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ABSTRACT

We studied vowel classification and speaker normalization
performance with neural nets based on Adaptive Resonance
Theory (ART). ART was developed by S. Grossberg [4] as a
theory of human cognitive information processing. It is the result
of an attempt to understand how biological systems are capable
of retaining plasticity throughout life, without compromising the
stability of previously learned patterns. We have implemented
some of these ideas in a supervised neural network called
CategoryART [9]. The neural network was trained with formant
frequency values extracted at the midpoint of vowels. Vowels
were selected from the TIMIT speech corpus [6]. Separate train
and test sets were used. Of the 630 speakers in this database 438
are male and 192 are female. A simple preprocessing algorithm
achieved normalization. Only the 13 monophthong vowel
categories (iy, ih, ey, eh, ae, aa, ow, ah, ao, uw, uh, ux, er) were
used. Formant frequency values were determined by an LPC
analysis. To compare formant frequency values for males and
females, normalized frequency values were calculated in a
preprocessing stage. Next to the neural net we also used a
Gaussian classifier. This classifier attained on the average 57%
correct classification. The neural network did not perform as well
as the Gaussian classifier and only achieved 50% correct
classification.

1. INTRODUCTION
For spoken language understanding, phonetic classification is
probably one of the fundamental abilities needed. A very
promising theory about human cognitive information processing
is Adaptive Resonance Theory (ART) which was developed by
Grossberg [4]. Basic features of Adaptive Resonance Theory and
its relation to perception are laid out in a great number of articles
by Grossberg and his associates (see for example Grossberg 1986
for an overview). ART was the result of an attempt to understand
how biological systems are capable of retaining plasticity
throughout life, without compromising the stability of previously
learned patterns. Somehow biologically based learning
mechanisms must be able to guard stored memories against
transient changes, while retaining plasticity to learn novel events
in the environment. This tradeoff between continued learning and
buffering of old memories has been called by Grossberg the
stability-plasticity dilemma. This poses special design problems,
since, for example, in (supervised) feedforward networks, which
are the most popular neural networks nowadays, new information
gradually washes away old information, and therefore,
feedforward networks cannot be made stable in a changing
environment.

To be able to mimic biological behaviour, the emphasis of
ART neural networks lies at unsupervised learning and self-
organization. Unsupervised learning means that the network

learns the significant patterns on the basis of the inputs only,
there is no feedback. There is no external teacher that instructs
the network to which category certain input belongs. Other types
of learning are reinforcement learning and supervised learning. In
reinforcement learning the net receives only limited feedback,
like "(on this input) you performed well" or "(on this input) you
have made an error". In supervised mode a net receives for each
input the correct response. Unsupervised learning is the substrate
on which the other types of learning are based. Learning in
biological systems always starts as unsupervised learning: for the
newly born hardly any pre-existing categories exist. A system
that can learn in unsupervised mode can always be adjusted to
learn in the other modes, like reinforcement mode or supervised
mode. However, a system specifically designed to learn in
supervised mode can never perform in unsupervised mode.
Needless to say that in unsupervised mode we cannot have a
separate training and performance phase because this implies the
presence of a homunculus that knows when to alter phases. Self-
organization means that the system must be able to build stable
recognition categories in real-time. These design constraints have
led to a series of real-time ART neural network building blocks
for unsupervised category learning and pattern recognition.

By providing an unsupervised ART neural network building
block with external feedback, we can make it reorganize its
recognition categories and in this way incorporate supervision. In
the ARTMAP architecture [2], two unsupervised building blocks,
together can implement supervision by letting one module give
feedback to the other. We have made a simple algorithmic
version of such a supervised neural network and named it
CategoryART [9]. The feedback mechanism is called match
tracking. Just like ARTMAP, CategoryART was designed to
conjointly maximize predictive success and minimize predictive
error by linking predictive success to learned category size. In
here, we will test some of the strengths and weaknesses of
CategoryART on a classification test with vowels from the
TIMIT database. More specifically, we will compare the phonetic
vowel classification performance of CategoryART, in the
absence of word recognition and based on local acoustic
information, with classification from a Gaussian classifier.

2. THE CATEGORYART NEURAL NETWORK
The CategoryART neural network is a supervised two-layer
neural network. It incorporates a FuzzyART building block [3]
and uses external feedback. In this building block all nodes in the
first layer are connected by bottom up and top down paths with
all the nodes in the second layer. The paths have associated
connection strengths called weights that represent the long-term
memory of the system. Initially all connections strengths have
some small random value. As learning proceeds, some of the
nodes in the second layer may become committed and their
weights represent prototype information. Committed nodes are
labelled with one of the labels in a labelSet. Initially the labelSet
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is empty. When a labelled input pattern I is presented to the
network and its label is not yet known, a new label is added to
the labelSet and a new uncommitted node learns the pattern I.
When the label is known the input I is matched with all the
learned prototypes and when the best match is "good enough"
this prototype is a modified a little bit in the direction of pattern I.
When the match is not good enough a new node is committed
that learns the pattern I. The "good enough" criterion is
controlled by a dimensionless parameter r called vigilance. The
modification of the prototype is controlled by a learning
parameter b. It is important to note that learning occurs when
there is a match between the input pattern and a prototype and
not on the basis of a mismatch. The learning algorithm in pseudo-
code goes as follows:

    for numberOfEpochs
        for all (pattern I, label c) in data
            learn (I, c)
        endfor
    endfor

    procedure learn (pattern I, label c)
        if label c not in labelSet
            add label c to labelSet
        endif
        J = find_winning_node (I)
        if labelSet [node[J]] _ c && matchtrack
            temporarily increase vigilance
            JÕ = find_winning_node (I)
            reset vigilance
        endif
        update_weights w[JÕ]
        node [JÕ] = index label in labelSet
    endprocedure

Weights are updated according to the following equation
w I w wJ

new
J
old

J
old( ) ( ) ( )( ) ( )= Ù + -b b1 ,

where the subscripts old and new refer to the weights before and
after updating. I is the input pattern and b the learning parameter.

When b=1 we speak of fast or one-shot learning. When fast
learning is enabled the weight vector w for the newly committed
node equals the input pattern. After the commitment the weight
vector update causes the new weight vector to become more
aligned with the most recently coded input pattern.

3. DATA SELECTION
The TIMIT acoustic phonetic speech corpus contains a total

of 6300 sentences, 10 sentences spoken by each of 630 speakers
from 8 major dialect regions of the United States of America, 438
speakers were male, 192 were female. The corpus is divided in a
train and a test part. All the sound files in the TIMIT database
have an accompanying label file that contains start and end
sample numbers of all phonemes occurring in the sentence. We
used these label files to construct a phoneme database with an
entry for every single phoneme label in TIMIT. This resulted in a
database with 241225 entries. Each entry contains information
about, among others, the dialect, the speaker, the sentence, the
left and right context, the stress value and the begin and end time
with respect to the beginning of the sentence [8]. This database

enabled us to calculate the midpoint of every individual vowel.
From the 20 different vowels present in the database we selected
the same 13 monophthong vowels in American English as did
Meng and Zue [7]. These vowels have TIMIT labels iy, ih, eh,
ey, ae, aa, ah, ao, ow, uh, uw, ux, er. These translate into the IPA
labels i, I, E , e , Q, A, Ã, � , o, U, u, �, ÎÕ, respectively. The
separation of TIMIT into a train and test part, and the male-
female marking of the files in this database, naturally leads to 4
different vowel sets: male speakers in the train part (mtrain:
26338 vowels), and the test part (mtest: 9047 vowels), female
speakers in the train part (ftrain: 11288 vowels) and female
speakers in the test part (ftest: 4741 vowels). Although the
distribution of the number of occurrences of each phoneme
doesnÕt differ much between these 4 sets, the number of
occurrences of each phoneme within each set differs widely.
However, our classifying methods can be made robust against
these differences.

The first three formant frequency values were measured for
all vowels in these 4 vowel sets at the vowel midpoints in an
automatic way. The following measuring procedure was
performed on all sound files with the speech analysis program
Praat [1]:
·  Downsampling. Sound files from female speakers were

downsampled from 16 kHz to 11 kHz and files from male
speakers were downsampled to 10 kHz. This reduces the
maximum number of formants in the signal to
approximately 5.

·  Pre-emphasis, followed by LPC analysis based on
autocorrelation, with 25 ms window length, 10 filter
coefficients and 5 ms time step.

·  Solving for the maximally 5 formant candidates in each
analysis frame.

· Query the formant tracks for the 3 (lowest) frequency values
at the midponts of the vowels by means of linear
interpolation. These 3 frequency values we associated with
the first 3 formant frequencies.

For each of the 4 vowel sets defined above, vowel identity and
the three formant frequency values were collected row-wise into
a table. In this way the i-th column of a table contains all the i-th
formant frequency values. In order to improve on the
distributional properties of the formant frequencies, for all tables
the logarithm of the formant frequencies were calculated. This
transformation brings the ÒvarianceÓ of all formant frequencies
approximately into the same range. Next we centre the tables by
column: for each column we first calculate the average value of
the log(F)Õs and subtract this value from all entries in the
corresponding column. As a result we know that for the 4
datasets the average value for all formants equals zero. This has a
nice normalization effect because it brings formant frequency
values from male and female speakers into the same range as can
clearly be seen from fig. 1b. As a consequence, all formant
frequency values for the first three formants now lie
approximately in the non-symmetric interval [-0.41, +0.28]. 82
vowels whose formant frequency value were outside this interval,
mainly male i, u and � whose first formant could not be
measured, were left out.

Because the input values for the neural net must all lie in the
interval [0, 1] a last linear transformation was performed by first
adding 0.41 to all entries in the tables and subsequently dividing
by 0.69 (=0.41+0.28).
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Figure 1. (a) 1/2-s ellipses in a plane spanned by the first two
formant frequencies. The ellipses were determined for 13
monophthong American English vowels, based on a selection
with 26308 entries from 326 male speakers as calculated from the
TIMIT train database. The real distribution of the 396 /u/Õs in this
selection is also shown. The logarithmic horizontal and vertical
frequency axes were scaled such that all frequencies are within
the [0, 1] interval. (b) The same 1/2-s ellipses as above (fat
contours) together with the ellipses as determined for the 136
female speakers in the train database after normalization (11288
entries).

4. TESTING PROCEDURE
For the two training tables a discriminant analysis was performed
with the Praat program. We then obtain for each vowel a sscp
matrix with sums of squares and cross products. These 13
individual sscp matrices were pooled and we obtained the
Òpooled sscp matrixÓ whose inverse is used in classification with
the Mahalanobis distance measure. From the number of
occurrences of each phoneme in the train set, a priori
probabilities were calculated. The Gaussian classifier uses both
the inverse of the Òpooled sscp matrixÓ as well as the a priori
probabilities in the distance calculation.
The training procedure for the neural nets is as follows. Learning
consists of presenting each pattern accompanied by its category
label a number of times to the neural network. Each presentation
of the whole training set is called an epoch. We always used 20
epochs, which means that each pattern was presented exactly 20
times to the network. After each epoch a new permutation of the
training set was presented to the network. In ART theory there is
no principal difference between a network in the learning phase
and in the classification phase. However, for testing purposes we
made a switch to be able to separate these two phases. In these
experiments we kept learning rate bÊ=Ê0.1 and vigilance rÊ =Ê0.9.
Because of the combination of match tracking and fast learning, a
single CategoryART system can learn a prediction for a rare
event that is different from that for a cloud of similar frequent
events in which it is embedded. This possibility is too strong
given the spread in the data and generates too many scattered
prototypes. This would result in poor generalization, so we learn
with match tracking off.

5. RESULTS
To gain some insight in the amount of variation of vowel
categories with formant frequency values from different
speakers, we calculated for each vowel category the covariance
matrix from the normalized log(F) values. These covariance
matrices are necessary to calculate the s ellipses. A 1-s ellipse
theoretically covers 68.3% of the data, provided the data were
drawn from a multi-normal distribution. In figure 1a are shown
the 1/2-s ellipses for the vowels from the male speakers in the
train part of the dataset (mtrain). These ellipses cover
approximately 38.3% of the data. To give some insight in the real
distribution of the vowels, we have also plotted all the 396 /u/Õs
that are present in this set. The amount of spread is considerable
and we can clearly not hope for perfect recognition scores. The
/u/Õs at the upper right have formant frequency misfits because
their first formant could not reliably be determined. Fig 1b shows
the 1/2-s ellipses for the vowels in the male (fat contours) and
female train datasets (mtrain and ftrain). We note the remarkable
coincidence in distributional properties for the male and female
data. Almost perfect overlap of the ellipses from the same vowel
category. The between-speaker-category variance almost
disappeared we are only left with still considerable within-
speaker-category variance.

The percentages correct of the classification experiments are
shown in table 1, row labels shows the dataset used for training
and column labels shows the datasets used for classification. The
upper two rows in the table show results obtained with the
Gaussian classifier, the lower two rows the results with the neural
network model.
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Table 1. Percentage correct scores for Gaussian classifier (upper
2 rows) and CategoryART neural net classifier (lower 2 rows).

mtrain mtest ftrain ftest
mtrain 55.1 () 57.3 () 53.0 () 52.6 ()
ftrain 54.5 56.5 54.8 54.5

mtrain 51.0 48.3 52.3 49.9
ftrain 48.8 49.9 52.4 49.9

5. DISCUSSION
There are several reasons why the classification results from the
CategoryART neural network fall somewhat behind the results
obtained with the Gaussian classifier. As can be seen from
figures 1a and 1b the overlap between different vowel categories
is considerable. A Gaussian classifier uses all the data at the same
time to make a suitable separation of the space in contiguous
areas. A neural net classifier only uses one data point at a time. A
second possible cause for the weaker performance of
CategoryART is its implementation of one-shot learning. It is
now obvious that simply using one-shot learning is not optimal
when the data contains (much) variance (noise). The one-shot
learning option makes the network sensitive to noise: actually
noise will be learned.

In our future research we will try out a number of possible
improvements on the neural net part and on the data analysis part.
First of all, to improve on the dynamics of CategoryART, we
could actually turn the one-shot learning to our advantage by a
procedure called majority-voting [2]. We train a number of
networks, say 5 with the same data but with a different random
ordering of the individual patterns. Then we let them classify
some data. The label that each network assigns can be considered
as a vote. The label with the largest number of votes wins. As,
among others, Meng and Zue [7] achieve better classification
results by incorporating dynamic information this will be
incorporated as well. Next we have to further improve on
formant frequency measurements by imposing local continuity
constraints on formant frequency values distilled from LPC
analyses with orders higher than 10. A normalization model in
which a better modelling of the similarities and differences of
speaker characteristics is possible could of course obtain further
improvements.
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