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A number of recent work studied the effectiveness of feature selection using Lasso. It is known that un-

der the restricted isometry properties (RIP), Lasso does not generally lead to the exact recovery of the set

of nonzero coefficients, due to the looseness of convex relaxation. This paper considers the feature selec-

tion property of nonconvex regularization, where the solution is given by a multi-stage convex relaxation

scheme. The nonconvex regularizer requires two tuning parameters (compared to one tuning parameter for

Lasso). Although the method is more complex than Lasso, we show that under appropriate conditions in-

cluding the dependence of a tuning parameter on the support set size, the local solution obtained by this

procedure recovers the set of nonzero coefficients without suffering from the bias of Lasso relaxation, which

complements parameter estimation results of this procedure in (J. Mach. Learn. Res. 11 (2011) 1087–1107).
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1. Introduction

We consider the linear regression problem, where we observe a set of input vectors x1, . . . ,xn ∈
Rp , with corresponding desired output variables y1, . . . , yn. In a statistical linear model, it is

common to assume that there exists a target coefficient vector w̄ ∈ Rp such that

yi = w̄⊤xi + εi (i = 1, . . . , n), (1)

where εi are zero-mean independent random noises (but not necessarily identically distributed).

Moreover, we assume that the target vector w̄ is sparse. That is, k̄ = ‖w̄‖0 is small. Here we use

the standard notation

supp(w) = {j : wj �= 0} ‖w‖0 =
∣

∣supp(w)
∣

∣

for any vector w ∈ Rp .

This paper focuses on the feature selection problem, where we are interested in estimating

the set of nonzero coefficients supp(w̄) (also called support set). Let y denote the vector of [yi]
and X be the n × p matrix with each row a vector xi . The standard statistical method is subset

selection (L0 regularization), which computes the following estimator

ŵL0
= arg min

w∈Rp
‖Xw − y‖2

2 subject to ‖w‖0 ≤ k, (2)

where k is a tuning parameter. This method is arguably a natural method for feature selection

because if noise εi are i.i.d. Gaussian random variables, then (2) can be regarded as a Bayes
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procedure with an appropriately defined sparse prior over w. However, because the optimization

problem in (2) is non-convex, the global solution of this problem cannot be efficiently computed.

In practice, one can only find an approximate solution of (2). The most popular approximation

to L0 regularization is the L1 regularization method which is often referred to as Lasso [9]:

ŵL1
= arg min

w∈Rp

[

1

n
‖Xw − y‖2

2 + λ‖w‖1

]

, (3)

where λ > 0 is an appropriately chosen regularization parameter.

The global optimum of (3) can be easily computed using standard convex programming tech-

niques. It is known that in practice, L1 regularization often leads to sparse solutions (although

often suboptimal). Moreover, its performance has been theoretically analyzed recently. For ex-

ample, it is known from the compressed sensing literature (e.g., [3]) that under certain conditions

referred to as restricted isometry property (RIP), the solution of L1 relaxation (3) approximates

the solution of the L0 regularization problem (2). The prediction and parameter performance

of this method has been considered in [1,2,6,10,14,15]. Exact support recovery was considered

by various authors such as [7,8,11,18]. It is known that under some more restrictive conditions

referred to as irrepresentable conditions, L1 regularization can achieve exact recovery of the

support set. However, the L1 regularization method (3) does not achieve exact recovery of the

support set under the RIP type of conditions, which we are interested in here.

Although it is possible to achieve exact recovery using post-processing by thresholding the

small coefficients of Lasso solution, this method is suboptimal under RIP in comparison to the

L0 regularization method (2) because it requires the smallest nonzero coefficients to be
√

k̄ times

larger than the noise level instead of only requiring the nonzero coefficients to be larger than the

noise level with L0 regularization in (2). This issue, referred to as the bias of Lasso for feature

selection, was extensively discussed in [13]. Detailed discussion can be found after Theorem 1. It

is worth mentioning that under a stronger mutual coherence condition (similar to irrepresentable

condition), this post-processing step does not give this bias factor
√

k̄ as shown in [7] (also see

[15]). Therefore, the advantage of bias removal for the multi-stage procedure discussed here is

only applicable when RIP holds but when the irrepresentable condition and mutual incoherence

conditions fail. A thorough discussion of various conditions is beyond the scope of the current

paper, and we would like to refer the readers to [10]. Nevertheless, it is worth pointing out that

even in the classical p < n setting with the design matrix X being rank p, the irrepresentable

condition or the mutual incoherence condition can still be violated while the RIP type sparse-

eigenvalue condition used in this paper holds trivially. In fact, this was pointed out in [19] as the

main motivation of adaptive Lasso. Adaptive Lasso behaves similarly to the above mentioned

post-processing, and thus suffers from the same bias problem.

The bias of Lasso is due to the looseness of convex relaxation for L0 regularization. Therefore,

the remedy is to use a non-convex regularizer that is close to L0 regularization. One drawback

of using nonconvex optimization formulation is that we can only find a local optimal solution

and different computational procedure may lead to a different local solution. Therefore, the the-

oretical analysis has to be integrated with specific computational procedure to show that the

local minimum obtained by the procedure has desirable properties (e.g., exact support recovery).

Several nonconvex computational procedures have been analyzed in the literature, including an
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adaptive forward backward greedy procedure (referred to as FoBa) to approximately solve the

regularization method (2) considered in [17], and the MC+ method in [13] to solve a non-convex

regularized problem using a path-following procedure. Both methods can achieve unbiased fea-

ture selection.

Related to the above mentioned work, a different procedure, referred to as multi-stage con-

vex relaxation, was analyzed in [16]. This procedure solves a nonconvex problem using multiple

stages of Lasso relaxations, where convex formulations are iteratively refined based on solutions

obtained from the previous stages. However, only parameter estimation performance was ana-

lyzed in [16]. Unfortunately, the result in [16] does not directly imply that multi-stage convex

relaxation achieves unbiased recovery of the support set. The purpose of this paper is to prove

such a support recovery result analogous to related result in [13] (which is for a different proce-

dure), and this result complements the parameter estimation result of [16].

2. Multi-stage convex relaxation with capped-L1 regularization

We are interested in recovering w̄ from noisy observations y using the following nonconvex

regularization formulation:

ŵ = arg min
w

[

1

n
‖Xw − y‖2

2 + λ

p
∑

j=1

g
(

|wj |
)

]

, (4)

where g(|wj |) is a regularization function. For simplicity, this paper only considers the specific

regularizer

g(u) = min(u, θ), (5)

which is referred to as capped-L1 regularization in [16]. The parameter θ is a thresholding pa-

rameter which says that we use L1 penalization when a coefficient is sufficiently small, but the

penalty does not increase when the coefficient is larger than a threshold θ . Detailed discussions

can be found in [16]. Similar to [16], one can analyze general regularization function g(u).

However, some of such functions (such as adaptive Lasso) do not completely remove the bias.

Therefore we only analyze the simple function (5) in this paper for clarity. While a theoretical

justification has been given in [16] for multi-stage convex relaxation, similar procedure has been

shown to work well empirically without theoretical justification [4,12]. Moreover, a two-stage

version was proposed in [20], which does not remove the bias issue discussed in this paper.

Since the regularizer (5) is not convex, the resulting optimization problem (4) is a nonconvex

regularization problem. However the regularizer in (5) is continuous and piecewise differentiable,

and thus its solution is easier to compute than the L0 regularization method in (2). For example,

standard numerical techniques such as sub-gradient descent lead to local minimum solutions.

Unfortunately, it is difficult to find the global optimum, and it is also difficult to analyze the qual-

ity of the local minimum obtained from the gradient descent method. As a matter of fact, results

with non-convex regularization are difficult to reproduce because different numerical optimiza-

tion procedures can lead to different local minima. Therefore, the quality of the solution heavily

depend on the numerical procedure used.
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Initialize λ
(0)
j = λ for j = 1, . . . , d .

For ℓ = 1,2, . . .

• Let

ŵ(ℓ) = arg min
w∈Rp

[

1

n
‖Xw − y‖2

2 +
p

∑

j=1

λ
(ℓ−1)
j |wj |

]

. (6)

• Let λ
(ℓ)
j = λI (|ŵ(ℓ)

j | ≤ θ) (j = 1, . . . , d).

Figure 1. Multi-stage convex relaxation for sparse regularization.

In the following, we consider a specific numerical procedure referred to as multi-stage convex

relaxation in [16]. The algorithm is given in Figure 1. The procedure converges to a local optimal

solution of (4) due to a simple concave duality argument, where (4) is rewritten as

ŵ = arg min
w

min
{λj ≥0}

[

1

n
‖Xw − y‖2

2 +
p

∑

j=1

λj |wj | +
p

∑

j=1

g∗(λj )

]

,

with g∗(λj ) = max((λ − λj )θ,0). The procedure of Figure 1 can be regarded as an alternating

optimization method to solve this joint optimization problem of w and {λj }, where the first step

solves for w with {λj } fixed, and the second step is the closed form solution of {λj } with w fixed.

A more detailed discussion can be found in [16]. Our goal is to show that this procedure can

achieve unbiased feature selection as described in [13].

3. Theoretical analysis

We require some technical conditions for our analysis. First, we assume sub-Gaussian noise as

follows.

Assumption 1. Assume that {εi}i=1,...,n in (1) are independent (but not necessarily identically

distributed) sub-Gaussians: there exists σ ≥ 0 such that ∀i and ∀t ∈ R,

Eεi
etεi ≤ eσ 2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian using the above definition.

For example, if a random variable ξ ∈ [a, b], then Eξ et (ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable

is Gaussian: ξ ∼ N(0, σ 2), then Eξ etξ ≤ eσ 2t2/2.

We also introduce the concept of sparse eigenvalue, which is standard in the analysis of L1

regularization.



Multi-stage convex relaxation for feature selection 2281

Definition 1. Given k, define

ρ+(k) = sup

{

1

n
‖Xw‖2

2/‖w‖2
2: ‖w‖0 ≤ k

}

,

ρ−(k) = inf

{

1

n
‖Xw‖2

2/‖w‖2
2: ‖w‖0 ≤ k

}

.

The following result for parameter estimation was obtained in [16], under the Assumption 1.

If we assume that the target w̄ is sparse, with Eyi = w̄⊤xi , and k̄ = ‖w̄‖0, and we choose θ and

λ such that

λ ≥ 20σ
√

2ρ+(1) ln(2p/η)/n

and

θ ≥ 9λ/ρ−(2k̄ + s).

Assume that ρ+(s)/ρ−(2k̄ + 2s) ≤ 1 + 0.5s/k̄ for some s ≥ 2k̄, then with probability larger than

1 − η:

∥

∥ŵ(ℓ) − w̄
∥

∥

2
≤ 17

ρ−(2k̄ + s)

[

2σ

√

ρ+(k̄)

(

√

7.4k̄

n
+

√

2.7 ln(2/η)

n

)

+ λ
√

kθ

]

(7)

+ 0.7ℓ ·
√

k̄λ

ρ−(2k̄ + s)
,

where ŵ(ℓ) is the solution of (6), and kθ = |{j ∈ F̄ : |w̄j | ≤ 2θ}|. Here F̄ = supp(w̄).

The condition ρ+(s)/ρ−(2k̄ + 2s) ≤ 1 + 0.5s/k̄ requires the eigenvalue ratio ρ+(s)/ρ−(s)

to grow sub-linearly in s. Such a condition, referred to as sparse eigenvalue condition, is also

needed in the standard analysis of L1 regularization [14,15]. As shown in [14,15], it is slightly

weaker than the RIP condition in compressive sensing [3], which requires that for some δs′ ∈
(0,1) and s′ > 2k̄, the condition

1 − δs′ ≤ 1

n
‖Xw‖2

2/‖w‖2
2 ≤ 1 + δs′

holds for all w such that ‖w‖0 ≤ s′. In other words, RIP defined in [3] requires that 1 − δs′ ≤
ρ−(s′) ≤ ρ+(s′) ≤ 1 + δs′ for some s′ > 2k̄. For example, with s′ = 6k̄, and the restricted isom-

etry constant δs′ ≤ 1/3, then the sparse eigenvalue condition considered in this paper holds

with s = 2k̄. Note that in the traditional low-dimensional statistical analysis, one assumes that

ρ+(s)/ρ−(2k̄ + 2s) < ∞ as s → ∞, which is significantly stronger than the condition we use

here. Although in practice it is often difficult to verify the sparse eigenvalue condition for real

problems, the parameter estimation result in (7) nevertheless provides important theoretical in-

sights for multi-stage convex relaxation.

In the literature, one is often interested in two types of results, one is parameter estimation

bound as in (7), and the other is feature selection consistency: that is, to identify the set of
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nonzero coefficients of the truth. Although the parameter estimation bound in (7) is superior to

Lasso under certain conditions, the result does not imply that one can correctly select all variables

under this condition. Moreover, the specific proof presented in [16] does not directly imply such a

result. Therefore, it is important to know whether the multi-stage convex relaxation can achieve

unbiased feature selection as studied in [13]. In the following, we present such a result which

supplements the parameter estimation bound of (7). While the main high-level argument follows

that of [16], there are many differences in the details, and hence a full proof (which is included

in Section 5) is still needed. This theorem is the main result of the paper.

It is worth mentioning that although we only consider the simple capped-L1 regularizer,

similar results can be obtained for other regularizers (with virtually the same proof) such that

g′(u) ∈ [0,∞), g′(u) > 0 when u belongs to a neighbor of 0, and g′(u) = 0 when u ≥ θ , with a

threshold θ > 0 appropriately chosen at the order of the noise level – the condition of g′(u) = 0

when u ≥ θ ensures the removal of feature selection “bias” of Lasso which we discussed above.

As an example, very similar result can be obtained for the MC+ penalty of [13] or SCAD penalty

of [5] using the multi-stage convex relaxation procedure here. In fact, in practice there may

be additional advantages of using a smooth nonconvex penalty such as MC+ due to the extra

smoothness, although such advantage is not revealed in our theoretical analysis.

It should also be mentioned that the multistage convex relaxation method requires two tuning

parameters λ and θ (generally we do not regard ℓ as a tuning parameter, as we may take ℓ → ∞
or sufficiently large), while Lasso requires only one tuning parameter λ. The extra parameter

θ may be used to incorporate the knowledge of the support set size k̄, which can be regarded

as an explanation of why this method can outperform Lasso in sparse recovery under suitable

conditions. However, a disadvantage of the procedure is the extra tuning needed for this method

to perform optimally.

Theorem 1. Let Assumption 1 hold. Assume also that the target w̄ is sparse, with Eyi = w̄⊤xi ,

and k̄ = ‖w̄‖0. Let F̄ = supp(w̄). Choose θ and λ such that

λ ≥ 7σ
√

2ρ+(1) ln(2p/η)/n

and

θ > 9λ/ρ−(1.5k̄ + s).

Assume that

min
j∈F̄

|w̄j | > 2θ

and ρ+(s)/ρ−(1.5k̄ + 2s) ≤ 1 + 2s/(3k̄) for some s ≥ 1.5k̄, then with probability larger than

1 − η:

supp
(

ŵ(ℓ)
)

= supp(w̄)

when ℓ > L, where ŵ(ℓ) is the solution of (6) and

L =
⌊

0.5 ln k̄

ln(ρ−(1.5k̄ + s)θ/(6λ))

⌋

+ 1.
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Theorem 1 is the main result of this paper. If

min
wj ∈F̄

|wj | ≥ cσ
√

lnp/n (8)

for a sufficiently large constant c that is independent of k̄ (but could depend on the RIP condi-

tion), then we can pick both parameters λ = O(σ
√

lnp/n) and θ = O(σ
√

lnp/n) at the noise

level, so that Theorem 1 can be applied. In this case, Theorem 1 implies that multi-stage capped-

L1 regularization achieves exact recovery of the support set supp(w̄). In comparison, Lasso does

not achieve exact sparse recovery under RIP conditions. While running Lasso followed by thresh-

olding small coefficients to zero (or using adaptive Lasso of [19] or the two-stage procedure of

[20]) may achieve exact recovery, such a procedure requires the condition that

min
wj ∈F̄

|wj | ≥ c′σ
√

k̄ lnp/n

for some constant c′ (also depends on the RIP condition). This extra
√

k̄ factor is referred to as

the bias of the Lasso procedure in [13]. Moreover, it is known that for exact recovery to hold,

the requirement of minwj ∈F̄ |wj | ≥ cσ
√

lnp/n (up to a constant) is necessary for all statistical

procedures, in the sense that if minwj ∈F̄ |wj | ≤ c′σ
√

lnp/n for a sufficiently small constant c′

(under appropriate RIP conditions), then no statistical procedure can achieve exact recovery with

large probability. Therefore, statistical procedures that can achieve exact support recovery under

(8) are referred to as (nearly) unbiased feature selection methods in [13]. Theorem 1 shows that

multi-stage convex relaxation with capped-L1 regularization achieves unbiased feature selection.

Results most comparable to what we have obtained here are that of the FoBa procedure in

[17] and that of the MC+ procedure in [13]. Both can be regarded as (approximate) optimization

methods for nonconvex formulations. The former is a forward backward greedy algorithm, which

does not optimize (4), while the latter is a path-following algorithm for solving formulations

similar to (4). Although results in [13] are comparable to ours, we should note that unlike our

procedure, which is efficient due to the finite number of convex optimization, there is no proof

showing that the path-following strategy in [13] is always efficient (in the sense that there may

be exponentially many switching points).

4. Simulation study

Numerical examples can be found in [16] that demonstrate the advantage of multi-stage convex

relaxation over Lasso. Therefore, we shall not repeat a comprehensive study. Nevertheless, this

section presents a simple simulation study to illustrate the theoretical results. The n × p design

matrix X is generated with i.i.d. random Gaussian entries and each column is normalized with

2-norm
√

n. Here n = 100 and p = 250. We then generate a vector w̄ with k̄ = 30 nonzero

coefficients, and each nonzero coefficient is uniformly generated from the interval (1,10). The

observation is y = Xw̄ + ε, where ε is zero-mean i.i.d. Gaussian noise with standard deviation

σ = 1. We study the feature selection performance of multi-stage convex relaxation method
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Table 1. Probability of exact support recovery for multi-stage convex relaxation

λ

0.23 0.47 0.94 1.9 3.8 7.5

θ = 0.5λ

ℓ = 1 0 0 0 0 0 0

ℓ = 2 0 0 0.02 0 0 0

ℓ = 4 0 0.05 0.63 0.18 0 0

ℓ = 8 0 0.12 0.83 0.25 0 0

θ = 1λ

ℓ = 1 0 0 0 0 0 0

ℓ = 2 0 0.04 0.15 0.06 0 0

ℓ = 4 0 0.33 0.86 0.13 0 0

ℓ = 8 0 0.38 0.93 0.16 0 0

θ = 2λ

ℓ = 1 0 0 0 0 0 0

ℓ = 2 0 0.14 0.22 0 0 0

ℓ = 4 0 0.29 0.6 0.02 0 0

ℓ = 8 0 0.3 0.62 0.02 0 0

θ = 4λ

ℓ = 1 0 0 0 0 0 0

ℓ = 2 0 0.01 0.01 0 0 0

ℓ = 4 0 0.06 0.06 0 0 0

ℓ = 8 0 0.06 0.06 0 0 0

in Figure 1 using various configurations of λ = τσ
√

ln(p)/n (with τ = 1,2,4,8,16,32), and

θ = μλ for various constants μ = 0.5,1,2,4.

The experiments are repeated for 100 times, and Table 1 reports the probability (percentage in

the 100 runs) of exact support recovery for each configuration at various stages ℓ. Note that ℓ = 1

corresponds to Lasso and ℓ = 2 is an adaptive Lasso like two stage method [19,20]. The main

purpose of this study is to illustrate that it is beneficial to use more than two stages, as predicted

by our theory. However, since only O(ln(k̄)) is sufficient, optimal results can be achieved with

relatively small number of stages. These conclusions can be clearly seen from Table 1. Specifi-

cally the results for ℓ = 2 are better than those of ℓ = 1 (standard Lasso), while results of ℓ = 4

are better than those of ℓ = 2. Although the performance of ℓ = 8 is even better, the improve over

ℓ = 4 is small at the optimal configuration of λ and θ . This is consistent with our theory, which

implies that a relatively small number of stages is needed to achieve good performance.

5. Proof of Theorem 1

The analysis is an adaptation of [16]. While the main proof structure is similar, there are neverthe-

less subtle and important differences in the details, and hence a complete proof is still necessary.
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The main technical differences are as follows. The proof of [16] tracks the progress from one

stage ℓ − 1 to the next stage ℓ using a bound on 2-norm parameter estimate, while in the cur-

rent proof we track the progress using the set of variables that differ significantly from the true

variables. Moreover, in [16], we compare the current estimated parameter to the true parameter

w̄, which is sufficient for parameter estimation. However, in order to establish feature selection

result of this paper, it is necessary to compare the current estimated parameter to the least squares

solution w̃ within the true feature set F̄ as defined below in (9). These subtle technical differences

mean that many details in the proofs presented below differ from that of [16].

5.1. Auxiliary lemmas

We first introduce some definitions. Consider the positive semi-definite matrix A = n−1X⊤X ∈
R

p×p . Given s, k ≥ 1 such that s + k ≤ p. Let I, J be disjoint subsets of {1, . . . , p} with k and

s elements, respectively. Let AI,I ∈ Rk×k be the restriction of A to indices I , AI,J ∈ Rk×s be

the restriction of A to indices I on the left and J on the right. Similarly, we define restriction

wI of a vector w ∈ Rp on I ; and for convenience, we allow either wI ∈ Rk or wI ∈ Rp (where

components not in I are zeros) depending on the context.

We also need the following quantity in our analysis:

π(k, s) = sup
v∈Rk,u∈Rs ,I,J

v⊤AI,J u‖v‖2

v⊤AI,I v‖u‖∞
.

The following two lemmas are taken from [15]. We skip the proof.

Lemma 1. The following inequality holds:

π(k, s) ≤ s1/2

2

√

ρ+(s)/ρ−(k + s) − 1.

Lemma 2. Consider k, s > 0 and G ⊂ {1, . . . , d} such that |Gc| = k. Given any w ∈ Rp . Let J

be the indices of the s largest components of wG (in absolute values), and I = Gc ∪ J . Then

max
(

0,w⊤
I Aw

)

≥ ρ−(k + s)
(

‖wI‖2 − π(k + s, s)‖wG‖1/s
)

‖wI‖2.

Our analysis requires us to keep track of progress with respect to the least squares solution w̃

with the true feature set F̄ , which we define below:

w̃ = arg min
w∈Rp

‖Xw − y‖2
2 subject to supp(w) ⊂ F̄ , (9)

where F̄ = supp(w̄).

The following lemmas require varying degrees of modifications from similar lemmas in [16],

and thus the proofs are included for completeness.
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Lemma 3. Define ε̂ = 1
n
X⊤(Xw̃ − y). Under the conditions of Assumption 1, with probability

larger than 1 − η:

∀j ∈ F̄ : |ε̂j | = 0, |w̃j − w̄j | ≤ σ

√

2ρ−(k̄)−1 ln(2p/η)/n,

and

∀j /∈ F̄ : |ε̂j | ≤ σ
√

2ρ+(1) ln(2p/η)/n.

Proof. Let P̃ be the projection matrix to the subspace spanned by columns of X in F̄ , then we

know that

Xw̃ = P̃ y

and

(I − P̃ )Ey = Ey − Xw̄ = 0.

Therefore for each j

n|ε̂j | =
∣

∣X⊤
j (Xw̃ − y)

∣

∣ =
∣

∣X⊤
j (I − P̃ )(y − Ey)

∣

∣.

It implies that ε̂j = 0 if j ∈ F̄ . Since for each j : the column Xj satisfies ‖X⊤
j (I − P̃ )‖2

2 ≤
nρ+(1), we have from sub-Gaussian tail bound that for all j /∈ F̄ and ε > 0:

P
[

|ε̂j | ≥ ε
]

≤ 2 exp
[

−nε2/
(

2σ 2ρ+(1)
)]

.

Moreover, for each j ∈ F̄ , we have

|w̃j − w̄j | = e⊤
j

(

X⊤
F̄

XF̄

)−1
X⊤

F̄
(y − Ey).

Since ‖e⊤
j (X⊤

F̄
XF̄ )−1X⊤

F̄
‖2

2 = e⊤
j (X⊤

F̄
XF̄ )−1ej ≤ n−1ρ−(k̄)−1, we have for all ε > 0:

P
[

|w̃j − w̄j | ≥ ε
]

≤ 2 exp
[

−nρ−(k̄)ε2/
(

2nσ 2
)]

.

Taking union bound for j = 1, . . . , p (each with probability η/p), we obtain the desired inequal-

ity. �

Lemma 4. Consider G ⊂ {1, . . . , d} such that F̄ ∩ G = ∅. Let ŵ = ŵ(ℓ) be the solution of (6),

and let ŵ = ŵ − w̃. Let λG = minj∈G λ
(ℓ−1)
j and λ0 = maxj λ

(ℓ−1)
j . If 2‖ε̂‖∞ < λG, then

∑

j∈G

|ŵj | ≤
2‖ε̂‖∞

λG − 2‖ε̂‖∞

∑

j /∈F̄∪G

|ŵj | +
λ0

λG − 2‖ε̂‖∞

∑

j∈F̄

|ŵj | ≤
λ0

λG − 2‖ε̂‖∞
‖ŵGc‖1.
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Proof. For simplicity, let λj = λ
(ℓ−1)
j . The first order equation implies that

1

n

n
∑

i=1

2
(

x⊤
i ŵ − yi

)

xi,j + λj sgn(ŵj ) = 0,

where sgn(wj ) = 1 when wj > 0, sgn(wj ) = −1 when wj < 0, and sgn(wj ) ∈ [−1,1] when

wj = 0. This implies that for all v ∈ R
p , we have

2v⊤Aŵ ≤ −2v⊤ε̂ −
p

∑

j=1

λj vj sgn(ŵj ). (10)

Now, let v = ŵ in (10), and notice that ε̂F̄ = 0, we obtain

0 ≤ 2ŵ⊤Aŵ ≤ 2
∣

∣ŵ⊤ε̂
∣

∣ −
p

∑

j=1

λjŵj sgn(ŵj )

≤ 2‖ŵF̄ c‖1‖ε̂‖∞ −
∑

j∈F̄

λjŵj sgn(ŵj ) −
∑

j /∈F̄

λjŵj sgn(ŵj )

≤ 2‖ŵF̄ c‖1‖ε̂‖∞ +
∑

j∈F̄

λj |ŵj | −
∑

j /∈F̄

λj |ŵj |

≤
∑

j∈G

(

2‖ε̂‖∞ − λG

)

|ŵj | +
∑

j /∈G∪F̄

2‖ε̂‖∞|ŵj | +
∑

j∈F̄

λ0|ŵj |.

By rearranging the above inequality, we obtain the first desired bound. The second inequality

uses 2‖ε̂‖∞ ≤ λ0. �

Lemma 5. Using the notations of Lemma 4, and let J be the indices of the largest s coefficients

(in absolute value) of ŵG. Let I = Gc ∪ J and k = |Gc|. If 0 ≤ λ0/(λG − 2‖ε̂‖∞) ≤ 3, then

‖ŵ‖2 ≤
(

1 + (3k/s)0.5
)

‖ŵI‖2.

Proof. Using λ0/(λG − 2‖ε̂‖∞) ≤ 3, we obtain from Lemma 4

‖ŵG‖1 ≤ 3‖ŵ − ŵG‖1.

Therefore,

‖ŵ − ŵI‖∞ ≤ ‖ŵJ ‖1/s

= s−1[‖ŵG‖1 − ‖ŵ − ŵI‖1]
≤ s−1[3‖ŵ − ŵG‖1 − ‖ŵ − ŵI‖1],
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which implies that

‖ŵ − ŵI‖2 ≤ (‖ŵ − ŵI‖1‖ŵ − ŵI‖∞)1/2

≤
[

‖ŵ − ŵI‖1(3‖ŵ − ŵG‖1 − ‖ŵ − ŵI‖1)
]1/2

s−1/2

≤
[

(3‖ŵ − ŵG‖1/2)2
]1/2

s−1/2

≤ (3/2)s−1/2‖ŵ − ŵG‖1

≤ (3/2)s−1/2k̄1/2‖ŵ − ŵG‖2 ≤ (3k/s)1/2‖ŵI‖2.

The third inequality uses the simple algebraic inequality a(3b − a) ≤ (3b/2)2. By rearranging

this inequality, we obtain the desired bound. Note that in the above derivation, we have used the

fact that F̄ ∩ G = ∅, which implies that ŵG = ŵG, and thus ŵ − ŵG = ŵGc . �

Lemma 6. Let the conditions of Lemma 4 and Lemma 5 hold, and let k = |Gc|. If t = 1 −π(k +
s, s)k1/2s−1 ∈ (0,4/3), and 0 ≤ λ0/(λG − 2‖ε̂‖∞) ≤ (4 − t)/(4 − 3t), then

‖ŵ‖2 ≤
(

1 + (3k/s)0.5
)

‖ŵI‖2

≤ 1 + (3k/s)0.5

tρ−(k + s)

[

2‖ε̂Gc‖2 +
(

∑

j∈F̄

(

λ
(ℓ−1)
j

)2
)1/2]

.

Proof. Let J be the indices of the largest s coefficients (in absolute value) of ŵG, and I =
Gc ∪ J . The conditions of the lemma imply that

max
(

0,ŵ⊤
I Aŵ

)

≥ ρ−(k + s)
[

‖ŵI‖2 − π(k + s, s)‖ŵG‖1/s
]

‖ŵI‖2

≥ ρ−(k + s)
[

1 − (1 − t)(4 − t)(4 − 3t)−1
]

‖ŵI‖2
2

≥ 0.5tρ−(k + s)‖ŵI‖2
2.

In the above derivation, the first inequality is due to Lemma 2; the second inequality is due to the

conditions of this lemma plus Lemma 4, which implies that

‖ŵG‖1 ≤ λ0

λG − 2‖ε̂‖∞
‖ŵGc‖1 ≤ λ0

λG − 2‖ε̂‖∞

√
k‖ŵI‖2;

and the last inequality follows from 1 − (1 − t)(4 − t)(4 − 3t)−1 ≥ 0.5t , which holds for t ∈
(0,4/3).

If ŵ⊤
I Aŵ ≤ 0, then the above inequality, together with Lemma 5, imply the lemma. There-

fore in the following, we can assume that

ŵ⊤
I Aŵ ≥ 0.5tρ−(k + s)‖ŵI‖2

2.
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Moreover, let λj = λ
(ℓ−1)
j . We obtain from (10) with v = ŵI the following:

2ŵ⊤
I Aŵ ≤ −2ŵ⊤

I ε̂ −
∑

j∈I

λjŵj sgn(ŵj )

= −2ŵ⊤
I ε̂Gc − 2ŵ⊤

I ε̂G −
∑

j∈F̄

λjŵj sgn(ŵj )

−
∑

j∈G

λj |ŵj | −
∑

j∈F̄ c∩Gc

λj |ŵj |

≤ 2‖ŵI‖2‖ε̂Gc‖2 + 2‖ε̂G‖∞
∑

j∈G

|ŵj | +
∑

j∈F̄

λj |ŵj | −
∑

j∈G

λj |ŵj |

≤ 2‖ŵI‖2‖ε̂Gc‖2 +
(

∑

j∈F̄

λ2
j

)1/2

‖ŵI‖2.

Note that the equality uses the fact that G ⊂ F̄ c, and ŵj sgn(ŵj ) = |ŵj | for j ∈ F̄ c. The last

inequality uses the fact that ∀j ∈ G: λj ≥ λG ≥ 2‖ε̂G‖∞. Now by combining the above two

estimates, we obtain

‖ŵI‖2 ≤ 1

tρ−(k + s)

[

2‖ε̂Gc‖2 +
(

∑

j∈F̄

λ2
j

)1/2]

.

The desired bound follows from Lemma 5. �

Lemma 7. Given w ∈ Rp , and define λj = λI (|wj | ≤ θ). We have

(

∑

j∈F̄

λ2
j

)1/2

≤ λ

√

∑

j∈F̄

I
(

|w̄j | ≤ 2θ
)

+ λ
∣

∣

{

j ∈ F̄ : |w̄j − wj | ≥ θ
}∣

∣

1/2
.

Proof. If |w̄j − wj | ≥ θ , then

I
(

|wj | ≤ θ
)

≤ 1 ≤ I
(

|w̄j − wj | ≥ θ
)

;

otherwise, I (|wj | ≤ θ) ≤ I (|w̄j | ≤ 2θ). It follows that the following inequality always holds:

I
(

|wj | ≤ θ
)

≤ I
(

|w̄j | ≤ 2θ
)

+ I
(

|w̄j − wj | ≥ θ
)

.

The desired bound is a direct consequence of the above result and the 2-norm triangle inequality

(

∑

j

(xj + xj )
2

)1/2

≤
(

∑

j

x2
j

)1/2

+
(

∑

j

x2
j

)1/2

,

with xj = λI (|w̄j | ≤ 2θ) and xj = λI (|w̄j − wj | ≥ θ). �
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Lemma 8. Define F (ℓ) = {j : |ŵ(ℓ)
j − w̄j | ≥ θ}. Under the conditions of Theorem 1, we have for

all s ≥ 2k̄:

∥

∥ŵ(ℓ) − w̃
∥

∥

2
≤ 5.7λ

ρ−(1.5k̄ + s)

√

∣

∣F (ℓ−1)
∣

∣,

and
√

∣

∣F (ℓ)
∣

∣ ≤ 6λθ−1

ρ−(1.5k̄ + s)

√

∣

∣F (ℓ−1)
∣

∣.

Proof. For all t ∈ [0.5,4/3), by using Lemma 3, we know that the condition of the theorem

implies that

λ

λ − 2‖ε̂‖∞
≤ 7/5 ≤ 4 − t

4 − 3t
.

Moreover, Lemma 1 implies that the condition

0.5 ≤ t = 1 − π(1.5k̄ + s, s)(1.5k̄)0.5/s

is also satisfied. This means that the conditions of Lemma 6 (with λ0 = λG = λ) are satisfied.

Now, we assume that at some ℓ ≥ 1,

|Gc
ℓ| ≤ 1.5k̄, where Gℓ =

{

j /∈ F̄ : λ
(ℓ−1)
j = λ

}

, (11)

then it is easy to verify that Gc
ℓ \ F̄ ⊂ F (ℓ−1).

Moreover, with the definition of G = Gℓ in Lemma 6 and Lemma 7, we can set λ0 = λG = λ

and obtain (note also that ε̂F̄ = 0)

∥

∥ŵ(ℓ) − w̃
∥

∥

2
≤ 1 +

√
3

tρ−(1.5k̄ + s)

[

2‖ε̂Gc
ℓ\F̄

‖2 +
(

∑

j∈F̄

(

λ
(ℓ−1)
j

)2
)1/2]

≤ 1 +
√

3

tρ−(1.5k̄ + s)

[

2

√

∣

∣F (ℓ−1) \ F̄
∣

∣‖ε̂‖∞ +
√

∣

∣F (ℓ−1) ∩ F̄
∣

∣λ
]

≤ 1 +
√

3

tρ−(1.5k̄ + s)

[

(2/7)

√

∣

∣F (ℓ−1) \ F̄
∣

∣ +
√

∣

∣F (ℓ−1) ∩ F̄
∣

∣

]

λ

≤ 1 +
√

3

0.5ρ−(1.5k̄ + s)

[

√

1.082
∣

∣F (ℓ−1)
∣

∣

]

λ

≤ 5.7λ

ρ−(1.5k̄ + s)

√

∣

∣F (ℓ−1)
∣

∣,

where the first inequality is due to Lemma 6. The second inequality uses the facts that Gc
ℓ \ F̄ ⊂

F (ℓ−1) \ F̄ , and Lemma 7 with I (|w̄j | ≤ 2θ) = 0 (for all j ∈ F̄ ). The third inequality uses

2‖ε̂‖∞ ≤ (2/7)λ, and the fourth inequality uses (2/7)a + b ≤
√

1.082(a2 + b2).
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Since Lemma 3 implies that

‖w̃ − w̄‖∞ ≤ (1/7)λ/

√

ρ+(1)ρ−(k̄),

we know that j ∈ F (ℓ) implies that

∣

∣w̃j − ŵ
(ℓ)
j

∣

∣ ≥ θ − (1/7)λ/

√

ρ+(1)ρ−(k̄) ≥ (41/42)θ.

Therefore,

√

∣

∣F (ℓ)
∣

∣ ≤ (41θ/42)−1
∥

∥w̃ − ŵ(ℓ)
∥

∥

2

≤ 5.7λ(41θ/42)−1

ρ−(1.5k̄ + s)

√

∣

∣F (ℓ−1)
∣

∣

≤ 6λθ−1

ρ−(1.5k̄ + s)

√

∣

∣F (ℓ−1)
∣

∣.

That is, under the assumption of (11), the lemma holds at ℓ.

Therefore, next we only need to prove by induction on ℓ that (11) holds for all ℓ = 1,2, . . . .

When ℓ = 1, we have Gc
1 = F̄ , which implies that (11) holds.

Now assume that (11) holds at ℓ for some ℓ ≥ 1. Then by the induction hypothesis we know

that the lemma holds at ℓ. This means that

√

∣

∣Gc
ℓ+1 \ F̄

∣

∣ ≤
√

∣

∣F (ℓ)
∣

∣

≤ 6λθ−1

ρ−(1.5k̄ + s)

√

∣

∣F (ℓ−1)
∣

∣

≤
√

0.5
∣

∣F (ℓ−1)
∣

∣

≤ · · · ≤ 0.5ℓ/2
∣

∣F (0)
∣

∣.

The first inequality is due to the fact Gc
ℓ+1 \ F̄ ⊂ F (ℓ). The second inequality uses the assumption

of θ in the theorem. The last inequality uses induction. Now note that F (0) = F̄ , we thus have

|Gc
ℓ+1 \ F̄ | ≤ 0.5k̄. This completes the induction step. �

5.2. Proof of Theorem 1

Define

β = 6λθ−1

ρ−(1.5k̄ + s)
.
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We have β < 1 by the assumption of the theorem. Using induction, we have from Lemma 8 that

√

∣

∣F (L)
∣

∣ ≤ β

√

∣

∣F (L−1)
∣

∣

≤ · · ·

≤ βL
√

∣

∣F (0)
∣

∣

≤ βL
√

k̄ < 1.

This means that when ℓ > L, |F (ℓ−1)| = 0. Therefore by applying Lemma 8 again, we obtain

∥

∥ŵ(ℓ) − w̃
∥

∥

2
= 0.

Since Lemma 3 implies that

‖w̃ − w̄‖∞ ≤ (1/7)λ/

√

ρ+(1)ρ−(k̄) < θ,

we have

supp(w̃) = supp(w̄).

This implies that supp(ŵ(ℓ)) = supp(w̄).

6. Discussion

This paper investigated the performance of multi-stage convex relaxation for feature selection,

where it is shown that under RIP, the procedure can achieve unbiased feature selection. This

result complements that of [16] which studies the parameter estimation performance of multi-

stage convex relaxation. It also complements similar results obtained in [17] and [13] for different

computational procedures. One advantage of our result over that in [13] is that the multi-stage

convex relaxation method is provably efficient because the correct feature set can be obtained

after no more than O(log k̄) number of iterations. In comparison, a computational efficiency

statement for the path-following method of [13] remains open.
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