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ABSTRACT Modern power systems equipped with advanced communication infrastructure are cyber-

physical in nature. The traditional approach of leveraging physical measurements for detecting cyber-

induced physical contingencies are insufficient to reflect the accurate cyber-physical states. Moreover,

deploying conventional rule-based and anomaly-based intrusion detection systems for cyberattack detection

results in higher false positives. Hence, independent usage of detection tools of cyberattacks in cyber and

physical sides has a limited capability. In this work, a mechanism to fuse real-time data from cyber and

physical domains, to improve situational awareness of the whole system is developed. It is demonstrated

how improved situational awareness can help reduce false positives in intrusion detection. This cyber and

physical data fusion results in cyber-physical state space explosion which is addressed using different feature

transformation and selection techniques. Our fusion engine is further integrated into a cyber-physical power

system testbed as an application that collects cyber and power system telemetry from multiple sensors

emulating real-world data sources found in a utility. These are synthesized into features for algorithms to

detect cyber intrusions. Results are presented using the proposed data fusion application to infer False Data

and Command Injection (FDI and FCI)-based Man-in-The-Middle attacks. Post collection, the data fusion

application uses time-synchronized merge and extracts features. This is followed by pre-processing such

as imputation, categorical encoding, and feature reduction, before training supervised, semi-supervised, and

unsupervised learning models to evaluate the performance of the intrusion detection system. A major finding

is the improvement of detection accuracy by fusion of features from cyber, security, and physical domains.

Additionally, it is observed that the semi-supervised co-training technique to perform at par with supervised

learning methods with the proposed feature vector. The approach and toolset as well as the dataset that are

generated can be utilized to prevent threats such as false data or command injection attacks from being

carried out by identifying cyber intrusions accurately.

INDEX TERMS Multi-sensor Data Fusion, Intrusion Detection System, Co-Training, Supervised Learning,

Unsupervised Learning, Cyber-physical Systems, Power Systems

I. INTRODUCTION

Multi-sensor data fusion is a widely-known research area

adopted in many sectors, including military, medical sci-

ence, finance, and energy. In certain natural systems, data

fusion occurs automatically. For example, human cognition

of events seamlessly combines inputs from a human’s senses.

The brain can make a union, intersection, or exclusive or

with the data and enact a complex decoding or decrypting

technique. The brain will react the way it is trained to pro-

cess data since childhood. This ability streamlines decision-

making during typical as well as extreme events, e.g., to

recognize that a house is on fire and quickly escape. However,

this natural fusion process does not occur automatically for

cyber-physical systems, yet it serves as a model for what
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engineered fusion systems strive to achieve.

In the brain example, intra-domain sensor fusion refers to

the collection of data from similar sensors such as vision

from left and right eyes. The inter-domain sensor fusion

refers to the fusion of sight, smell, acoustics, etc. Supervised

learning refers to how the mind is trained to perceive such

sensor data by guidance from an instructor. Unsupervised

learning refers to how the mind is trained without any instruc-

tions. In this narrative, if the victim forgets to wear glasses, he

loses some labels from the information that is accumulated.

Automatic driving systems are cyber-physical systems that

widely use data fusion to fuse images and videos from similar

or disparate sensor types [1]. A power system is also a

cyber-physical system, yet most of its fusion applications

are currently intra-domain and consider only physical data.

Examples include fault detection [2] and intrusion detection

using principal component analysis (PCA) [3]. Similarly, for

network protection in industrial control systems, intrusion

detection systems (IDS) such as Snort, BRO, or Suricatta,

are increasingly used [4] . They offer a pure cyber-centric

approach that results in high false alarms [5]. Traditional

physical measurements are not sufficient to reflect the ac-

curate state of the cyber-physical system, e.g., to classify

it as cyber-secure, cyber-insecure, physical-secure, physical-

insecure, physical-abnormal. Thus, data fusion can fill these

gaps and improve situational awareness of the whole sys-

tem. Combining the benefits of visibility of both cyber and

physical systems, cross-domain data fusion has the poten-

tial to methodically and accurately detect mis-operation and

measurement tampering in power systems caused by cyber

intrusions.

In power system operations, the telemetry used for col-

lecting wide area measurements may have errors due to

sensor damage or cyber-induced compromise; if undetected,

applications that rely on these data can become unreliable

and/or untrustworthy. Sensor verification based on multi-

source multi-domain measurement collection and fusion can

be performed to solve such problems, and it is a valuable

mechanism for detection and detailed forensics of cyber in-

trusions targeting physical impact. While offering numerous

potential benefits, fusion for attack detection in real-world

utility-scale power systems presents challenges that hinder

adoption including the creation, storage, processing, and

analysis of the associated large datasets. Fortunately, with the

proliferation of affordable computing capability for process-

ing high-dimensional data, it is becoming more feasible to

deploy fusion techniques for accurately detecting intrusions.

Thus, research is needed to take advantage of these data

and computing capabilities and create fusion-based detection

techniques that solve this problem.

Cyberattacks often progress in multiple stages, e.g., start-

ing with a reconnaissance phase, executing intrusions and

vulnerability exploitations, and culminating in actions target-

ing the physical system such as manipulating measurements

and commands. The events that comprise these incidents and

forensics about what occurred are not reflected using only

coarse cyber-side features. For example, an intruder may take

months in the reconnaissance phase, but during this period,

none of the physical side features reflect any abnormality.

Similarly, later when an intruder is injecting false commands

or tampering measurements, most of the cyber side features

do not reflect any abnormality, assuming the adversary is

stealthy. Additionally, the system dynamics in both cyber and

physical space vary considerably; this causes challenges in

merging data. The homogenization of cyber and physical data

with preservation of temporal information and appropriate

handling of inconsistent data fields is addressed in this work.

Sensor time resolution varies across domains and within

domains, which challenges merging the data. The resolution

of physical measurements depends on polling rates as well

as the specifications of the field device. For example, phasor

measurement units (PMUs) provide GPS synchronized data

at subsecond data rates, SCADA systems provide data on the

seconds to minutes time frame, and smart meters deployed

residentially may have hourly resolution [6]. Relays mon-

itoring system transients have a resolution on the order of

milliseconds. Similarly, network logs and IDS such as Snort

have a resolution of milliseconds. Data fusion solutions for

cyber-physical power systems must be able to effectively

handle the range of data rates.

The use of machine learning (ML) and deep learning (DL)

for intrusion detection faces the problem that the trained

model’s effectiveness depends on the data collected [7] ; it is

a challenge to obtain a realistic baseline and to use realistic

data to validate the solution for a real-time cyber-physical

system [8]. A natural problem that arises with fusion for ML

is feature expansion and selection, and cyber-physical state

space explosion, which results in the curse of dimensionality

[9]. This problem can be handled through feature reduction.

However, detection is affected by the choices of data process-

ing techniques applied (e.g., feature reduction, balancing,

scaling, encoding) [10]. The impact of such factors on

detection accuracy must therefore be quantified before the

techniques can be trusted for securing critical infrastructure.

This work hypothesizes that the use of fused data from

cyber and physical domains can enable better attack detection

performance than either domain separately if the aforemen-

tioned challenges are addressed. Hence, a multi-sensor multi-

domain platform is presented, that fuses data and detects

cyber intrusions. First, interfaces for collecting data sources

from cyber and physical side emulators is provided. Then,

these interfaces are used to collect real-time data from cyber,

physical, and security domains; finally, the datasets are fused

prior to detect cyber intrusions. Aggregation of real-time

sensor data from multiple sources, including Elasticsearch

[11], TShark [12], raw packet captures with Distributed

Network Protocol 3 (DNP3) traffic, and Snort logs [13]

is performed, that are extracted during the emulation of

Man-in-The-Middle (MiTM) attacks on a synthetic electric

grid, modeled in the Resilient Energy Systems Laboratory

(RESLab) testbed [14]. Fig. 1 gives an overview of the multi-

source data fusion presented. The major contributions of the
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FIGURE 1. Top down approach for designing testbed, incorporating

cyberattacks, aggregating real-time sensor alerts, leveraging data fusion
engine for intrusion detection, followed by intrusion detection, cyber-physical

situation awareness (CyPSA), and state estimation (CyPSE). The white

highlighted blocks indicate the components incorporated in this work.

work in this paper are the following:

1) A cyber-physical intrusion detection solution is pro-

posed based on a data-driven hybrid information fusion

algorithm that leverages real-time data from cyber and

power-based sensors. The solution utilizes the cyber-

physical logical interconnections and allows an ac-

curate detection of malicious misbehaviours in either

cyber controllers or power system components in a

timely manner.

2) A machine learning-based approach is proposed to

improve the scalability of the detection framework for

large-scale platforms. Moreover, the proposed tech-

niques can cope with different levels of data hetero-

geneity from various low-level cyber-physical security

probes.

3) The proposed solution is deployed and validated

against cyber-physical attacks on a real-world power

grid testbed that included several types of distributed

and commonly-used host- and network-based detection

probes. Furthermore, a working visualization proto-

types is developed for online cyber-physical situational

awareness during the attack progress in real-time.

4) An end-to-end data fusion engine from multiple

sources is developed and presented for cyberattack

detection in a real-time testbed emulation of a synthetic

electric grid.

5) Data pre-processing techniques such as balancing, nor-

malization, encoding, imputation, feature reduction,

and correlation are evaluated to address feature explo-

sion and tackle data inconsistencies, before training the

machine learning models.

6) Improvement in cyberattack detection capability of the

trained supervised, unsupervised and semi-supervised

models, built from the fused dataset performance, com-

pared to pure cyber or physical feature based IDS

models is demonstrated.

7) An orchestration application is designed to visualize

each stages of data pipelining, pre-processing, fol-

lowed by training IDSes for different attack use cases.

The paper proceeds as follows. Section II provides back-

ground on the types of multi-sensor data fusion and their

applications in cyber-physical systems and power systems in

particular. In Section III, the RESLab architecture, the attack

types considered, and the data fusion procedure is discussed.

The details on the data sources, the data fusion types, and

the dataset transformations used in this work are presented in

Sections IV, V, and VI respectively. Finally, intrusion detec-

tion based on unsupervised, supervised, and semi-supervised

learning methods are presented in Section VII. Experiments

are performed for four use cases, and results are analyzed in

Section IX. Section X concludes the paper with a discussion

of the results.

II. DATA FUSION BACKGROUND

A. CYBER-PHYSICAL THREAT OVERVIEW

The cyber-physical threats motivating this work constitute

a diversity of potential mechanisms that can compromise

the confidentiality, integrity, and availability of the system,

targeting power system impact such as by exploiting a series

of vulnerabilities to compromise the normal operation of the

system.

As prevalent types of attack, Denial of Service (DoS)

cyberattacks exhaust target networks with random traffic to

disrupt the normal operation, while Distributed DOS attacks

leverage botnets to exhaust links at multiple locations to

cause more severe damage [15]. A Telephony DoS attack hit

three distribution utilities blocking incoming and outgoing

calls from customers [16], which contributed to power loss

for a quarter-million people in Ukraine.

Authors in [17] provide a taxonomy of cyberattacks in ICS

networks based on timeliness, confidentiality, integrity, avail-

ability. The risk of an attack variant will vary under different

power system scenarios. For example, latency caused by

DoS can delay restorative actions post-compromise. Data and

command poisoning can disrupt situational awareness, mis-

lead state estimation, and misoperate devices, where certain

actions can have the potential to cause further contingencies

(outages) or blackouts.

A quantitative assessment of risk and situational aware-

ness requires cyber-physical state estimation that is both

accurate and timely, which must be inferred using data fu-

sion from both cyber and physical sensors. Prior works on

cyber-physical situational awareness that leveraged Markov

Decision Process (MDP) [18], Attack Graphs [19], and

Bayesian Attack Graphs [20], were based on the exploration
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of static vulnerabilities in the system to construct attack

graph models for ranking critical assets, contingencies, as

well as learning graph structure. Similarly, [21], proposes

a stochastic bayesian network models for calculating cyber-

physical security index for risk management. An expected

load curtailment index against cyber attacks on protection

devices and their control logics is presented in [22]. [23]

models Stuxnet attack, using a Boolean Logic Driven MDP,

that leverages estimated values of the success probabilities

and rates of the elementary attack steps. Dynamic updates on

these models, which enable them to be useful for applications

such as risk quantification and targeted system restoration

and response, require aggregation of real-time data from mul-

tiple sensors. The data collected in sensor logs will depend

on the attack and sensor types. Hence, a complex attack

affecting a collection of sensors requires the fusion of data

from multiple sensors.

The threat model this paper focuses on, targets the in-

tegrity of critical devices. Specifically, it emulates multi-

stage attacks on a large-scale synthetic electric grid, where

the intruder first gains Secure Shell (SSH) access to a device

within the substation LAN, then performs coordinated MiTM

attacks targeting different combinations of FCI and FDI

attacks sequentially on multiple DNP3 outstations to cause

transmission line overloading. To accomplish it, the intruder

performs Address Resolution Protocol (ARP) spoofing to

impersonate the DNP3 master for the outstation and vice-

versa, compromising the integrity, then further sniffs the

measurement and commands within the two end-points. The

details of the attack scenarios are elaborated in the testbed

paper [14] and MiTM attack paper [24].

B. MULTI-SENSOR DATA FUSION

Multi-sensor data fusion aims to make better inferences than

those that could be accrued from a single source or sen-

sor. According to Mathematical Techniques in Multisensor

Data Fusion [25], multi-sensor data fusion is defined as “a

technique concerned with the problem of how to combine

data from multiple (and possibly diverse) sensors to make

inferences about a physical event, activity, or situation.” A

data fusion process is modeled in three ways: a) functional,

b) architectural, and c) mathematical [25]. A functional

model illustrates the primary functions, relevant databases,

and inter-connectivity to perform the fusion. It involves pri-

marily filtering, database creation, and pre-processing such

as scaling and encoding. An architectural model specifies

hardware and software components, associated data flows,

and external interfaces [26]. For example, it models the lo-

cation of the fusion tool in a testbed. There are three types of

fusion architecture: centralized, autonomous, or hybrid [25].

In centralized architectures, either raw or derived data from

multiple sensors are fused before they are fed into a classifier

or state estimator. In autonomous architectures, the features

extracted are fed to the classifiers or estimators for decision

making before they are fused. The fusion techniques used in

the second case involve Bayesian [27] and Dempster Shafer

inference [28], because these fusion algorithms are fed with

the probability distributions computed from the classifiers

or the estimators. The hybrid type mixes both centralized

and autonomous architectures. The mathematical model de-

scribes the algorithms and logical processes.

A holistic data fusion method must consist of all three:

functional, architectural, and mathematical models. The

functional model defines the objective of the fusion. Since

the work aims to detect intrusions, determining which data

are due to cyber compromise is essential. Functional goals

may also include estimating the position of the intruder in

the system or estimating the state of an electric grid, where

the pre-processing techniques vary based on the goal. The

architecture model defines the sequence of operations. The

proposed fusion technique follows the centralized architec-

ture. Finally, the mathematical model defines how these

features are processed and merged. Section IV details the

proposed fusion models.

C. MULTI-SENSOR FUSION APPLICATIONS

Recently, multi-sensor fusion has been adopted in computer

vision, automatic vehicle communication, and it is entering

power systems. The authors in [29] review multi-sensor data

fusion technology, including the benefits and challenges of

different methods. The challenges are related to data imper-

fection, outliers, modality, correlation, dimensionality, oper-

ational timing, and inconsistencies. For example, without the

usage of specific estimation method such as Kalman filter-

ing, sensors with multiple time resolutions requires under-

sampling or over-sampling. The response time of certain

sensors also varies depending on the sensor age and type.

Data received from multiple sensors must be transformed

to a common spatial and temporal reference frame [25].

Imperfection is dealt with using fuzzy set theory, rough set

theory, or Dempster Shafer theory.

Multi-sensor data fusion is used in military applications for

automated target recognition, battle-field surveillance, and

guidance and control of autonomous vehicles [30]. Further,

the idea has been expanded to non-defense areas such as

medical diagnosis, smart buildings, and automatic vehicular

communications [31]. Authors in [32], explore techniques in

multi-sensor satellite image fusion to obtain better inferences

regarding weather and pollution. Data fusion has also been

proposed to accurately detect energy theft from multiple sen-

sors in advanced metering infrastructure in power distribution

systems [33].

Data fusion is expanded in [34] from cyber-physical sys-

tems (CPS) to cyber-physical-social systems with the use

of tensors. Algorithms proposed for mining heterogeneous

information networks cannot be directly applied to cross-

domain data fusion problems; the fusion of the knowledge

extracted from each dataset gives better results [35].

D. DATA FUSION IN POWER SYSTEMS

The data from diverse domains play a major role in power

system operation and control. Weather data is vital for fore-
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FIGURE 2. Centralized fusion architecture. In the autonomous architecture, the Fusion and Learning blocks will be interchanged with another Learning block post

fusion.

casting, e.g., solar, wind, and load, to schedule generation.

Data in cyberspace include data that provide for automation

in power system ICS and play a crucial role in wide-area con-

trol and operation in the electric grid. However, to proceed

with multi-domain data fusion, the following question must

first be answered: To what measurable quantities do cyber

data and physical data refer?

A simple example of cyber data in ICS is a spool log

of a network printer in the control network. It is crucial to

question, could the attack on the centrifuge in the Natanz

Uranium Enrichment plant be prevented, if it had a logger

to record the events of a machine with a shared printer,

to prevent the exploitation of remote code execution on

this machine? The answer is no because there were many

other vulnerabilities such as WinCC DB exploit, network

share, and server service vulnerability, in parallel to print

server vulnerability that compromised the Web Navigation

Server which was connected to the Engineering Station that

configured the S7-315 PLCs which over-speeded the cen-

trifuge [36]. Hence, the deployment of cyber telemetry in

every computing node in an ICS network is a solution that

seems attractive but results in numerous false alarms. Then,

the question arises, can alerts be reduced by amalgamating

such data with data from physical sensors?

Data fusion proposed in the areas of power systems is

mainly intra-domain. Existing works do not consider the

fusion of cyber and physical attributes for intrusion detection

together. A probabilistic graphic model (PGM) based power

systems data fusion is proposed in [37], where the state

variables are estimated based on the measurements from

heterogeneous sources by belief propagation using factor

graphs. These PGM models require the knowledge of the

priors of the state variables, and also assume the measure-

ments to be trustworthy. Hence, such solutions cannot detect

cyber-induced stealth false data injection attacks. Several

works on false data injection detection are based on machine

learning [38]–[41] and deep learning [42]–[47] techniques.

The authors in [48] address stealthy attacks using multi-

dimensional data fusion by collecting information from the

power consumption of physical devices, control operation

and system states feed to the cascade detection algorithm

to identify stealthy attacks using Long Short Term Memory.

Machine learning techniques including clustering are used in

power system security for grouping similar operating states

(emergency, alert, normal, etc.) to automatically identify the

subset of attributes relevant for the prediction of the security

class. A decision tree-based transient stability assessment of

the Hydro-Quebec system is presented in [49]. Techniques of

fusion for fault detection [2] and real-time intrusion detection

using PCA [3] are specific to the physical domain. The

design of such models requires data fusion and must consider

impending system instabilities caused by cyber intrusions.

Cymbiote [50] multi-source sensor fusion platform is sim-

ilar to this work, that have leveraged fusion from multiple

cyber and physical streams and trained with only supervised

learning-based IDS. Moreover, their work does not clearly

describe the features extracted from different sources.

E. MULTI-DOMAIN FUSION TECHNIQUES

Techniques such as co-training, multiple kernel learning, and

subspace learning are used for data fusion problems. Co-

training-based algorithms [51] maximize the mutual agree-

ment between two distinct views of the data. This tech-

nique is used in fault detection and classification in trans-

mission and distribution systems [52] and network traffic

classification [53]. To improve learning accuracy, Multiple

kernel learning algorithms [54] are also considered, which

utilize kernels that implicitly represent different views and

combines them linearly or non-linearly. Subspace learning

algorithms [55] aim to obtain a latent subspace shared by

multiple views, assuming that the input views are generated

from this latent subspace. DISMUTE [56] performs feature

selection for multi-view cross-domain learning. Multi-view

Discriminant Transfer [57] learns discriminant weight vec-

tors for each view to minimize the domain discrepancy and

the view disagreement simultaneously. These techniques can
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be used for cross-domain data fusion.

Coupled matrix factorization and manifold alignment

methods are used for similarity-based data fusion [35]. These

methods can be implemented intra-domain with multiple

data sources. Manifold alignment is another technique that

generates projections between disparate data sources but

assumes the generating process shares a common manifold.

Since the primary goal in this work is to fuse datasets from

inter-domain, such methods may not be effective enough.

Still, manifold learning is explored for the purpose of feature

reduction to train the supervised learning classifier.

To the best of our knowledge, co-training has not yet been

implemented in an intrusion detection system that uses inter-

domain fusion. Hence, in this work, co-training is performed

in inter-domain fused datasets by splitting the dataset into

cyber and physical views.

F. DATA CREATION, STORAGE, AND RETRIEVAL

The storage and retrieval of multi-sensor data play a major

role in fusion and learning. A relational database manage-

ment system is predominantly used in traditional Energey

Management System (EMS) applications. For example, B.C.

Hydro proposes a data exchange interface in a legacy EMS

and populates a relational database with the schematic of the

common information model defined in IEC 61970 [58]. With

the proliferation of multiple protocols and data from diverse

sources, it is not easy to construct the Entity Relationship

model of a relational database management system , since the

schema cannot be fixed. Since NoSQL stores unstructured or

semi-structured data, usually in the key-value pairs or Java

Script Object Notation documents, NoSQL is highly encour-

aged to make use of databases such as Elasticsearch [11],

MongoDB [59], or Cassandra [60], for multi-sensor fusion

with heterogeneous sources.

Creating multi-domain datasets to advance the research

is a challenging task since it requires the development

of a cyber-physical testbed that processes real-time traffic

from different simulators, emulators, hardware, and software.

Currently, few datasets are publicly available that provide

features from diverse domains and sources. Most of the

datasets are simulator-specific, which restricts the domain

to either purely physical or cyber. The widely-known KDD

[61] and CIDDS [62] datasets used in developing ML-based

IDS for bad traffic detection and attack classification are

centric to features in the cyber domain [63]. Tools such as

MATPOWER [64] and pandapower [65] provide datasets

for physical-side bad data detection. Datasets that include

measurements related to electric transmission systems, in-

cluding normal, disturbance, control, and cyberattack behav-

iors are presented in [66]–[69]. The datasets contain PMU

measurements, data logs from Snort, and also data from a

gas pipeline and water storage tank plant. The features in

these datasets lack fine-grained details in the cyber, relay,

and control spaces, as all the features are binary in nature.

A cyber-physical dataset is presented in [70] for a subsystem

consisting of liquid containers for fuel or water, with its au-

tomated control and data acquisition infrastructure showing

15 real-world scenarios; while it presents a useful way of

framing the data fusion problem and approaches for CPS, it

is not power system-specific.

A problem in training ML or DL models for intrusion

detection through classification, clustering, and fine-tuning

hyperparameters is that its effectiveness depends on the data

collected. That is, a practical challenge is to obtain a baseline

that needs to come from realistic data. Emulation is preferred

to simulation for CPS networks since a simulator demon-

strates a network’s behavior while an emulator functionally

replicates its behavior and produces real data. Using real data

is important to validate that ML or DL solutions address the

actual challenges faced in the data from a real-time cyber-

physical system.

The performance of ML and DL models is impacted by

the choice of data processing techniques applied to the inputs

such as balancing, scaling, or encoding before training the

models. The effect of these preprocessing techniques needs

to be quantified on the outputs of such ML models before

they can be trusted for use in industry.

III. DATA FUSION ARCHITECTURE

Before discussing the data fusion procedures, it is essential

to understand the architecture of the RESLab testbed that

is producing the data during emulation of the system under

study.

A. TESTBED ARCHITECTURE

The RESLab testbed consists of a network emulator, a power

system emulator, an OpenDNP3 master and an RTAC based

master, an intrusion detection system, and data storage, fu-

sion, and visualization softwares. A brief overview of each

component is given below. A detailed explanation of RESLab

including its architecture and use cases is provided in [14].

• Network Emulator - Common Open Research Emulator

(CORE) is used to emulate the communication net-

work that consists of routers, Linux servers, switches,

firewalls, IDSes, and bridges with other components

emulated with other virtual machines (VMs) in vSphere

environment.

• Power Emulator - Power World Dynamic Studio

(PWDS) is a real-time simulation engine for operating

the simulated power system case in real-time as a DS

server [71]. It is used to simulate the substations in the

Texas 2000 case as DNP3 outstations. [72].

• DNP3 Master - DNP3 Masters are incorporated using an

open DNP3 based application (both GUI and console-

based) and a SEL-3530 Real-Time Automation Con-

troller (RTAC) that polls measurements and operates

outstations, sending its traffic through CORE to the

emulated outstations in PowerWorld DS.

• Intrusion Detection System - Snort is used in the testbed

as the rule-based, open-source IDS. It is configured

to generate alerts for DoS, MiTM, and ARP cache
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poisoning-based attacks. Currently, Snort is running as

a network IDS in the router in the substation network.

• Storage and Visualization - The Elasticsearch, Logstash,

and Kibana (ELK) stack is used to probe and store

all virtual and physical network interface traffic. In

addition to storing all Snort alerts generated during each

use case, this data is able to be queried using Lucene

queries to perform in-depth visualization and cyber data

correlation.

• Data Fusion - A different VM is dedicated to operate the

fusion engine that collects network logs and Snort alerts

from ELK stack using an Elasticsearch client and raw

packet captures from CORE using pyshark. This engine

constructs cyber and physical features and merges them

using the timestamps from different sources to ensure

correct information alignment. Further, it pre-processes

them using imputation, scaling, and encoding before

training them for intrusion detection using supervised,

unsupervised, and semi-supervised learning techniques.

This VM is equipped with resources to utilize ML and

DL based library such as scikit, Tensorflow, and Keras

to train the engine for classification, clustering, and

inference problems.

FIGURE 3. Testbed architecture with data fusion.

There are three broad kinds of IDS for Industrial Control

Systems: protocol analysis based IDS, traffic mining based

IDS, and control process based IDS [73]. The fusion engine

in RESLab combines all these types. It performs protocol-

specific feature extraction from data link, network, transport

layers along with DNP3 layer, control and measurement spe-

cific information through DNP3 payload and headers, traffic

mining by extracting network logs from multiple sources.

B. ATTACK EXPERIMENTS

Now that the testbed architecture is discussed, the utilization

of the testbed to demonstrate a few cyberattacks targeting

the grid operation is presented. The threat model considered

here is based on emulating multi-stage attacks in a large-

scale power system communication network. In the initial

stage, the adversary gains access to the substation Local Area

Network (LAN) through SSH access, further performing

DoS and ARP cache poisoning based MiTM attack to cause

FDI and FCI.

In Man-in-the-Middle attacks, the adversary usually se-

cretly observes the communication between sender and re-

ceiver and sometimes manipulates the traffic between ends.

There are different ways to perform MiTM such as IP spoof-

ing, ARP spoofing, DNS spoofing, HTTPS spoofing, SSL

hijacking, stealing browser cookies, etc. In this current work,

MiTM using ARP spoofing is focussed. ARP spoofing or

poisoning is a type of attack in which an adversary sends false

ARP messages over a LAN. This results in the linking of an

adversary’s MAC address with the IP address of a legitimate

machine on the network (here, the DNP3 outstation VM).

This attack enables the adversary to receive packets from

the master as an impersonator for the outstation and modify

commands and forward them to the outstation. In this way,

the adversary can cause contingencies such as misoperation

of the breakers. The attack is not only to modify but also to

sniff the current state of the system since it can receive the

outstation response to the master.

The MiTM attacks are performed considering the four use

cases targeting a different part of the Texas synthetic grid

following different strategies presented in detail in [14]. The

use cases are combinations of FDI and FCI attacks performed

with different polling rates from the DNP3 Master and the

number of master application considered. In previous work,

a Snort IDS-based detection [24] method is demonstrated,

which resulted in many false positives. In this work, we

employ fusion techniques, and machine learning techniques,

to enhance the accuracy of detection by evaluating them

using F1-scores, Recall, and Precision values.

C. DATA FUSION PROCEDURE

The steps followed in the data fusion engine, from extract-

ing the features from different sources, with their merge of

pyshark, snort, packetbeat, raw packet capture to form cyber

table, and the final fusion of cyber and physical table, with the

steps of imputation, encoding and visualization is presented

in Alg. 1. The details of the sensor sources and the data

processing are discussed in details in the next sections.

Algorithm 1 Data Fusion Procedure

1. Load JSON from raw pcaps.
2. Extract cyber features: network, transport, datalink layer infor-
mation and store as raw cyber data.
3. Extract features using pyshark.
4. Merge pyshark to the raw cyber data.
5. Extract snort alert.
6. Merge snort to the raw cyber data.
7. Extract features from packetbeat index in elasticsearch.
8. Merge packetbeat features to raw cyber data.
9. Extract DNP3 features (DNP3 points and headers) from raw
packet capture.
10. Fuse cyber data with physical data.
11. Imputate missing values.
12. Encode categorical features.
13. Visualize the merged table.
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D. FUSION CHALLENGES

The most challenging task in fusion is to perform merge

operations, because of the different time stamps generated

at different sensors. An event will trigger the time-stamped

measurements at the sensors. Hence, each sensor’s location

impacts the time at which the event is recorded. Domain

knowledge has been used to write the algorithm to merge

different sources meticulously. For example, Elasticsearch’s

Packetbeat index stores each record reflecting the traffic

between a given small time interval. Each record has an event

start and end time. While merging Elasticsearch features,

such as flow count attribute, comparison of the raw packet

timestamp and event start and end time of Elasticsearch is

required, to calculate the flow counts. Moreover, the number

of records on the power system side will be less than the

cyber side, as events on the power system side are triggered

based on the polling frequency as well as on the time at which

an operator performs a control operation. Hence missing data

for the records are filled using data imputation.

IV. MULTI SENSOR DATA

A sensor’s data is the output or readings of a device that

detects and responds to changes in the physical environ-

ment. Every sensor has a unique purpose that helps create

crucial features that can assist in intrusion detection. In

RESLab [14], the cyber sensors are deployed as Wireshark

instances at different network locations for raw packet cap-

ture. Additionally, monitoring tool such as Packetbeat is

integrated for extracting network flow-based information. For

security sensors, Snort IDS logs and alerts are considered.

Since the physical system is emulated with PWDS acting

as a collection of DNP3 outstations, the real-time readings

provided by physical sensors are extracted from the observed

measurements at the DNP3 master, from the application

layer of the raw packet captured at the DNP3 master. The

extractions of these multiple sensors are explained in detail:

A. RAW PCAPS FROM JSON

The packet captures from Wireshark are packet dissected and

saved in the JSON format, which is loaded using the panda

data frame. Further, from the JSON, around 12 features from

the physical, datalink, network, and transport layer of the

OSI stack are extracted, as shown in Table 1. The features

primarily consist of the source and destination IP and MAC

addresses, along with the port numbers, flags, and lengths in

these layers.

B. ELASTICSEARCH

Real-time traffic collection is performed from network in-

terfaces in CORE, using the Packetbeat plugin in the ELK

stack. The Packetbeat plugin helps us extract the flow-based

information such as Flow Count, Flow Count Final, Packets

shown in Table 1. Elasticsearch queries are based on Lucene,

the search library from Apache. Kibana is used to visualize

the graphs and real-time data visualization for the Packetbeat

index. An example query is shown below:

" que ry " : {

" b oo l " : {

" must " : [

{ " r a n g e " : {

" e v e n t . end " : {

" g t e " : "2020 −01 −22T00 : 0 0 : 0 0 . 0 0 0 Z " ,

" l t e " : "2020 −01 −26T00 : 0 0 : 0 0 . 0 0 0 Z" } } } ,

{" r a n g e " : {

" e v e n t . d u r a t i o n " : {

" g t e " : 0 ,

" l t e " : 3000000}}} ,

{" b oo l " :

{" s h o u l d " :

[ { " match " : {

" d e s t i n a t i o n . p o r t " : "20000"}} ,

{" match " : {

" s o u r c e . p o r t " : " 2 0 0 0 0 " } } ] } } ,

{" match " :

{" f low . f i n a l " : " t r u e "}

}

] } }

The above query returns the records with event start time

2020−01−22T00 : 00 : 00.000Z and end time 2020−01−
26T00 : 00 : 00.000Z, and the event duration is within 0 −
300000 ms, and the source or destination port is 20000 (port

number associated with DNP3), and the flow is a final flow.

The keyword must designate an AND operation, should

is an OR operation, and match is an equals to operation.

A logstash index is also created in Elasticsearch to store the

logs of Snort alerts, which is also extracted along with the

packetbeat index.

There are two operations on the response from Elastic-

search: a) Extraction of essential features b) Merge of

features to the existing cyber features data frame cb_table

from raw packet captures. Each record in the packetbeat

index is stored in the form of an event with start and end

times. In the extraction phase, the source.packets, flow.id,

flow.final, event.end, event.start, flow.duration fea-

tures are extracted and stored in a new data frame pb_table.

The merge operation of pb_table into the existing cyber

features is non-trivial due to different timestamps in existing

features and features from packetbeat. The features in Table 1

flow.count, flow.final_count, and packets, using the

features of event.end(end), event.start(start) in pb_table

and T ime in the cb_table based on the logical OR of three

conditions:

1) Condition 1 : add counters if the event start is

within the range of current and next records in the

cyber_table

cb_table[i][t] ≤ start∧cb_table[i+1][t] ≥ start (1)

2) Condition 2 : if the event end is within the range of

current and next records in the cyber_table.

cb_table[i][t] ≤ end ∧ cb_table[i+ 1][t] ≥ end (2)
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3) Condition 3 : if the event start is less than the current

record and event end is greater than the next record in

the cyber_table.

cb_table[i][t] ≥ start∧ cb_table[i+1][t] ≤ end (3)

The ∨ and ∧ are the logical or and and operators respec-

tively. In this manner, the three features from pb_table to the

cb_table are merged.

C. PYSHARK

Pyshark is a Python wrapper for tshark, allowing

python packet parsing using Wireshark dissectors. Us-

ing Pyshark features such as Retransmissions and

RoundTripT ime(RTT ) is obtained. The RTT is the time

duration for a signal or message to be sent plus the time

it takes to acknowledge that signal to be received. It has

been observed that if congestion is created in any location in

between the source and destination such as router or switch,

the RTT increases. It also increases due to DoS attacks on the

servers or any intermediary nodes in the path between source

and destination. The TCP based packet follows different

retransmission policies based on the TCP congestion con-

trol flavor. Hence, the number of retransmission packets

observed within a given time frame is an indicator of loss of

communication or increased delay. Usually, a sender retrans-

mits a request if it did not receive an acknowledgment after

some multiples of an RTT , whose multiplicity is dependent

on the TCP flavor. The retransmission and RTT features

are selected, as features are correlated and directly related to

attacks targeting availability and integrity.

D. SNORT

The router inside the CORE emulator runs the Snort daemon

based on the specific rules, pre-processors, and decoders

enabled in the configuration file to create logs. Snort operates

in three modes: packet sniffer, packet logger, and IDS modes.

In this work Snort is primarily operated in the IDS mode.

The alerts generated at the router in the substation network

are continuously probed during the simulation. The alerts

are recorded in the form of the unified2 format as well

as pushed to the Logstash index created in Elasticsearch.

Unified2 works in three modes, packet logging, alert logging,

and true unified logging. Snort runs in alert logging mode to

capture the alerts, timestamped with alert time. Further, the

idstools python package is utilized to extract these unified2
formatted logs. The Snort configuration determines which

rules and preprocessor are enabled. The features extracted

are the alert,alert_type, and timestamp. The merge into

the cb_table is performed based on the timestamp of each

Snort record. The record is inserted based on the condition:

cb_table[i][t] ≥ timestamp ≤ cb_table[i+ 1][t] (4)

E. PHYSICAL FEATURES FROM DNP3

The Distributed Network Protocol version 3 is widely used

in SCADA systems for monitoring and control. This protocol

has been upgraded to use TCP/IP in its transport and network

layer. It is based on the master/outstation architecture, where

field devices are at outstations and the monitoring and control

are done by the master. DNP3 has its own three layers: a)

Data Link Layer, to ensure the reliability of physical link

by detecting and correcting errors and duplicate frames, b)

Transport Layer, to support fragmentation and reassembly of

large application payload, and c) Application Layer, to inter-

face with the DNP3 user software that monitors and controls

the field devices. Every outstation consists of a collection of

measurements such as breaker status, real power output, etc.,

which are associated with a DNP3 point and classified under

one of the five groups: binary inputs (BI), binary outputs

(BO), analog inputs (AI), analog outputs (AO), and counter

input. The physical features consist of the information carried

in the headers in the three layers of DNP3, along with the

values carried by the DNP3 points in the application layer

payload. Every DNP3 payload’s purpose is indicated by a

header in the application layer called function code (FC).

For simulations, the features with FCs: 1(READ), 5(DIRECT

OPERATE), 20 (ENABLE spontaneous message), 21(Dis-

able spontaneous message), and 129 (DNP3 RESPONSE) are

extracted. The details of the features are in Table 1.

V. FUSION

As presented in Fig. 2, the Fusion block involves different

types of fusion. Intra-domain and inter-domain are consid-

ered for training the IDS using supervised and unsupervised

learning techniques. A location-based fusion and visualiza-

tion for causal inference of the impact of the intrusion in

different locations of the network is explored. Finally, co-

training with feature split is used to train the IDS using semi-

supervised learning with labeled and unlabeled data.

A. INTRA-DOMAIN AND INTER-DOMAIN FUSION

The fusion of cyber sensor information from different sources

is homogeneous source fusion. For example, fusing Elastic-

search logs with pyshark or raw packet capture to form the

cyber_table is intra-domain fusion.

The fusion of cyber and physical sensor information from

different sources is heterogeneous source fusion. For exam-

ple, the operation of fusing cyber_table with physical_table

is inter-domain fusion.

B. LOCATION-BASED FUSION

In multi-sensor data fusion, sensor location plays a major

role. For example, the military uses location-based multi-

sensor fusion to estimate the location of enemy troops by

amalgamating sensor information from multiple radars and

submarines. The challenges associated with different loca-

tions stem from time differences in event recognition. A radar

can pick up a signal with a different latency than a submarine

due to the difference in communication medium as well as its

location relative to the enemy troop. Similarly, sensors such

as IDS, firewall alerts, and network logs are positioned at

different network locations. It is essential to correlate events
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TABLE 1. Description of the features used in data fusion.

Features Description Def

Frame
Len

Length of the frame after network, transport and applica-
tion header and payload are added and fragmented based
on the channel type. For ethernet, the frame length can be
max. 1518 bytes, which varies for wireless channels.

0

Frame
Prot.

Determines the list of protocols in the layers above link
layer encapsulated in the frame.

Nan

Eth
Src

Unique source MAC address. Crucial for detection in ARP
spoof attacks.

0

Eth
Dst

Unique destination MAC address. Crucial for detection in
ARP spoof attacks.

0

IP Src Unique source IP address. 0
IP Dst Unique destination IP address. 0

IP Len
Stores the length of the header and payload in a IP-based
packet. This correlates well with the DNP3 payload size.

0

IP
Flags

Indicator of fragmentation caused due to link or router
congestion in the intermediary nodes.

0x00

Src
Port

Indicates the port number used by the source application
using TCP in transport layer. Ex: if the source is the DNP3
outstation, the default port is 20000.

0

Dest
Port

Indicates the port number used by the destination applica-
tion using TCP in transport layer.

0

TCP
Len

Stores the length of the header and payload in a TCP-based
segment. This correlates well with the DNP3 payload size.

0

TCP
Flags

Flags are used to indicate a particular state of connection
such as SYN, ACK, etc.

0x00

Retrans.
Indicates if the current record is from a retransmitted
packet, caused due to attack or network congestion.

0

RTT
Indicator of propagation and processing delay. High RTT
can be caused due to MiTM attack.

-1

Flow
Cnt

Indicates the number of TCP flows in a specific time
interval. Indicates the connected and disconnected DNP3
masters. Flow is the collection of packets.

-1

Flow
Fin
Cnt

Indicates if the current flow carries the final packet. -1

Packets Number of packets transmitted in a specific time interval. -1
Snort
Alert

Boolean indicating an alert from snort. 0

Alert
Type

Indicates the alert type such as DNP3, ARP spoof, ICMP
flood or any other types.

Nan

LL Src
Source id of the DNP3 master or outstation. Indicator of
which outstation communicates with the master in that
specific record.

-1

LL
Dest

Destination id of the DNP3 master or outstation. Indicator
of which outstation communicates with the master in that
specific record.

-1

LL
Len

Indicator of the DNP3 payload size as well as the function
type. Usually the response carries DNP3 point informa-
tion, hence this length correlates with the function code as
well as the outstation currently communicating.

0

LL
Ctrl

This indicates the initiator of the communication. Deter-
mines the primary/secondary server.

0x00

TL
Ctrl

Indicates the FIN/FIR/Sequence number for determining
if the DNP3 payload is the first or final segment.

0x00

Func.
code

Indicates the function code: either READ, WRITE, OP-
ERATE, DIRECT OPERATE, etc.

-1

AL
Ctrl

Indicates the FIN/FIR/Seq/Confirm and Unsolicited flags.
This indicates if there are unsolicited, first, final from
application layer standpoint.

0x00

Obj
count

This count determines the number of BI, BO, AI, AO
points associated with a substation.

0

AL
Pay-
load

Contains the DNP3 points used to extract the physical fea-
tures such as branch status, real power flows and injections
in branch and buses for a substation.

Nan

among different locations before merging them for inferring

any attacks.

C. CO-TRAINING BASED SPLIT AND FUSION

There exist scenarios where labels cannot be captured. The

co-training algorithm [51] uses feature split when learning

from a dataset containing a mix of labeled and unlabeled data.

This algorithm is usually preferred for datasets that have a

natural separation of features into disjoint sets [74]. Since the

cyber and physical features are disjoint, feature split based

co-training is adopted. The approach is to incrementally

build classifiers over each of the split feature sets. Here, the

fused features are splitted into cyber and physical features.

Each classifier, cy_cfr (first 17 features in Table 1) and

phy_cfr(last 9 features in Table 1), is initialized using a few

labeled records. Each classifier chooses one unlabeled record

per class at every loop of co-training to add to the labeled

set. The record is selected based on the highest classification

confidence, as provided by the underlying classifier. Further,

each classifier rebuilds from the augmented labeled set, and

the process repeats. Finally, the two classifiers cy_cfr and

phy_cfr obtained from the co-training algorithm gives a

probability score against the classes for each record, which

is added and normalized to determine the final class of the

record [74]. The classifiers selected in the experiments are

Linear Support Vector Machine (SVM) and Logistic Regres-

sion.

VI. DATA TRANSFORMATION

Real-time testbed data is usually insufficient, conflicting,

diverse format and at times lack in certain pattern or trends.

Hence, data pre-processing is essential in transforming raw

data into an understandable format. The raw data extracted

from multiple sensors are processed through three steps: a)

data imputation, b) data encoding, c) data scaling, and d)

feature reduction.

A. DATA IMPUTATION

Imputation is a statistical method of replacing the missing

data with substituted values. Substitution of a data point

is unit imputation, and substituting a component is item

imputation. Imputation tries to preserve all the records in

the data table by replacing missing data with an estimated

value based on other available information or feeds from

domain experts. There are other forms of imputation such as

mean, stochastic, regression imputation, etc. Imputation can

introduce a substantial amount of bias and can also impact

efficiency. In this work, discrepancies of bias introduced due

to imputation is not addressed. Since data is merged from

different sources with unique features, the chances of missing

data are high. Hence, imputation is performed in the dataset

based on the default values in the Def column of Table 1.

B. DATA ENCODING

There are numerous features in the fused dataset which are

categorical. These categorical features are encoded using the
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FIGURE 4. Location-based fusion from the master, outstation, and substation router. The high-density traffic observed in the places marked with red rectangles is

an indicator of DoS attack. This fusion assists in causal analysis for determining the initial victim of the DoS intrusion as well as inferring the pattern of impact

across other devices in the network.

FIGURE 5. Co-training based fusion for labeled and unlabeled datasets. The

fused dataset is split into cyber and physical views and trained in the cyber

and physical classifiers separately, finally fusing and normalizing the

probability scores for final classification.

preprocessing libraries in Scikit-learn, so that the predictive

model can better understand the data. There are different

types of encoders such as an ordinal encoder, label encoder,

one hot encoder, etc. Label encoding is preferred over one hot

encoding when the cardinality of the categories in the cate-

gorical feature is quite large as it results in the issue of high

dimensions. An ordinal encoder is also not considered, as it

is processed on the 2D dataset (samples*features). Since

cross-domain features are processed, encoding on individual

features is performed separately using label encoding.

C. SCALING AND NORMALIZATION

Scaling and normalizing the feature is essential for various

ML and DL techniques such as PCA, Multi-Layer Percep-

trons (MLP), SVM, etc. Though certain techniques such

as Decision Trees or Random Forest, are scale-invariant, it

is still essential to normalize and train. Before performing

normalization, log transformation and categorical encoding

is performed for the features with high variance and varied

range of values, respectively. Hence, both log transformation

as well as scaling are evaluated. Additionally, Min-Max scal-

ing is performed as considered in prior works on intrusion

detection on KDD and CIDDS datasets [63].

D. FEATURE REDUCTION

Once the features from multiple sensors are merged, di-

mension reduction (inter-feature correlation) is performed to

remove the trivial features using PCA. PCA is a linear dimen-

sionality reduction method that uses Singular Value Decom-

position on the data to project it to a lower-dimensional space

[75]. The inter-feature correlation for the fused dataset from

RESLab is based on the Pearson Coefficient [76], shown

in as shown in Fig. 6, where it can be observed that intra-

domain features have higher correlation amongst each other.

There is also some correlation observed across the cyber

and physical features. Features with higher correlation are

more linearly dependent and thus have a similar effect on

dependent variables. For example, if two features have a high

correlation, one of the two features can be eliminated.

FIGURE 6. Inter-feature correlation based on Pearson Coefficient

VII. INTRUSION DETECTION POST FUSION

After the features are extracted, merged, and pre-processed,

we design IDS using different ML techniques. We have con-

sidered manifold learning and clustering as the unsupervised

learning techniques, a few linear and non-linear supervised

learning techniques, and co-training-based semi-supervised
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learning methods for training the IDS. In this section, ML

techniques are briefly explained.

A. MANIFOLD LEARNING

PCA for feature reduction does not perform well when there

are nonlinear relationships within the features. Manifold

learning is adopted in the scenarios where the projected data

in the low dimensional planar surface is not well represented

and needs more complex surfaces. Multi-featured data are

described as a function of a few underlying latent parameters.

Hence the data points can be assumed to be samples from a

low-dimensional manifold embedded in a high-dimensional

space. These algorithms try to decipher these latent param-

eters for low-dimensional representation of the data. There

are many approaches to solve this problem, such as Locally

Linear Embedding, Spectral Embedding, Multi-Dimensional

Scaling, IsoMap, etc.

1) Locally Linear Embedding (LLE)

LLE computes the lower-dimensional projection of the high-

dimensional data by preserving distances within local neigh-

borhoods. It is equivalent to a series of local PCA which

are globally compared to obtain the best non-linear embed-

ding [77]. The LLE algorithm consists of 3 steps [78]: a)

Compute k-nearest neighbor for a data point. b) Construct

a weight matrix associated with the neighborhood of each

data point. Obtains the weights that best reconstruct each

data from its neighbors, minimizing the cost. c) Compute the

transformed data point Y best reconstructed by the weights,

minimizing the quadratic form.

2) Spectral Embedding

Spectral embedding builds a graph incorporating neighbor-

hood information. Considering the Laplacian of the graph,

it computes a low dimensional representation of the data

set that optimally preserves local neighborhood informa-

tion [79]. Minimization of a cost function, based on the graph

ensures that points closer on the manifold are mapped closer

in the low dimensional space, preserving local distances [77].

The Spectral Embedding algorithm consists of 3 steps: a)

Weighted Graph Construction in which raw data are input

into a graph representation using an adjacency matrix. b)

Construction of unnormalized and a normalized graph Lapla-

cians as L = D − A and L = D−0.5(D − A)D−0.5,

respectively. c) Finally, partial eigenvalue decomposition is

done on the graph Laplacian.

3) Multi Dimensional Scaling (MDS)

MDS performs projection to lower dimensions to improve

interpretability while preserving ‘dissimilarity’ between the

samples. It preserves the dissimilarity by minimizing the

square difference of the pairwise distances between all the

training data between the projected, lower-dimensional and

the original higher-dimensional space,

DiffP (X1, . . . , Xn) =





n
∑

i=1

n
∑

j=1|i 6=j

(‖xi − xj‖ − δi,j)
2





1/2

(5)

where δi,j is the general dissimilarity metric in the origi-

nal higher dimensional space and ‖xi − xj‖ is the project-

ed/lower dimensional dissimilarity pairwise between training

samples i and j. The model can be finally validated by

a scatter plot of pairwise distance in projected and origi-

nal space. There are two types of MDS: Metric and Non-

Metric based. In Metric MDS, the distances between the

two points in projection are set to be as close as possible to

the dissimilarity (or distance) in original space. Non-metric

MDS tries to preserve the order of the distances and hence

seeks a monotonic relationship between the distances in the

embedded and original space.

4) t-SNE Visualization

The manifold learning technique called t-distributed Stochas-

tic Neighbor Embedding is useful to visualize high-

dimensional data, as it reduces the tendency of points to

crowd together at the center. This technique converts similar-

ities between data records to joint probabilities and then tries

to minimize the Kullback-Leibler divergence (a technique

used to compare two probability distributions) between the

joint probabilities of the low-dimensional embedding and the

high-dimensional data using gradient descent. The only issue

with this technique is that it is computationally expensive and

is limited by two or three embeddings in some methods. In

the intrusion detection methods, the purpose is to evaluate

if in the low-dimensional embedding one can find some

correlation of the data points with the labels.

5) IsoMap Embedding

Isomap stands for isometric mapping and is an extension to

the MDS technique discussed earlier. It uses geodesic paths

instead of euclidean distance for nonlinear dimensionality re-

duction. Since MDS tries to preserve large pairwise distance

over the small pairwise distance, Isomap first determines a

neighborhood graph by finding the k nearest neighbor of each

point, further connecting these points in the graph and assigns

weights. Then it computes the shortest geodesic path between

all pairs of point in the graph, to use this distance measure

between connected points as weights to apply MDS to the

shortest-path distance matrix [80].

B. CLUSTERING

One of the fundamental problems in multi-sensor data fu-

sion is data association, where different observations in

the dataset are grouped into clusters [25]. Hence, various

clustering techniques are explored for data association.
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1) K-means Clustering

The k-means algorithm clusters data by separating samples

in n groups of equal variance, minimizing a criterion known

as inertia. The algorithm starts with a group of randomly

selected centroids, which are used as the beginning points for

every cluster, then performs iterative calculations to optimize

the positions of the centroids by minimizing inertia. The

process stops when either the centroids have stabilized or the

number of iterations has been achieved.

2) Spectral Clustering

The main concept behind spectral clustering is the graph

Laplacian matrix. The algorithm takes the following

steps [81]:

1) Construct a similarity graph either based on an ǫ-

neighborhood graph, a k − nearest neighbor graph,

or a fully connected graph.

2) Compute the normalized Laplacian L.

3) Compute the first k eigen-vectors u1, u2..., uk of L.

The first eigen-vectors are related to the k smallest

eigen values of L.

4) Let U ∈ Rn∗k be the matrix containing the vectors

u1, u2..., uk as columns.

5) For i = 1, , , , n, let yi ∈ Rk be the vector correspond-

ing to the ith row of U .

6) Cluster points (yi) in Rk with k-means algorithm into

clusters C1, ...Ck.

3) Agglomerative Clustering

Agglomerative clustering in a bottom-up manner, where at

the beginning, where each object belongs to one single-

element cluster, which are the leaf clusters of a dendogram.

At each step of the algorithm, the two clusters that are most

similar (based on a similarity metric such as distance) are

combined into a larger cluster. The procedure is followed

until all points are members of a single big cluster. The

steps form a hierarchical tree, where a distance threshold is

used to cut the tree to partition the data into clusters. As per

scikit, this algorithm recursively merges the pair of clusters

that minimally increases a given linkage distance [82]. The

parameter distance_threshold in the scikit-learn implementa-

tion is used to cut the dendrogram.

4) Birch Clustering

The Balanced Iterative Reducing and Clustering Using Hi-

erarchies (BIRCH) [83] algorithm is more suitable for the

cases where the amount of data is large and the number of

categories K is also relatively large. It runs very fast, and it

only needs a single pass to scan the data set for clustering.

C. SUPERVISED LEARNING

Though manifold learning and clustering techniques help

visualize and cluster the data samples in the intrusion time-

interval from the non-intrusion ones, still the results of these

techniques are hard to validate without any labels, hence

various supervised learning techniques are also considered

in designing the anomaly based IDS.

1) Support Vector Classifier

Support vector machine builds an hyperplane or set of hyper-

planes in a higher dimensional space which are further used

as a decision surface for classification or outlier detection.

It is a supervised learning based classifier which performs

better even for scenarios with higher feature size than the

sample size. The decision function, or support vectors, de-

fined using the kernel type such as sigmoid, polynomial,

linear or radial basis function plays a major impact on the

classifier performance. Different variants of SVCs have been

predominantly proposed in intrusion detection solutions [84],

[85].

2) Logistic Regression (LR) Classifier

LR is a classification algorithm, used mainly for discrete set

of classes. It is a probability-based classification technique

which minimizes the error cost using the logistic sigmoid

function. It uses the gradient descent technique to reduce the

error cost function. Industries make a wide use of it, since it

is very efficient and highly interpretable [86].

3) Naive Bayes (NB) Classifier

NB is a supervised learning technique using Bayes Theorem,

with the naive assumption of independent features, condi-

tioned on the class. Based on feature likelihood distribution,

they posses different forms: Gaussian, Bernoulli, Categori-

cal, Complement, etc. Though it is computationally efficient,

the selection of feature likelihood may alter results. Spam

filtering, text classification, and also in network intrusion

detection it is used profusely [87]. A naive-bayes based

solution was proposed for IDS in a smart meter network [88].

4) Decision Tree (DT) Classifier

The advantage of using DT is that it requires the least data

transformation. Fundamentally it creates internally, models

that predicts the target class by learning decision rules in-

ferred from the features. This technique sometimes meet

with over-fitting issues while learning complex trees that are

hard to generalize. Hence, it adopts pruning techniques such

as reducing the tree max-depth to deal with over-fitting. If

data in the samples are biased it may highly likely create

biased trees. The computation cost of using this classifier is

logarithmic in the number of data records. It has been used

in protocol classification problem [89], [90] for classifying

anomalous packets.

5) Random Forest (RF) Classifier

Basically, RF creates decision trees on randomly picked data

samples, further computes prediction from each tree and

selects the best solution through voting. More trees results

in a more robust forest. It is an ensemble based classifier

in which a diverse collection of classifiers (decision trees)
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are constructed by incorporating randomness in tree con-

struction. Randomness decreases the variance to address the

overfit issues prevailing in DT. Compared with SVMs, RF

is fast and works well with a mixture of numerical and

categorical features. It has a variety of applications, such

as recommendation engines, image classification and feature

selection. Due to its variance reduction feature and least

need of data pre-processing, it is also preferred in the cyber

security area [91], [92].

6) Neural Network (NN) Classifier

Neural networks is effective in the case of complex non-

linear models. In the IDS classification problem, MLP is used

as the supervised learning algorithm. It learns a non-linear

function approximator whose inputs are the features for a

record and outputs the class. Unlike a logistic regressor, it

comprises of multiple hidden layers. A major issue with NN

models is it large set of hyper tuning parameter such as the

number of hidden neurons, layers, iterations, dropouts, etc.,

that can affect the hyper-parameter tuning process for im-

proving accuracy. Additionally, it is quite sensitive to feature

scaling. Following Occam’s razor, security professionals tend

to avoid neural networks in intrusion detection, wherever

possible. Still NN can be explored to capture temporal pattern

with the use of Recurrent Neural Networks and spatial pattern

using Graph Neural Networks.

VIII. DATA FUSION SOFTWARE APPLICATION

A desktop application as a data fusion framework is devel-

oped for data aggregation, feature extraction, transformation,

fusion, and learning purposes as illustrated in Fig. 2. The

purpose of the application is to extract sensor information

for different use cases and visualize features at different

stages. In Fig. 7 and 8, the application visualizes the features

extracted from multiple sources and the results of supervised

learning techniques, respectively. In the application, the user

can also select features based on correlations to infer the

timing and cause of the attack.

This application is scalable and re-usable for different use-

cases and is currently deployed in the Data Fusion block in

the testbed 3. This application will be further extended to

provide cyber network reconfiguration under different types

of attacks detected. For example, a classifier detecting an

ARP spoof attack will trigger an ARP-tables based filtering

in the firewall to regulate ARP cache poisoning traffic from

the intruder.

IX. RESULTS AND ANALYSIS

In this section, the improvement of the detection performance

of IDS, when a fused dataset is considered in comparison

to the use of only cyber or physical features is studied.

The IDS is designed as a classifier when training with

supervised and semi-supervised based ML techniques. The

IDS’s performance is analysed based on the different types

of MiTM attack carried out in the RESLab testbed. For

supervised learning techniques, the impact of labeling and

feature reduction on the detection accuracy is investigated.

For unsupervised learning techniques, comparison of the

performance of the clustering techniques based on different

metrics. In most of the experiments, the highest scores for

either 2 or 3 clusters were expected, since the objective was

to cluster attacked traffic from non-attacked. The third cluster

being undetermined. Additionally, a co-training-based semi-

supervised learning technique is tested, by assuming a loss

of labels for some experiments and compare them with

supervised learning techniques.

A. SUPERVISED TECHNIQUE INTRUSION DETECTION

WITH SNORT ALERT AS LABEL

1) Metrics for evaluation

The IDS performance is evaluated by classifier’s accuracy

computed using metrics such as Recall, Precision, and F1-

score. A recall is the ratio of the true-positives to the sum

of true-positives and false-negatives. Precision is the ratio

of the true-positives to the sum of true-positives and false-

positives. High precision is ensured by a low false-positive

rate. A high recall is an indication of low false-negative rate.

False negatives are highly unwanted in security, since an

undetected attack may result in more privilege escalations

and can impact a larger part of network. False positives is

expensive as time and money is invested for security profes-

sionals to investigate a non-critical alert. Hence, harmonic

mean of recall and precision, called F1-score, is a preferred

metric for a balanced evaluation.

2) Labels Evaluation

The performances are compared, considering labels from

Snort alerts and labels based on the intruders’ attack win-

dows, to train the supervised learning-based IDS classifiers.

The intruders’ attack window is the difference between the

attack script end and start time. Every record is labeled in this

window belonging to the compromised class. It is interesting

to observe from Table 2 that the classifier trained using the

attack window label performed better than the Snort labels,

based on the average F1-score, Recall, and Precision. These

metrics are computed by taking the average of all the metrics

from different use cases. This analysis indicates that training

a model from well-known IDS may not act as an ideal

classifier for intrusion detection. Hence, for further studies,

the classifier is trained using the attack window-based label.

Classifier Snort Label Label from Attack Window

Avg. F1 score Rec. Prec. F1 score Rec. Prec.

SVC .566 .69 .496 .752 .776 .799

DT .738 .73 .757 .909 .909 .92

RF .764 .789 .776 .891 .896 .903

GNB .598 .574 .745 .724 .729 .748

BNB .57 .589 .621 .634 .655 .676

MLP .561 .671 .491 .621 .695 .604

TABLE 2. Comparison of the labels using a different classifier based on the

evaluation metrics.
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FIGURE 7. Left figures illustrate features extracted from multiple stages such as after connection with the Packetbeat server and the Snort IDS. Right-side figure

illustrates the imputed and encoded features graphically.

FIGURE 8. Left figures illustrate precision, recall, F1-score as well as the raw probability scores from the classifiers. Right-side figure visualizes the probability

scores for each technique graphically.

3) Use Case Specific Evaluation

The datasets constructed from four use cases is analysed

based on different strategies of FDI and FCI attacks (mea-

surement and control, respectively). These cases use different

polling rates and DNP3 masters on the synthetic 2000-bus

grid case illustrated in the RESLab paper [14]. Use Case 1

and 2 are FCI attacks on binary and mixed binary/analog

commands from the control center to some selected outsta-

tions, selected from prior work on graph-based contingency

discovery [93]. Use Case 3 and 4 are a mix of FCI and

FDI attacks. These use cases differ based on the type and

sequence of modifications done by the intruder, as shown in

Table 3.

Due to the variation of attempts an intruder needs to take

to implement the use cases, the number of samples collected

for every scenario differs. In the MLP based classifier, the

number of samples plays a vital role; hence, MLP performs

better for scenarios with the number of DNP3 masters equal

to 10 versus 5 and with a DNP3 polling interval of 30 s

versus 60 s. The DT and RF classifiers outperform the other

classifiers in almost all the scenarios. The NB classifiers, both

Gaussian and Bernoulli, need the features to be independent

for optimal performance. Since most of the features are

strongly correlated based on Fig. 6, the performance of NB

is relatively weak compared to other classifiers. Usually,

Gaussian Naive Bayes (GNB) is considered for features that

are continuous and Bernoulli Naive Bayes (BNB) for discrete

features. In fused dataset, since both types of features exist,

both techniques are considered for evaluation. In the majority

of the scenarios, GNB performed better than BNB, indicating

the physical features have more impact on the detection

compared to categorical cyber features. Table 4 shows the

comparison of classifiers for different use cases, and Table 5

shows the comparison using grid search cross-validation

based tuning of hyper-parameters for each classifier.

4) Impact of Fusion

Tthe classifier’s performance is evaluated by considering

pure physical and pure cyber-based intra-domain fusion as

well as cyber-physical inter-domain fusion. The pure physi-
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FCI FCI with FDI

UC1 UC2 UC3 UC4

Binary Commands Analog, Binary Commands Measurements=>Commands Measurements=> Commands=>Measurements

TABLE 3. Use cases based on the type and sequence of modifications.

Scenarios Classifiers
uc masters PI SVC DT RF GNB BNB MLP

UC1
10 30 .70 .74 .75 .59 .70 .70
10 60 .78 .87 .81 .75 .49 .58

UC2

5 30 .88 .76 .92 .73 .52 .86
5 60 .88 .89 1.0 .94 .89 .66
10 30 .84 .93 .93 .73 .59 .77
10 60 .64 .97 .88 .33 .58 .52

UC3

5 30 .95 .98 .93 .93 .57 .72
5 60 .50 1.0 .88 .72 .33 .40
10 30 .85 1.0 .97 .83 .66 .86
10 60 .89 .98 .91 .84 .73 .91

UC4

5 30 .59 .86 .88 .56 .54 .39
5 60 .63 .81 .77 .74 .77 .31
10 30 .65 .96 .97 .63 .78 .57
10 60 .75 .98 .88 .83 .80 .50

TABLE 4. Comparison of the classifier based on the scenarios i.e. use cases,

number of masters and the polling interval (PI) in sec.

Scenarios Classifiers
uc masters PI SVC DT RF GNB BNB MLP

UC1
10 30 .70 .78 .75 .70 .69 .70
10 60 .54 .87 .81 .78 .52 .7

UC2

5 30 .51 .88 .84 .72 .51 .67
5 60 .66 1.0 1.0 .83 .89 .62
10 30 .45 .94 .89 .81 .44 .86
10 60 .52 .97 .85 .75 .61 .58

UC3

5 30 .36 .98 .93 .93 .50 .91
5 60 .40 1.0 .96 .88 .26 .44
10 30 .41 1.0 .99 .84 .63 .69
10 60 .40 .93 .88 .89 .76 .82

UC4

5 30 .39 .97 .93 .57 .56 .61
5 60 .31 .63 .68 .65 .77 .68
10 30 .44 .96 .95 .65 .78 .65
10 60 .50 .88 .85 .80 .80 .50

TABLE 5. Optimal Hyper-parameter with GridSearch Comparison of the

classifier based on the scenarios i.e. use cases, number of masters and the

polling interval (PI) in sec.

cal and cyber physical based fusion outperforms pure-cyber

based fusion for all the classifiers shown in Table 6. Hence,

it indicates that the introduction of physical side features

can improve the accuracy of conventional IDS that only

considers network logs in the communication domain. The

pure physical features relatively performed better than cyber-

physical because, in the testbed, only a few features (i.e.

measurements for the impacted substation) are considered

for extraction. If all the measurements is considered from the

grid simulation, the detection accuracy will decrease due to

feature explosion. Feature reduction techniques such as PCA

for the physical features may not be an ideal solution for a

huge synthetic grid.

5) Impact of Feature Reduction

In this subsection, feature reduction techniques such as PCA

and Shapiro ranking are considered for feature reduction

Clfr Pure Cyber Pure Physical Cyber Physical

Avg. F1 Rec. Pre. F1 Rec. Pre. F1 Rec. Pre.

SVC .62 .68 .59 .75 .77 .80 .75 .77 .80

DT .77 .77 .77 .93 .93 .94 .91 .91 .92

RF .69 .69 .68 .92 .92 .93 .89 .90 .90

GNB .58 .57 .59 .78 .77 .81 .72 .73 .75

BNB .52 .56 .55 .65 .68 .66 .63 .66 .68

MLP .56 .66 .53 .72 .76 .77 .62 .70 .61

TABLE 6. Comparison of the classifier with pure cyber fusion, pure physical

fusion, and cyber-physical fusion features

and feature filtering to evaluate the performance of the IDS.

Table 7 illustrates the performance scores for different clas-

sifiers with PCA transformed features and Shapiro features

selected for scores more than 0.7. It can be observed that

except for the DT and RF, other classifier’s performance

improved by both operations. DT and RF behave the best

when most of the features are kept intact. In most of the

cases, the selection of features based on Shapiro features

performed better than PCA transformation. Still, the total

variance threshold taken may impact the number of principal

components considered, which can affect the results.

FIGURE 9. Ranking feature importance for extracting features. Of all the

features, scores above 0.7 is selected for training.

B. UNSUPERVISED LEARNING TECHNIQUES

1) Metrics for evaluation

For evaluating the performance of the clustering techniques,

the Silhouette scores, Calinski Harabasz score, Adjusted

Rand score, and Davies Bouldin scores are considered. The

Silhouette score (S) is the mean Silhouette Coefficient of all

samples. The Silhouette Coefficient is calculated using the

mean intra-cluster distance (a) and the mean nearest-cluster
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Clfr All Features PCA Shapiro Ftrs ≥ 0.7

Avg. F1 Rec. Pre. F1 Rec. Pre. F1 Rec. Pre.

SVC .75 .77 .80 .77 .80 .81 .77 .78 .79

DT .91 .91 .92 .82 .82 .83 .89 .89 .91

RF .89 .90 .90 .86 .86 .87 .84 .84 .84

GNB .72 .73 .75 .77 .78 .78 .83 .84 .87

BNB .63 .66 .68 .74 .76 .76 .80 .82 .86

MLP .62 .70 .61 .61 .68 .64 .50 .64 .41

TABLE 7. Comparison of the classifier with all features, reduced feature with

PCA transformation, and feature selection based on shapiro ranking

distance (b) for each sample, using b−a
max(a,b) . The Calinski

Harabasz score (CH) is computed based on [94]. It is the

ratio between the within-cluster dispersion and the between-

cluster dispersion. The Rand Index computes a similarity

measure between two clusterings by considering all pairs of

samples and counting pairs assigned in the same or different

clusters in the predicted and true clusterings. This index is

further adjusted to be called the Adjusted Rand Index (AR).

The Davies Bouldin score (DB) is defined as the average

similarity measure of each cluster with its most similar clus-

ter, where similarity is the ratio of within-cluster distances to

between-cluster distances [95]. Thus, clusters that are farther

apart and less dispersed will result in a better score.

2) Clustering

Prior to the clustering techniques, the datasets are sclaed

and normalized using scaler and normalize functions since

otherwise there will be feature-based bias. Four types of

clustering techniques: Agglomerative, k-means, Spectral, and

Birch clustering, are implemented, to evaluate the optimal

number of clusters based on the S, CH, AR, and DB scores.

For determining the clusters, the samples from all the use-

cases are merged, to form a larger dataset and then trained the

clustering methods by tuning the number of clusters hyper-

parameter (Nc) from 2 to 10. Fig 10 (a-e) show the clus-

tered plots using Agglomerative clustering with a different

number of clusters. The number of clusters, or centroids, are

selected for hyper-parameter tuning since it is found to be the

most important factor for the success of the algorithm [96].

Ideally, there need to be 3 clusters for un-attacked, attacked

with DNP3 alerts, and attacked with ARP alerts, but the

distance metric considered results in a greater number of

clusters in some methods. Among all the clustering tech-

niques presented in the previous section, the affinity propa-

gation technique does not converge to obtain the exemplars

with default parameters (damping =50, convergence_iter

=200). Hence, the damping and maximum convergence iter-

ation parameters are increased to 0.95 and 2000 respectively,

resulting in 34 clusters. The S, CH, DB, and AR scores

obtained are 0.605, 3658.1, 0.736, and 0.00085 respectively.

3) Impact of Fusion

Considering only physical side features, most of the evalu-

ation metrics computed very low or negative (in the case of

Adjusted Rand index) values, indicating inefficient clusters.

The scores of the optimal clusters with combined cyber-

physical features had an AR score of more than 0.8, but its

maximum is 0.01 for 6 clusters with only physical features.

The pure cyber features performed similar to the cyber-

physical case, but the scores are less compared to the merged

features. Hence, it is essential to fuse cyber and physical

features prior to performing clustering-based unsupervised

learning. Table 8 shows the optimal cluster, based on the

scores, with considering cyber and physical features sepa-

rately. While, Table 9 shows the optimal cluster with features

merged from cyber and physical domain. Using fused feature,

optimal cluster is found to be three in majority cases.

Pure Cyber Pure Physical

Clustering S CH AR DB S CH AR DB

Agglo. 3 5 2 6 2 6 6 (neg) 2

K-means 3 6 2 5 3 6 6 (neg) 2

Spectral 3 5 2 6 3 3 6 (neg) 2

Birch 3 3 2 2 3 3 3 (neg) 2

TABLE 8. Comparison of Optimal clusters (Opt Nc) using different algorithm

considering pure cyber and physical features separately.

Clustering Algo S CH AR DB

Agglomerative 3 3 2 3

K-means 3 3 2 3

Spectral 3 5 2 3

Birch 3 3 2 3

TABLE 9. Optimal clusters (Opt Nc) using different algorithm obtained using

four different evaluation metric with cyber and physical features combined.

4) Robustness

The robustness of the clustering techniques can be evaluated

based on the variance of these evaluation metrics with respect

to a) hyper-parameter tuning and b) dataset alterations. In

the first case, the mean, variance, and normalized variance

(NV ar = sd
mean ) of the evaluation metric S, CH , AR, and

DB are computed by altering Nc from 2 to 10 and using

the complete dataset extracted for all the use cases. In the

second case, similar statistics are computed by keeping the

number of clusters fixed at Nc = 3 and altering the dataset

i.e. by using different use cases. A clustering technique with

lower normalized variance is more robust, and a better mean

score is more accurate. Based on the silhouette scores (S)

from Table 10, k-mean based clustering is found to be more

robust to varying data sources and has a better mean score,

but a main limitation of k-means is its strong dependence on

Nc. Still, k-means is used in many practical situations such

as anomaly detection [97] due to its low computation cost.

5) Manifold Learning

Manifold learning is adopted for visualization. Classification

techniques need to be employed on the features projected

in the lower dimensions using these embeddings for quan-

titative comparisons. The performance of manifold learning

methods are evaluated by testing them with the classifiers
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(a) (b) (c) (d) (e)

FIGURE 10. Agglomerative clustering with different number of clusters. Clustering with size 2 and 3 outperforms others, validating the detection accuracy of a

attacked traffic from a non-attacked one.

Scenarios Effect of Parameters Effect of Data Alt.
Met Algo Mean Var NVar Mean Var NVar

S

Agg .52 .0175 .254 .609 .01 .164
K-m .54 .013 .212 .615 .008 .145

Spec .504 .021 .287 .581 .015 .213
Bir .74 .011 .146 .599 .010 .172

CH

Agg 9965 5.5× 10
6 .235 337 36880 .569

K-m 10822 6.6× 10
7 .237 346 35690 .545

Spec 8765 1.0× 10
7 .362 311 34047 .592

Bir 10484 1.3× 10
7 .349 331 35637 .57

AR

Agg .703 .035 .266 .534 .029 .319
K-m .672 .027 .248 .529 .022 .281

Spec .714 .039 .278 .638 .049 .349
Bir .342 .014 .35 .589 .047 .368

DB

Agg .026 0.0 .32 .053 .003 1.038
K-m .54 0.0 .322 .063 .003 .925
Spec .504 0.0 .559 .058 .003 1.037
Bir .74 0.0 1.344 .065 .003 .895

TABLE 10. Evaluation of the Robustness of the Clustering Algorithm by

varying hyper-parameters and data source.

presented in the previous subsection. Table 11 presents the

comparison of the LLE, MDS, spectral, t-SNE, and IsoMap

[98] embeddings considered for classification using SVC,

k-NN, DT, RF, GNB, BNB, and MLP. Inter-domain fusion

doesn’t gain much from manifold learning, but an interesting

observation is made on the decrease in the difference of F1

scores among the high performing DT and RF classifiers,

with the low performing SVC and k-NN classifiers. Hence, it

is inadvisable to perform manifold learning for the datasets, if

training using Decision Tree or Random Forest. The IsoMap

embedding that preserves local features of the data by first

determining neighbor-hood graph and uses MDS in its last

stage performs better than MDS for all the classifiers only

with the exception of SVC.

Clfr→ SVC k-NN DT RF GNB BNB MLP

Manifold ↓ F1 scores

LLE .66 .74 .66 .64 .38 .39 .49

MDS .65 .78 .77 .80 .54 .48 .55

Spectral .61 .75 .73 .75 .61 .62 .54

t-SNE .64 .74 .73 .76 .63 .57 .63

IsoMap .65 .78 .77 .79 .54 .48 .55

TABLE 11. Comparison of the different manifold learning embeddings

considered with different classifiers.

C. SEMI-SUPERVISED LEARNING

1) Co-Training

For co-training, first the dataset is split into labeled and

unlabeled sets randomly in the ratio of 1:2. In the real world,

this randomness may be caused due to accidental cessation of

the Snort application or if a network security expert cannot

make an inference of intrusion. Further, both the labeled

and unlabeled data are split into cyber and physical views

consisting of respective features. In these experiments, the

supervised learning techniques are compared on the labeled

dataset with the co-training technique which uses supervised

learning cyber and physical classifiers, as shown in Fig. 5.

It is expected to have a reduction in performance from

supervised learning techniques, due to lack of labels for some

samples, but it can be observed from Table 12, that the co-

training based classification outperforms supervised for some

classifiers such as LR,GNB,BNB,MLP and performs at

par with other classifiers with a difference of a mere 8

percent in the case of RF . The probable reason for improved

performance using co-training may be due to the training of

two different classifiers using intra-domain features.

Classifier Supervised Co-Training

F1-score Rec. Prec. F1-score Rec. Prec.

LR .63 .67 .64 .64 .73 .58

SVC .63 .67 .64 .59 .70 .52

DT .69 .71 .69 .64 .71 .65

RF .73 .77 .72 .65 .72 .72

GNB .28 .33 .66 .30 .32 .56

BNB .53 .51 .67 .58 .66 .52

MLP .59 .71 .51 .61 .71 .55

TABLE 12. Comparison of the classifier using supervised and co-training

based unsupervised learning.

X. CONCLUSION

A data fusion framework for detecting false command and

measurement injections due to cyber intrusion is presented

in this paper. To design an IDS that uses cyber and phys-

ical features, features from cyber and physical sensors are

aggregated and the data aligned, then perform pre-processing

techniques, followed by inter-domain fusion.

The results find that classifier performance improves on

an average of 15- 20% (based on F1-score) when cyber-

18 VOLUME 4, 2021
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physical features are considered instead of pure cyber fea-

tures. Results also show that the performance improved on

an average of 10-20% (based on F1-score) when labels from

Snort are replaced by the labels considered based on intrusion

timestamps. From the evaluations of the IDS, it is also

found that scenarios with balanced and larger records result

in better performance. Additionally, co-training-based semi-

supervised learning technique, which is realistic for a real

world scenario, is found to perform similarly to supervised

techniques and even better by 2-5% (based on F1-score)

using some classifiers. Among the unsupervised learning

techniques, k-mean clustering technique is found to be more

robust and accurate. Moreover, training the classifier with the

embeddings from manifold learning didn’t improve the accu-

racy. Hence, manifold learning should only be considered for

visualization rather than rely on accuracy.

It is believed by us, that the fused dataset [99], the data

fusion engine [100], and results provided are one of the first

publicly available studies with cyber and physical features,

particularly for power systems, where the experimental data

is collected from a testbed that contains both cyber and phys-

ical emulation. This benefits research in multi-disciplinary

areas such as cyber-physical security and data science.
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