach which targets to seek an embedding space where

neighboring positive points are encouraged to have the same

class label with the anchor. The negative samples that sat-

isfy Eq. 11 are approximately identical to impostors defined

in LMNN [35].

Pair weighting. Pair mining with Similarity-P can

roughly select informative pairs, and discard the less in-

formative ones. We develop a soft weighting scheme that

further weights the selected pairs more accurately, by con-

sidering both Similarity-S and Similarity-N. Our weighting

mechanism is inspired by binomial deviance loss (consider-

ing similarity-S) and lifted structure loss (using Similarity-

N). Specifically, given a selected negative pair {xi,xj} ∈
Ni, its weight w−

ij can be computed as:

w−
ij =

1

eβ(λ−Sij) +
∑

k∈Ni

eβ(Sik−Sij)

=
eβ(Sij−λ)

1 +
∑

k∈Ni

eβ(Sik−λ)
.

(13)

and the weight w+
ij of a positive pair {xi,xj} ∈ Pi is:

w+
ij =

1

e−α(λ−Sij) +
∑

k∈Pi

e−α(Sik−Sij)
,

(14)

where α, β, λ are hyper-parameters as in Binomial deviance

loss (Eq. 9).

In Eq. 13, the weight of a negative pair is computed

jointly from its self-similarity by eβ(λ−Sij) - Similarity-S,

and its relative similarity - Similarity-N, by comparing to its

negative pairs. Similar rules are applied for computing the

weight for a positive pair, as in Eq. 14. With these two con-

siderations, our weighting scheme updates the weights of

pairs dramatically to the violation of its self-similarity and

relative similarities.

The weight computed by Eq. 13 and Eq. 14 can be con-

sidered as a combination of the weight formulations of bi-

nomial deviance loss and lifted structure loss. However, it

is non-trivial to combine both functions in an elegant and

suitable manner. We will compare our MS weighting with

an average weighting scheme of binomial deviance (Eq.

10) and lifted structure (Eq. 8), denoted as BinLifted. We

demonstrate by experiments that direct combination of them

can not lead to performance improvement (as shown in ab-

lation study).

Finally, we integrate pair mining and weighting scheme

into a single framework, and provide a new pair-based loss

function - multi-similarity (MS) loss, whose partial deriva-

tive with respect to Sij is the weight defined in Eq. 13 and

Eq. 14. Our MS loss is formulated as,

LMS =
1

m

m
∑

i=1

{

1

α
log

[

1 +
∑

k∈Pi

e−α(Sik−λ)
]

+
1

β
log

[

1 +
∑

k∈Ni

eβ(Sik−λ)
]

}

.

(15)

where LMS can be minimized with gradient descent op-

timization, by simply implementing the proposed iterative

pair mining and weighting.

5. Experiments

Our method was implemented by PyTorch. For network

architecture, we used the Inception network with batch nor-

malization [11] pre-trained on ILSVRC 2012-CLS [27], and

fine-tuned it for our task. We add a FC layer on the top of

the network following the global pooling layer. All the input

images were cropped to 224× 224. For data augmentation,

we used random crop with random horizontal mirroring for

training, and single center crop for testing. Adam optimizer

was used for all experiments.

We conduct experiments on four standard datasets:

CUB200 [33], Cars-196 [16], Stanford Online Products

(SOP) [25] and In-Shop Clothes Retrieval (In-Shop) [21].

We follow the data split protocol applied in [25]. For the

CUB200 dataset, we use the first 100 classes with 5,864 im-

ages for training, and the remaining 100 classes with 5,924

images for testing. The Cars-196 dataset is composed of

16,185 images of cars from 196 model categories. The first

98 model categories are used for training, with the rest for

testing. For the SOP dataset, we use 11,318 classes for

training, and 11,316 classes for testing. For the In-Shop
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Recall@K (%) 1 2 4 8

Binomial S 71.9 80.0 86.4 91.0

LiftedStruct∗ N 69.7 79.3 86.2 91.0

MS mining P 67.0 77.4 84.7 90.0

BinLifted SN 70.4 79.5 86.2 91.1

MS weighting SN 73.2 81.5 87.6 92.6

Binomialm SP 74.6 83.8 89.7 94.1

LiftedStruct∗m NP 72.2 81.7 88.0 92.4

MS SNP 77.3 85.3 90.5 94.2

Table 2. This table shows Recall@K of methods on Cars-196. The

first column contains the methods and the similarities they utilize

to weight negative pairs. Embedding dimension is set to 64. The

subscript m denotes employing our MS mining step.

dataset, 3,997 classes with 25,882 images are used for train-

ing. The test set is partitioned to a query set with 14,218 im-

ages of 3,985 classes, and a gallery set having 3,985 classes

with 12,612 images.

For every mini-batch, we randomly choose a certain

number of classes, and then randomly sample M instances

from each class with M = 5 for all datasets in all experi-

ments. ǫ in Eq. 11 and Eq. 12 is set to 0.1 and the hyper-

parameters in Eq. 15 are: α = 2, λ = 1, β = 50, by follow-

ing [32]. Our method is evaluated on image retrieval task

by using the standard performance metric: Recall@K.

5.1. Ablation Study

To demonstrate the importance of weighting the pairs

from multi-similarities, we conduct an ablation study on

Cars-196 and results are shown in Table 2. We describe

LiftedStruct∗, MS mining and MS weighting here, other

methods have already been mentioned in section 3.

LiftedStruct∗. Lifted structure loss is easy to get stuck

in a local optima, resulting in poor performance. To eval-

uate the efficiency of three similarities more clearly and

fairly, we make a minor modification to the lifted structure

loss, allowing it to employ Similarity-N more effectively:

Llift∗ =
1

m

m∑

i=1

{

1

α
log

∑

yk=yi

e
−αSik +

1

β
log

∑

yk 6=yi

e
βSik

}

,

(16)

where α = 2, β = 50. This modification is motivated to

make lift structure loss more focus on informative pairs, es-

pecially the hard negative pairs, and allows it to get rid of

the side effect of enormous easy negative pairs. We found

that this modification can boost the performance of lifted-

structure loss empirically, e.g., with an over 20% improve-

ment of Recall@1 on the CUB200 .

MS mining. To investigate the impact of each compo-

nent of MS Loss, we evaluate the performance of MS min-

ing individually, where the pairs selected into Ni and Pi are

assigned with an equal weight.

MS weighting. Similarly, MS weighting scheme is also

evaluated individually without the mining step in the abla-

tion study, allowing us to analyze the effect of each similar-

ity more perspicaciously. In MS weighting, each pair in a

mini-batch is assigned with a non-zero weight, according to

the weighting strategy described in Eq. 13 and Eq. 14.

With the performance reported in Table 2, we analyze

the effect of each similarity as below:

Similarity-S: A cosine self-similarity is of the most

importance. Binomial deviance loss, based on the

Similarity-S, achieves the best performance by using a

single similarity. Moreover, our MS weighting outper-

forms LiftedStruct∗m by 69.7% → 73.2% at recall@1, and

Binomialm also improves the recall@1 with 67.0% →
74.6% over the MS mining, by adding the Similarity-S into

their weighting schemes.

Similarity-N: Relative similarities are also helpful to

measuring the importance of a pair more precisely. With

Similarity-N, our MS weighting increases the Recall@1 by

1.3% over Binomial (71.9% → 73.2%). Moreover, with

Similarity-N, LiftedStruct∗m obtains a significant perfor-

mance improvement over MS sampling (67% → 72.2%),

by considering both Similarity-P and Similarity-N.

Similarity-P: As shown in Table 2, by adding a

mining step based on Similarity-P, the performances of

LiftedStruct∗, Binomial and MS weighting are consistently

improved by a large margin. For instance, Recall@1 of Bi-

nomial is increased by nearly 3%: 71.9% → 74.6%.

Finally, the proposed MS loss achieves the best per-

formance among these methods, by exploring multi-

similarities for pair mining and weighting. However, it is

critical to integrate the three similarities effectively into a

single framework where the three similarities can be fully

explored and optimized jointly by using a single loss func-

tion. For example, BinLifted, which uses a weighting

scheme considering both similarities-S and similarities-N,

has lower performance than that of single Binomial, since

it implements a simple and straightforward combination of

Binomial and LiftedStruct∗m. More discussions on the dif-

ference between our MS weighting and the direct combina-

tion are presented in Supplementary Material.

5.2. On Embedding Size

By following [28], we study the performance of MS loss

with varying embedding sizes {64, 128, 256, 512, 1024}.

As shown in Fig. 3, the performance is increased consis-

tently with the embedding dimension except at 1024. This

is different from lifted structure loss, which achieves its best

performance at 64 on the Cars-196 dataset [25].

5.3. Comparison with State­of­the­Art

We further compare the performance of our method with

the state-of-the-art techniques on image retrieval task. As

shown in Table 3, our MS loss improves Recall@1 by 7%

on the CUB200, and 4% on the Cars-196 over Proxy-NCA
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CUB-200-2011 Cars-196

Recall@K (%) 1 2 4 8 16 32 1 2 4 8 16 32

Clustering 64[30] 48.2 61.4 71.8 81.9 - - 58.1 70.6 80.3 87.8 - -

ProxyNCA64 [24] 49.2 61.9 67.9 72.4 - - 73.2 82.4 86.4 87.8 - -

Smart Mining64 [7] 49.8 62.3 74.1 83.3 - - 64.7 76.2 84.2 90.2 - -

Margin128 [38] 63.6 74.4 83.1 90.0 94.2 - 79.6 86.5 91.9 95.1 97.3 -

HDC384 [30] 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4

HTL512 [4] 57.1 68.8 78.7 86.5 92.5 95.5 81.4 88.0 92.7 95.7 97.4 99.0

ABIER512 [26] 57.5 68.7 78.3 86.2 91.9 95.5 82.0 89.0 93.2 96.1 97.8 98.7

ABE512 [14] 60.6 71.5 79.8 87.4 - - 85.2 90.5 94.0 96.1 - -

MS64 57.4 69.8 80.0 87.8 93.2 96.4 77.3 85.3 90.5 94.2 96.9 98.2

MS512 65.7 77.0 86.3 91.2 95.0 97.3 84.1 90.4 94.0 96.5 98.0 98.9

Table 3. Recall@K(%) performance on CUB200 and Cars-196. Superscript denotes embedding size. ABIER [26] and ABE [14] are

ensemble methods.

64 128 256 512 1024
Embedding Dims

75

77
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81

83

85
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1 

(%
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Figure 3. The effect of embedding size on MS loss

Recall@K (%) 1 10 20 30 40 50

FashionNet4096 [21] 53.0 73.0 76.0 77.0 79.0 80.0

HDC384 [30] 62.1 84.9 89.0 91.2 92.3 93.1

HTL128 [4] 80.9 94.3 95.8 97.2 97.4 97.8

ABIER512 [26] 83.1 95.1 96.9 97.5 97.8 98.0

ABE512 [14] 87.3 96.7 97.9 98.2 98.5 98.7

MS128 88.0 97.2 98.1 98.5 98.7 98.8

MS512 89.7 97.9 98.5 98.8 99.1 99.2

Table 4. Recall@K(%) performance on In-Shop.

Recall@K (%) 1 10 100 1000

Clustering 64[30] 67.0 83.7 93.2 -

ProxyNCA64 [24] 73.7 - - -

Margin128 [38] 72.7 86.2 93.8 98.0

HDC384 [30] 69.5 84.4 92.8 97.7

HTL 512 [4] 74.8 88.3 94.8 98.4

ABIER512 [26] 74.2 86.9 94.0 97.8

ABE512 [14] 76.3 88.4 94.8 98.2

MS64 74.1 87.8 94.7 98.2

MS128 76.6 89.2 95.2 98.4

MS512 78.2 90.5 96.0 98.7

Table 5. Recall@K(%) performance on SOP.

at dimension 64. Compared with ABE employing an em-

bedding size of 512 and attention modules, our MS loss

achieves a higher Recall@1 by +5% improvement at the

same dimension on the CUB200. On the Cars-196, our MS

loss obtains the second best performance in terms of Re-

call@1, while the best results are achieved by ABE, which

applies an ensemble method with a much heavier model.

Moreover, on the remaining three datasets, our MS loss is

of much stronger performance than ABE.

In Table 4 and 5, our MS loss outperforms Proxy-NCA

by 0.4% and Clustering by 7% at the same embedding size

of 64. Furthermore, when compared with ABE, MS loss

increases Recall@1 by 1.9% and 2.7% on the SOP and In-

Shop respectively. Moreover, even with much compact em-

bedding features of 128 dimension, our MS loss has already

surpassed all existing methods, which utilize much higher

dimensions of 384, 512 and 4096.

To summarize, on both fine-grained datasets like Cars-

196 and CUB200, and large-scale datasets with enormous

categories like SOP and In-Shop, our method achieves

new state-of-the-art or comparable performance, even tak-

ing those methods with ensemble techniques like ABE and

BIER into consideration.

6. Conclusion

We have presented a new multi-similarity loss for deep

metric learning, and established a General Pair Weighting

(GPW) framework which, for the first time, unify exist-

ing pair-based metric learning approaches into general pair

weighting through gradient analysis. GPW provides a pow-

erful tool for understanding and explaining various pair-

based loss functions, which allows us to clearly identify the

main differences and key limitations of existing methods.

Furthermore, we proposed a multi-similarity loss which

considers all three similarities simultaneously, and devel-

oped an iterative pair mining and weighting scheme for op-

timizing the multi-similarity loss efficiently. Our method

obtains new state-of-the-art performance on a number of

image retrieval benchmarks.
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