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Abstract

Background: Comparative genomics studies are central in identifying the coding and non-coding elements

associated with complex traits, and the functional annotation of genomes is a critical step to decipher the

genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes

(FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by

profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in

species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples

related to metabolism (liver) and immunity (CD4+ and CD8+ T cells).

Results: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified

differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an

enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative

analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs)

and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data.

Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than

species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly

conserved across species.

Conclusions: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG

project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals,

the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective
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pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG

for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets

being generated by this community on different species.
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Background
Most complex trait-associated loci lie outside protein-

coding regions, and comparative genomics studies have

shown that the majority of mammalian-conserved and

recently adapted regions consist of non-coding elements

[1–3]. This evidence prompted the first large-scale efforts

into genome annotation for human and model organisms

[4–6]. The genome-wide annotation maps generated by

these projects helped to shed light on the main features

of genome activity. For example, chromatin conformation

or transcription factor occupancy at regulatory elements

can often be directly tied to the biology of the specific cell

or tissue under study [3, 7, 8]. Moreover, although a sub-

set of core regulatory systems are largely conserved across

humans andmice, the underlying regulatory systems often

diverge substantially [9–11], implying that understand-

ing the phenotypes of interest requires organism-specific

information for any specific physiological phase, tissue

and cell.

The Functional Annotation of Animal Genomes

(FAANG) initiative [12] aims to support and coordinate

the community in the endeavor of creating reference

functional maps of the genomes of domesticated ani-

mals across different species, tissues, and developmental

stages, with an initial focus on farm and compan-

ion animals [13–16]. FAANG carries out activities to

standardize assay protocols and analysis pipelines, to

coordinate and facilitate data sharing. The FAANG

Data Coordination Center provides an infrastructure for

genotype-to-phenotype data [17, 18]. Substantial efforts

are being dedicated to farm animal species, as decipher-

ing the genotype-to-phenotype relationships underlying

complex traits such as production efficiency and disease

resistance is a prerequisite for exploiting the full potential

of livestock [13, 16].

Here we report the main results of a pilot project

(FR-AgENCODE [19]) launched at the beginning of the

FAANG initiative. The broad aim was to generate stan-

dardized FAANG reference datasets from four livestock

species (cattle, goat, chicken, and pig) through the adap-

tation and optimization of molecular assays and anal-

ysis pipelines. We first collected a panel of samples

from more than 40 tissues from two males and two

females of four species: Bos taurus (cattle, Holstein breed),

Capra hircus (goat, Alpine breed), Gallus gallus (chicken,

White Leghorn breed), and Sus scrofa (pig, Large White

breed), generating a total of 4115 corresponding entries

registered at the EMBL-EBI BioSamples database (see

“Methods” section). For molecular characterization, three

tissues were chosen to represent a “hub” organ (liver) and

two broad immune cell populations (CD4+ and CD8+ T

cells). This allowed the acquisition of a partial represen-

tation of energy metabolism and immunity functions, as

well as the optimization of the protocols for experimen-

tal assays for both tissue-dissociated and primary sorted

cells. In addition to the transcriptome, we analyzed chro-

matin accessibility by the assay for transposase-accessible

chromatin using sequencing (ATAC-seq, [20]), and we

characterized the three-dimensional (3D) genome archi-

tecture by coupling proximity-based ligation with mas-

sively parallel sequencing (Hi-C, [21]) (Fig. 1). Using this

combination of tissues/assays, we assessed the expression

of a large set of coding and non-coding transcripts in

the four species, evaluated their patterns of differential

expression in light of chromatin accessibility at promoter

regions, and characterized active and inactive topologi-

cal domains of these genomes. The integrative analysis

showed a global consistency across all data, emphasizing

the value of a coordinated action to improve the genomic

annotation of livestock species, and revealed multiple lay-

ers of evolutionary conservation from birds to mammals.

Results and discussion
High-depth RNA-seq assays provide gene expression

profiles in liver and immune cells from cattle, goat,

chicken, and pig

For each animal (two males, two females) of the four

species, we used RNA-seq to profile the transcrip-

tome of liver, CD4+ and CD8+ T cells (see “Methods”

section, Fig. 1 and Additional file 1: Table S1). We pre-

pared stranded libraries from polyA+ selected RNAs

longer than 200 bp, and we sequenced them on an Illu-

mina HiSeq3000 (see “Methods” section). Between 250M

(chicken) and 515M (goat) read pairs were obtained per

tissue on average, of which 94% (chicken) to 98% (pig)

mapped to their respective genome using STAR [22, 23]

(see “Methods” section, Additional file 1: Figure S1 and

Tables S2-S4). As an initial quality control step, we pro-

cessed the mapped reads with RSEM [24] to estimate

the expression levels of all genes and transcripts from

the Ensembl reference annotation (hereafter called “ref-

erence” genes/transcripts/annotation) (Additional file 1:
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Fig. 1. Experimental design overview. For each species, samples from liver and T cells of two males and two females were processed by RNA-seq,

ATAC-seq, and Hi-C assays. See Additional file 1: Table S1 for a complete list of experiments performed and available datasets

Table S2 and Figure S1; Additional file 2). As expected, a

large majority of the reads (from 62% in cattle to 72% in

goat) fell in annotated exons of the reference genes (Addi-

tional file 1: Figure S2). In spite of the specialized scope of

this initial study limited to liver and immune cells, a large

share of all reference genes were detected (from 58% in

chicken to 65% in goat), even considering only transcript

isoforms with an expression level higher than 0.1 TPM in

at least two samples (see “Methods” section and Table 1).

For each species, we explored the similarity among sam-

ples using the expression profiles of the reference genes.

Principal component analysis (PCA) revealed quite con-

sistent patterns across species, where the first principal

component (explaining 84 to 91% of the variability among

samples) clearly separated samples according to their tis-

sue of origin (liver vs. T cells). A more moderate yet

systematic separation was observed between CD4+ and

CD8+ T cells on the second principal component (Addi-

tional file 1: Figure S3). The consistency of these patterns

across species supports the reliability of our RNA-seq

data.

To compare the expression pattern of reference genes

between species, we first checked that the male-to-female

expression ratio was globally uniform genome-wide with

the exception of the sex chromosomes in chicken (Addi-

tional file 1: Figure S4). Dosage compensation (leading for

instance to X chromosome inactivation in mammals) can

indeed be observed in all species except chicken, which

is consistent with previous reports on dosage compensa-

tion [25]. Next, we hierarchically clustered our samples

using the expression of 9461 genes found to be ortholo-

gous across the four species (Fig. 2, “Methods” section and

Additional file 3). Regardless of the species, liver and T cell

samples clustered separately. Interestingly, T cell samples

clustered first by species and then by subtypes (i.e., CD4+

versus CD8+). This suggests a strong specialization of the

immune system during speciation, although the specific

clustering pattern of CD4+ and CD8+ samples might also

be driven by a small subset of genes whose expression

varies largely across species and little across cell subtypes

[26]. These results also depend on the set of ortholo-

gous genes available in the reference annotation. For most

species and tissues, samples also clustered by sex, possibly

due in part to the physiological state of females in lactation

or laying eggs. These results highlight a high conservation

of the liver gene expression program across vertebrates

and that global transcriptome comparisons across several

tissues and species can result in samples clustering by

either factor, as shown in other studies [26–28].

Most reference genes are differentially expressed between

liver and T cells

To provide functional evidence supporting our RNA-seq

data, we performed a differential gene expression analysis

across tissues per species for each gene in the refer-

ence annotation. Gene read counts provided by RSEM

[24] were TMM-normalized [29] (see “Methods” section).

Taking into account the specificities of our experi-

mental design, in which samples from different tissues

come from the same animal, we fitted generalized linear
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Table 1 Reference and FR-AgENCODE detected transcripts. This table provides the total number of reference transcripts for each

species, the number and percent of those that were detected by RNA-seq (TPM ≥ 0.1 in at least 2 samples), the total number of

FR-AgENCODE transcripts, and the subsets of them that were mRNAs (known and novel) and lncRNAs (known and novel). Overall, the

transcript repertoire is increased by about 100% in most of the species. As these results naturally depend on the input data, details

about the genome assemblies and reference annotations that were used for this study are listed in Additional file 1: Table S2

Species

Reference transcripts FR-AgENCODE transcripts

All
Expressed

♯
mRNAs lncRNAs

♯ % of total Known Novel Known Novel

Cattle 26,740 16,100 60.2 84,971 11,576 48,225 13 22,711

Goat 53,266 34,442 64.7 78,091 26,973 31,854 2247 11,617

Chicken 38,118 22,180 58.2 57,817 14,765 32,802 1314 6797

Pig 49,448 29,786 60.2 77,540 23,701 40,020 327 12,284

models (GLM) to identify genes with differential expres-

sion in either all pairwise comparisons between liver,

CD4+ and CD8+ (model 1), or liver versus T cells globally

(model 2).

As expected, the liver to T cell comparison yielded the

largest number of differentially expressed genes, and rela-

tively few genes were found to be differentially expressed

between the two T cell populations (CD4+ and CD8+, see

Additional file 1: Table S5 and Additional file 4). Strik-

ingly, most genes showed significantly different expression

between liver and immune cells in each species (from

7000 genes in chicken to 10,500 genes in goat), reflect-

ing the difference between the physiological functions of

these highly specialized cell types, in line with findings

from the GTEx project [30]. Accordingly, Gene Ontology

(GO) analysis provided results in line with the role of liver

in metabolism and of T cells in immunity for all species

(Additional file 1: Figure S5–8 and “Methods” section).

In accordance with the results of the hierarchical clus-

tering (Fig. 2), most orthologous genes found to be differ-

entially expressed between CD4+ and CD8+ T cells within

species showed high variability of expression levels across

species (not shown). This variability is likely caused by the

natural heterogeneity in the relative proportions of T cell

subtypes among the different species, as already reported

between mammals [31, 32]. Nevertheless, 39 orthologous

genes could consistently differentiate CD4+ and CD8+ in

the four species, including mammals and chicken, which

is significantly more than expected by chance (p value

< 10−3, permutation test). Among those, 10 and 29 genes

showed significant overexpression in CD4+ and CD8+

cells respectively (Additional file 1: Table S6).We searched

for the human orthologs of theses genes in the baseline

expression dataset of human CD4+ and CD8+ αβ T cell

subsets generated by the Blueprint Epigenome Project

[33, 34] and considered their relative enrichment in each

cell subset. With one exception (ACVRL1), all genes were

found to be expressed in human CD4+ and/or CD8+ αβ

T cells and 25 of them showed a relative enrichment in

CD4+ (or CD8+) human cells consistent with our data

across the four species. Out of these 25 genes, six and

eight genes, respectively, could be associated with CD4+

and CD8+ T cell differentiation, activation, and function

according to the literature (Additional file 1: Table S6).

Analysis of new transcripts improves and extends gene

structure annotation

In order to test if our data could improve the refer-

ence gene annotation for each species, we used STAR

and Cufflinks to identify all transcripts present in our

samples and predict their exon-intron structures. We

then quantified their expression in each sample using

STAR and RSEM (see “Methods” section and Addi-

tional file 1: Figure S1) and only retained the transcripts

and corresponding genes expressed in at least two sam-

ples with TPM ≥0.1. We identified between 58,000 and

85,000 transcripts depending on the species (Table 1,

Additional file 5), hereafter called “FR-AgENCODE

transcripts”.

To characterize these FR-AgENCODE transcripts with

respect to the reference transcripts, we grouped them

into four positional classes (see “Methods” section): (1)

known: a FR-AgENCODE transcript whose exon-intron

structure is strictly identical to a reference transcript (i.e.,

exact same exons and introns); (2) extension: same as

(1), but the FR-AgENCODE transcript extends a refer-

ence transcript by at least 1 bp on at least one side;

(3) alternative: a FR-AgENCODE transcript that shares

at least one intron with a reference transcript but does

not belong to the previous categories (only multi-exonic

transcripts can be in this class); and (4) novel: a FR-

AgENCODE transcript that does not belong to any of the

above categories. We found that most FR-AgENCODE

transcripts (between 37% for goat and 49% for chicken)
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Fig. 2. RNA-seq sample heatmap and hierarchical clustering based on the expression of the 9461 orthologous genes across the four species.

Pairwise similarity between samples is computed as the Pearson correlation between the base 10 logarithm of the expression (TPM) of the 9461

orthologous genes. These similarities are plotted as a heatmap, where samples appear both as rows and columns and are labelled by their species

and tissue and the sex of the animal. The color of each heatmap cell also reflects the similarity (Pearson correlation) between each sample pair (the

lighter, the higher). Hierarchical clustering is performed using one minus the squared Pearson correlation as a distance and the complete linkage

aggregation method

were of the alternative class, therefore enriching the refer-

ence annotation with new splice variants of known genes

(Additional file 1: Table S7). The proportion of com-

pletely novel transcripts was relatively high for cattle,

which is likely due to the incompleteness of the UMD3.1

version of the Ensembl annotation used at the time of

the study (Table 1, Additional file 1: Figure S2, S9 and

Table S7).

In order to identify interesting new transcripts involved

in immunity and metabolism, we first selected the novel

FR-AgENCODE coding transcripts that unambiguously

project to a single human coding gene. We identi-

fied 93 (cattle), 52 (goat), 74 (chicken), and 26 (pig)

genes, of which 12 are common to at least 2 livestock

species (see “Methods” section, Additional file 1: Table S8,

Figure S10A and Additional file 6). Gene set enrichment

analyses on these gene lists confirmed their relevance for

T cell biology (Additional file 1: Figure S10B) and the

added value of the FR-AgENCODE novel transcripts in

terms of annotation of complex but important loci like

TRBV and TRAV (Additional file 1: Figure S10C).

In addition, we performed a differential gene expression

analysis similar to the one done on reference genes (see

above and “Methods” section). Results were globally sim-

ilar, with more than 88% of correspondence between the

differentially expressed genes from the reference and the

FR-AgENCODE annotation (Additional file 1: Figure S11,

Tables S5 and S9; Additional file 7). Among the latter,

between 202 (chicken) and 1032 (goat) genes were coding

(at least one coding transcript predicted by FEELnc—

see below) and did not overlap any reference gene on

the same strand. This highlights the potential to iden-

tify novel interesting candidates for further functional

characterization.
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Identification, classification, and comparative analysis of

lncRNAs

Since deep RNA-seq libraries allow the detection of

weakly expressed transcripts [35], we sought to iden-

tify the proportion of long non-coding RNAs (lncRNAs)

among the FR-AgENCODE transcripts. Using the FEELnc

classifier [36] trained on the reference annotation (see

“Methods” section), we identified from 7502 (chicken) to

22,724 (cattle) lncRNA transcripts, among which a large

majority were not previously reported (Additional file 1:

Tables S10–11; Additional file 8). The high number of

lncRNAs found in cattle is likely due in part to the incom-

plete genome annotation and genome assembly used at

the time of the study (Additional file 1: Table S2). Con-

sistent with previous reports in several species including

human [37], dog [36], and chicken [38], predicted lncRNA

genes had lower expression levels than reference protein-

coding genes (Additional file 1: Figure S12). The structural

features of these predicted lncRNA transcripts were con-

sistent between the four species: lncRNAs are spliced but

with fewer exons (1.5 vs. 10) and higher median exon

length (660 vs. 130 bp) compared to mRNAs (Additional

file 1: Figure S12). LncRNAs are also smaller than mRNAs

(1800 vs. 3600 bp). Notably, the lower number of exons

and consequent smaller size of lncRNAs compared to

mRNAs could also be due to the weaker expression of

lncRNAs, which makes their structure more difficult to

identify [39].

In addition to the coding/non-coding classification,

FEELnc can also categorize lncRNAs as intergenic or

intragenic based on their genomic positions with respect

to a provided set of reference genes (usually protein cod-

ing), and considering their transcription orientation with

respect to these reference genes. This analysis revealed an

overwhelming majority of intergenic lncRNA genes over

intragenic ones (Additional file 1: Table S10), which is con-

sistent with results obtained in human [37] and in chicken

[38].

We and others previously showed a sharp decrease in

lncRNA sequence conservation with increasing phyloge-

netic distance [37, 38, 40], in particular between chicken

and human that diverged 300M years ago. We therefore

analyzed lncRNA conservation between the four livestock

species using a synteny approach based on the orthol-

ogy of protein-coding genes surrounding the lncRNA and

not on the lncRNA sequence conservation itself [38] (see

“Methods” section). We found 73 such conserved, or syn-

tenic, lncRNAs across cattle, goat, and pig, 19 across

cattle, chicken, and pig, and 6 across all four species

(Additional file 8). All were expressed in these species

and located in the same orientation with respect to the

flanking orthologous genes. An example of such a con-

served lncRNA, hitherto unknown in our four species,

is provided in Fig. 3. In human, this lncRNA is called

CREMos for “CREM opposite sense” since it is in a diver-

gent position with respect to the neighboring CREM

protein-coding gene. Interestingly, synteny is conserved

across species from fishes to mammals and the CRE-

Mos lncRNA is overexpressed in T cells while the CREM

protein-coding gene is overexpressed in liver in goat, cat-

tle and chicken (Fig. 3). Additional examples of syntenic

lncRNAs are provided in Additional file 8, and the ones

found to be conserved between the 4 species are repre-

sented in Additional file 1: Figure S13.

Landscape of chromatin accessibility in cattle, goat,

chicken, and pig

We used ATAC-seq to profile the accessible chromatin

of liver, CD4+ and CD8+ T cells in animals from the

four species. Between 480M (chicken) and 950M (pig)

ATAC-seq fragments were sequenced per species, and

were processed by a standard pipeline (“Methods” section

and Additional file 1: Figure S14). Peaks were called in

each tissue separately (see “Methods” section), resulting

in between 26,000 (pig, liver) and 111,000 (pig, cd8) peaks

per tissue (Additional file 1: Table S12). Those peaks were

further merged into a unique set of peaks per species,

resulting in between 75,000 (goat) and 149,000 (pig) peaks

(Additional file 1: Table S12; Additional file 9), covering 1

to 5% of the genome. The average peak size was around

600 bp for all species, except for chicken where it was less

than 500 bp. Merging tissue peaks did not result in much

wider peaks (Additional file 1: Figure S15).

In comparison to the reference annotation, about 10–

15% of the peaks lie at 5 kb or less from a Transcription

Start Site (TSS) and can be considered to be promoter

peaks. The precise distribution of these promoter peaks

showed a clear higher accumulation at the TSS for all

species (Fig. 4), supporting the quality of both the anno-

tation and our data. Importantly, this signal was also

observed around the TSS of novel FR-AgENCODE tran-

scripts (i.e., those not from the known class; Additional

file 1: Figure S16).

The vast majority of the peaks, however, were either

intronic or intergenic (Fig. 4, Additional file 1: Figure S17;

Additional file 9), similar to GWAS variants associated

with human diseases [3]. In particular, from 38% (goat) to

55% (cattle) of the peaks were located at least 5 kb away

from any reference gene (Additional file 1: Figure S17),

indicating that ATAC-seq can detect both proximal and

distal regulatory regions.

Since active enhancers are expected to be enriched in

chromatin regions that are both accessible and tagged

with specific histone modification marks, we compared

our ATAC-seq peaks to histone ChIP-seq peaks from

another functional genomics study [42]. In that study,

two histonemodificationmarks (H3K4me3 andH3K27ac)

were profiled in the genome of 20 mammals including
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Fig. 3. A novel lncRNA conserved across multiple species. Phylogenetic representation based on the NCBI taxonomy of the 22 annotated species

from fishes to mammals using iTOL [41]. a, b Three gene syntenic region centered on CREMos lncRNA with NCBI IDs for lncRNAs already annotated

in reference databases and distance between entities in nucleotides. The cases where CREM and CREMos genes are overlapping are indicated by the

“0*” distance. c Expression of the 3 genes in cattle, goat, chicken and pig: CREMos is generally less expressed in liver than in T cells (in cattle, chicken

and pig) whereas CREM is generally more expressed in liver than in T cells (in cattle, chicken and goat)

pig, for which we have ATAC-seq data in the same tis-

sue (liver). This comparison showed that 6773 out of the

9632 H3K4me3 peaks (70.3%) and 8821 out of the 33,930

H3K27ac peaks (28.3%) overlapped our liver ATAC-seq

peaks. These numbers were significantly higher than

expected by chance as measured by shuffling peak posi-

tions (p value < 10−3, permutation tests). Moreover,

this subset of overlapping peaks have significantly higher

q-value signal scores than their non-overlapping coun-

terparts (p value < 2.2 × 10−16, Wilcoxon tests), which

confirms the existence of a common signal between the

datasets.

To further characterize functional regulatory sites in our

samples, we compared chromatin accessibility between

liver and T cells. The ATAC-seq peaks of each species

were quantified in each sample and resulting read counts

were normalized using a loess correction (see “Methods”

section). A differential analysis similar to the one used

for RNA-seq genes was then performed on normal-

ized counts (see “Methods” section). We identified from

4800 (goat) to 13,600 (chicken) differentially accessible

(DA) peaks between T cells and liver (Additional file 1:

Table S13; Additional file 10). To test for the presence of

regulatory signals in these regions, we computed the den-

sity of transcription factor binding sites (TFBS) in ATAC-

seq peaks genome-wide. Interestingly, TFBS density was

significantly higher in DA ATAC-seq peaks compared to

non-DA ATAC-seq peaks (Model 2; p value < 7.1 × 10−4

for goat and p value < 2.2 × 10−16 for chicken and pig,

Wilcoxon tests, see “Methods” section). This enrichment

was also observed for distal ATAC-seq peaks, at least

5 kb away from promoters (not shown), and suggests that

differentially accessible peaks are more likely to have a

regulatory role than globally accessible peaks.

Promoter accessibility is associated with both positive and

negative regulation of gene expression

Accessible promoters are commonly associated with gene

activation [43, 44]. Given the specific distribution of the

ATAC-seq signal, we initially focused on proximal chro-

matin peaks (i.e., at 1 kb or less from a gene TSS) and used

them to assign a promoter accessibility value to each gene.

Using normalized read counts (see “Methods” section), we

investigated the correlation between ATAC-seq and RNA-

seq data either across all genes within each sample, or

across all samples for each gene.
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Fig. 4. Density of ATAC-seq peaks around Transcription Start Sites (TSS) for cattle (a), goat (b), chicken (c), and pig (d). Mean coverage values of

ATAC-seq peaks (y-axis) were computed genome-wide relatively to TSS positions (x-axis). The proportion of ATAC-seq peaks within the [−1;+1]Kb

interval is represented by the shaded area between the dotted lines. The corresponding percentage is indicated above the double arrow, indicating

that most of the ATAC-seq signal is distal to TSSs

Within each sample, genes with highly accessible pro-

moters showed higher expression values globally (Addi-

tional file 1: Figure S18), as already reported in mouse

and human [45]. For pig and goat, the number of avail-

able samples further allowed us to compute for each gene

the correlation between promoter accessibility and gene

expression across all samples (Additional file 1: Figure S19

and “Methods” section). Interestingly, while the corre-

lation value distribution appeared to be unimodal for

non-differentially expressed genes, it was bimodal for

differentially expressed genes, with an accumulation of

both positive and negative correlation values (Fig. 5 and

Additional file 1: Figure S20). This pattern supports the

existence of different types of molecular mechanisms (i.e.,

both positive and negative) involved in gene expression

regulation.

Comparative genomics reveals a core set of conserved

chromatin accessible sites

We then investigated the evolution of chromatin accessi-

bility genome-wide by performing a comparative analysis

of all (proximal and distal) conserved ATAC-seq peaks

across species. We identified conserved peaks by aligning

all the sequences that corresponded to peaks from each

species (both proximal and distal) to the human genome

(see “Methods” section). Most peaks could be mapped

globally, with an expected strong difference between

mammals (72–80% of the peaks) and chicken (12% of

the peaks). After keeping the best sequence hits, merging

them on the human genome and retaining the unambigu-

ous ones (see “Methods” section), we obtained a set of

212,021 human projections of livestock accessible chro-

matin regions, that we call human hits.
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Fig. 5. Correlation between gene expression and promoter

accessibility in pig. For each expressed FR-AgENCODE gene with an

ATAC-seq peak in the promoter region, the Pearson correlation was

computed between the base 10 logarithm of the RNA-seq gene

expression (TMM) and the base 10 logarithm of the ATAC-seq

chromatin accessibility (normalized by csaw). The distribution is

represented for genes with no significant differential expression

between liver and T cells (a, top) and for differentially expressed genes

(b, bottom). The distribution obtained for differentially expressed

genes showed an accumulation of both positive and negative

correlation values, suggesting a mixture of regulatory mechanisms

A large majority of the human hits (about 86%) origi-

nated from a single livestock species, which is consistent

with previous reports about the fast evolution of regu-

latory elements and the species-specific feature of many

enhancers [5, 42]. Nevertheless, the remaining 28,292

human hits (14%) had a conserved accessibility across two

or more livestock species (“Methods” section and Addi-

tional file 11). As they share both sequence information

and experimental evidence between several species, we

refer to those human hits as “conserved peaks” and to the

number of species sharing the peak as their “similarity

level”. Among these human hits, 1083 had a similarity level

of 4, i.e., were shared by all 4 livestock species. Human

hits from a single species were assigned a similarity level

of 1. As previously done with the orthologous genes using

RNA-seq data, we performed a hierarchical clustering of

the samples based on the normalized accessibility values

of the peaks with a similarity level of 4 (Additional file 1:

Figure S21). Contrary to what was observed from the

expression data, samples here mostly clustered according

to species first, with the chicken as a clear outlier. How-

ever, for the two phylogenetically closest species (goat and

cattle), we observed that all T cells clustered together, sep-

arately from liver. This suggests a stronger divergence and

specialization of the regulatory mechanisms compared to

the gene expression programs.

In addition, shuffling the peak positions within each

species did not drastically change the mapping efficiency

on the human genome overall but resulted in a much

lower proportion of orthologous peaks (from 14 to 3%

human hits with a similarity level > 1, see “Methods”

section). Also, the overlap on the human genome between

all the 212,021 human hits and ENCODE DNAse I hyper-

sensitive sites from liver and T cell samples [46] was three

to four times higher than with the random set of shuffled

peaks (25–39% per species vs. 7–9%).

Lastly, human hits that were identified as differentially

accessible between liver and T cells in at least one species

had higher PhastCons conservation scores on the human

genome than the non differential peaks of the same sim-

ilarity level (Fig. 6). This difference was significant for

three out of the four similarity levels (p values < 0.01

overall, Wilcoxon tests), supporting a selective pressure

on functionally active regulatory regions. Remarkably, this

contrast was even stronger after discarding human hits

close to a TSS in any of the species (Additional file 1:

Figure S22, p values < 10−6 overall, Wilcoxon tests,

Additional file 11), in line with a specific conservation of

distal regulatory elements beyond the promoter regions.

Altogether, these results highlight a core set of conserved

regulatory regions from birds to mammals that include

both proximal and distal sites.

Comprehensive maps of topological domains and genomic

compartments in goat, chicken, and pig

In order to profile the structural organization of the

genome in the nucleus, we performed in situ Hi-C on liver

cells from the two male and the two female samples of pig,

goat, and chicken. The in situ Hi-C protocol was applied

as previously described [47] with slight modifications (see

FAANG protocols online and “Methods” section). Reads

were processed using a bioinformatics pipeline based on

HiC-Pro [48] (“Methods” section). From 83 to 91% of
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Fig. 6. Relationship between chromatin accessibility conservation and differential accessibility Phastcons scores of ATAC-seq human hits were

plotted after dividing the human hits according to both their similarity level (between 1 and 4, x-axis) and their differential accessibility (DA) status

(DA in at least one species or DA in none of the 4 species, boxplot color). Although the phastcons score obviously increases with the similarity level,

it is clear that, for a given similarity level, the phastcons score is higher for DA human hits than for non DA human hits (all similarity levels except 3, p

values < 0.01 overall, Wilcoxon tests) (number of elements in the boxplots from left to right: 163509, 21578, 16329, 4437, 6231, 6231, 2241, 878, 417)

the reads could be genomically mapped depending on

the sample, and after filtering out all inconsistent map-

ping configurations we obtained a total of 182, 262, and

290M valid read pairs in goat, chicken, and pig respec-

tively (Additional file 1: Table S14 and Figure S23). These

sequencing depths allowed us to build interaction matri-

ces (or Hi-C contact heatmaps) at the resolution of 40

and 500 kb in order to detect Topologically Associat-

ing Domains (TADs) and A/B compartments respectively

(Additional file 1: Figure S24).

We identified from ≈ 650 (chicken) to 2000 (pig) TADs

of variable sizes (≈ 1 Mb on average, Additional file 1:

Table S15; Additional file 12), with a 73–89% genome-

wide coverage. To validate these domains predicted by

Juicer [49] (see “Methods” section), we computed three

metrics along the genome: the Directionality Index (DI),

to quantify the degree of upstream or downstream inter-

action bias for any genomic region [50], the local inter-

action score to represent the insulation profile along

the genome [51, 52], and the density of in silico pre-

dicted CTCF binding sites, expected to be prevalent at

TAD boundaries [53, 54]. For each species, we observed

that the distribution of these three metrics was consis-

tent with previous reports on model organisms (Fig. 7

and Additional file 1: Figure S25), supporting the rele-

vance of our topological annotation. Similar results were

obtained using another TAD finding tool called Armatus

[55], although predicted domains were smaller (150 to

220 kb on average) and consequently more abundant

(Additional file 1: Figure S25).

At a higher organizational level, we identified “active”

(A) and “inactive” (B) epigenetic compartments as defined

by [21] (see “Methods” section and Additional file 1:

Figure S24). We obtained from ≈ 580 to 700 compart-

ments per genome with a mean size between 1.6 Mb

(chicken) and 3.4 Mb (goat) and covering between 71.9%

(goat) and 88.6% (pig) of the genome (see Additional

file 1: Table S15; Additional file 12). We also observed

high consistency of the compartments between replicates

(same compartment for 80% of the loci in all 4 animals,

see Additional file 1: Figure S26). In model organisms,

A compartments represent genomic regions enriched for

open chromatin and transcription compared to B com-

partments [50]. By using RNA-seq and ATAC-seq data
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Fig. 7. CTCF motif density and local interaction score within and around TADs. Local interaction score across any position measured from Hi-C

matrices and represented on the y-axis (left). The mean density of predicted CTCF binding sites is also shown on the y-axis (right). Mean interaction

score and CTCF density are plotted relative to the positions of Hi-C-derived Topologically Associating Domains. Dotted lines indicate TAD

boundaries. Absolute scale is used on the x-axis up to 0.5 Mb on each side of the TADs while relative positions are used inside the domains (from 0

to 100% of the TAD length)
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from the same liver samples as those for which we had Hi-

C data, we observed that, as expected, both the average

gene expression and the average chromatin accessibility

were significantly higher in A than in B compartments

(Fig. 8, p value < 2.2 × 10−16 for each comparison,

Wilcoxon tests), emphasizing the biological consistency of

our results across all molecular assays and species.

Genome structure comparison reveals a multi-scale

selective pressure on topological features across evolution

It has been shown that the general organization in TADs

tends to be conserved across species [54, 56] and that the

presence of specific TAD boundaries can be crucial for

biological functions like development [57]. In line with

these reports, we wondered if TAD boundaries might

play a fine grain regulatory role beyond a binary model

of simple absence/presence. Under this assumption, we

hypothesized that the insulating capacity of conserved

TAD boundaries could be under selective pressure. We

therefore assessed the link between their insulation poten-

tial and their evolutionary conservation.

As previously done with ATAC-seq peaks (see “Methods”

section and above) we first mapped all the TAD bound-

aries from each species to the human genome to identify

the orthologous ones. Pairwise comparisons of their local

interaction scores showed a clear correlation between our

species (Fig. 9a). Since the interaction score here reflects

the proportion of cis-contacts across a TAD bound-

ary, such a correlation supports a conservation of the

insulation strength between adjacent TADs. Strikingly,

similar correlations were obtained between each of our

mammalian species and human (GM12878 cell line, see

“Methods” section and Fig. 9b, c) [47]. Beside confirming

a general conservation of the TAD structure throughout

evolution, these results emphasize the quantitative nature

of this activity, in line with previous findings [54, 58, 59].

Moreover, a conserved insulation level at TAD bound-

aries suggests various degrees of functional impact and

a fine control of their regulatory role, involving complex

molecular mechanisms.

To further characterize this link between conservation

and TAD strength, we assigned to each boundary a simi-

larity level depending on the number of livestock species

with a common hit on the human genome, as we did for

ATAC-seq peaks (see above and Additional file 13). In

all 3 species, we observed that the higher the similarity

level of a TAD boundary, the lower its interaction score

(Fig. 9d). These results revealed that TAD boundaries

under stronger selective pressure had higher insulation

activities and, expectedly, a more important role in terms

of genome architecture and regulatory function. These

conclusions complement previous findings about genome

structure conservation across various evolutionary dis-

tances [58, 60].
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Fig. 8. Gene expression (a) and chromatin accessibility (b) in A and B

topological compartments. For the three species with Hi-C-derived A

and B compartments, the distribution of the RNA-seq gene expression

values (normalized read counts, top panel) and ATAC-seq chromatin

accessibility values (normalized read counts, bottom panel) is shown

per compartment type. A “active” compartments. B “repressed”

compartments. As Hi-C data was only available from liver, only RNA-

seq and ATAC-seq values from the same samples were considered.

The significant and systematic difference of gene expression and

chromatin accessibility values between A and B compartments (p

values < 2.2 × 10−16 overall, Wilcoxon tests) confirms a general

consistency between RNA-seq, ATAC-seq and Hi-C data across species
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Fig. 9. Relationship between chromatin structure conservation and functionality Interaction scores of orthologous TAD boundaries between goat

and pig (a), goat and human (b), and pig and human (c). d For each species with Hi-C data, TAD boundaries were divided according to their

similarity level (1, 2, and 3, x-axis, and boxplot colours) and their interaction scores were plotted (y-axis). There is a clear decrease of the interactions

core with the TAD boundary similarity level, indicating a stronger insulation for more evolutionarily conserved TAD boundaries

Unlike TADs, chromosomal A/B compartments have

often been reported as highly variable between tis-

sues or developmental stages, involving dynamic mecha-

nisms of epigenetic control [61–63]. Here, we postulated

that despite its plasticity, the structural organization in

genome compartments for a given tissue could also be

under selective pressure across a large phylogenetic spec-

trum, as shown in closely related species [58]. As active

compartments are known to be gene-rich we first con-

firmed that, although both compartment types roughly

have the same size, most genes were found in A com-

partments in each species. In addition, we observed that

the general proportion of genes in A compartments was

remarkably stable across species (66.9%, 69.7%, and 70.1%

of all genes in chicken, goat, and pig respectively). The

5728 orthologous genes with a predicted compartment

in all three species were also found to be preferentially

localized in active compartments, with slightly higher pro-

portions than for all genes in general (69.5%, 75.9%, and

76.4% for chicken, goat, and pig respectively), probably

due to the fact that conserved genes tend to have higher

expression levels.

Since all these orthologous genes were assigned a com-

partment type (i.e., A or B label) in each species sep-

arately, we tested whether any significant conservation

of compartment type across species could be detected.

Among the 5728 orthologous genes, 3583 had the same

compartment type in all species, which was 49% more

than expected by chance assuming independence between

species. This cross-species conservation was observed for

both A and B compartments (p value < 2.2 × 10−17 for

both, χ2 goodness-of-fit test), suggesting that such con-

servation was not restricted to regions of higher gene

expression.

Altogether, results from the cross-species comparisons

of ATAC-seq peaks, TAD boundaries and A/B com-

partments reveal a general conservation of the genome

structure at different organizational levels from birds to
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mammals, and shed a new light on the complex interplay

between genome structure and function.

Conclusion
We report the first multi-species and multi-assay genome

annotation results obtained by a FAANG project. The

main outcomes were consistent with our expectations and

provide new evolutionary insights about regulatory and

structural aspects of the genome:

• Despite only three different tissues being used, a

majority of the reference transcripts could be

detected. Moreover, the newly identified transcripts

considerably enrich the reference annotations of

these species.
• Differential analyses of gene expression in liver and T

cells yielded results consistent with known

metabolism and immunity functions and identified

novel interesting candidates for functional analyses,

including conserved syntenic lncRNAs.
• ATAC-seq data allowed an abundance of potential

regulatory regions to be mapped, and, upon

integration with RNA-seq data, suggested complex

mechanisms of gene expression regulation.

Comparative genomics analyses revealed evolutionary

conservation both for proximal and distal regulators.
• Hi-C experiments provided the first set of

genome-wide 3D interaction maps of the same tissue

from three livestock species. Beyond the

chromosome topology annotation, the analysis

showed high consistency with gene expression and

chromatin accessibility. Multi-species analyses

revealed a global selective pressure on organizational

features of the genome structure at different scales,

beyond the TAD level.

Therefore, the FR-AgENCODE group has delivered a

strong proof of concept of a successful collaborative

approach at a national scale to apply FAANG guidelines to

various experimental procedures and animal models. This

notably includes the set up of a combination of sequenc-

ing assays on primary cells and tissue-dissociated cells,

as well as a large collection of documented tissue sam-

ples available for further projects. It also confirmed, in

line with several studies in model species [4–6, 8] the

value of combining molecular assays on the same sam-

ples to simultaneously identify the transcriptomes and

investigate underlying regulatory mechanisms.

In the context of the global domesticated animal

genome annotation effort, lessons learned from this pilot

project confirm conclusions drawn by the FAANG com-

munity regarding the challenges to be addressed in the

future [13]. Furthermore, the mosaic nature of a global

annotation effort that gathers contributions from various

partners worldwide emphasizes the challenge of translat-

ing recent advances from the field of data science into

efficient methods for the integrative analysis of ’omics

data and the importance of futuremeta-analyses of several

datasets [16].

Altogether, these annotation results will be useful for

future studies aiming to determine which subsets of puta-

tive regulatory elements are conserved, or diverge, across

animal genomes representing different phylogenetic taxa.

This will be beneficial for devising efficient annotation

strategies for the genomes of emerging domesticated

species.

Methods
Animals, sampling, and tissue collections

Animals and breeds

Well-characterized breeds were chosen in order to obtain

well-documented samples. Holstein is the most widely

used breed for dairy cattle. For goats, the Alpine breed

is one of the two most commonly used dairy breeds, and

for pigs, the Large white breed is widely used as a dam

line. For chickens, the White Leghorn breed was chosen

as it provides the genetic basis for numerous experimental

lines and is widely used for egg production.

Four animals were sampled for each species, two males

and two females. They all had a known pedigree. Animals

were sampled at an adult stage, so that they were sexually

mature and had performance records, obtained in known

environmental conditions. Females were either lactating

or laying eggs.

All animals were fasted at least 12 h before slaughter.

No chemicals were injected before slaughtering, animals

were stunned and bled in a licensed slaughter facility at

the INRA research center in Nouzilly.

Samples

Liver samples of 0.5 cm3 were taken from the edge of the

organ, avoiding proximity with the gallbladder and avoid-

ing blood vessels. Time from slaughter to sampling varied

from 5 min for chickens to 30 min for goats and pigs and

45 min for cattle. For the purpose of RNA-seq, samples

were immediately snapfrozen in liquid nitrogen, stored in

2-ml cryotubes and temporarily kept in dry ice until final

storage at −80°C.

For mammals, whole blood was sampled into EDTA

tubes before slaughter; at least one sampling took place

well before slaughter (at least 1 month) and another

just before slaughter, in order to obtain at least 50 ml

of whole blood for separation of lymphocytes (PBMC).

PBMC were re-suspended in a medium containing

10% FCS, counted, conditioned with 10% DMSO and

stored in liquid nitrogen prior to the sorting of spe-

cific cell types: CD3+CD4+ (“CD4”) and CD3+CD8+

(“CD8”).
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For chicken, spleen was sampled after exsanguination.

Spleen leucocytes were purified by density-gradient sep-

aration to remove nucleated erythrocytes contamination

and stored in liquid nitrogen prior to CD4+ and CD8+ T

cell sorting.

All protocols for liver sampling, PBMC separation,

splenocyte purification, and T cell sorting can be found at

http://ftp.faang.ebi.ac.uk/ftp/protocols/samples/

Experimental assays and protocols

All assays were performed according to FAANG guide-

lines and recommendations, available at http://www.

faang.org. All detailed protocols used for RNA extraction

and libraries production for RNA-seq, ATAC-seq, and Hi-

C are available at http://ftp.faang.ebi.ac.uk/ftp/protocols/

assays/.

RNA extraction

Cells and tissues were homogenized in TRIzol reagent

(Thermo) using an ULTRA-TURRAX (IKA-Werke) and

total RNAs were extracted from the aqueous phase. They

were then treated with TURBO DNase (Ambion) to

remove remaining genomic DNA and then processed to

separate long and small RNAs using the mirVana miRNA

Isolation kit. Small and long RNA quality was assessed

using an Agilent 2100 Bioanalyzer and RNA 6000 nano

kits (Agilent) and quantified on a Nanodrop spectropho-

tometer.

RNA-seq

Stranded mRNA libraries were prepared using the TruSeq

Stranded mRNA Sample Prep Kit -V2 (Illumina) on 200

ng to 1μg of total long RNAwith a RNA Integrity Number

(RIN) over 8 following the manufacturer’s instructions.

Libraries were PCR amplified for 11 cycles and library

quality was assessed using the High Sensitivity NGS Frag-

ment Analysis Kit DNF-474 and the Fragment Analyser

system (AATI). Libraries were loaded onto a High-seq

3000 (Illumina) to reach a minimum read numbers of

100M paired reads for each library.

Hi-C

In situ Hi-C libraries were made according to [47] with

a few modifications. For all species, fresh liver biopsies

were dissociated using Accutase, and each resulting cell

suspension was filtered using a 70 μm cell strainer. Cells

were then fixed with 1% formaldehyde for 10 min at 37 °C

and fixation was stopped by adding Glycine to a final con-

centration of 0.125M. After two washes with PBS, cells

were pelleted and kept at −80°C for long term storage.

Subsequently, cells were thawed on ice and 5 million cells

were processed for each Hi-C library. Cell membranes

were disrupted using a potter-Elvehjem PTFE pestle and

nuclei were then permeabilized using 0.5% SDS with

digestion overnight with HindIII endonuclease. HindIII-

cut restriction sites were then end-filled in the presence

of biotin-dCTP using the Klenow large fragment and were

religated overnight at 4 °C. Nucleus integrity was checked

using DAPI labelling and fluorescence microscopy. Nuclei

were then lysed and DNA was precipitated and purified

using Agencourt AMPure XP beads (Beckman Coulter)

and quantified using the Qubit fluorimetric quantification

system (Thermo). Hi-C efficiency was controlled by PCR

using specific primers for each species and, if this step was

successful, DNA was used for library production. DNA

was first treated with T4 DNA polymerase to remove unli-

gated biotinylated ends and sheared by sonication using a

M220 Covaris ultra-sonicator with the DNA 550 pb Snap-

Cap microtube program (Program length: 45 s; Picpower

50; DutyF 20; Cycle 200; Temperature 20 °C).

Sheared DNA was then size-selected using magnetic

beads, and biotinylated fragments were purified using

M280 Streptavidin Dynabeads (Thermo) and reagents

from the Nextera_Mate_Pair Sample preparation kit (Illu-

mina). Purified biotinylated DNA was then processed

using the TrueSeq nano DNA kit (Illumina) following the

manufacturer’s instructions. Libraries were amplified for

10 cycles and then purified using Agencourt AMPure XP

beads. Library quality was assessed on a Fragment Anal-

yser (AATI) and by endonuclease digestion using NheI

endonuclease. Once validated, each library was sequenced

on an Illumina Hi-Seq 3000 to reach a minimum number

of 150M paired reads per library. Libraries from the cat-

tle samples failed the Quality Control steps (proportion of

mapped reads, number of valid interactions) and were not

included in the analysis.

ATAC-seq

ATAC-seq libraries were prepared according to [20] with

a few modifications. For liver, cells were dissociated from

the fresh tissue to obtain a single cell suspension. Cells

were counted and 50,000 cells were processed for each

assay. Transposition reactions were performed using the

Tn5 Transposase and TD reaction buffer from the Nex-

tera DNA library preparation kit (Illumina) for 30 min at

37 °C. DNA was then purified using the Qiagen MinE-

lute PCR purification kit. Libraries were first amplified

for 5 cycles using custom-synthesized index primers and

then a second amplification was performed. The appro-

priate number of additional PCR cycles was determined

using real-time PCR, permitting the cessation of ampli-

fication prior to saturation. The additional number of

cycles needed was determined by plotting the Rn versus

Cycle and then selecting the cycle number corresponding

to one-third of the maximum fluorescent intensity. After

PCR amplification, libraries were purified using a Qiagen

MinElute PCR purification kit followed by an additional

clean-up and sizing step using AMPure XP beads (160 μl

http://ftp.faang.ebi.ac.uk/ftp/protocols/samples/
http://www.faang.org
http://www.faang.org
http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/
http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/
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of bead stock solution was added to 100 μl of DNA in EB

buffer) following the manufacturer’s instructions. Library

quality was assessed on a BioAnalyser (Agilent) using Agi-

lent High Sensitivity DNA kit (Agilent), and libraries were

quantified using a Qubit Fluorometer (Thermo). Consid-

ering that the Hi-C protocol was not successful on the

liver samples from cattle, ATAC-seq was not attempted on

these samples either.

Bioinformatics and data analysis

All software used in this project along with the corre-

sponding versions are listed in Additional file 1: Table S3.

The reference gene annotation was obtained from the

Ensembl v90 release (pig: Sscrofa11.1, chicken: GalGal5,

cattle: UMD3.1, goat: ARS1). Since Capra hircus was

not part of the Ensembl release, we used the NCBI

CHIR_ARS1 annotation (see Additional file 1: Table S2).

RNA-seq

RNA-seq pipeline Prior to any processing, all RNA-seq

reads were trimmed using cutadapt version 1.8.3. Reads

were thenmapped twice using STAR v2.5.1.b [22, 23]: first

on the genome indexed with the reference gene annota-

tion to quantify expression of reference transcripts, and

secondly on the same genome indexed with the newly

generated gene annotation (FR-AgENCODE transcripts)

(see below and Additional file 1: Figure S1) [64]. The

STAR -quantMode TranscriptomeSAM option was

used in both cases in order to additionally generate a

transcriptome alignment (bam) file. After read mapping

and CIGAR-based softclip removal, each sample align-

ment file (bam file) was processed with Cufflinks 2.2.1

[65, 66] with the max-intron-length (100000) and

overlap-radius (5) options, guided by the reference

gene annotation (-GTF-guide option) ([64], Additional

file 1: Figure S1). All cufflinks models were then merged

into a single gene annotation using Cuffmerge 2.2.1 [65,

66] with the -ref-gtf option. The transcript and gene

expressions on both the reference and the newly gener-

ated gene annotation were quantified as TPM (transcripts

per million) using RSEM 1.3.0 [24] on the correspond-

ing transcriptome alignment files ([64], Additional file 1:

Figure S1). The newly generated transcripts were then

processed with FEELnc version 0.1.0 [36] in order to clas-

sify them into “lncRNA”, “mRNA” and “otherRNA” (Addi-

tional file 1: Figure S1, Tables S10–11, Figure S9). The

newly generated transcripts with a TPM value of at least

0.1 in at least 2 samples were called FR-AgENCODE tran-

scripts and kept as part of the new annotation. The 0.1

threshold was chosen knowing that the expression val-

ues of polyadenylated transcripts usually go from 0.01 to

10,000 [35] and that we wanted to simultaneously capture

long non coding RNAs that are generally lowly expressed

and reduce the risk of calling artefactual transcripts.

PCA based on gene expression Principal Component

Analysis (PCA) was performed using the mixOmics R

package [67] on the RNA-seq sample quantifications of

each species. This was done using the expression (TPM)

of two different sets of genes: reference genes with TPM

0.1 in at least two samples (Additional file 1: Figure S3)

and FR-AgENCODE genes with TPM 0.1 in at least two

samples (Additional file 1: Figure S11).

Annotated gene orthologs We used Ensembl Biomart

[68] to define the set of orthologous genes across cat-

tle, chicken and pig. Only “1 to 1” similarity relationships

were kept (11,001 genes). Since goat was not part of

the Ensembl annotation, goat gene IDs were added to

this list using gene name as a correspondence term. The

resulting 4-species orthologous set contained 9461 genes

(Additional file 3).

RNA-seq sample hierarchical clustering Based on the

expression of the 9461 orthologous genes in the 39 RNA-

seq samples from the four species, the sample-by-sample

correlation matrix was computed using the Pearson cor-

relation of the log10 gene TPM values (after adding a

pseudocount of 10−3).We then represented this sample by

sample correlationmatrix as a heatmap where the samples

were also clustered using a complete linkage hierarchical

clustering (Fig. 2).

RNA-seq normalization and differential analysis To

perform the differential analysis of gene expression,

we used the expected read counts provided by RSEM

[24]. RNA-seq library size normalization factors were

calculated using the weighted Trimmed Mean of M-

values (TMM) approach of [69] as implemented in the

R/Bioconductor package edgeR [29]. The same package

was used to fit three different per-gene negative binomial

(NB) generalized log-linear models [70].

• InModel 1, the expression of each gene was

explained by a tissue effect; because all three tissues

(liver, CD4, CD8) were collected from each animal,

an animal effect was also included to account for

these repeated measures:

logμgi

si
= βg,tissue(i) + γg,animal(i),

where μgi represents the mean expression of gene g
in sample i, si the TMM normalization factor for

sample i, tissue(i) ∈ {liver, CD4, CD8} and

animal(i) ∈ {1, 2, 3, 4} the tissue and animal

corresponding to sample i, and βg,tissue(i) and

γg,animal(i) the fixed tissue and animal effects,

respectively, of gene g in sample i. Hypothesis tests

were performed to identify significantly differentially
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expressed genes among each pair of tissues, e.g.,

H0g : βg,liver = βg,CD4.

• Model 2 is identical to the previous model, where

gene expression was modeled using both a tissue and

an animal effect, with the exception that the CD4 and

CD8 tissues were collapsed into a single group. In this

model, the only hypothesis of interest is thus between

the liver and global CD cell group:

H0g : βg,liver = βg,CD.

All hypothesis tests were performed using likelihood-

ratio tests and were corrected for multiple testing with the

Benjamini-Hochberg (FDR, [71]) procedure. Genes with

an FDR smaller than 5% and an absolute log-fold change

larger than 2 were declared differentially expressed.

GO analysis of differentially expressed genes For each

species, GO term enrichment analysis was performed

on the genes found to be over- or under-expressed in

liver versus T cells. This analysis was done separately for

each species (Additional file 1: Figure S5-S7) and sub-

sequently for genes identified for all species (Additional

file 1: Fig. S8), using the three following ontologies: biolog-

ical process (BP), molecular function (MF) and cell com-

partment (CC), and using the GOstat R/Bioconductor

package [72]) for only those genes with a human ortholog.

FR-AgENCODE transcript positional classification

The FR-AgENCODE transcript models were first classi-

fied according to their position with respect to reference

transcripts:

known the FR-AgENCODE transcript is strictly identical

to a reference transcript (same intron chain and same

initial and terminal exons)

extension the FR-AgENCODE transcript extends a refer-

ence transcript (same intron chain but one of its two

most extreme exons extends the reference transcript

by at least one base pair)

alternative the FR-AgENCODE transcript corresponds

to a new isoform (or variant) of a reference gene,

i.e., the FR-AgENCODE transcript shares at least

one intron with a reference transcript but does not

belong to the above categories

novel the FR-AgENCODE transcript is in none of the

above classes

FR-AgENCODE transcript coding classification

The FR-AgENCODE transcript models were also clas-

sified according to their coding potential. For this,

the FEELnc program (release v0.1.0) was used to dis-

criminate long non-coding RNAs from protein-coding

RNAs. FEELnc includes three consecutive modules:

FEELncfilter, FEELnccodpot and FEELncclassifier. The first

module, FEELncfilter, filters out non-lncRNA transcripts

from the assembled models, such as transcripts smaller

than 200 nucleotides or those with exons strandedly

overlapping exons from the reference annotation.

This module was used with default parameters except

-b transcript_biotype=protein_coding,

pseudogene to remove novel transcripts overlapping

protein-coding and pseudogene exons from the refer-

ence. The FEELnc codpot module then calculates a coding

potential score (CPS) for the remaining transcripts based

on several predictors (such as multi k-mer frequencies

and ORF coverage) incorporated into a random forest

algorithm [73]. In order to increase the robustness of

the final set of novel lncRNAs and mRNAs, the options

-mode=shuffle and -spethres=0.98,0.98 were

set. Finally, the FEELncclassifier classifies the resulting

lncRNAs according to their positions and transcriptional

orientations with respect to the closest annotated refer-

ence transcripts (sense or antisense, genic or intergenic)

in a 1Mb window (-maxwindow=1000000).

It is worth noting that between 83 and 2718 lncRNA

transcripts were not classified because of their localization

on the numerous unassembled contigs in livestock species

with no annotated genes.

FR-AgENCODE gene conservation between species

In order to obtain gene orthology relationships, we

projected FR-AgENCODE transcripts from the four

livestock species to the human GRCh38 genome

using the UCSC pslMap program (https://github.com/

ENCODE-DCC/kentUtils/tree/master/src/hg/utils/

pslMap, v302). More precisely, we used the UCSC

hg38To[species.assembly].over.chain.gz

chain file for each species (created in-house for goat fol-

lowing UCSC instructions) and retained only the best hit

for each transcript (according to the pslMap score). We

further required each FR-AgENCODE gene to project to

a single human gene that did not strandedly overlap any

other projected FR-AgENCODE gene.

Syntenic conservation of lncRNAs Briefly, a lncRNA

was considered as “syntenically” conserved between two

species if (1) the lncRNA was located between two orthol-

ogous protein-coding genes, (2) the lncRNA was the

only one in each species between the two protein-coding

genes, and (3) the relative gene order and orientation

of the resulting triplet was identical between species.

Using these criteria, we found six triplets shared between

the four species, 73 triplets shared between cattle, goat,

and pig, and 19 triplets shared between cattle, chicken,

and pig.

https://github.com/ENCODE-DCC/kentUtils/tree/master/src/hg/utils/pslMap
https://github.com/ENCODE-DCC/kentUtils/tree/master/src/hg/utils/pslMap
https://github.com/ENCODE-DCC/kentUtils/tree/master/src/hg/utils/pslMap
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ATAC-seq

ATAC-seq data analysis pipeline ATAC-seq reads were

trimmed with trimgalore 0.4.0 using the -stringency

3, -q 20, -paired and -nextera options (Additional

file 1: Table S3). The trimmed reads were then mapped to

the genome using bowtie 2 2.3.3.1 with the -X 2000 and

-S options [74]. The resulting sam file was then converted

to a bam file with samtools 1.3.1, and this bam file was

sorted and indexed with samtools 1.3.1 [75]. The reads

for which the mate was also mapped and with a MAPQ

≥10 were retained using samtools 1.3.1 (-F 12 and -q

10 options, [75]), and finally only the fragments where

both reads had a MAPQ ≥10 and which were on the same

chromosome were retained.

Mitochondrial reads were then filtered out, as well

as duplicate reads (with picard tools, MarkDuplicates

subtool). The highest proportion of filtering was due

to the MAPQ 10 and PCR duplicate filters (Additional

file 1: Figure S14). The peaks were called using MACS2

2.1.1.20160309 [76] in each tissue separately using all

the mapped reads from the given tissue (-t option) and

with the -nomodel, -f BAMPE and -keep-dup all

options. To get a single set of peaks per species, the tissue

peaks were merged using mergeBed version 2.26.0 [77].

These peaks were also quantified in each sample by sim-

ply counting the number of mapped reads overlapping the

peak.

ATAC-seq peaks were also classified with respect to

the reference gene annotation using these eight genomic

domains and allowing a peak to be in several genomic

domains:

exonic the ATAC-seq peak overlaps an annotated exon

by at least one bp

intronic the ATAC-seq peak is totally included in an

annotated intron

tss the ATAC-seq peak includes an annotated TSS

tss1Kb the ATAC-seq peak overlaps an annotated TSS

extended 1 kb both 5’ and 3’

tss5Kb the ATAC-seq peak overlaps an annotated TSS

extended 5 kb both 5’ and 3’

tts the ATAC-seq peak includes an annotated TTS

tts1Kb the ATAC-seq peak overlaps an annotated TTS

extended 1 kb both 5’ and 3’

tts5Kb the ATAC-seq peak overlaps an annotated TTS

extended 5 kb both 5’ and 3’

intergenic the ATAC-seq peak does not overlap any gene

extended by 5 kb on each side

ATAC-seq differential analysis: normalization and

model Contrary to RNA-seq counts, ATAC-seq counts

exhibited trended biases visible in log ratio-mean average

(MA) plots between pairwise samples after normalization

using the TMM approach, suggesting that an alternative

normalization strategy was needed. In particular, trended

biases are problematic as they can potentially inflate vari-

ance estimates or log fold-changes for some peaks. To

address this issue, a fast loess approach [78] implemented

in the normOffsets function of the R/Bioconductor pack-

age csaw [79] was used to correct differences in log-counts

vs log-average counts observed between pairs of samples.

As for RNA-seq, we used two different differential

models: Model 1 for tissue pair comparisons, Model 2

for T cell versus liver comparisons (see corresponding

“RNA-seq” section for more details).

ATAC-seq peak TFBS density In order to identify Tran-

scription Factor Binding Sites (TFBS) genome-wide, we

used the FIMO [80] software (Additional file 1: Table S3)

to look for genomic occurrences of the 519 TFs catalogued

and defined in the Vertebrate 2016 JASPAR database [81].

We then intersected these occurrences with the ATAC-

seq peaks of each species and computed the TFBS density

in differential vs non differential ATAC-seq peaks. Among

the predicted TFBSs, those obtained from the CTCFmotif

were used to profile the resulting density with respect to

Topological Associating Domains from Hi-C data (Fig. 7,

Additional file 1: Figure S25).

Comparison between ATAC-seq peaks and ChIP-seq

histone mark peaks Pig liver H3K4me3 and H3K27ac

ChIP-seq peaks from the Villar et al. study [42] were

downloaded from ArrayExpress (experiment number E-

MTAB-2633). As these peaks were provided on the

10.2 pig genome assembly, they were first lifted over to

the 11.1 pig genome assembly using the UCSC liftover

program (https://genome.sph.umich.edu/wiki/LiftOver).

About 86.7% (9632 out of 11,114) of the H3K4me3 peaks

and 91.8% (31,161 out of 33,930) of the H3K27ac peaks

could be lifted over to the 11.1 genome assembly. The

median peak size was 1944 bp for H3K4me3 and 2786 bp

for H3K27ac, and the peak size distribution was very simi-

lar for the initial 10.2 and the lifted over 11.1 peaks. As for

genome coverage, the H3K4me3 and H3K27ac peaks cov-

ered 0.9% and 4.7% of the 11.1 pig genome, respectively. In

comparison, there were 25,885 pig liver ATAC-seq peaks

with a median size of 360 bp and covering 0.5% of the pig

genome. Consistent with what was expected from the two

histone marks, the vast majority (94.9%) of the H3K4me3

peaks (known to be associated to promoter regions) over-

lapped (bedtools intersect program) with the H3K27ac

peaks (known to be associated to both promoter and

enhancer regions), and about 30% of the H3K27ac peaks

overlapped with the H3K4me3 peaks. Comparing our pig

liver ATAC-seq peaks to the histonemark peaks, we found

that 27.1% (7012 out of 25,885) and 36.4% (9410 out of

25,885) of our pig liver ATAC-seq peaks overlapped with

https://genome.sph.umich.edu/wiki/LiftOver
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the H3K4me3 and H3K27ac peaks, respectively. Recipro-

cally, 70.3% (6773 out of 9632) and 28.3% (8821 out of

31,161) of the H3K4me3 and H3K27ac peaks respectively

overlapped with our pig liver ATAC-seq peaks.

To assess if these numbers were higher than expected by

chance, we shuffled (bedtools shuffle program) the 25,885

pig liver ATAC-seq peaks 1000 times on the pig genome

and recomputed their intersection with the two sets

of histone mark peaks (H3K4me3 and H3K27ac). After

doing so, we never obtained percentages of H3K4me3

and H3K27ac peaks, respectively, overlapping the shuf-

fled ATAC-seq peaks that were equal or higher than the

ones obtained with the real ATAC-seq peaks. This means

that indeed, 70.3% and 28.3% of the histone mark peaks

overlapping our ATAC-seq peaks are percentages that are

significantly higher than expected by chance (p value <

10−3).

We also compared the ATAC-seq, H3K4me3 and

H3K27ac peak scores (fold enrichment against random

Poisson distribution with local lambda for ATAC-seq

peaks and fold-enrichment over background for ChIP-seq

peaks) of the common peaks versus the other peaks. In

doing so, we found that common peaks had significantly

higher scores than non common peaks (median 94 versus

32, p value < 2.2 × 10−16 for ATAC-seq peaks, median

57 versus 22, p value < 2.2 × 10−16 for H3K4me3 peaks

and median 32 versus 12, p value < 2.2 × 10−16 for

H3K27ac peaks, Wilcoxon tests), highlighting a common

signal between the two techniques.

Chromatin accessibility conservation across species

In order to investigate the conservation of chromatin

accessibility across our 4 livestock species, we used the

human GRCh38 genome as a reference. After indexing the

softmasked GRCh38 genome (main chromosomes) using

lastdb (last version 956, -uMAM4 and -cR11 options,

http://last.cbrc.jp/), we used the lastal program followed

by the last-split program (-m1 and –no-split options) (last

version 956, http://last.cbrc.jp/) to project the 104,985 cat-

tle, 74,805 goat, 119,894 chicken, and 149,333 pig ATAC-

seq peaks onto the human genome. In doing so and

consistent with the phylogenetic distance between our

species and human, we were able to project 72.6% (76,253)

cattle, 73.7% (55,113) goat, 12.3% (14,792) chicken, and

80.1% (119,680) pig peaks to the human genome. The per-

centage of bases of the initial peaks that could be aligned

was around 40% for mammals and 14% for chicken. Then,

for each peak that could be projected onto the human

genome, we retained its best hit (as provided by lastal) and

then merged all these best hits (i.e., from the 4 species)

on the human genome (using bedtools merge). A total

of 215,620 human regions were obtained, from which we

kept the 212,021 that came from a maximum of 1 peak

from each species. Those 212,021 regions were called

human hits.

Based on the 1083 four-species orthologous peaks in

the 38 ATAC-seq samples, the sample-by-sample correla-

tion matrix was computed using the Pearson correlation

of the log10 normalized ATAC-seq values (after adding

a pseudo-count of 10−3 to the values). We then rep-

resented this sample-by-sample correlation matrix as a

heatmap where the samples were also clustered using a

complete linkage hierarchical clustering (Additional file 1:

Figure S21). Chicken ATAC-seq samples clustered com-

pletely separately from mammal ATAC-seq samples. T

cell samples from cattle and goat were also closer to each

other than to liver samples.

To shuffle the 104,985 cattle, 74,805 goat, 119,894

chicken, and 149,333 pig ATAC-seq peaks, we used the

bedtools shuffle program on their respective genomes and

projected these shuffled peaks to the human genome as

was done for the real peaks.

We also compared the human hits to the combined set

of 519,616 ENCODE human DNAse I peaks from two

CD4+, two CD8+ and one “right lobe of liver” samples

(experiment accessions ENCSR683QJJ, ENCSR167JFX,

ENCSR020LUD, ENCSR316UDN, and ENCSR555QAY

from the encode portal https://www.encodeproject.org/,

by merging the peaks from the 5 samples into a single

set of peaks using bedtools merge). We found that 23.1%

(48,893 out of 212,021) of the human hits obtained from

the real ATAC-seq peaks overlapped human DNAse I

peaks, whereas only 8.5% (21,159 out of 249,943) of the

human hits obtained from shuffled ATAC-seq peaks over-

lapped human DNAse I peaks. This further supports the

biological signal present in these data.

Finally we used the phastcons measure of vertebrate

sequence conservation obtained from the multiple align-

ment of 100 vertebrate species genomes including human

(hg38.phastCons100way.bw bigwig file from the UCSC

web site https://genome.ucsc.edu/). For each human hit,

we computed its phastcons score using the bigWigAv-

erageOverBed utility from UCSC (https://github.com/

ENCODE-DCC/kentUtils).

Hi-C

Hi-C data analysis pipeline Our Hi-C analysis pipeline

includes HiC-Pro v2.9.0 [82] (Additional file 1: Table S3)

for the read cleaning, trimming, mapping (this part is

internally delegated to Bowtie 2 v2.3.3.1), matrix con-

struction, and matrix balancing ICE normalization [83].

HiC-Pro parameters: BOWTIE2_GLOBAL_OPTIONS

= -very-sensitive -L 30 -score-min

L,-1,-0.1 -end-to-end -reorder,

BOWTIE2_LOCAL_OPTIONS = -very-sensitive

-L 20 -score-min L,-0.6,-0.2 -end-to-end

-reorder, LIGATION_SITE = AAGCTAGCTT,

http://last.cbrc.jp/
http://last.cbrc.jp/
https://www.encodeproject.org/
https://genome.ucsc.edu/
https://github.com/ENCODE-DCC/kentUtils
https://github.com/ENCODE-DCC/kentUtils
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MIN_INSERT_SIZE = 20, MAX_INSERT_SIZE=

1000, GET_ALL_INTERACTION_CLASSES = 1,

GET_PROCESS_SAM = 1, RM_SINGLETON =

1, RM_MULTI = 0, RM_DUP = 1, MAX_ITER

= 100,FILTER_LOW_COUNT_PERC = 0.02,

FILTER_HIGH_COUNT_PERC = 0, EPS =0.1. TAD

finding was performed using two methods: arrowhead

from the Juicer tool V1.5.3 [49] at the 10 kb resolution

using the matrix balancing normalization (arrowhead

-r 10000 -k KR option), and with Armatus V2.1 [55]

with default parameters and gamma=0.5 (Additional

file 1: Table S3). Graphical visualization of the matrices

was produced with the HiTC R/Bioconductor pack-

age v1.18.1 [48] (Additional file 1: Table S3). Export to

JuiceBox [84] was done through Juicer Tools V1.5.3 (Addi-

tional file 1: Table S3). These tools were called through

a pipeline implemented in Python. Because of the high

number of unassembled scaffolds (e.g., for goat) and/or

micro-chromosomes (e.g., for chicken) in our reference

genomes, only the longest 25 chromosomes were consid-

ered for TAD and A/B compartment calling. For these

processes, each chromosome was considered separately.

The Directionality Index (DI) was computed using

the original definition introduced by [50] to indicate

the upstream vs. downstream interaction bias of each

genomic region. Interaction matrices of each chromo-

some were merged across replicates and the score was

computed for each bin of 40 kb. CTCF sites were pre-

dicted along the genomes by running FIMO with the

JASPAR TFBS catalogue (see “ATAC-seq peak TFBS den-

sity” section).

A/B compartments were obtained using the method

described in [21] as illustrated in Additional file 1:

Figure S24: first, ICE-normalized counts, Kij, were cor-

rected for a distance effect with:

K̂ij =
Kij − K

d

σ d
,

in which K̂ij is the distance-corrected count for the bins

i and j, K
d
is the average count over all pairs of bins at

distance d = d(i, j) and σ d is the standard deviation of

the counts over all pairs of bins at distance d. Within-

chromosome Pearson correlation matrices were then

computed for all pairs of bins based on their distance-

corrected counts and a PCA was performed on this

matrix. The overall process was performed similarly to

the method implemented in the R/Bioconductor package

HiTC [48]. Boundaries between A and B compartments

were identified according to the sign of the first PC (eigen-

vector). Since PCAs had to be performed on each chromo-

some separately, the average counts on the diagonal of the

normalized matrix were used to identify which PC sign

(+/−) should be assigned to A and B compartments for

each chromosome. This allowed a homonegenous assign-

ment across chromosomes to be obtained, without relying

on the reference annotation. In line with what was origi-

nally observed in humans, where the first PC was the best

criterion for separating A from B compartments (apart

from a few exceptions like chromosome 14 for instance

[21]), we also observed a good agreement between the

plaid patterns of the normalized correlation matrices and

the sign of the first PC (Additional file 1: Figure S24).

To estimate the robustness of A/B compartment call-

ing, the method was tested on each replicate separately

(four animals). Since the HiTC filtering method can dis-

card a few bins in some matrices, resulting in missing

A/B labels, the proportion of bins with no conflicting

labels across replicates was computed among the bins that

had at least two informative replicates (Additional file 1:

Figure S26).

Chromatin structure conservation across species To

get insight into chromatin structure conservation across

species, similar to what was done with chromatin accessi-

bility data (see above), we projected the 11,711 goat, 6866

chicken, and 14,130 pig 40 kb TAD boundaries to the

human GRCh38 genome using lastal followed by last-split

(-m1 and -no-split options, last version 956, http://

last.cbrc.jp/, using the same indexed GRCh38 softmasked

genome as was used for ATAC-seq, see above). For this

analysis we considered TADs from Armatus because of

the high number of boundaries that were identified by

the method. As expected from their length, TAD bound-

ary projections were highly fragmented (median 16, 2, and

19 blocks per projection representing 3%, 0.6%, and 3%

of the initial segment, for the best hit of goat, chicken,

and pig, respectively). In order to recover conserved seg-

ments, we chained the alignments using a python in-

house script (program available on demand, used with

stranded mode, coverage=0.4, score=3000, and

length_cutoff=5000). Doing so, we managed to

project 90% of the mammalian and 5% of the chicken

TAD boundaries onto the human genome. Similar to what

was done for ATAC-seq, for each projected TAD bound-

ary, its best hit (according to the chaining score) was

retained. The median length of those best hits repre-

sented 95% and 78% of the initial query size for mam-

mals and chicken respectively. Merging these best hits on

the human genome (using bedtools merge), we obtained

16,870 human regions with a median length of 44.6 kb

(similar to the initial TAD boundary size of 40 kb). Out

of those, 16,468 were considered non ambiguous (i.e.,

not coming from several TAD boundaries from the same

species) and were retained for further analyses. As was

found for the ATAC-seq peaks, the majority (65.6%) of the

hits were single species (similarity level 1), a substantial

percentage of them (34%) were 2 species hits (similarity

http://last.cbrc.jp/
http://last.cbrc.jp/
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level 2), and seventy one of them (0.4%) were 3 species hits

(similarity level 3).

To estimate the structural impact of each TAD bound-

ary, we used the local interaction score as used by [51]

and [52] and sometimes referred to as “interaction ratio”

or “insulation profile”. Within a sliding window of 500 kb

along the genome (step=10 kb), the insulation score ratio

is defined as the proportion of read pairs that span across

the middle of the window. The score ratio is reported

at the middle position of the window and represents the

local density of the chromatin contacts around this point.

This proportion is expected to be maximal in regions with

many local interactions (typically TADs) and minimal

over insulators (typically TAD boundaries). Intuitively, a

TAD boundary with a low interaction score (which indi-

cates strong insulation properties) has a good capacity

to prevent interactions that cross it while a TAD with a

relatively high interaction score has a “weak” insulation

strength. Here, only valid interactions (“valid pairs”) in

in cis (inter-chromosomal contacts were not considered

in the ratio) were considered after applying all HiC-Pro

QC and filters. Computing a ratio among all read pairs

that have both reads within the sliding window reduces

the impact of potential biases (read coverage, restriction

site density, GC content, etc.). Consequently, the interac-

tion profiles from the 4 replicates along the genome of

each species were highly similar (not shown), allowing to

merge them in order to assign each TAD boundary a sin-

gle score per species. For orthologous TAD boundaries,

the scores from different species could be used to com-

pute pairwise correlations. Human data were obtained

from http://aidenlab.org/data.html [47] for the GM12878

cell line (ENCODE batch 1, HIC048.hic file from https://

bcm.app.box.com/v/aidenlab/file/95512487145). The .hic

file was parsed by the Juicer tool (“dump” mode with

options “observed KR”) to compute the correspond-

ing interaction score as described above. The LiftOver

tool was used to convert the genomic positions of

the human TAD boundaries (version hg19 vs. hg38)

before comparing the interaction scores with livestock

species.

The number and proportion of genes (all or only

the orthologous ones) in each compartment type was

computed using bedtools map (-distinct option on

the gene ID field). Orthologous genes were taken from

Ensembl as previously described. Under the indepen-

dence assumption of compartment assignment between

species, the expected proportion of orthologous genes

with “triple A” (resp. with “triple B”) assignments between

species is equal to the product of the observed frequen-

cies for A (resp. for B) compartments in the three species.

The observed frequencies of “triple A” and “triple B”

assignments in orthologous genes was compared to this

expected proportion using a χ2 goodness-of-fit test.

Multi-assay integration

ATAC-seq vs. RNA-seq correlation: intra- and inter-

sample analysis For each ATAC-seq peak that over-

lapped a promoter region (1 kb upstream of the TSS,

as suggested in Fig. 4) its less-normalized read count

value (see differential analysis) was associated with the

TMM-normalized expression of the corresponding gene

from the reference annotation. Intra- and inter-sample

correlations were then investigated: within each sam-

ple, genes were ranked according to their expressions

and the distribution of the corresponding ATAC-seq val-

ues was computed for each quartile (Additional file 1:

Figure S18). Across samples, the Pearson correlation

coefficient was computed for each gene using only

the samples for which both the ATAC-seq and the

RNA-seq normalized values were available (e.g., n =

10 for pig, Additional file 1: Figure S19–20). Simi-

lar results were obtained with Spearman correlations

(not shown).

Chromatin accessibility and gene expression in A/B

compartments To compute the general chromatin acces-

sibility in A and B compartments, we first computed the

average of the normalized read count values across all

liver samples for each ATAC-seq peak. For each compart-

ment, the mean value of all contained peaks was then

reported and the resulting distributions for all A and B

compartments were reported (Fig. 8).

The same approach was used to assess the general

expression of genes in A and B compartments, using the

average of the normalized expression values from the liver

samples. Difference between A and B distributions was

tested for statistical significance using a Wilcoxon test.

Supplementary information
Supplementary information accompanies this paper at

https://doi.org/10.1186/s12915-019-0726-5.

Additional files are available in the Additional file section and on the

FR-AgENCODE website www.fragencode.org.

Additional file 1: Additional file 1: Supplementary figures (S1-S26) and

tables (S1-S15).

Additional file 2: Reference genes and transcripts (structure, expression)

of the 4 species. Archive content:

• bos_taurus.gtf
• bos_taurus.refgn.tpm.tsv
• capra_hircus.gtf
• capra_hircus.refgn.tpm.tsv
• gallus_gallus.gtf
• gallus_gallus.refgn.tpm.tsv
• sus_scrofa.gtf
• sus_scrofa.refgn.tpm.tsv
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Additional file 3: Orthologs between the 4 livestock species. We used

Biomart to retrieve the 1 to 1 orthology relationships between chicken, pig

and cattle and added goat via gene name. The human gene id is given for

reference.

Additional file 4: Reference DE genes (all combinations): the archive

contains four folders, one for each species (bos_taurus,

capra_hircus, gallus_gallus, sus_scrofa). Each folder

contains itself two subfolders, one for each model:

diffcounts.nominsum (Model 1) and diffcounts.cdvsliver

(Model 2). Results of Model 1 are given in:

• refgenes.counts.min2tpm0.1.normcounts.diff.

readme.idx
• refgenes.counts.min2tpm0.1.normcounts.diff.

cd4.cd8.bed
• refgenes.counts.min2tpm0.1.normcounts.diff.

cd4.liver.bed
• refgenes.counts.min2tpm0.1.normcounts.diff.

cd8.liver.bed

Results of Model 2 are given in:

• refgenes.counts.min2tpm0.1.normcounts.diff.

readme.idx
• refgenes.counts.min2tpm0.1.normcounts.diff.

cd.liver.bed

All bed files contain the coordinates and id of the genes found to be

differentially expressed between the two conditions. The file also contains

the normalized read counts of those genes in the different samples as well

as the adjusted pvalue, logFC and normLogFC (see readme.idx file for more

details).

Additional file 5: FR-AgENCODE genes and transcripts (structure,

expression, positional and coding classes).

• bos_taurus_cuff_tpm0.1_2sample_complete.gff
• bos_taurus_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• bos_taurus.frag.gnid.posclasslist.

codclasslist.tsv
• bos_taurus.fraggn.tpm.tsv
• capra_hircus_cuff_tpm0.1_2sample_complete.gff
• capra_hircus_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• capra_hircus.frag.gnid.posclasslist.

codclasslist.tsv
• capra_hircus.fraggn.tpm.tsv
• gallus_gallus_cuff_tpm0.1_2sample_complete.

gff
• gallus_gallus_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• gallus_gallus.frag.gnid.posclasslist.

codclasslist.tsv
• gallus_gallus.fraggn.tpm.tsv
• sus_scrofa_cuff_tpm0.1_2sample_complete.gff
• sus_scrofa_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• sus_scrofa.frag.gnid.posclasslist.

codclasslist.tsv
• sus_scrofa.fraggn.tpm.tsv

Additional file 6: Four livestock species FR-AgENCODE gene orthology.

Additional file 7: FR-AgENCODE DE genes (all combinations). The archive

has the same structure than de.refgn.tar.gz with names starting

with cuffgenes instead of refgenes.

Additional file 8: lncRNAs (information from FEELnc, orthology, structure,

etc). Archive content:

• bos_taurus.lncrna.TPM0.1in2samples.classif.

tsv
• capra_hircus.lncrna.TPM0.1in2samples.classif.

tsv
• ConservedLncRNABySynteny_73_19_6.xlsx
• gallus_gallus.lncrna.TPM0.1in2samples.

classif.tsv
• sus_scrofa.lncrna.TPM0.1in2samples.classif.

tsv

Additional file 9: ATAC-seq peaks (coordinates, quantification, positional

classification): the archive contains four folders, one for each species

(bos_taurus, capra_hircus, gallus_gallus, sus_scrofa).

Each folder contains the following six files:

• mergedpeaks_allinfo_gn_frag.tsv
• mergedpeaks_allinfo_tr_frag.tsv
• mergedpeaks_allinfo_tr_ref.tsv
• mergedpeaks_allinfo_gn_ref.tsv
• mergedpeaks.peaknb.allexp.readnb.bed.readme.

idx
• mergedpeaks.peaknb.allexp.readnb.bed

Additional file 10: DA ATAC-seq peaks (all combinations). The archive has

the same structure as de.refgn.tar.gz with names starting with

mergedpeaks.peaknb.allexp.readnb instead of

refgenes.counts.min2tpm0.1.

Additional file 11: Four livestock species ATAC-seq peak orthology.

Additional file 12: Hi-C TADs and A/B compartments: the archive contains

three folders, one for each species (capra_hircus, gallus_gallus,

sus_scrofa). Each folder contains the following two files:

• compartments.bed
• mat.40000.longest25chr.tad.consensus.bed

Additional file 13: Three livestock species TAD boundary orthology.
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