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ABSTRACT As 4-sensor line scan camera technology has matured, red (R), green (G), blue (B), and

near-infrared (RGB-NIR) datasets have begun to appear in large numbers. The RGB-NIR data contain the

rich color features of the RGB image and the sharp edge features of the NIR image. At present, in many

studies, the RGB-NIR data are input directly into the processing algorithms for calculation of the 4D data;

in these cases, redundant information is included, and the high correlation between the bands results in an

inability to fully exploit the characteristics of the RGB-NIR data. In this paper, we propose a double-channel

convolutional neural network (CNN) algorithm that takes into account the strong correlation between the

R, G, and B bands in aerial images and the weaker correlation between the NIR band and the R, G, and B

bands. First, the features of the RGB and NIR bands are calculated in two different CNN networks, and

subsequently, feature fusion is performed in the fully connected layer. This is followed by the classification.

By combining the two neural networks of RGB-CNN and NIR-CNN, the respective characteristics of the

RGB-NIR data are fully exploited.

INDEX TERMS Multi-spectral, CNN, RGB-NIR, double-channel CNN.

I. INTRODUCTION

In multi-spectral red, green, blue, near-infrared (RGB-NIR)

images, the visible (RGB) and near-infrared (NIR) spectral

bands are captured simultaneously by a 4-sensor line scan

camera [1]. The RGB spectral bands are in the visible range

(400-700 nm), whereas the NIR spectral band is beyond

the visible range (700-1100 nm). As a result, a scene cap-

tured with an RGB-NIR image exhibits a wide range of

characteristics [2]. The combination of RGB and NIR data

provides rich image features for image recognition and clas-

sification (e.g., [3]–[5]). As a result of the emergence of

RGB-NIR datasets in various fields, multi-spectral RGB-NIR

image classification has been widely used in video surveil-

lance, medical imaging, satellite remote sensing, vegetation

mapping, and other fields [6]–[8].

In recent years, many researchers have investigated

multi-spectral image recognition and classification from

different aspects. Brown and Süsstrunk proposed the
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MSIFT algorithm, a multispectral scale-invariant feature

transform (SIFT) descriptor that, when combined with a

kernel-based classifier, exceeded the performance of state-

of-the-art scene recognition techniques (e.g., GIST) and their

multispectral extensions [9]. Salamati et al. proposed to use

visible and NIR images as input to a classifier in the form

of feature vectors to classify the materials in the image. The

relation between the visible and NIR information provided

an improvement in the image-based machine classification.

The materials were more accurately classified when the NIR

information was present [10]. Miyamoto et al. concluded that

the availability of high-resolution (HR) training data such

as balloon-based image mosaics was useful for the classi-

fication of NIR color video images and it was found that

the combination of the nadir and off-nadir video images was

effective for the classification of wetland vegetation [11].

Han et al. proposed a convolutional neural network (CNN)-

based super-resolution (SR) algorithm for up-scaling NIR

images under low-light conditions using the correspond-

ing visible images. The high-frequency (HF) components

were extracted from the up-scaled low- resolution (LR) NIR
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image and the corresponding HR visible image and were

then used as multiple inputs into the CNN [12]. Researchers

also have developed different types of CNN algorithms to

use RGB and NIR data as input layers for remote sens-

ing image classification, such as Alex-Net, deep CNN, and

VGG [13]–[16]. Through the use of CNN algorithms, the

multi-spectral RGB-NIR image recognition rate is greatly

improved.

This paper presents a double-channel CNN algorithm to

improve the classification accuracy of RGB images and NIR

images. Because the R, G, and B bands are strongly cor-

related, whereas the NIR band is not strongly correlated to

the information in the R, G, and B bands, the direct use

of the RGB and NIR images as input layers into a CNN

network does not provide the full advantages of the different

features in the RGB-NIR images. Redundant information is

included and mutual interference between the features will

also occur. Considering that the color information is richer in

the RGB image, whereas the NIR image provides more edge

information, we developed a double-channel CNN algorithm

to capture the different features of the RGB images and NIR

images. First, different source image features are convolved

using two independent CNN networks and are then pooled;

subsequently, the two networks are fused based on features in

the fully connected layer. Finally, the loss value is calculated,

followed by target identification and classification.

FIGURE 1. Examples of the RGB-NIR dataset and the SAT-4 and
SAT-6 dataset. (a) SAT-4 and SAT-dataset. (b) RGB-NIR dataset.

II. MULTI-SPECTRAL RGB-NIR

IMAGE FEATURE ANALYSIS

The RGB image consists of the three color channels of

R, G, and B. The NIR band is located in the electromag-

netic spectrum between the visible and mid-infrared bands;

it has a wide wavelength range and provides clear image

information, even in low light conditions. With the advent

of the 4-sensor RGB-NIR camera, we can capture RGB-NIR

data simultaneously. Figure 1(a) shows an RGB-NIR remote

sensing dataset (SAT-4 and SAT-6 dataset); Fig.1(b) shows

simultaneously acquired RGB and NIR data captured by an

RGB-NIR camera (RGB-NIR dataset). It is observed that the

RGB and NIR images reflect different characteristics of the

same target.

The literature [9], [17] suggests that the correlation

between the NIR and the R, G, and B bands is significantly

lower than the correlation between the individual bands.

In this study, we use the mutual information in the bands to

determine the correlation between the RGB and NIR data.

The mutual information is a measure of the statistical correla-

tion between two random variables. It can also be interpreted

as the correlation between the two types of images. The

expression is as follows:

I (X ,Y ) =

∑

x∈X

∑

y∈Y

p(x, y) log(
p(x, y)

p(x)p(y)
) (1)

We used 100 random RGB-NIR images to determine the

mutual information (correlation) between the G, R, B, and

NIR bands. Figure 2(a), (b), and (c) show the correlations

between the G, R, and B bands. Fig. 2(d), (e), and (f) show

the correlations between the G, R, B, and NIR bands. It is

observed that most of the values in the R-G, R-B, and G-B

relationships are concentrated in the range of 0-20. The dis-

tributions of R_NIR, B_, and G_NIR are quite scattered and

the correlation is very weak.

FIGURE 2. Correlation between the R, G, B, and NIR bands; the pixels are
sampled from 100 images.

The results in Fig. 2 indicate that if the RGB-NIR data are

input directly to the CNN, the amount of information from the

features is increased, thereby improving the recognition rate.

At the same time, it also causes mutual interference between

features and the image information of the R, G, B, and NIR

bands cannot be fully utilized.

III. DOUBLE-CHANNEL CNN MODEL

The double-channel CNN Model is an improvement of the

traditional CNN model. Currently, this method is being

applied to image comparisons, such as fingerprint analysis,

medical image analysis, facial recognition, etc. [18], [19].

Bromley et al. [20] proposed a two-branch network based

on the Siamese network for signature authentication. Differ-

ent from SIFT, the two-branch network allows patch1 and

patch2 to extract feature vectors through two networks;

subsequently, a similarity loss function is applied to the
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two feature vectors in the last layer and the network

training is combined, thereby improving the precision.

Zagoruyko and Komodakis [21] and Hamester et al. [18]

improved the two-channel network based on the Siamese

network and the spatial pyramid pooling (SPP) proposed by

He et al. [22] for a similarity comparison of large images. The

method achieved good results.

In this paper, the double-channel CNN represents an

improvement based on the two-branch network. The features

are fused in the fully connected layer of the CNN, which

is a different approach from the feature comparison of the

2-branch network. The double-channel CNN is used for target

recognition and classification of the multi-spectral image.

In the double-channel CNN, the two neural networks are

completely independent. The weights of the convolutional

layer and the pooling layer are also independent. In the fully

connected layer, the features aremerged and the classification

loss function derived based on the joint features of the RGB

images and NIR images. The flowchart of the process is

shown in Fig. 3.

FIGURE 3. Double-channel CNN model.

In the double-channel CNN, the RGB image is represented

as x ∈ Rm×m and the NIR Image is defined as n ∈ RN×N . The

convolutional layer is expressed as:

The feature maps of the upper layer are convolvedwith a

learnable convolution kernel and then an output function map

is obtained by an activation function f . Each output map is

the value of a combined convolution of multiple input maps,

as shown in Equation (2):














conv(x lj ) = f (
∑

i∈Mj

wlij × x l−1
i + blj)

conv(nlj) = f (
∑

i∈Nj

ωl
ij × nl−1

i + δlj )
(2)

where l represents the current layer, Mj and Nj represent the

set of selected input maps; each output map has an extra

offset b and weight w. For a particular output map, the con-

volution kernel that convolves each input map is different.

Each convolution layer l is connected to a pooling layer

l + 1. For the sub-sampling layer, there are N input maps

and there are N output maps but each output map is smaller,

as shown in Equation (3):
{

x l+1
j = lrn(β l+1

j down(x lj ) + bl+1
j )

nl+1
j = lrn(ϕl+1

j down(nlj) + δl+1
j )

(3)

where down() represents a downsampling function. A typical

operation generally consists of summing all the pixels of a

different n × n block of the input image. In this manner,

the output image is reduced by n times in both dimensions.

Each output map corresponds to its own multiplicative bias β

and an additive bias b. The lrn() function (local response

normalization) is a method to improve the accuracy during

deep learning. The principle of the local response normal-

ization is to mimic the inhibition of the adjacent neurons by

biologically active neurons.

The fully connected layer converts all two-dimensional

(2D) feature maps into inputs for a fully connected one-

dimensional (1D) network. When entering the final 2D fea-

ture maps into a 1D network, a very convenient method is

to join all the output feature maps into a long input vector,

as shown in Equation (4).
{

x l → [X1,X2,X3, ...,Xi]

nl → [N1,N2,N3, ...,Ni]
(4)

The fusion [X1,X2,X3, ...,Xi] and [N1,N2,N3, ...,Ni] are

expressed as Equation (5):

(X ,Y ) →













X1,N1

X2,N2

X3,N3

... , ...

Xi, Ni













or

(X ,Y ) → [X1,X2,X3, ...Xi,N1,N2,N3, ...,NI ]
T (5)

Based on the fully connected layer, we calculate the final

output of a num_classes_sized vector as [Y1,Y2,Y3, ...,Yt ].

Subsequently, a softmax classification is performed based

on the output and the prediction result is as shown in

Equation (6).

soft max(Yt ) =
exp(Yt )

∑

exp(Yt )
(6)

Finally, the error function between the predicted and actual

values of the model is determined. Through neural network

back-propagation, each neuron is continuously trained to

update the network weights and offset values so that the error

gradient is reduced and the error is reduced; the model is

continuously optimized, as defined in Equation (7):

loss(Hy′ (y)) = mean(−
∑

t

y′t log(yt )) (7)
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FIGURE 4. Tensorboard visualization of the double-channel CNN.

where y′t refers to the value of the actual t label; yt is the

actual t element in the output vector [Y1,Y2,Y3, ...,Yt ] of

softmax; mean() is the one to be averaged over the vector.

IV. DATA SOURCE

The experimental data consisted of the RGB-NIR dataset [9]

and the SAT-4 and SAT-6 airborne dataset [23].

The RGB-NIR dataset consisted of 477 images in 9 cate-

gories captured in RGB and NIR. The images were captured

using separate exposures from modified SLR cameras using

visible and NIR filters. The original size of the images in the

RGB-NIR dataset is 1024 x 680 or 512 x 768 window size.

For more info on the NIR photography, please see the refer-

ences below. The scene categories are country, field, forest,

indoor, mountain, old building, street, urban, and water.

The SAT-4 and SAT-6 images were extracted from

the National Agriculture Imagery Program (NAIP) dataset,

which consists of 330,000 scenes spanning the Continental

United States (CONUS); it covers different landscapes such

as rural areas, urban areas, densely forested regions, moun-

tainous terrain, small to large water bodies, agricultural areas,

etc. The images consist of 4 bands, i.e., R, G, B, and NIR;

a 28 x 28 window size was used to obtain images with varied

information.

The RGB-NIR dataset is available at http://ivrg- www.

epfl.ch/supplementary_material/cvpr11/nirscene1.zip

The SAT-4 and SAT-6 dataset is available at https://drive.

google.com/uc?id=0B0Fef71_vt3PUkZ4YVZ5WWNvZWs

&export=download.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experiment was conducted by using the Python 3.6 and

TensorFlow platforms and the double-channel CNN model.

The validity of the double-channel CNN model is verified

by calculating the classification accuracy, the loss function,

and the degree of overfitting. The performance of the double-

channel CNN model algorithm is determined by comparing

the recognition rate with the single-channel CNN model for

the same length and the same parameter settings. We also

compared the results with that of the classification algorithms

used by other researchers for the same datasets.

Because the RGB-NIR dataset consists of raw image data

with different images sizes of 1024 × 680 or 512 × 768 win-

dow size, the data required preprocessing. Reference [9]

tested different compressed dimensions of RGB-NIR raw

images and compared the recognition rates. The experimental

results demonstrated that an image size of 128 x 128 resulted

in good performance. Therefore, in this study, the images

were compressed to a uniform 128 x 128 size using the

Tensorflow bilinear interpolation algorithm without loss of

image quality. We used the TFrecord method integrated into

the TensorFlow software to classify the RGB-NIR dataset

images data into nine categories. The data was randomly

extracted using the shuffle_batch method and was used as

input into the double-channel CNN model for calculation.

The SAT-4 and SAT-6 airborne datasets are standardized and

there was no need to preprocess the data. The training and test

data were directly input into the mat data and used as input

for the model for calculation.

Prior to the fully connected layer, the double- channel CNN

model consisted of two LeNet-5 [24]. The parameters used

for the convolution and pooling in the double channel CNN

architecture are the same as the parameters of the LeNet-5.

Figure 4 shows the TensorBoard visualization in TensorFlow

of the processing flow of the RGB-NIR dataset using the

double-channel CNN model. In the RGB bands, the convo-

lution layers use a 5x5 convolution kernel. The activation

function is the ‘ReLu’. The pooling layers utilize 4x4 regions

for pooling and the step lengths are 4x4; the data are normal-

ized using local response normalization. In the NIR band, the

convolution layers use a 3x3 convolution kernel. After the

convolution is completed, the ‘ReLu’ activation function is

selected. The pooling layer uses 4x4 regions for pooling and

the step lengths are 4x4; the data are then normalized using

local response normalization. A smaller convolution kernel

is used for the NIR band than the RGB band to improve

the edge information of the NIR image. Finally, the fully

connected layer vector feature is fused into a 1D vector

using the TensorFlow concat function and then the image

is classified. The fully connected layer uses the net dropout

method to randomly discard 60% of the neurons to avoid

overfitting.
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FIGURE 5. Accuracy and Loss of the RGB-NIR dataset and the SAT-4 and
SAT-6 airborne dataset. (a) SAT-4 and SAT-6 airborne dataset. (b) RGB-NIR
dataset.

Figure 5 shows the statistical results of the accuracy and

loss of the RGB-NIR dataset and the SAT-4 and SAT-6

airborne dataset using the double-channel CNN model.

Figure 5(a) shows the accuracy and loss of the SAT-4 and

SAT-6 airborne dataset. The SAT-4 and SAT-6 images have a

window size of only 28x28; therefore, a smaller convolution

kernel and pooling regions are used. In the RGB and NIR

bands, a 3x3 convolution kernel is used, the pooling layer

uses 2x2 regions for pooling, and the step lengths are 2x2.

The other parameters are the same as shown in Fig. 4. In the

model, the batch size is 100, 2,000 iterations are performed,

and the loss and accuracy values of the model are recorded

every 20 times. Figure 5(b) shows the accuracy and loss of the

RGB-NIR dataset. The model batch size is 50, 500 iterations

are performed, and the loss and accuracy values of the model

are recorded every 10 iterations. The results demonstrate that

the loss gradually decreases and the accuracy rate increases as

the number of iterations increases, indicating that the double-

channel CNN model exhibits good performance and is valid.

Figure 6 shows the net dropout test results of the two

datasets; the objective is to determine test whether the model

is over-fitted. Figure 6(a) shows that, after 1000 iterations and

at a batch size of 100, the SAT-6 accuracy is about 95% with-

out net dropout and the net dropout accuracy is about 93%.

We extracted 100 SAT-6 test data and imported them into the

model for testing; without net dropout, the accuracy was 92%

FIGURE 6. Net dropout test results of the RGB-NIR dataset and the
SAT-4 and SAT-6 airborne dataset. (a) SAT-6 airborne dataset. (b) RGB-NIR
dataset.

and with dropout, the accuracy was 93%. The experiments

indicated that there was a small degree of over-fitting in the

SAT-6 data set when there was no net dropout. Figure 6(b)

shows the overfitting test results for the RGB-NIR dataset.

There were only 477 images in the RGB-NIR dataset. There-

fore, after 230 random extractions of the data without net

dropout, the recognition rate was 100%. The model com-

pletely identified all internal data and over-fitting has been

happened. The recognition rate with the net dropout was

about 75%, which represents the ambiguity of the data. The

test results show that the double-channel CNN effectively

avoids the overfitting of the model by using the net dropout,

as shown in Fig. 6.

The double-channel CNN model consists of two inde-

pendent single-channel CNNs. To evaluate the difference

between the double-channel CNN model and the single-

channel CNN model, we determined the recognition rates

of both methods. The lengths and parameter settings of the

single-channel CNN model are basically the same as those

of the double-channel CNN model. We used the RGB-NIR

data as the input layer for the single-channel CNN calculation

(Table 1). It was found that for the same number of iterations,

the recognition rate was significantly higher for the double-

channel CNN model than the single-channel CNN model.

We compared the classification results of the double-

channel CNN model with those of some recent classifi-

cation algorithms, as shown in Fig. 7. Figure 7(a) shows

the comparison of the classification accuracy for the SAT-4
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TABLE 1. Recognition rates of the single-channel CNN and
double-channel CNN.

FIGURE 7. Recognition rates for different algorithms. (a) SAT-4 and
SAT-6 dataset classification. (b) RGB-NIR dataset classification.

and SAT-6 dataset; the algorithms include the RSI-CB of

Li et al. [13], the hybrid aggregation (pooling) approach

by Han and Chen [14], and the agile CNN architecture by

Zhong et al. [16]. The results show that the accuracies of the

double-channel CNNmodel and those of the other algorithms

are very close. Figure 7(b) is a comparison of the double-

channel CNN model classification results of the RGB-NIR

dataset and those of other researchers, including the MSIFT

by Brown and Süsstrunk [9], the sensing framework by

Karam et al. [25], and the MCCT by Rahman et al. [26]. The

results indicate that the classification accuracy of the double-

channel CNN model is significantly higher than that of the

other algorithms.

VI. CONCLUSIONS

The 4-sensor RGB-NIR line scan camera is widely used in

video surveillance, medical imaging, satellite remote sensing,

and other fields and the simultaneous acquisition of RGB and

NIR image data has become a topic of broad and current

interest. Based on the correlation between the G, R, B, and

NIR bands, we developed the double-channel CNN model

to classify the RGB-NIR image data. The double-channel

CNN model consists of two independent CNN networks,

which describe the RGB and NIR image features. Feature

fusion is performed in the fully connected layer and the last

layer performs the classification; this configuration makes

good use of the different features of the RGB-NIR images.

The experimental results show that the double-channel CNN

algorithm is better able to exploit the features of the RGB

and NIR images than the single-channel CNN algorithm.

In addition, the algorithm has certain advantages over other

similar algorithms.
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