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Abstract

Mechanisms for sharing information in a disaster situation have drastically changed due to new technological innovations 

throughout the world. The use of social media applications and collaborative technologies for information sharing have 

become increasingly popular. With these advancements, the amount of data collected increases daily in different modalities, 

such as text, audio, video, and images. However, to date, practical Disaster Response (DR) activities are mostly depended 

on textual information, such as situation reports and email content, and the benefit of other media is often not realised. Deep 

Learning (DL) algorithms have recently demonstrated promising results in extracting knowledge from multiple modalities 

of data, but the use of DL approaches for DR tasks has thus far mostly been pursued in an academic context. This paper 

conducts a systematic review of 83 articles to identify the successes, current and future challenges, and opportunities in 

using DL for DR tasks. Our analysis is centred around the components of learning, a set of aspects that govern the applica-

tion of Machine learning (ML) for a given problem domain. A flowchart and guidance for future research are developed as 

an outcome of the analysis to ensure the benefits of DL for DR activities are utilized.
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Introduction

Disasters, whether natural or human-induced, often result 

in loss of lives, property, or damage that can impose a sig-

nificant impact on communities over a long period. With 

the proliferation of smart mobile devices, people are now 

increasingly using social media applications during disasters 

to share updates, check on loved ones, or inform authorities 

of issues that need to be addressed (e.g., damaged infra-

structure, stranded livestock). Besides physical sensors and 

many other sources; human sensors, such as people who use 

smart mobile devices, generate massive amounts of data in 

different modalities (such as text, audio, video, and images) 

during a crisis. Such datasets are generally characterised as 

multimodal [17].

Disaster response (DR) tasks bring together groups of 

officials who often serve different organizations and rep-

resent different positions, and their information require-

ments remain complex, dynamic, and ad hoc [101]. Also, 

it is beyond the capacity of the individual human brain to 

combine different forms of data in real time and process 

them to form meaningful information in a complex and fast-

moving situation [102]. Therefore, the main challenge faced 

by emergency responders is effectively extracting, analyzing, 

and interpreting the enormous range of multimodal data that 

is available from different sources within a short time period. 

As a result, emergency responders still depend mostly on 

text-based reports prepared by field officers for their deci-

sion-making processes, avoiding many other sources that 

could provide them with useful information.
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Previously, the DR research community applied classical 

Machine Learning (ML) techniques to automate DR activi-

ties [2, 94]. However, the requirement of ML algorithms 

for handcrafted features prevented the timely use of such 

models. Furthermore, the research processes with these 

methods were labour-intensive and time-consuming [86]. 

More recently, Deep Neural Networks, which rely less on 

handcrafted features, instead learning directly from input 

data, have been used extensively to learn high-level rep-

resentations through deep features and have proven to be 

highly effective in many application areas, such as speech 

recognition, image captioning, and emotion recognition 

[14, 17, 66, 119]. As DL techniques gain popularity among 

researchers, there is a timely need to discuss the potential 

for their use for DR activities. Researchers and practitioners 

need to understand what has been done in the literature and 

the current knowledge gaps to make further improvements. 

Thus, this article analyses and systematically reviews the 

intersection of the two research fields (DL for DR).

We have organized our review around the components 

of learning as proposed by Abu-Mostafa [121] and used by 

Watson et al. [125] for their systematic review. Abu-Mostafa 

[121] demonstrated the application of five components of 

learning for any ML problem. These components provide 

a clear mapping to establish a roadmap for investigating 

DL approaches in DR research. Our objective is to iden-

tify application scenarios, best practices and future research 

directions in using DL to support DR activities. Therefore, 

we synthesize five main Research Questions (RQs) and eight 

sub-questions that support the main RQs according to the 

components of learning. To answer the RQs, we create a 

data extraction form having 15 attributes such as DR Task, 

Data Type, Data Source, and DL Architecture. We create a 

taxonomy of DR tasks in response to the first RQ, which is 

then utilized to derive answers for the next RQs. Finally, we 

use the Knowledge Discovery in Databases (KDD) process 

to uncover hidden relationships among extracted values for 

the attributes in the extraction form. Based on our findings, 

we propose a flowchart with guidelines for DR researchers 

to follow when using DL models in future research.

We found multiple review articles that discussed the use 

of multimodal data for disaster response (for example, [6, 

105]), outlining applications and challenges. However, many 

of these have not explicitly considered using DL for feature 

extraction. We also observed other review articles focused 

on individual data sources. For example, the studies [11, 

55, 72, 91, 111, 124] addressed the frameworks, method-

ologies, technologies, future trends, and applications for 

disaster response while using social media datasets. Among 

other reviews, Gomez et al. [37] analyzed remotely sensed 

UAV data, considering cases of different disaster scenarios. 

Overall, these reviews are especially focused on addressing 

a single source of data and how it can be used for disaster 

response. The more recent article by Sun et al. [118] pro-

vides an overview of using Artificial Intelligence (AI) meth-

ods for disaster management. Our work significantly differs 

from the work by Sun et al. in a number of ways. Firstly, 

we analyze the articles systematically, adopting the learning 

components as proposed by Abu Moftha [121]. Secondly, 

our analysis is confined to trending DL techniques as a sub-

set of AI. Thirdly, we provide a wider discussion on the 

datasets, preprocessing, DL architectures, hyperparameter 

tuning, challenges and solutions in processing data for the 

DL task, and clarify future research directions.

The remainder of this article is organized as follows. 

We first provide a synthesis of the research questions in 

Section “Research Question Synthesis”. Section “Method-

ology” outlines the methodology used to analyze the lit-

erature. Sections “RQ1: What types of DR Problems have 

been Addressed by DL Approaches?”– “RQ5: What are 

the Underlying Challenges and Replicability of DL for DR 

Studies?” provide the analysis of the research questions and 

Section “Opportunities, Directions and Future Research 

Challenges” summarises opportunities and future research 

challenges. Section “Results of the Association Rule Min-

ing” discusses the relationships extracted during the KDD 

process. In Section “Flowchart and Guidelines for Applying 

DL in Future DR Research” a flow chart is provided with 

recommendations for future research. Finally, in Section 

“Conclusions”, we broadly discuss research gaps and con-

clusions. An online appendix contains the full details of the 

analysis process, as well as the resources [12].

Research Question Synthesis

Our overarching objectives during this study are to identify 

research challenges and best practices, and provide direc-

tions for future research while using DL methods for DR 

tasks. Therefore, we have centralized our analysis around the 

elements of learning (see Fig. 1) and formulated the main 

RQs accordingly. As a result, we ensure that our analysis 

effectively captures the essential components of DL applica-

tions while also allowing us to perform a descriptive content 

analysis across these components. Furthermore, we formu-

lated sub-questions supporting the main RQs to analyze 

more details. The next subsections discuss the formulation 

of the main RQs and sub-questions according to the com-

ponents of learning.

The First Component of Learning: The Target 
Function

The first component of the learning problem is an “unknown 

target function (f ∶ x → y) ” as illustrated in Fig. 1, which 

represents the relationship between known input (x) and 
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output (y). The Target Function is the optimal function that 

we are attempting to approximate with our learning model. 

Therefore, the first component of learning enables the 

researcher to identify main application areas in the research 

field. As a result, we formulated our first research question 

to identify target functions in the DR domain, as follows:

Our goal during this question is to capture the types of 

training data, the extraction sources, and the preprocessing 

techniques applied to prepare them for the DL tasks. To sup-

port and allow a deeper understanding of the main RQ, we 

examine this through three sub-questions.

– RQ
2.1

 What types of DR data have been used?

– RQ
2.2

 What sources have been used to extract data, and 

how have data been extracted?

– RQ
2.3

 How have data been preprocessed before applying 

the DL models?

The answers we extract during questions RQ
2.1

 and RQ
2.2

 

will enable future researchers to see what types and sources 

of data have been explored in previous studies and what data 

has not yet been investigated. Furthermore, RQ
2.3

 provides 

them with the details of prepossessing techniques that have 

been followed during the studies.

Fig. 1  The components of learning as proposed by Abu Moftha [121]

RQ1: What types of DR problems have been addressed by DL approaches?

RQ2: How have the training datasets been extracted, preprocessed and used in DL-based approaches for

DR tasks?

��� aims to discover DR tasks that have been investi-

gated previously using DL methodologies. Furthermore, the 

answers to our first RQ provide a taxonomy for analyzing the 

next research questions.

The Second Component of Learning: The Training 
Data

The second component of learning is the historical data 

(training data), required by the algorithm to learn the 

unknown target function. A thorough understanding of the 

training data leads to insights about the target function, pos-

sible features, and DL architecture design. Furthermore, the 

quality of the output of a DL model is directly coupled with 

the provided training data. Therefore, our second question 

is formulated to understand training data.

The Third and Fourth Components of Learning: The 
Learning Algorithm and Hypothesis Test

According to Abu Moftha [121], the third and fourth learn-

ing elements are known as the “learning model”. The learn-

ing model consists of the learning algorithm and the hypoth-

esis set. A learning algorithm tries to define a model to fit a 

given dataset. For example, the algorithm generally uses a 

probability distribution over the input data to approximate 

the optimal hypothesis from the hypothesis set. The hypoth-

esis set consists of all the hypotheses to which the input 

data are mapped. Therefore, the learning algorithm and the 

hypothesis set are tightly coupled. Considering together the 

learning algorithm and hypothesis set, we formulate our 

third RQ as follows.
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We aim to identify and evaluate the various DL models 

that have been applied for DR tasks. Hence, we consider 

three further sub-questions to capture specific architectures 

and types of DL models.

– RQ
3.1

 What types of DL architectures are used?

– RQ
3.2

 What types of learning algorithms and training 

processes are used?

– RQ
3.3

 What methods are used to avoid overfitting and 

underfitting?

The answers to RQ
3.1

 provide DL architectures that has 

been adopted for various DR tasks. Our goal is to deter-

mine whether certain DL architectures are preferred by 

researchers and the reasons for those trends. As a part of 

the analysis, we capture how transfer learning approaches 

have been adopted to address algorithm training and perfor-

mance issues. During RQ
3.2

 , we intend to examine the types 

of learning algorithms and the training processes involved, 

including how parameter optimization has been achieved. 

Moreover, in RQ
3.3

 , we aim to analyze the methods used to 

combat overfitting and underfitting. Answers to both RQ
3.2

 

and RQ
3.3

 will provide future researchers with an idea of 

how parameter tuning and optimization has been applied in 

DL for DR research to improve the accuracy of the output.

The Fifth Component of Learning: The Final 
Hypothesis

The final component of learning is the “final hypothesis”. 

This is the target function learnt by the algorithm to predict 

unseen data points. Through this component of learning, we 

aim to analyze the effectiveness of the algorithm at achiev-

ing the hypothesis for the selected DR task. Therefore, our 

fourth RQ is formulated as follows:

During the analysis for ��� , we derive the metrics used 

to evaluate the performance of DL models. Future research-

ers can utilize these matrices and extract values to compare 

the results achieved by their models. Additionally, we exam-

ine two sub-questions to perform a deeper evaluation of the 

selected question.

– RQ
4.1

 What evaluation matrices are used to evaluate the 

performance of DL models?

– RQ
4.2

 What “baseline” models have been compared?

Our intention with RQ
4.1

 is to derive a taxonomy of perfor-

mance matrices used by the analyzed studies, while RQ
4.2

 

will identify those “baseline” models that have been criti-

cized and allow future researchers to select those appropriate 

for comparison of their results.

The Final Analysis

Our fifth RQ is designed to identify and characterize under-

lying problems that arise when utilizing DL models for DR 

tasks. Our goal is to provide researchers with challenges 

faced by the DR research community in employing DL-

based approaches. This will enable future research to be 

designed in a way that addresses or avoids these challenges 

and better utilizes DL algorithms to support DR tasks. Fur-

thermore, we aim to analyze the replicability of DL models 

and architectures. Researchers are more likely to re-imple-

ment, improve, or compare new models if the existing DL 

architectures are easily replicable, which will eventually 

increase the quality and quantity of DL for DR research. 

Thus, our final RQ is formulated as follows:

RQ5: What are the underlying challenges and the replicability of DL for DR studies?

RQ4: How well do DL approaches perform in supporting various DR tasks?

RQ3: What DL models are used to support DR tasks?
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In summary, the Systematic Literature Review (SLR) 

conducted in this paper answers the following research 

questions:

Methodology

Multiple techniques have been proposed to understand the 

content of a body of scholarly literature, including scop-

ing reviews, umbrella reviews, or systematic reviews [38]. 

Among them, the systematic review aims to exhaustively 

and comprehensively search for research evidence on a topic 

area and appraise and synthesize it thoroughly [38]. In this 

analysis, we are interested in identifying the gaps in the 

research and whether there are opportunities for researchers 

and practitioners to investigate new problems that have not 

yet been addressed in the DR domain using DL. We, there-

fore, consider a systematic review to be the most appropriate 

approach to find answers to the above formulated RQs. To 

the best of our knowledge, this is the first systematic review 

that investigates the intersection of the DL and DR research 

fields. Our study adopts the following steps to guide the SLR 

process, as highlighted by Yigitcanlar et al. [128]. 

1. Develop a research plan.

2. Search for relevant articles.

3. Apply exclusion criteria.

4. Extract relevant data from the selected articles.

5. Analyse the literature data.

Develop a Research Plan

As the first step for carrying out the SLR, a research plan 

was developed, including research aim, keywords, and a set 

of inclusion and exclusion criteria. The research aim was to 

– RQ1:What types of DR problems have been addressed by DL approaches?

– RQ2:How have the training datasets been extracted, preprocessed, and used in DL-based

approaches for DR tasks?

– RQ2.1 What types of DR data have been used?

– RQ2.2 What sources have been used to extract data, and how have data been extracted?

– RQ2.3 How have data been preprocessed before applying the DL models?

– RQ3: What DL models are used to support DR tasks?

– RQ3.1 What types of DL architectures are used?

– RQ3.2 What types of learning algorithms and training processes are used?

– RQ3.3 What methods are used to avoid overfitting and underfitting?

– RQ4: How well do DL approaches perform in supporting various DR tasks?

– RQ4.1 What evaluation matrices are used to evaluate the performance of DL models?

– RQ4.2 What “baseline” models have been compared?

– RQ5: What are the underlying challenges and the replicability of DL for DR studies?

identify the usage of DL techniques on disaster data to sup-

port DR tasks as outlined in RQs 1–5. Hence, “disaster” and 

“deep learning” were selected as the search keywords. The 

search also included variants of these keywords. The alter-

nate search terms for “disaster” included ‘hazard’, ‘emer-

gency’, ‘crisis’, and ‘damage’. Also, ‘deep neural network’ 

was used as an alternative keyword for DL. Some research 

has considered “machine learning” as an alternative keyword 

for DL. However, since we were particularly interested in 

Deep Neural Networks, we omitted “machine learning” as 

a keyword in the search. The inclusion criteria limited the 

sources to peer-reviewed academic publications available 

online in a full-text format and relevant to the research aims. 

The exclusion criteria were determined as publications in 

languages other than English; grey literature, such as gov-

ernment or industry reports; and non-academic research.

Search the Relevant Articles

In the second step, the search for relevant articles was con-

ducted using a keyword search in each of the following data-

bases: Scopus, Web of Science, and the EBSCO Discovery 

Service on April 2, 2021. Articles published since April 

2011 were considered because a scan of existing literature 

suggested that there was not much literature related to DL 

in disaster research before then. The initial search produced 

592 results.

Apply Exclusion Criteria

In this step, the results were filtered to remove duplicates 

between the databases, which reduced the number to 295 

unique articles. We used a simple Python script to remove 
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duplicates using the title of the article. We confined our 

scope to only papers that discuss natural or human-induced 

disasters. Therefore, the abstracts were manually read and 

removed if they discussed political crises, medical emer-

gencies or financial crises. We also removed articles that 

did not provide sufficient details related to the attributes in 

our extraction form (see Table 1). Finally, 83 articles were 

selected for the review. Fig. 2 illustrates the process and the 

steps that we followed to filter the results and the quantity 

of papers returned at each step. Moreover, we provide the 

publication venues of the 83 articles in Fig. 3.

Extract Relevant Data from the Selected Articles

The next step in our methodology was to extract relevant 

data from the selected articles. We developed a data extrac-

tion form including the information shown in Table 1. The 

extracted information was collected manually and added to a 

Google sheet and later downloaded as a tab-separated (.tsv) 

file for the data analysis steps. The extracted data sheet is 

available in the online appendix [12].

Analyse Data Using the Knowledge Discovery 
in Databases (KDD) process

The final step in our SLR methodology was to analyze the 

extracted data. We used the steps discussed in [125], namely 

data collection, initial coding and focused coding. After the 

coding process, we used the Knowledge Discovery in Data-

bases (KDD) process to understand relationships among 

attributes in the extraction form. The KDD process is used to 

extract knowledge from databases using five steps: selection, 

preprocessing, transformation, data mining, and interpreta-

tion/evaluation [33]. We combined data preprocessing and 

transformation into one step as both steps involve preparing 

Fig. 2  Literature selection 

process Search query (SQ): (“deep learning” OR “deep neural network”) AND
(“disaster*” OR “hazard*” OR “emergenc*” OR “crisis” OR “damage*”)

Web of Science ScopusEBSCO Discover

592 relevant papers

295 relevant papers

132 relevant papers

83 relevant papers

184 papers
167 papers 241 papers

Remove duplicates

Remove papers that discussed political
crisis, medical emergencies, and financial
crisis

Remove articles not related to DR tasks,
not provided sufficient details of their
adopted DL algorithms, results, and dis-
cussions
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data for the mining step. The details of each stage are listed 

as follows.

– Selection: This stage is related to the selection of relevant 

data for the analysis. As described in the previous sec-

tion, we selected 83 articles and extracted 15 attributes 

from them for the analysis.

– Preprocessing: In this stage, we cleaned the extracted 

values by removing noise, such as misspellings, incorrect 

punctuation and mismatching coding. We noticed that a 

number of variations on particular terms, and standard-

ized these to ensure appropriate matching (e.g., ConvNet/

CNN, F-measure/F1-value/F-score/F1-score).

– Data mining: The third stage is related to identifying 

relationships among extracted data. We applied associa-

tion rule mining to derive relationships discussed further 

in Section “Association Rule Mining”.

– Interpretation/Evaluation: We interpret the findings of 

the KDD process in Section “Results of the Association 

Rule Mining”. These relationships demonstrate action-

able knowledge for future researchers from the 83 articles 

analyzed through the SLR process.

AEI, AIPr, AISC, AOR, COMSNETS, CVPR, DSAA, DSS, EG-ICE, ICT-DM,

IES-KCIC, IGARSS, IJDSN, IJITEE, IOP, ISSE, ISW, JAIHC, JARS, JCCH,

MDM, MediaEval, MIPR, Neurocompu ng, PDS, Procedia

Engineering, SADHANA, SCHM, SIGAPP, SIGSPATIAL, SPIC, WWW

MTA

PCS

Sensors

AAAI

arXiv

CACIE

IJDE

ISPRS

Remote

Sensing

ISCRAM

IEEE

IJDRR

Fig. 3  Publication venues of the articles. The number of grey boxes 

corresponds to the number of articles published in each publication 

venue. Full publication venue names are available in the Appendix B

Table 1  Attributes in the data 

extraction form
Article published year Venue DR task addressed

Input data modality Data source Data extraction Technique

Data preprocessing technique Size of the dataset Type of learning

DL architecture used Learning algorithm Evaluation metrics

Replicability Baseline Combating overfitting and underfitting

Fig. 4  Papers published per year 

according to DR task

Year

N
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Understanding sentiments 
(emotions and reactions)

Missing, found and 
displaced people 
identification

Location reference 
identification

Disaster related 
information classification
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information filtering

Disaster event detection

Disaster rescue and 
resource allocation

Disaster mapping

Disaster damage 
assessment
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Disaster Related
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Filtering

Disaster Related

Content Filtering

Situa onal Informa on

Filtering
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Urgency of 

Data

Type of 

Request

highly urgent

moderately urgent

somewhat urgent

not urgent

spam/unclear

Request 

Report 

Reaction

Type of 

Data

nature damage

built-infrastructure

damage

Related/ Not-related

Informative/ Not-Informative

Humanitarian

Task

Affected Individuals

Caution and Advice

Donations and Volunteering

Infrastructure and Utilities

Casualties

Damages

General Awareness

Voluntary Services

Sympathy /Emotion and Support

Crisis-specific Information

material support

medical assistance

information

immediate help/rescue

Other Useful Information

Not-Useful

Disaster Event

Detec on

Missing, Found and

Displaced People

Iden fica on
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Body Parts Detec on
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Understanding
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(Emo ons and

Reac ons)

Disaster Mapping
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Detec on

Affected Area

Detec on
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Detec on

Loca on Reference

Iden fica on

Disaster Rescue and

Resource Alloca on

Disaster Damage
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Detect Structual

Damages

Damage Evalua on

Detect Social Media

Posts related to

Damages

Detect Damages to

Concrete Bridges

Detect Damaged

Cultual Heritage

Detect Damages to

Buildings

Detect Building

Cracks

Detect Damages to

Streets

Detect Damages to

Roofs

Locate and Assess

Damage

Damage Severity

Level Detec on

Change Detec on to

Assess Damage

DR Tasks

ClassesClassification

Type

Availability of

Emotional

Response

Sympathy

Not-Sympathy

Type of

Emotional

Response

Positive

Negative

Neutral

Angry

Sad

Anxious

Fearful

ClassesClassification

Type

Classification

Type
Classes

Type of

Disaster

Flood

Landslide

Fire

Level-1

Level-2
Level-3

Fig. 5  Taxonomy of DR Tasks
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Association Rule Mining

We followed the association rule mining process introduced 

by Samia et al. [61] for literature analysis. Our association 

rules are extracted using the Apriori algorithm. Association 

rules help to discover relationships in categorical datasets. 

For instance, the rules generated during the process identify 

frequent patterns in the dataset. Associations are generally 

represented by “Support”, “Confidence”, and “Lift”. We 

illustrate this using the values in the Data Source column 

in the extraction form. “Support” and “Confidence” are the 

two indicators evaluating the interestingness of a given rule. 

Supp(Twitter) is the fraction of articles for which Twitter 

appears in the Data Source column of the extraction form 

as given in Eq. 1.

If we consider the values in both the Data Source and the 

Data Type columns of the extraction form, the association 

rule Twitter→ Text means that each time Twitter appears 

in the Data Source column, Text appears in the Data Type 

column (see Eq. 2).

“Lift” measures how likely it is that item Text is found in 

the Data Type column when Twitter is found in the Data 

Source column as given in Eq. 3. A “Lift” value greater than 

1 means that item Twitter is likely to appear in the Data 

Source column if Text appears in the Data Type column, 

while a value less than 1 means that Twitter is unlikely to 

appear if Text appears in the respective columns.

(1)supp(Twitter) =
Number of Articles in which Twitter appears in the Data Source column

Total Number of Articles
.

(2)conf (Twitter → Text) =
supp(Twitter ∪ Text)

supp(Twitter)
.

(3)lift(Twitter → Text) =
supp(Twitter ∪ Text)

supp(Twitter) × supp(Text)
.

These associations can provide a guidance for future 

researchers during the planning stages of a project applying 

DL to DR research, supporting them in choosing different 

attributes, such as data source, deep learning algorithm and 

learning types. We used the Python apyori library1 to dis-

cover association rules, details of which are presented in the 

online appendix [12].

��� : What types of DR Problems have been 
addressed by DL Approaches?

This RQ explores the types of DR problems that have been 

investigated with DL models. We derived a taxonomy of DR 

tasks to capture relationships between other learning com-

ponents, as illustrated in Fig. 5. From the 83 papers that we 

analysed, we identified nine main DR tasks (level-1 of the 

taxonomy) that have been addressed using DL approaches. 

Figure 4 shows the number of papers published in each year 

by the main DR tasks. During the ten-year duration of stud-

ies we analysed, unsurprisingly, little work was undertaken 

between 2011 and 2015. There was a sudden interest in 

exploring DL architectures in the DR domain from 2017 

onwards. This interest coincides with the introduction of 

popular DL frameworks, such as Keras2 and TensorFlow3 

in 2015 and PyTorch4 in 2016. Disaster event detection was 

the first task to be explored using DL algorithms. Among the 

other tasks, Disaster damage assessment, Disaster-related 

Table 2  Main DR tasks of the analysed articles

DR task Articles

Disaster related information filtering [8, 21, 34, 43, 45, 46, 60, 63, 73, 75–77, 81, 87, 93, 95–97, 115]

Disaster damage assessment [3, 16, 24, 26, 27, 31, 35, 36, 39, 44, 51, 59, 62, 64, 67, 68, 78, 

79, 82, 88, 89, 103, 112, 117, 122, 130]

Disaster event detection [7, 13, 15, 53, 69–71, 83, 90, 129]

Location reference identification [56, 113]

Missing, found and displaced people identification [41, 80]

Disaster mapping [4, 85, 106]

Disaster rescue and resource allocation [19, 20, 30]

Understanding sentiments (emotions and reactions) [65, 110, 127]

Disaster related information classification [1, 5, 9, 22, 25, 52, 57, 58, 74, 92, 99, 100, 108, 109, 120]

4 PyTorch, https:// pytor ch. org/.

1 Python Apriori algorithm implementation v1.1.2, https:// pypi. org/ 

proje ct/ apyori/.
2 Keras, https:// keras. io/.
3 TensorFlow, https:// www. tenso rflow. org/.

https://pytorch.org/
https://pypi.org/project/apyori/
https://pypi.org/project/apyori/
https://keras.io/
https://www.tensorflow.org/
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information filtering and Disaster-related information clas-

sification were explored in 2017. Remotely sensed images 

were the main source of data for multiple early studies 

that used DL approaches. Early research may have used 

remotely sensed data for various reasons. Firstly, in 2011, 

Google Earth5 launched a platform that allowed research-

ers to download massive volumes of satellite imagery. This 

inspired researchers to investigate remotely sensed data for 

DR tasks. Furthermore, researchers were also able to suc-

cessfully employ DL approaches since these images were 

available in larger quantities. Secondly, the advancement 

of computer vision techniques, such as DL structures pre-

trained on huge datasets, made visual data processing easier.

The number of studies combining DL and DR tasks 

rapidly increased from 2017 to 2018, more than doubling. 

Furthermore, researchers extended their interest to explore 

multiple DR tasks over time, including Disaster rescue and 

resource allocation, Location reference identification, and 

Understanding sentiments. However, we see a slight drop 

in the number of articles published in 2020. This inconsist-

ency may be due to the COVID-19 global pandemic and the 

physical and mental challenges that researchers encountered. 

We notice a significant amount of literature emerging during 

the first quarter of 2021, potentially representing a COVID-

19 lag effect in publication.

Disaster damage assessment has been the most popu-

lar DR task analysed using DL approaches over the years, 

with 26 articles out of the 83 exploring this. There are three 

likely reasons for the popularity of Disaster damage assess-

ment. First, there is quite a strong driver and a clear need 

for damage assessment as it is urgently needed following 

an event, and there is little time for manual data collection. 

Second, the high availability of training datasets extracted 

from social media and remote sensing platforms was able to 

be used in supervised learning approaches. Third, there is 

a clear mapping between training data and the target func-

tion (e.g., images of cracked buildings). This mapping helps 

researchers when designing DL-based applications to extract 

effective features. We observed an increasing interest in 

Disaster-related information filtering and Disaster-related 

information classification tasks. These DR tasks are mainly 

based on text datasets extracted from Twitter. A possible 

explanation for this trend could be the increased popular-

ity of using Twitter as a communication channel during 

disasters. Moreover, the advancement of Natural Language 

Processing (NLP) techniques with the increased availability 

of annotated data corpora aids further developments in the 

information filtering and classification tasks.

DR tasks, such as Missing, found and displaced people 

identification and Location reference identification, had 

received less attention from researchers, resulting in a total 

of 4 articles out of the 83 reviewed. The lack of availability 

of large-scale training datasets and annotated data to train 

supervised learning approaches could be the main reasons 

for the reduced popularity of these DR tasks. We summarise 

the papers addressing each of the main DR tasks in Table 2.

��� : How have the Training Datasets 
been Extracted, Preprocessed, and Used 
in DL‑Based Approaches for DR Tasks?

For this research question, we analyze the types of disaster 

data that have been used by DL models to support disaster 

response. The accuracy and effectiveness of DL algorithms 

Fig. 6  Data types used for DR 

task

Number of Articles
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Disaster damage 
assessment

Disaster mapping

Disaster rescue and 
resource allocation

Disaster event detection

Disaster related 
information filtering

Disaster related 
information classification

Location reference 
identification

Missing, found and 
displaced people 
identification

Understanding sentiments 
(emotions and reactions)

5 Google Earth, https:// earth. google. com/ web/.

https://earth.google.com/web/
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depend on the training dataset and its clarity. Therefore, we 

aim to understand the various types of disaster data used 

by DL approaches, the sources and methods employed 

to extract them, and the preprocessing steps. All of these 

points are important in understanding and designing DL 

approaches for DR tasks.

RQ
2.1

 What Types of DR Data have been used?

Our analysis of the types of data that have been used for DR 

tasks using DL approaches reveals relationships between DR 

tasks and data types, illustrated in Fig. 6. Among the 83 

articles analysed, 37 used images as the data source. Sur-

prisingly, in practise, disaster responders rely significantly 

on textual data sources, such as emails and field reports 

[39]. This finding indicates that these approaches have been 

mostly pursued in academic contexts. We assume multiple 

reasons contributing to the popularity of using image data 

for DR tasks: first, the power of visuals in conveying mes-

sages over textual content; second, the availability of pre-

trained networks and the use of transfer learning techniques 

for image feature extraction and third, easy accessibility of 

image datasets through web search and web databases. Dis-

aster damage assessment is the most popular DR task among 

the studies that used image datasets.

Text data were used by 22 of the 83 articles and is more 

prominent in Disaster-related information filtering and 

Disaster-related information classification tasks. Currently 

available, annotated disaster-related text data repositories 

(particularly using social media data) provide a clear guide 

for specific target problems. As a result, many researchers 

have used text data for supervised learning approaches in 

information filtering and classification applications.

There has been little interest in using video datasets for 

DR tasks. Only 6 articles discussed the usage of video data-

sets for Disaster related information filtering, Classification, 

and Disaster event detection tasks. The possible reasons for 

this can be difficulties in storing and moving, and the need 

for special computing facilities for analysing video data such 

as Graphical Processing Units (GPUs).

We observed a significant interest in using multimodal 

data to extract information for DR tasks between 2018 and 

2020. Multimodal data have been used for Disaster-related 

information filtering, Disaster-related information classi-

fication, Disaster damage assessment and Disaster event 

detection contributing to 18 articles in the analysed papers. 

We assume the popularity of multimodal DL networks 

depends on three reasons. First, the combination of multiple 

modalities leads to more complementary information than 

learning from a single data modality. Second, multimodal 

learning helps to integrate data from different sources and 

provides access to large quantities of data. Third, the more 

recent development of multimodal DL networks shows 

improved results over unimodal analysis.

RQ
2.2

 What Sources have been Used to Extract Data, 
and How have Data been Extracted?

In this RQ, we analyse the sources (including accessible 

disaster data repositories) used to extract data used in DL 

models.

Image data have mainly been extracted using remote 

sensing from sources, such as satellites, aerial vehicles and 

LiDAR. Apart from that, Twitter and the Web have been 

used by 7 and 6 articles, respectively, to extract image data-

sets (we grouped research that extracted data from web-

sites and Google search under Web). Twitter has been the 

Fig. 7  Sources used to extract 

data types
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prominent source of text information, and was used for a 

total of 19 articles out of the total 83 (and out of the 22 

articles that used text data) analysed. The growing number 

of human-annotated disaster-related Twitter data reposito-

ries is likely to have increased the amount of research using 

them with DL approaches. We observed that 5 articles used 

a combination of multiple sources to extract data, such as 

Twitter, web mining, Baidu, Flicker, Instagram, and Face-

book. Most notably, Facebook was rarely used (1/83) as a 

source due to its data extraction limitations (e.g., the require-

ment of prior approval from Facebook to use public feed 

Application Programming Interface (API) [104]). Figure 7 

shows the sources used to extract different modalities of 

data.

Researchers have employed multiple techniques to extract 

data from different sources. Twitter data have been extracted 

through the Twitter Streaming API using general or spe-

cific keywords (e.g., earthquake, Nepal Earthquake) and a 

spatial bounding box covering the impacted area is often 

used while extracting tweets. However, it is notable that a 

total of 28 articles downloaded data from annotated Twit-

ter repositories from previous research, such as CrisisNLP6 

and CrisisLex,7 indicating the importance of annotated data 

repositories catering for DR problems. Web mining and 

web databases were used in 22 articles to download data. 

Workshops and conferences, for example, MediaEval,8 have 

provided researchers with annotated dataests and meta-data 

for target problems. Table 3 summarizes the different data 

collection methods.

RQ
2.3

 How have data been Preprocessed Before 
Applying the DL Models?

To address RQ
2.3

 , we derive a taxonomy of preprocessing 

steps that researchers have used to clean raw data for use in 

DL algorithms. Cleaning and transforming data to be used 

effectively by DL models are critical steps towards improved 

performance. However, 19 articles out of 83 analysed did 

not explicitly mention the preprocessing steps that were 

undertaken.

We observe three common preprocessing steps across the 

articles analyzed: filtering, annotation, and dataset splitting. 

Data filtering helps reduce noise in raw data. Annotation 

deals with labelling the data depending on the target func-

tion. A total of 10 of the 83 articles employed external anno-

tators or hired them through annotation service providers 

such as Figure Eight9 (formerly known as CrowdFlower). 

The annotated datasets are generally split into train, test, and 

validation sets during the preprocessing steps. The training 

data sets are used to train the DL model, while test datasets 

are used to provide unseen data to be classified by the model 

as a test. The validation set is used to tune hyperparameters 

of the DL model.

Table 3  Disaster data collection 

methods
Data extraction method Articles

Artificial Intelligence for Disaster Response (AIDR) [9, 89]

Baidu API [127]

Cameras mounted on satellite, airborne and UAV [16, 20, 24, 31, 67, 88, 106, 122]

Copernicus EMS program [51]

CrisisLex [21, 22, 82, 87, 90]

CrisisMMD [1, 3, 34, 57, 58, 63, 74–76, 100]

CrisisNLP [5, 65, 82, 90]

Facebook page crawling [97]

Flicker API [39]

GNIP (Social media data re-seller) [30, 113]

Google Earth [13, 26, 69, 70, 85]

LiDAR [112]

Previous research [15, 62, 64, 68, 73, 130]

Twitter API [9, 19, 39, 43, 52, 56, 77, 81, 93, 109, 110, 115]

Web database [25, 35, 36, 41, 44, 53, 60, 79, 83, 108, 117]

Web mining [8, 27, 45, 46, 59, 64, 71, 78, 80, 82, 89, 95, 96, 

99, 120, 129]

Workshop/Conference [4, 7, 18, 103]

6 CrisisNLP datasets, https:// crisi snlp. qcri. org/.
7 CrisisLex datasets, https:// crisi slex. org/.

8 MediaEval datasets, http:// www. multi media eval. org/.
9 Figure Eight external annotation service, https:// appen. com/.

https://crisisnlp.qcri.org/
https://crisislex.org/
http://www.multimediaeval.org/
https://appen.com/
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Our analysis identified that the design of the preprocess-

ing steps largely depends upon the modality of data. For 

example, text data preprocessing steps included tokeniz-

ing, lowercasing, stemming, lemmatization and removal of 

stop words, tokens having less than 3 characters, sentences 

having less than 3 words, user mentions, punctuation, extra 

spaces, line breaks, emojis, emoticons, special characters, 

symbols, hashtags, numbers, and duplicates. Text normaliza-

tion using the Out of Vocabulary (OOV) dictionary is used 

to replace slang, mistakenly added words, abbreviations, and 

misspellings. Image data preparation steps included data fil-

tering, duplicate removal, patch generation, resizing, pixel 

value normalization, and image augmentations. Video data 

preprocessing included clipping to extract keyframes, shot 

boundary detection and removal of duplicates and blurred 

and noisy frames. Table 4 illustrates the preprocessing steps 

involved in preparing raw data for DL algorithms, as found 

in the analyzed articles.

��� : What DL Models are Used to Support 
DR Tasks?

In this section, we analyze the types of DL architectures used 

for DR tasks and learning algorithms. Our aim is to identify 

the relationship between DR tasks and the DL architectures. 

We provide a short overview of different deep learning archi-

tectures in our online appendix [12].

RQ
3.1

 What Types of DL Architectures are Used?

Through this question, we analyze types of DL architectures 

used to extract features for DR tasks. We observed that six 

Table 4  Data preprocessing steps

Modality Preprocessing step Description/Example

Text Tokenizing Tokenization is the process of breaking sentences in to smaller chunks (e.g., 

words)

Lowercasing Lowercasing tweet text is used to merge similar words and reduce the dimensional-

ity of the problem

Removal of stop words Stopwords are a set of frequently used words such as “the”, “in”, and “a” that are 

not required to analyse them for a analysis task

Removal of URLs and user mentions Tweets generally consist user handlers and embedded URLs. During preprocess-

ing, they are removed or replaced with < USER > and < URL >respectively

Removal of hashtags Hashtags are words or phrases chosen by users to connect specific themes such as 

events and topics (e.g., #NepalEq)

Removal of punctuation, whitespaces, linebreaks Punctuations (e.g., “.!@#”:;”), whitespaces and linebreaks are removed as they do 

not contain valuable information for a analysis task

Removal of numbers Numerical values included in tweets are removed if they do not contain any infor-

mation for the analysis task

Removal of words shorter than 3 characters Shorter words such as “oh”, “omg” and “hmm” are not useful for the analysis task 

and therefore, removed

Replacing contractions The user-generated Twitter posts mostly contain shorten phrases (e.g., I’d, didn’t 

and I’ll’ve). During the contraction mapping, these words are mapped into their 

original format (e.g., I would, did not, I will have)

Stemming and lematization Stemming and lemmatization are used to convert a word into its root format. The 

stemming process cuts off the ends of words without considering the context, 

while lemmatization considers the context (e.g., felt to feel)

Remove sentences having less than three words Remove very short sentences

Image Manual filtering Manually check images to remove unwanted

Patch generation Select arbitrary shaped regions from an original image

Resizing

Pixel value normalization Pixel values of an image normally are between 0-255. During the normalization, 

values are converted to be in a specified range such as [1-0]

Image transformation (e.g., rotation, translation, rescaling, flipping, shearing, and stretching)

Video Manual filtering Manually check videos to remove unwanted

Shot boundary detection A shot is an unbroken sequence of frames and a shot boundary is determined by 

the change of color histogram features

Clipping to extract key frames Extract frames in the middle of each shot as key frames

Removal noisy frames Remove duplicates and blurred frame
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main DL architectures had been used, namely Convolu-

tional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), Long Short-Term Memory Networks (LSTMs) 

and its variant Bi-directional LSTMs (Bi-LSTMs), Domain 

Adversarial Neural Networks (DANNs), and AutoEncoders 

(AEs) across the studies we analyzed. Moreover, popular 

language models like Bidirectional Encoder Representations 

from Transformers (BERT) and Robustly Optimized BERT 

Pre-training Approach (RoBERTa) have been used for Natu-

ral Language Processing (NLP) tasks.

Figure  8 shows the usage of DL algorithms accord-

ing to the DR tasks excluding CNNs. We demonstrate the 

Location reference identification Disaster related information classification Disaster related information filtering

Disaster event detection Disaster rescue and resource allocation Disaster mapping

Disaster damage assessment

Fig. 8  DL architectures used by DR tasks except for CNN as a single architecture

Fig. 9  Usage of CNN by DR 

tasks
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Disaster Event Detection

Disaster Mapping

Disaster Related Information 
Classification

Disaster Related Information 
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Disaster Rescue and Resource 
Allocation

Location Reference Identification

Missing, Found and Displaced 
People Identification

Understanding Sentiments 
(Emotions and Reactions)
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application of the CNN algorithm for DR tasks in a separate 

diagram (see Fig. 9), and we present the usage of DL archi-

tectures based on publication year in Fig. 10. There has been 

a significant growing interest in using CNNs over the years 

across all DR tasks in 71 out of 83 articles analyzed. We 

consider it likely that CNNs have been adopted largely due 

to their capability in learning features automatically, param-

eter sharing and dimensionality reduction [114]. However, 

CNNs have performed poor for identifying word order in 

a sentence for text classification tasks [73]. Moreover, the 

computational cost (e.g., training time) for CNNs has been 

considerable, particularly when the training dataset is large. 

RNNs, LSTMs, and Bi-LSTMs have been used to ana-

lyze varying length sequence data such as sentences (e.g., 

tweet text). Although RNNs have been successful in many 

sequence prediction tasks, it has issues in learning long-

term dependencies due to the vanishing gradient problem. 

This problem occurs from the gradient propagation of the 

Fig. 10  DL architectures used 

by DR tasks by year
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Fig. 11  Pre-trained DL networks used by DR tasks
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recurrent network over many layers [73]. LSTM networks 

have been proposed to overcome these drawbacks and have 

shown better results for multiple text classification tasks 

[99]. Recent studies have demonstrated more improved 

results using Bi-LSTMs. One of the major advantages of 

using Bi-LSTMs is that they can capture and deal with long-

range dependencies having variable lengths by analyzing 

information in both directions of a sequence (e.g., past and 

future entries) [43, 52].

We observe that many studies adopt DL models pre-

trained on larger data sets, such as Places36510 and Ima-

geNet.11 Fifty-one of the analyzed papers used pre-trained 

DL networks for word embeddings, visual feature extraction, 

object detection and classification. The advantage of adopt-

ing a pre-trained model is that it saves time and resources 

relative to training a model from scratch. Figure 11 provides 

a taxonomy of pre-trained networks adopted by our analyzed 

studies.

In addition, we observed that 17 studies adopted multiple 

DL architectures. This is very common in research that uses 

different modalities of data. For example, CNNs are often 

used to extract image features, while RNNs, LSTMs or Bi-

LSTMs are used for text feature extraction.

RQ
3.2

 What Training Processes are Used to Optimize 
DL Models?

In this RQ, we analyze the processes used to train DL algo-

rithms focusing on optimization and error calculation.

All but four of the 83 articles used supervised learn-

ing as the training type for the selected DR problem. In 

supervised learning, the DL algorithm extracts features to 

associate data with the required classification labels. There-

fore, a labelled training dataset is required. In contrast, 

unsupervised learning assigns a class label by grouping 

similar data together based on extracted features. There-

fore, unsupervised approaches do not require labelled train-

ing data. Semi-supervised approaches use partially labelled 

data sets. However, both unsupervised and semi-supervised 

approaches were rarely used in the analyzed articles result-

ing in only 4/83. The current favour for supervised learning 

approaches is mostly due to the readily available labelled 

datasets. However, those outdated datasets would not reflect 

the temporal variations, and therefore, more improvements 

are required for DL architectures to make approximations 

without training.

The classical gradient descent algorithm was the most 

frequently adopted learning algorithm in the articles we 

analyzed for updating weights during backpropagation. 

Although researchers widely use gradient descent, the com-

putational complexity is considerable because the entire 

dataset is considered every time the parameters are updated 

[98]. Multiple other algorithms, such as Adaptive Moment 

Estimation (Adam), Adadelta, and RMSProp algorithms, 

were proposed to overcome this issue. These new techniques 

have been used for optimization by 45 articles. The selection 

of optimization algorithm significantly affects the results of 

the model. However, we could observe that only 31% of the 

analyzed articles explicitly mention the optimization process 

and the algorithms they used.

Our analysis found that multiple algorithms have been 

adopted to calculate the error rate. Categorical cross-entropy 

is the most frequently used loss function, while negative 

log-likelihood was adopted by one article. The objective of 

a loss function is to optimize and tune weights in deep neural 

Fig. 12  Methods used to avoid 

overfitting and underfitting by 

DR tasks

Technique

10 Places365 dataset, http:// place s2. csail. mit. edu/ downl oad. html.
11 ImageNet dataset, https:// image- net. org/.

http://places2.csail.mit.edu/download.html
https://image-net.org/
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network layers. However, only 22 of the papers discussed 

the error function.

RQ
3.3

 What Methods are Used to Avoid Overfitting 
and Underfitting

Two common problems associated with generalizing a 

trained DL model are known as “overfitting” and “under-

fitting”. Overfitting happens when the model learns train-

ing data extremely well but is not able to perform well on 

unseen data [42]. In contrast, an underfitted model fails to 

learn training data well and hence performs poorly on new 

unseen data. This happens due to the lack of capacity of the 

model or not having sufficient training iterations [49]. In 

both these cases, the model is not generalized well for the 

target problem.

To combat overfitting and underfitting, we observed 

that research had used multiple techniques such as Drop-

out, Batch normalization, Early stopping, Pooling layers, 

Cross-validation, Undersampling, Pre-trained weights and 

Data augmentation. Figure 12 illustrates these methods by 

DR tasks. A total of 24 articles used Dropout layers and 

12 articles used Early stopping to avoid overfitting. Drop-

out layers ignore nodes in the hidden layer when training 

the neural network, and therefore, it prevents all neurons 

in a layer from optimizing their weights [116]. However, 

the batch normalization technique was proposed to achieve 

higher accuracy with fewer training steps, eliminating the 

need for Dropout [48]. During model training, the Early 

to avoid underfitting. However, 29 of the analyzed articles 

did not discuss the methods used for combating overfitting 

or underfitting.

RQ
4
 : How well do DL Approaches Perform 

in Supporting Various DR tasks?

In this RQ, we analyze the effectiveness of DL approaches 

for DR tasks, including reviewing the evaluation matrices 

and baseline models and comparing results achieved.

RQ
4.1

 What Evaluation Matrices are Used to Evaluate 
the Performance of DL Models?

Through this question, we explore the different performance 

matrices adopted by the studies we analysed. Our aim is to 

identify how the existing research evaluated their results. 

Evaluation of the performance of a model is a core function 

when employing DL algorithms, as it helps to improve the 

model constructively. We observed that 76 of the 83 articles 

had adopted standard performance evaluation matrices, such 

as precision, recall, accuracy, and F1-score (see the defini-

tion of these metrics matrices in Eqs. 4– 9). These meas-

ures are based on the “true positive”, “false positive”, “true 

negative”, and “false negative” values, which evaluate the 

correctness of the results. 

True condition

Predicted

condition

True positive

Tp

False positive

Fp

Precision/Positive
Predictive Value

(PPV)
Tp

Tp+Fp

× 100%

False negative

Fn

True negative

Tn

Negative
Predictive Value

(NPV)
Tn

Tn+Fn

× 100%

Sensitivity/Recall
Rate (RR)
Tp

Tp+Fn

× 100%

Specificity Rate
(SR)

Tn

Tn+Fp

× 100%

stopping technique evaluates the performance of the model 

on the validation dataset. The training process is stopped 

when the accuracy starts decreasing. As a result, however, 

this technique prevents the use of all available training data. 

Rice et al. [107] provide remedies for overfitting using a 

series of experimental evaluations.

Addressing underfitting while training DL models is a 

complex task, and these are not well-defined techniques 

[125]. We observed that 2 articles used pre-trained weights 

(4)

Precision/Positive Predictive Value (PPV) =
Tp

Tp + Fp

× 100%

(5)Recall/Sensitivity =
Tp

Tp + Fn

× 100%
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We also observed that Area Under the Receiver Operating 

Characteristic (ROC) curve value has been used by 6 arti-

cles. The ROC curve plots the values between sensitivity and 

(1-specificity). Sixty-four of the analysed articles presented 

their performance using more than one metric, while all of 

the remaining 19 used one metric only. Other metrics used 

by our analysed articles include Average Precision (AP), and 

Intersection over Union (IoU). Our analysis suggests that 

researchers primarily selected performance metrics based on 

(6)Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

× 100%

(7)F1-Score = 2 ×
Precision × Recall

Precision + Recall
× 100%

(8)

Specificity/True Negative Rate (TNR) =
Tn

Tn + Fp

× 100%

(9)Negative Predictive Value (NPV) =
Tn

Tn + Fn

. × 100%

the baseline work that they selected as a comparison for their 

results. Therefore, it is essential to use standard metrics so 

other researchers can compare and contrast results in future 

studies. Table 5 shows the best accuracy scores obtained for 

level-1 and and level-2 DR tasks in our taxonomy, revealing 

that across most tasks DL performs very well, with slightly 

lower success rates for sub-tasks such as Damage evaluation 

and Spatial information filtering.

RQ
4.2

 What “baseline” Models have been Compared?

This question explores the benchmarks that have been 

chosen by the analysed articles. We observed that the 

vast majority of the analysed articles self-generated their 

own benchmark. Specifically, 35 of the studies evaluated 

the performance of their proposed approach against self-

generated tests, while 25 evaluated DL approaches against 

classical ML approaches. We consider it likely that this is 

because, until recently, there have not been many DL-based 

approaches with which to compare. Moreover, the major-

ity of the studies have not published their adopted mod-

els or code for future researchers to easily implement and 

Table 5  Best accuracy scores for DR tasks

Author DR task Sub-task Best Accuracy Score

Precision Recall Accuracy F1-score

[65] Understanding Sentiments (Emotions and 

Reactions)

Classification-binary (e.g., Sympathy vs Non-

Sympathy)

0.95 0.71 0.76

[110] Classification-multiclass (e.g., Angry, sad, 

anxious, fearful)

0.90 0.88 0.93 0.89

[41] Missing, Found and Displaced People Iden-

tification

Human Victim Detection from Visuals 1.00

[80] Body Parts Detection from Visuals 0.96 0.99 0.95

[56] Location Reference Identification 0.97 0.95 0.96

[4] Disaster Mapping Passable Road Detection 0.65

[85] Affected Area Detection 0.92

[30] Disaster Rescue and Resource Allocation 0.94 0.92 0.98 0.87

[30] Disaster Event Detection Flood Detection 0.86

[69] Landslide Detection 0.98 0.97 0.97

[129] Early Fire Detection 1.00

[24] Disaster Damage Assessment Structural Damage Detection 0.88 0.95 0.99 0.91

[39] Damage Evaluation 0.85 0.78 0.99

[3] Damage-related Social Media Posts Detection 0.99 0.99 0.99

[74] Disaster Related Information Classification Classification-binary (e.g., Informative vs 

Not-Informative)

0.96 0.96

[5] Classification-multiclass (e.g., Affected Indi-

viduals, casualties, damages)

0.97

[60] Disaster Related Information Filtering Disaster Related Content Filtering 0.92 0.91 0.92

[73] Situational Information Filtering 0.99 0.66 0.74

[43] Spatial Information Filtering 0.85 0.82 0.84



SN Computer Science (2022) 3:92 Page 19 of 29 92

SN Computer Science

evaluate. Only 12 of the articles selected DL-methods pro-

posed by previous research as baselines. We see that some 

benchmarks have also been compared in multiple articles as 

described in our online appendix [12].

RQ
5
 : What are the Underlying Challenges 

and Replicability of DL for DR Studies?

In RQ
5
 , we analyse the challenges researchers face in 

employing DL algorithms for DR studies and how well the 

current work can be adopted in future research. We aim to 

identify common challenges and provide future researchers 

with knowledge to better design future DL-based projects. 

Furthermore, we provide the details of research available for 

replication and reproduction in future research.

We observed that the challenges mostly depend on the 

data types and sources, including the following, which were 

extracted from 61 research articles: 

1. Data annotation: Early studies using supervised 

approaches found very few publicly available annotated 

datasets. Therefore, they downloaded their own data-

sets and recruited people to annotate them. This took 

a massive amount of time and resources and delayed 

experiments. Furthermore, multi-label problems (one 

data item can belong to one or more informative cat-

egories), task subjectivity (difficulty in agreeing on one 

informative class), and conflicting annotation by human 

annotators were major issues. Even though many anno-

tated datasets are available recently, data incompleteness 

and bias are common problems in processing DR data.

2. High-level of noise: Due to the high volume of hetero-

geneous data collected from social media platforms in 

the wake of disasters, the level of noise in the resulting 

data sets is extremely high (for example, spam, bots, 

data duplication). Furthermore, the content is infor-

mal, mostly using colloquial language, and very brief 

with casual acronyms and sometimes with non-literal 

language devices, like sarcasm, metaphors, and double 

entendre. Thus, it is challenging to train a DL model that 

can correctly interpret the intention of human expres-

sions of this kind.

3. High variability: High variability in image quality 

resulting from different sensors and environmental con-

ditions (for example, mist, cloud cover, and poor illumi-

nation) is challenging when applying DL models. More-

over, debris and damaged buildings look completely 

different depending on the disaster and structure of the 

building (e.g. concrete buildings, masonry buildings, or 

buildings made from natural materials), and are charac-

terised by different features and patterns when captured 

in an image. As a result, the replicability of an already 

implemented solution for such a task is very low.

4. Semantic segmentation: Semantic segmentation of 

images to differentiate ground objects, such as roads 

and trees, from intact and damaged buildings, is a 

major challenge while using satellite, airborne and UAV 

imagery.

Despite these challenges, we observed that a very limited 

number of studies had made available their datasets, anno-

tations, and implementation code for future research. For 

example, only 5 of the analysed articles made their resources 

publicly available. This trend results in researchers generat-

ing their own baseline and hence reducing research quality 

and the evolution of the field. Therefore, there is a consider-

able gap for researchers in adopting previous research as 

baselines.

Opportunities, Directions and Future 
Research Challenges

With the rapid change of climate and human-induced 

global warming, the variety and frequency of disasters have 

increased at a rate that has not happened before [28]. As 

a result, managing disasters while reducing their impacts 

on the communities and environment would be one of the 

main problems of the next decade. The increasing number 

of smart mobile devices and their embedded sensors enable 

the generation of a massive amount of heterogeneous data 

within a significantly shorter time than seen previously dur-

ing disasters [1, 45]. Therefore, there is an immediate need 

for robust methods to automatically analyze and fuse such 

multimodal datasets and provide consolidated information 

to assist disaster management.

Data from different sources and formats bring comple-

mentary information regarding an event and lead to more 

robust inferences. Thus, future DL models will require anal-

ysis of heterogeneous, incomplete, and high-dimensional 

data sets to fill the missing information gaps in each data 

source or modality [98]. Multiple studies have explored the 

use of multimodal data for understanding the big picture of 

a disaster event [1, 3, 92, 99, 123]. However, more and more 

advanced DL approaches are required to solve core chal-

lenges in multimodal deep learning, such as missing data, 

dealing with different noise levels and effective fusing of 

heterogeneous data [17].

To address this problem, we identify that training data 

acquisition and preprocessing plays a major role when 

employing DL approaches. For example, large-scale human-

annotated datasets are required to train DL algorithms to 

successfully predict the class label for unseen data. While 

a few annotated data repositories have been created (e.g., 
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CrisisNLP, CrisisMMD, and CrisisLex), more datasets are 

required to reflect temporal variations. Furthermore, there 

are still no large-scale benchmark datasets incorporating a 

variety of disaster data types except for CrisisMMD [10]. 

Therefore, the current research is mostly limited to small-

scale home-grown datasets covering specific disaster types.

This leads to the next challenge of data irregularities 

occurring in datasets and which reduce a classifier’s ability 

to learn from the data. The most common data irregularities 

include class imbalance, missing features, absent features, 

class skew and small disjuncts [29]. Class imbalance occurs 

when all classes present in a dataset do not have equal train-

ing instances. For example, datasets for classifying disas-

ter-related social media posts have resulted in most non-

related posts. Data-level methods, such as under-sampling 

techniques (e.g., Random Under-Sampling (RUS) [50]) 

and over-sampling techniques (e.g., Generative Adversarial 

Minority Oversampling (GAMO) [84] and Major-to-minor 

Translation (M2m) [54]), have been explored to mitigate 

the effects of class imbalance. Although researchers assume 

fully observed instances, practical datasets, however, contain 

missing features. Data imputation methods, model-based 

methods and more recently, DL methods have been proposed 

to handle missing features. A complete guide to methods 

that enable tackling these data irregularities is provided by 

Das et al. [29]. Even though methods to handle irregularities 

have been largely explored, more research is required as the 

velocity and variability of data generation accelerate.

Another key area is the variety characteristics of disas-

ters that limit the reusability and generalizability of already 

trained DL algorithms. This means the variations of input 

data representations extracted during different disasters. 

Recent DL studies have focused on domain adaptation 

during learning where the distribution of the training data 

differs from the distribution of the test data [47]. Future 

research focus requires developing domain adaptation tech-

niques for the DR domain.

According to the current trends, people will increasingly 

use social media platforms for disaster data acquisition, and 

dissemination, challenging the traditional media sources 

[40, 111, 118]. Therefore, crowd-sourced data will be more 

prominent in providing first-hand experiences of disaster 

scenes. However, responding organizations have concerns 

regarding the trustworthiness of user-generated content, a 

problem which is largely unsolved [23]. For example, fake 

news, misinformation, rumours, digital manipulation of 

images (e.g., deepfake [126]) and re-posting contents from 

previous events are a few challenges that future researchers 

will face to improve the integrity of social media content.

Another challenge in the DR domain is that previous 

research has largely explored the most common tasks, such 

as Disaster damage assessment, Disaster event detection and 

Location reference identification. However, there are other 

important DR tasks, including evacuation management, 

health and safety assurance, and critical infrastructure ser-

vice, as illustrated in the Guidance of Emergency Response 

and Recovery [32]. These tasks have not yet been analyzed 

using DL approaches. Some possible reasons could be insuf-

ficient training datasets, lack of computational resources to 

store, manage, and process data, and inadequate accuracy 

of existing DL architectures. These underrepresented topics 

need further attention by DL researchers to better support 

DR tasks. Moreover, the accuracy of the output produced by 

DL algorithms is determined by a number of factors, includ-

ing the optimization algorithm and the loss function used. 

Thus, further research is important in this area to find the 

correct combination of data, DL architecture, optimization 

algorithm, and loss function.

Results of the Association Rule Mining

This section discusses the interesting relationships dis-

covered through our association rule mining task. We 

introduced the association rule mining process in Section 

“Association Rule Mining”. Our goal is to identify hidden 

relationships between the values extracted from the articles 

for the attributes in the extraction form. The most highly 

scoring rules are listed in Table 6. We discuss the patterns 

that resulted in having higher “Support”, “Confidence” and 

“Lift” values. However, all the associations are illustrated in 

our online appendix [12]. Our analysis highlights that CNN, 

Supervised, Image and Twitter have higher support values 

( > 0.45 ). This result indicates that the majority of studies 

discussed Image as data type, CNN as DL architecture, 

Supervised as learning type and Twitter as their data source.

Table 6  Some association rules extracted from the analysed papers

Item Support Item Confidence Item Lift

Supervised 0.94 Damage Assessment→ Remote Sensing 1.0 Multimodal, Twitter → CrisisMMD 4.50

CNN 0.70 Remote Sensing→ Image 1.0 Multimodal → CrisisMMD 3.46

Twitter 0.48 Multimodal, CrisisMMD→ Twitter 1.0 Remote Sensing → Image 2.24

image 0.45 Remote Sensing→ CNN 1.0 Remote Sensing, CNN → Image 2.24
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Disaster Damage Assessment → Remote Sensing; Remote 

Sensing → Image; Multimodal, CrisisMMD → Twitter and 

Remote Sensing, CNN→ Image are some of the association 

rules having a confidence score of 1.0. This means that, for 

example, rule Disaster Damage Assessment → Remote Sens-

ing implies that the pattern appears in 100% of the analysed 

articles. Similarly, all the research that used Remote Sensing 

as the data extraction method analysed Image as their data 

source.

The highest lift score of 4.5 resulted for the multimodal, 

Twitter→ CrisisMMD rule. This means that when research-

ers used multimodal as their data type and Twitter as the 

1. Unknown Target
Function
f: x  y

2. Training Examples
(Data)

(x1, y1), ... , (xn, yn)

4. Hypothesis Test

5. Final Hypothesis
g(x) ≈ f(x)

3. Learning Algorithm

What types of DR
problems have been

addressed by DL
approaches?

How have the training datasets been
extracted, preprocessed, and used in DL-

based approaches for DR tasks?

* What types of DR data have been used?
* What sources have been used to extract
data, and how have data been extracted?

 * How have data been preprocessed
before applying the DL models?

What DL models are used to support DR tasks?
* What are the types of DL architectures used?
* What types of learning algorithms and training

processes are used?
* What methods are used to avoid overfitting and

underfitting?

How well do DL approaches perform in
supporting various DR tasks?

* What are the evaluation matrices used to evaluate
the performance of DL models?

* What ``baseline'' models have been compared?

What are the underlying challenges and the
replicability of DL for DR studies?

Identify a DR problem
to be solved.

Can enough
data for the
models be

assembled?

Decide upon the type
of learning required

for the target
problem

Select among
alternative analysis

methods

Do you have
access to
annotated
datasets?

Extract annotated
data from previous

research

Annotate data using
human annotators

Extract data from
original sources

Conduct exploratory
data analysis of the

dataset

Preprocess raw data
to clean them

Select a DL
architecture

Select a baseline

Split the dataset into
train, test and
validation sets

Regularize DL
models to optimize

performance

Identify evaluation
matrices

Compare the models
against the baseline

No

Report the whole
process highlighting

challenges

Yes

Yes

No

Fig. 13  Flowchart for conducting DL for DR research
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Data Source, CrisisMMD has commonly been the data 

extraction method. Furthermore, multimodal→CrisisMMD, 

Twitter; Remote Sensing → Disaster Damage Assessment, 

Image; Image→Remote Sensing, CNN rules were among the 

other high lift values. Interestingly, we observed rules such 

as Twitter→CNN; CNN → text and text, Twitter → CNN hav-

ing a “Lift” score of less than 1. This indicates a negative 

relationship between the parameter values. For example, it 

is very unlikely that research that used Text as the Data Type 

and CNN as the DL architecture. All these association rules 

provide future researchers a guide to select parameters in a 

DL-based project, such as data sources, learning algorithms, 

and learning type.

Flowchart and Guidelines for Applying DL 
in Future DR Research

In this section, we provide a flowchart and guidelines for 

conducting future work using DL for DR tasks based on the 

findings of our SLR. Figure 13 shows how we have mapped 

the components of learning into RQs and then as the steps 

in the flowchart. The extracted flowchart is a general one 

based on the 83 analyzed papers. However, more specific 

details can be added to it based on the DR task to be solved.

After identifying the DR problem to be addressed, 

researchers should consider whether DL is a suitable 

approach. That decision can be made partly based on 

whether it is possible to obtain or create the necessary data. 

If enough data can be obtained, the researcher can select 

either supervised, unsupervised and semi-supervised learn-

ing methods. We discussed these methods in the Section 

“RQ3.2 What Training Processes are Used to Optimize DL 

Models?”. If the identified problem can be better solved 

using a supervised approach, the next step is to decide 

where the annotated datasets can be obtained, or whether 

raw data must be annotated. Data annotation is generally 

labour intensive and time-consuming, and therefore, the 

researcher can hire paid workers or arrange volunteers based 

on budget and availability. We have discussed the annotated 

data sources and annotation methods in the Sections RQ2.2 

What Sources have been Used to Extract Data, and How 

Have Data Been Extracted? and RQ2.3 How have data been 

Preprocessed Before Applying the DL Models?. Once the 

dataset is ready, the researcher should conduct an explora-

tory analysis to identify the nature of this raw data. This 

analysis provides the researcher with an overview including 

the size, distribution, and characteristics of the data. Proper 

understanding of raw data provides guidelines for the design 

of the preprocessing steps, which have to be well reported 

to enable replication. This includes outlining all the steps 

involved, including the normalization processes and data 

augmentation strategies.

After the data filtering and cleaning steps, the researcher 

should identify the learning algorithm, and DL architecture. 

The researcher should report the details of the DL architec-

ture, including the type of layer (e.g., embedding, dropout 

and soft-max), number of layers, filters, and learning rate. 

Furthermore, all necessary details regarding optimizers, loss 

function and hyper-parameter tuning, have to be reported 

to enable replication. The information regarding training, 

such as number of iterations (epochs), strategies combating 

overfitting and underfitting, training time, computing envi-

ronment, special computing resources (e.g., GPUs, high-

performance computing) and platforms used (e.g., Google 

Colaborotory) should also be explained (see Section “RQ3: 

What DL Models are Used to Support DR Tasks?”).

Finally, the researcher should report the results compared 

to the selected “baseline model”. If the researchers used their 

own dataset, they must first implement the baseline against 

their data to compare the results. Any limitations and chal-

lenges encountered while applying DL models should also 

be discussed to provide guidance for future researchers in 

designing DL-based approaches for DR tasks. Furthermore, 

researchers can support the quality and the future of the DR 

research field by making publicly available the datasets, 

annotations, and DL architectures.
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Conclusion

This study has presented a systematic literature review of 

DL in DR research. We started by identifying RQs for the 

analysis according to the components of learning described 

by Abu Moftha [121]. Then, a data extraction form with 15 

attributes was created to extract answers for the questions 

from the selected articles. Finally, we used the KDD process 

to identify relationships among different attributes of the 

extracted data. The answers to the research questions indi-

cate that, while some DR tasks have received much inves-

tigation, others have received less attention. Furthermore, 

there are multiple challenges while collecting, annotating, 

and preprocessing datasets for DL tasks. However, research-

ers have achieved better performance than traditional meth-

ods when using DL methods for DR tasks despite these 

challenges.

This research has identified opportunities, future research 

challenges, and many directions for further investigation. 

For example, multiple DR tasks are yet to be studied using 

DL approaches, such as evacuation management and criti-

cal infrastructure services. Moreover, we highlighted the 

need for new annotated multimodal datasets targeted at DR 

concerns. Some of the future research challenges are han-

dling data irregularities, improving the integrity of social 

media data, and developing generalizable DL approaches 

across multiple disasters. Additionally, data preprocessing, 

DL architecture selection, word embeddings and hyperpa-

rameter tuning are areas of further exploration. Finally, we 

emphasized the importance of comprehensive reporting and 

making implemented DL methodologies publicly available 

for the advancement of the DL in the DR area.

Appendix A: Glossary of Terms

Table 7 shows the expansions of abbreviated terms used in 

the paper. 

Table 7  Glossary of Terms

Term Definition

Adam Adaptive Moment Estimation

AE AutoEncoder

AI Artificial Intelligence

AP Avergae Precision

API Application Programming Interface

BERT Bidirectional Encoder Representations from Trans-

formers

Bi-LSTM Bi-directional LSTM

CCTV Closed-Circuit Television

CNN Convolutional Neural Network

DANN Domain Adversarial Neural Network

DL Deep Learning

DR Disaster Response

GPU Graphical Processing Units

IoU Intersection over Union

KDD Knowledge Discovery in Databases

LiDAR Light Detection and Ranging

LSTM Long Short-Term Memory Network

ML Machine Learning

NLP Natural Language Processing

OOV Out of Vocabulary

RNN Recurrent Neural Network

RoBERTa Robustly Optimized BERT Pre-training Approach

ROC Receiver Operating Characteristic

RQ Research Question

SLR Systematic Literature Review

UAV Unmanned Aerial Vehicle

URL Uniform Resource Locator
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Table 8  Article Publication Venues

Journal/ Conference Name Abbreviation

AAAI Conference on Artificial Intelligence AAAI

Advanced Engineering Informatics AEI

Applied Imagery Pattern Recognition Workshop AIPr

Advances in Intelligent Systems and Computing AISC

Annals of Operations Research AOR

arXiv arXiv

Computer-Aided Civil and Infrastructure Engineering CACIE

International Conference on Communication Systems and Networks COMSNETS

Conference on Computer Vision and Pattern Recognition CVPR

International Electronics Symposium on Knowledge Creation and Intelligent Computing DSAA

Decision Support Systems DSS

Intelligent Computing in Engineering EG-ICE

Information and Communication Technologies for Disaster Management ICT-DM

Institute of Electrical and Electronics Engineers IEEE

International Electronics Symposium on Knowledge Creation and Intelligent Computing IES-KCIC

International Geoscience and Remote Sensing Symposium IGARSS

International Journal of Digital Earth IJDE

International Journal of Disaster Risk Reduction IJDRR

International Journal of Distributed Sensor Networks IJDSN

International Journal of Innovative Technology and Exploring Engineering IJITEE

IOP Conference Series: Materials Science and Engineering IOP

Information Systems for Crisis Response And Management ISCRAM

Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences ISPRS

Innovations in Systems and Software Engineering ISSE

International Semantic Web Conference ISW

Journal of Ambient Intelligence and Humanized Computing JAIHC

Journal of Applied Remote Sensing JARS

Journal on Computing and Cultural Heritage JCCH

International Conference on Mobile Data Management MDM

MediaEval MediaEval

Conference on Multimedia Information Processing and Retrieval MIPR

Multimedia Tools and Applications MTA

Neurocomputing Neurocomputing

Procedia Computer Science PCS

Progress in Disaster Science PDS

Procedia Engineering Procedia Engineering

Remote Sensing Remote Sensing

Sadhana - Academy Proceedings in Engineering Sciences SADHANA

Structural Control and Health Monitoring SCHM

Sensors Sensors

ACM Symposium on Applied Computing SIGAPP

International Conferences on Advances in Geographic Information Systems SIGSPATIAL

Signal Processing: Image Communication SPIC

World Wide Web WWW 

Appendix B: Publication Venues

Table 8 provides article publication venues that are also 

listed in our online appendix [12].
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