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Abstract

Multiple-choice question answering (MCQA)

is one of the most challenging tasks in ma-

chine reading comprehension since it requires

more advanced reading comprehension skills

such as logical reasoning, summarization, and

arithmetic operations. Unfortunately, most ex-

isting MCQA datasets are small in size, which

increases the difficulty of model learning and

generalization. To address this challenge, we

propose a multi-source meta transfer (MMT)

for low-resource MCQA. In this framework,

we first extend meta learning by incorporat-

ing multiple training sources to learn a gen-

eralized feature representation across domains.

To bridge the distribution gap between train-

ing sources and the target, we further introduce

the meta transfer that can be integrated into

the multi-source meta training. More impor-

tantly, the proposed MMT is independent of

backbone language models. Extensive exper-

iments demonstrate the superiority of MMT

over state-of-the-arts, and continuous improve-

ments can be achieved on different backbone

networks on both supervised and unsupervised

domain adaptation settings.

1 Introduction

Recently, there has been a growing interest in mak-

ing machines to understand human languages, and

a great progress has been made in machine reading

comprehension (MRC). There are two main types

of MRC task: 1) extractive/abstractive question an-

swering (QA) such as SQuAD (Rajpurkar et al.,

2018) and DROP (Dua et al., 2019); 2) multiple-

choice QA (MCQA) such as MultiRC (Khashabi

et al., 2018) and DREAM (Sun et al., 2019a). Dif-

ferent from extractive/abstractive QA whose an-

swers are usually limited to the text spans exist in

the passage, the answers of MCQA may not ap-

pear in the text passage and may involve complex
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Figure 1: Comparison of meta learning and multi-

source meta transfer learning (MMT). “MTL” denotes

meta transfer learning, and “MML” denotes multi-

source meta learning.

language inference. Thus, MCQA usually requires

more advanced reading comprehension abilities, in-

cluding arithmetic operation, summarization, logic

reasoning and commonsense reasoning (Richard-

son et al., 2013; Sun et al., 2019a), and etc. In ad-

dition, the size of most existing MCQA datasets is

much smaller than that of the extractive/abstractive

QA datasets. For instance, all the span-based QA

datasets, except CQ (Bao et al., 2016), contain

more than 100k samples. In contrast, the data size

of most existing MCQA datasets are far less than

100k (see Table 1), and the smallest one only con-

tains 660 samples.

The above two major challenges make MCQA

much more difficult to optimize and generalize,

especially for the low resource issue. In order to

achieve better performance on downstream NLP

tasks, it is inevitable to fine-tune the pre-trained

deep language models (Devlin et al., 2019; Raffel

et al., 2019; Dai et al., 2019; Liu et al., 2019; Yang

et al., 2019) with a large number of supervised

target data for reducing the discrepancy between

the training source and target data. Due to the low

resource nature, the performance of most existing
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MCQA methods is far from satisfactory. To al-

leviate such issue in MCQA, one straightforward

solution is to merge all available data resources for

training (Palmero Aprosio et al., 2019). However,

the data heterogeneity of datasets (e.g., resource do-

mains, answer types and varies diversity of choice

size across different MCQA datasets.) hinders the

practical use of this strategy.

To better discover the hidden knowledge across

multiple data sources, we propose a novel

framework termed Multi-source Meta Transfer

(MMT). In this framework, we first propose a

module named multi-source meta learning (MML)

that extends traditional meta learning to multiple

sources where a series of meta-tasks on differ-

ent data resources is constructed to simulate low-

resource target task. In this way, a more general-

ized representation could be obtained by consid-

ering multiple source datasets. On the top of it,

the meta transfer learning (MTL) is integrated into

multi-source meta training to further reduce the

distribution gap between training sources and the

target one. Different from traditional meta learning

that assumes tasks generated from the similar dis-

tribution/same dataset, MMT is able to discover the

knowledge across different datasets and transfer it

into the target task. More importantly, MMT is

agnostic to the upstream framework, i.e., it can be

seamlessly incorporated into any existing backbone

language models to improve performance. Figure 1

briefly illustrates both meta learning and the pro-

posed MMT.

2 Related Work

2.1 Meta Learning

Meta learning, a.k.a “learning to learn”, intends to

design models that can learn general data represen-

tation and adapt to new tasks with a few training

samples (Finn et al., 2017; Nichol et al., 2018).

Early works have demonstrated that meta learning

is capable of boosting the performance of natural

language processing (NLP) tasks, such as named

entity recognition (Munro et al., 2003) and gram-

matical error correction (Seo et al., 2012).

Recently, meta learning gains more and more

attention. Many works explore to adopt meta learn-

ing to address low resource issues in various NLP

tasks, such as machine translation (Gu et al., 2018;

Sennrich and Zhang, 2019), semantic parsing (Guo

et al., 2019), query generation (Huang et al., 2018),

emotion distribution learning (Zhao and Ma, 2019),

relation classification (Wu et al., 2019; Obamuyide

and Vlachos, 2019) and etc. These methods have

all achieved good performance due to their pow-

erful data representation ability. Meanwhile, the

strong learning capability of meta learning also pro-

vides deep models with a better initialization, and

boosts deep models fast adaptation to new tasks

under both supervised (Qian and Yu, 2019; Oba-

muyide and Vlachos, 2019) and unsupervised (Sri-

vastava et al., 2018) scenarios. Unfortunately, meta

learning is seldom studied in multiple-choice ques-

tion answering in existing methods. To our best

knowledge, it is also the first time to extend meta

learning into multi-source scenarios.

2.2 Multiple-Choice Question Answering

Multiple-choice question answering (MCQA) is

a challenging task, which requires understanding

the relationships and handle the interactions be-

tween passages, questions and choices to select

the correct answer (Chen and Durrett, 2019). As

one of the hot track of question answering tasks,

MCQA has seen a great surge of challenging

datasets and novel architectures recently. These

datasets are built through considering different con-

texts and scenes. For instance, Guo et al. (2017)

present an open-domain comprehension dataset;

Lai et al. (2017) build a QA dataset from exami-

nations, which requires more complex reasoning

on questions; and Zellers et al. (2018) introduce a

QA dataset that requires both natural language in-

ference and commonsense reasoning. Meanwhile,

various approaches have been proposed to address

the MCQA task using different neural network ar-

chitectures. Some works propose to compute the

similarity between question and each of the choices

through an attention mechanism (Chaturvedi et al.,

2018; Wang et al., 2018). Kumar et al. (2016)

construct the context embedding for semantic rep-

resentation. Liu et al. (2018) and Yu et al. (2019)

apply the recurrent memory network for question

reasoning. Chung et al. (2018) and Jin et al. (2019)

further incorporate an attention mechanism into

recurrent memory networks for multi-step reason-

ing. Most existing works only strive to increase

the reasoning capability by constructing complex

models, but ignore the low resource nature of those

available MCQA datasets.
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3 Methodology

Many existing MCQA tasks suffer from the low-

resource issue, which requires a special training

strategy to tackle it. Recent advance of meta learn-

ing shows its advantages in solving the few-shot

learning problem. Typically, it can rely on only a

very small number of training samples to train a

model with good generalization ability (Finn et al.,

2017; Nichol et al., 2018). Unfortunately, the ex-

isting meta learning algorithms are unable to be

applied in our problem setting directly, since they

are based on the assumption that the meta tasks are

generated from the same data distribution (Fallah

et al., 2019). For example, one of the most popu-

lar benchmarks is the Mini-ImageNet dataset that

was proposed by Lake et al. (2011), and it consists

of 100 sub-classes from ImageNet dataset. All the

meta tasks generated from the same training dataset

have similar properties. In contrast, in our studied

problem MCQA, data properties such as answer,

question type, and commonsense are greatly vary

across the MCQA datasets. Specifically, the pas-

sages and questions come from different scenarios

(such as exams, dialogues, and stories), and the

answering choice contains more complex seman-

tic information than the fixed categories in Mini-

ImageNet. Therefore, simply combining all the

data resources into one and feeding it into existing

meta learning algorithms is not an optimal solution

(the experimental results in Figure 5 also support

this point).

To address the data heterogeneity challenge and

cater to the MCQA task, we extend the traditional

meta learning method to multiple training sources

scenarios, where we fully exploit multiple inter-

domain sources to learn more generalized represen-

tations. Specifically, multi-source meta learning

performs meta learning among multiple sources in

sequence, thereby completing one iteration. How-

ever, multi-source meta learning alone cannot guar-

antee the desirable performance due to the data

distribution gap between multiple sources and tar-

get data. Therefore, transfer learning from multi-

sources to target is required. Here we introduce

meta transfer learning into each meta learning iter-

ation, which aims at reducing the discrepancy be-

tween the learned meta representation from multi-

source and target.

2

1

3

4

4

3

1

2

Target

Representation space

Input space

Target

MMT model

Supervised MMT

Task in source 2

Task in source 3

Task in source 4
Task in source 1

Source representation

MMT representation

MML

MTL

Figure 2: Architecture of multi-source meta trans-

fer (MMT), where dot-line denotes multi-source meta

learning (MML) and solid-line represents meta transfer

learning (MTL).

3.1 Multi-source Meta Transfer

The proposed multi-source meta transfer (MMT)

method consists of two modules: multi-source meta

learning (MML) and meta transfer learning (MTL).

As shown in Figure 2, the MML contains fast adap-

tation, meta-model update and target fine-tuning

steps; and the MTL performs to transfer the knowl-

edge initialized by MML to the target task. Note

that MMT is agnostic to backbone models, i.e., it

can be seamlessly incorporated into any stronger

backbone to boost performance. In this work, we

select pre-trained BERT (Devlin et al., 2019) and

RoBERTa (Liu et al., 2019) as the backbone for

MMT. Generally, MMT first learns meta features

from multiple sources of inputs such that those

features could be mapped into a latent represen-

tation space. Then, the fine-tuning step performs

to reduce the representation gap between differ-

ent sources and the meta representation. Finally,

MTL is applied to transfer the well-initialized meta

representations to the target task.

The details of MMT are summarized in Algo-

rithm 1, where the procedures of MML and MTL

are presented in lines 2-16 and lines 17-21, respec-

tively. In MML, we sequentially sample data to

construct the tasks τ in meta learning from mul-

tiple source distributions {ps(τ); s ∈ S}, where

S denotes the sources index set. Note that the

support-tasks and query-tasks, in one iteration of

MML, should be sampled simultaneously to satisfy

the same distribution requirement. The learning

rates for each of the learning modules are different,
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where α denotes the learning rate for fast adap-

tation module, β is utilized for both meta-model

updating and target fine-tuning, and λ represents

the learning rate for MTL. Moreover, the parameter

of MMT is initialized from the backbone language

model, i.e., BERT, RoBERTa.

In the sequence, we introduce each step in multi-

source meta learning (MML) module. The first

step is fast adaptation (lines 4-8), which aims to

learn the meta information from support-tasks τ si .

The task-specific parameter θ′ is updated by

θ′ = θ − α∇θLτs
i
(f(θ)), (1)

where the gradient ∇θLτs
i
(f(θ)) is computed by

the cost function Lτs
i
(f(θ)) with respect to model

parameter θ.

The second step is meta-model update (line 9),

where its cost function,
∑

τs
i
∼ps(τ) Lτs

i
(f(θ′)), is

calculated with respect to θ′, and it is adopted to

evaluate the performance of fast adaptation on the

corresponding newly sampled query-tasks (τ si ).

It is worth noting that f(θ′) is an implicit func-

tion of θ (see Equation 1), and the second-order

Hessian gradient matrix is required for the gradi-

ent computation (Nichol et al., 2018). However,

the use of second derivatives is computationally

expensive, so we employ a first-order approxima-

tion (Obamuyide and Vlachos, 2019) to update the

meta-model gradient by

θ = θ − β∇θ

∑

τs
i
∼ps(τ)

Lτs
i
(f(θ′)). (2)

The last step of MML is target fine-tuning (lines

10-14). Although the learnt meta representations

carry sufficient semantic knowledge and are well

generalized, the data distribution discrepancy be-

tween meta representation and target still exists.

This fine-tuning step is utilized to reduce the dis-

tance between the meta representation and target

task on the latent representation space.

Generally, all the steps in MML are sequentially

conducted until the meta-model converges. Af-

ter performing MML, the meta transfer learning

(MTL) module will be applied upon the learnt meta

representations for the final transfer learning on tar-

get data.

3.2 Unsupervised Domain Adaptation

In this section, we extend MMT to the unsuper-

vised domain adaptation setting, where no labeled

data from the target domain will be given. In this

Algorithm 1: The procedure of MMT.

Input: Task distribution over source ps(τ),
data distribution over target pt(τ),
backbone model f(θ), learning rates

in MMT α, β, λ.

Output: Optimized parameters θ.

1 Initialize θ from backbone model;

2 while not done do

3 for all source S do

4 Sample batch of tasks τ si ∼ ps(τ);
5 for all τ si do

6 Evaluate ∇θLτs
i
(f(θ)) with

respect to K examples;

7 Compute gradient for fast

adaption:

θ′ = θ − α∇θLτs
i
(f(θ));

8 end

9 Meta model update:θ =
θ − β∇θ

∑
τs
i
∼ps(τ) Lτs

i
(f(θ′));

10 Get batch of data τ ti ∼ pt(τ);
11 for all τ ti do

12 Evaluate ∇θLτ t
i

(f(θ)) with

respect to K examples;

13 Gradient for target fine-tuning:

θ = θ − β∇θLτ t
i

(f(θ));

14 end

15 end

16 end

17 Get all batches of data τ ti ∼ pt(τ);
18 for all τ ti do

19 Evaluate ∇θLτ t
i

(f(θ)) with respect to

batch size;

20 Gradient for meta transfer learning:

θ = θ − λ∇θLτ t
i

(f(θ));

21 end

setting, the difficulty of unsupervised domain adap-

tation arises due to the different number of choices

between source and target datasets. This issue hin-

ders the pre-trained model to be applied to the tar-

get task whose choices differ from the source task,

i.e., only the knowledge of feature encoders are

transferable. To address this issue, unsupervised

MMT constructs the support/query-tasks by sam-

pling, which makes the choice number of tasks in

the source equal to the target task. With this man-

ner, the unsupervised MMT is able to transfer the

knowledge of both feature encoders and classifier

to the target task. Some prior works (Chung et al.,
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2018) also investigated on the unsupervised transfer

learning in QA, but they did not well solve the cat-

egory difference issue exists in multi-sources learn-

ing. To the best of our knowledge, we are the first

to apply meta learning to address knowledge trans-

fer issue between tasks with different choices in the

unsupervised domain adaptation setting. Next, we

term our proposed method as unsupervised MMT

in short.
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Figure 3: The framework of unsupervised MMT. The

initial state of our unsupervised MMT is the pre-trained

knowledge transferred from one specific source.

The framework of unsupervised MMT is shown

in Figure 3. A specific source is pre-trained, as

an initial state of meta model, to reduce the opti-

mization cost of MMT learning without prior in-

formation. With this initial state, unsupervised

MMT conducts meta learning by the steps of fast

adaption and meta-model update iteratively. Cor-

respondingly, the training of unsupervised MMT

is implemented by removing the fine-tuning proce-

dures (lines 10-14 and lines 17-21) in Algorithm 1.

By this manner, unsupervised MMT shortened the

target representation discrepancy from the specific

transferred representation to a generalized meta

representation. Moreover, unsupervised MMT fast

adapts to category variable tasks without super-

vised fine-tuning, which relaxes the fixed-category

constraint in transfer learning.

3.3 Source Selection in MMT

Source selection is a prerequisite step for MMT.

Due to the data heterogeneity of different sources,

the performance of meta learning may drop if we

consider some undesirable data sources in training.

In other words, these undesirable or called “dis-

similar” data sources will cause negative transfer

when their distribution is far away from the target

one. To eliminate such drawback, we may consider

those “similar” datasets from all the available data

sources. In the experiments, we also evaluate the

transfer performance of the all source datasets on

the target task. The more “similar” of source to tar-

get data, the better improvements can be achieved

through MMT on the target tasks. Therefore, we

use the transfer performance as a guidance for the

sequential multi-source meta transfer training, i.e.,

learns from dissimilar sources to a similar one.

4 Experiments

4.1 Dataset

We conduct experiments to evaluate the perfor-

mance of MMT on the following MCQA bench-

mark datasets.

DREAM (Sun et al., 2019a) is a dialogue-based

dataset designed by education experts to evaluate

the English level of nonnative English speakers. It

focuses on multi-tune multi-party dialogue under-

standing, which contains various types of questions,

like summary, logic, arithmetic, commonsense, etc.

MCTEST (Richardson et al., 2013) is a fictional

stories dataset which aims to evaluate open-domain

machine comprehension. The stories contain open

domain topics, and the questions and choices are

created by crowd-sourcing with strict grammar,

quality guarantee.

RACE (Lai et al., 2017) is a dataset about pas-

sage reading comprehension, which collected from

middle/high school English examinations. Hu-

man experts design the questions, and the passages

cover various categories of human articles: news,

stories, advertisements, biography, philosophy, etc.

SemEval-2018-Task11 (Ostermann et al., 2018)

consists of scenario-related narrative text and vari-

ous types of questions. The goal is to evaluate the

machine comprehension for commonsense knowl-

edge.

SWAG (Zellers et al., 2018) is a dataset about

rich grounded situations, which is constructed de-

biased with adversarial filtering and explores the

gap between machine comprehension and human.

The statistics of DREAM, MCTEST, RACE,

SemEval-2018-Task11 (SemEval) and SWAG are

summarized in Table 1.



7336

Name DREAM RACE MCTEST SemEval SWAG

Type Dialogue Exam Story Narrative Text Scenario Text
Ages 15+ 12-18 7+ - -

Generator Expert Expert Crowd. Crowd. AF./Crowd.
Level High School/College High/Middle School Children Unlimited Unlimited

Choices 3 4 4 2 4
Samples 6,444 27,933 660 2,119 92,221

Questions 10,197 97,687 2,640 13,939 113,557

Table 1: Statistics of MCQA datasets, where “Crowd.” denotes questions generated by crowd-sourcing, and “AF.” denotes
question generated by adversarial filtering.

Methods
DREAM MCTEST SemEval

Dev Test Dev Test Dev Test

CoMatching (Wang et al., 2018) 45.6 45.5 - - - -
HFL (Chen et al., 2018) - - - - 86.46 84.13
QACNN (Chung et al., 2018) - - - 72.66 - -
IMC (Yu et al., 2019) - - - 76.59 - -
XLNet (Yang et al., 2019) - 72.0 - - - -
GPT+Strategies (2×) (Sun et al., 2019b) - - - 81.9 - 89.5

BERT-Base 60.05 61.58 70.0 67.98 86.03 87.53

RoBERTa† 82.16 84.37 88.37 87.26 93.76 94.00

MMT (BERT-Base) 68.38 68.89 81.56 82.02 88.52 88.85

MMT (RoBERTa)† 83.87 85.55 88.66 88.80 94.33 94.24

Table 2: Comparison with state-of-the-art methods in MCQA datasets, where “†” denotes the maximal sequence length of
RoBERTa-large is limited to 256.

4.2 Experimental Setting

To demonstrating the versatility of MMT, we adopt

both BERT (Devlin et al., 2019) and RoBERTa (Liu

et al., 2019) as the backbone. Due to the resource

limitation, the maximal sequence input lengths of

BERT and RoBERTa can only be set as 512 and

256, respectively. For all datasets, the model opti-

mization is performed by Adam (Kingma and Ba,

2014), the initial learning rate of fast adaptation α

is set to 1e− 3, and the rest ones are set to 1e− 5.

4.3 Supervised MCQA

The results of MCQA under supervised setting are

summarized in Table 2. Note that we reproduce the

results of BERT-Base and RoBERTa-Large on the

benchmark datasets in our experiment setting for

fair comparison. From the results, we can see that

MMT(RoBERTa) achieves the best performances

overall benchmark datasets and outperforms cur-

rent SOTAs with significant margins (i.e., from 5%
to 13%). Second, MMT is able to boost up perfor-

mance over different pre-trained language models.

While, the weaker backbone network is, the bet-

ter improvement MMT can achieve. For example,

the MMT(BERT-Base) improves BERT-Base over

14% on MCTEST. In contrast, MMT(RoBERTa)

only achieves 1.54% on MCTEST. The perfor-

mance difference between MMT(RoBERTa) and

MMT(BERT-Base) is mainly related to the perfor-

mance of backbone itself and the scale of back-

bone parameter in MMT optimization. We also

want to point out that one of the advantages for

MMT is backbone-free, which indicates that its

performance can be improved progressively with

the advance of language models.

4.4 Unsupervised Domain Adaptation for

MCQA

In this experiment, we further evaluate the perfor-

mance of MMT under the unsupervised domain

adaptation, where no labeled data from the target

domain will be available. We use BERT-Base as

the backbone, and the model is trained on SWAG

and RACE training sources, which is termed as

unsupervised MMT(S+R). We also compare it with

other SOTAs as well as some transfer learning base-

lines “TL(∗)”. For example, “TL(R-S)” denotes

that BERT-Base is first fine-tuned in sequence on

RACE and SWAG, and then test on MCTEST.

The results of MCTEST are summarized

in Table 3. From the results, we observe

that the unsupervised MMT significantly outper-

forms other unsupervised domain adaptation meth-

ods, e.g., MemN2N (Chung et al., 2018) and

QACNN (Chung et al., 2018) by a large margin.

Moreover, unsupervised MMT can beat some su-

pervised methods, such as BERT-Base, IMC (Yu

et al., 2019), even without any labeled data from



7337

Method Sup. Test

Bert-Base Yes 67.98
QACNN (Chung et al., 2018) Yes 72.66
IMC (Yu et al., 2019) Yes 76.59
MemN2N (Chung et al., 2018) No 53.39
QACNN (Chung et al., 2018) No 63.10
TL(S) No 50.02
TL(R) No 77.02
TL(R-S) No 62.97
TL(S-R) No 77.38
TL(R+S) No 79.17

Unsupervised MMT(S+R) No 81.55

Table 3: Unsupervised domain adaptation on MCTEST.
“Sup.” denotes supervised, “S” denotes SWAG, “R” denotes
RACE, and “TL(∗)” denotes transfer learning from different
datasets to MCTEST. For example, “TL(R-S)” denotes that
Bert-Base is first fine-tuned on RACE, then on SWAG. Unsu-
pervised MMT(S+R) denotes that the meta model is trained
on the sources of SWAG and RACE.

the target domain. For a more fair comparison, we

also create several transfer learning baselines that

can utilize multiple training sources such as TL(R-

S) and TL(S-R). From the results, we can conclude

that unsupervised MMT is a better solution to make

full use of multiple training sources than sequential

transfer learning.

Similar observations hold on SWAG dataset. Re-

ported in Table 4, unsupervised MMT outperforms

other methods significantly. Note we follow the

same setting in KagNet (Lin et al., 2019) that only

the development set of SWAG is evaluated.

Method Sup. Dev

LSTM+GLV (Zellers et al., 2018) Yes 43.1
DA+GlV (Zellers et al., 2018) Yes 47.4
DA+ELMo (Zellers et al., 2018) Yes 47.7
TL(R) No 44.83
TL(M) No 50.03
TL(R-M) No 46.48
TL(M-R) No 46.91
TL(M+R) No 48.65

Unsupervised MMT(R+M) No 50.77

Table 4: Unsupervised domain adaptation on SWAG, where
“M” denotes MCTEST, “R” denotes RACE, “DA” denotes
decomposable attention, and “GLV” denotes GloVe vectors.

5 Discussion

5.1 Ablation Study

We conduct ablative experiments to analyze the two

modules of MMT, i.e., multi-source meta learning

(MML) and meta transfer learning (MTL). The

MTL is the transfer learning module specifically

designed for MML, and TL denotes the traditional

transfer learning without MML. The experiments

are based on BERT-Base model, and all the results

are reported in Table 5.

Dream Dev Test

BERT-Base 60.05 61.58
+MML(M) 49.85 52.87
+MML(R) 49.56 51.69
+MML(M∪R) 29.60 29.20

+TL(M) 60.31 60.14
+TL(R) 68.72 67.72
+TL(R-M) 68.97 67.38
+TL(M+R) 68.61 68.15

+MMT(M) 67.99 68.54
+MMT(R) 68.04 68.69
+MMT(M∪R) 61.72 60.12

MMT(M+R) 68.38 68.89

Table 5: Ablation study of MMT on DREAM. “TL” denotes
supervised transfer learning, “M” denotes MCTEST, “R” de-
notes RACE, and “∪” denotes the task combination of RACE
and MCTEST.

In the first experiments, we present the results of

the MML module. When the input source for MML

is a single source, MML downgrades to the tradi-

tional meta learning. From the results, we observe

that MML fine-tuned on MCTEST (MML(M)) is

better than that on RACE (MML(R)), which is

caused by the large difference between the RACE

and DREAM datasets. We also compare the base-

line that simply combines RACE and MCTEST

datasets to be one large training source, denoted by

MML(M∪R), dramatically drops the performance

and only achieves 29.20% on DREAM dataset,

which is 23.67% lower than that of MML(M). This

suggests that a simple combination of the two dif-

ferent training datasets for meta training is not a

good choice.

For the transfer learning (TL) module, we can

observe that the performance improvement is more

significant by transferring knowledge from RACE

to DREAM, compared to that from MCTEST. In

addition, TL(R-M) also benefits from fine-tuning

on RACE and MCTEST sequentially, and achieves

better results.

With the help of MTL, MMT further boosts the

performance on DREAM and outperforms both

MML and TL baselines. For instance, MMT(M)

outperforms MML(M) and TL(M) with 15.67%
and 8.40%, respectively. Moreover, MMT is also

helpful in alleviating the overfitting issue that ex-

ists in TL baselines. The results of development

set for TL(∗) are higher than the test set, which

indicates the poor generalization ability of TL(∗).

Fortunately, MMT(∗) is able to address this issue.

The MMT(R+M) that is trained on both RACE and

MCTEST in meta learning manner, achieves the

best results in all evaluated methods.
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5.2 Source Selection for MMT

Source selection is a prerequisite step for MMT. In

previous experiments, we assume that training re-

sources are given without selection. Due to the data

heterogeneity of different sources, the performance

of meta learning may drop if we incorporate some

undesirable data sources in training. In this experi-

ment, we evaluate the transferability between differ-

ent datasets and further give the suggestion on the

source selection for MMT. The results are summa-

rized in Figure 4. In Figure, the X-axis denotes the

source, and Y-axis denotes the target. The values in

the boxes indicate transferability from source to the

target data in terms of accuracy. For example, 14

denotes transferring RACE to the target MCTEST

will obtain 14% accuracy improvement over that

only trained on the MCTEST. The negative value

in the transferability matrix suggests the negative

transfer. There is no source that can be used to

improve the performance of SWAG effectively.
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Figure 4: Transferability matrix. X-axis denotes the

source, and Y-axis denotes the target. The values indi-

cate the transferability from source to the target data

in terms of accuracy. The higher the value is, the

stronger the transferability is. Taking MCTEST dataset

for example, transfer learning pre-trained on RACE

leads 14% performance improvement than fine-tuning

on MCTEST only.

In MMT, we employ this transferability matrix

to guide the source selection for MML training.

Specifically, in supervised MMT, we only choose

those training sources with the significant positive

transfer. In unsupervised MMT, the source with

the highest score is selected to be the initial state.

A
cc
u
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60
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75

82.5

90
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R

R+M

R+M+D

S+R+M+D

Figure 5: Training with different sources and test on Se-

mEval. Where “S” denotes SWAG, “R” denotes RACE,

“M” denotes MCTEST, and “D” denotes DREAM.

To verify the impact of different dataset to MMT,

we further study the improvement on target Se-

mEval by training with different sources. The re-

sults is shown in Figure 5. The performance of

SemEval drops when we incorporate DREAM and

SWAG into training. Recall the transferability ma-

trix in Figure 4, the DREAM and SWAG datasets

show little help in improving the performance on

SemEval compared to RACE and MCTEST. In

summary, more source data do not guarantee better

performance. Only the “similar” source data will

be beneficial for multi-source meta learning.

6 Conclusion

In this work, we propose a novel method named

multi-source meta transfer for multiple-choice

question answering on low resource setting. Our

method considers multiple sources meta learning

and target fine-tuning into a unified framework,

which is able to learn a general representation from

multiple sources and alleviate the discrepancy be-

tween source and target. We demonstrate the supe-

riority of our methods on both supervised setting

and unsupervised domain adaptation settings over

the state-of-the-arts. In future work, we explore to

extend this approach for other low resource tasks

in NLP.
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