
St. Cloud State University

theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2017

Multi-Stage Detection Technique for DNS-Based
Botnets
Wasseem Jammal
St. Cloud State University, wmjammal@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been

accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more

information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Jammal, Wasseem, "Multi-Stage Detection Technique for DNS-Based Botnets" (2017). Culminating Projects in Information Assurance.
38.
https://repository.stcloudstate.edu/msia_etds/38

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/38?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

1

Multi-Stage Detection Technique for DNS-Based Botnets

by

Wasseem Jammal

A Thesis

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

December, 2017

 Thesis Committee:
Tirthankar Ghosh, Chairperson

Mark Schmidt
Mehdi Mekni

2

Abstract

Domain Name System (DNS) is one of the most widely used protocols in the

Internet. The main purpose of the DNS protocol is mapping user-friendly domain

names to IP addresses. Unfortunately, many cyber criminals deploy the DNS

protocol for malicious purposes, such as botnet communications. In this type of

attack, the botmasters tunnel communications between the Command and Control

(C&C) servers and the bot-infected machines within DNS request and response.

Designing an effective approach for botnet detection has been done previously

based on specific botnet types Since botnet communications are characterized by

different features, botmasters may evade detection methods by modifying some of

these features. This research aims to design and implement a multi-staged detection

approach for Domain Generation Algorithm (DGA), Fast Flux Service Network, and

Domain Flux-based botnets, as well as encrypted DNS tunneled-based botnets using

the BRO Network Security Monitor. This approach is able to detect DNS-based

botnet communications by relying on analyzing different techniques used for finding

the C&C server, as well as encrypting the malicious traffic.

3

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my advisor,

Dr. Tirthankar Ghosh, for his support of my study and research. He has been

supportive since the days I began taking his classes on the Intrusion Detection &

Prevention Systems, Firewalls, and Penetration Testing. In his lectures and projects,

I remember he used to say, "In security, you have to think like a bad guy and act like

a good guy " to promote our critical thinking as graduate students. Besides my

advisor, I would like to thank the rest of my thesis committee, Dr. Mark Schmidt and

Dr. Mehdi Mekni, for their encouragement and insightful comments.

I would also like to express my profound thanks to my parents, brothers, and

sisters for providing me with unfailing support and continuous encouragement

throughout my life.

Last, but not the least, I would like to thank my wife, Amal, for her sincere

support. I would never have been able to finish my thesis without her love, support,

and patience.

Thank you very much, everyone!

4

Table of Contents

 Page

List of Tables ... 6

List of Figures .. 7

Chapter

 I. Introduction ... 8

 Introduction ... 8

 Problem Statement ... 10

 Nature and Significance of the Problem .. 11

 Objective of the Study ... 12

 Limitations of the Study ... 13

 Definition of Terms .. 13

 Summary ... 15

 II. Background and Review of Literature .. 16

 Introduction ... 16

 Background Related to the Problem ... 16

 Literature Review .. 22

 Summary ... 32

 III. Methodology ... 33

 Introduction ... 33

 Design of the Study ... 33

 Data Collection ... 37

5

Chapter Page

 Data Analysis .. 38

 Summary ... 38

 IV. Data Presentation and Analysis ... 39

 Introduction ... 39

 Data Presentation ... 39

 Data Analysis .. 41

 Summary ... 49

 V. Results, Conclusion, and Recommendations ... 50

 Introduction ... 50

 Results .. 50

 Conclusion .. 53

 Future Work .. 53

References .. 55

Appendices:

 A. DNA Message Format .. 60

 B. Iodine Lab Implementation ... 68

 C. DNS2TCP Lab Implementation .. 73

 D. BRO Network Security Monitor Scripts ... 77

 E. DGA-, FFSN-, and DF-based Botnets Dataset ... 82

6

List of Tables

Table Page

 1. Variety of Botnet Automated Activities ... 12

 2. Definition of Terms Used in This Document ... 13

 3. Domain Flux Implementation .. 20

 4. FFSN & DF Implementation ... 21

 5. Feature Vector .. 23

 6. Differences between Botnet and Legitimate DNS 24

7

List of Figures

Figure Page

 1. Botnet architectures ... 18

 2. Fast-Flux service network ... 20

 3. DNS tunneling .. 22

 4. Functioning principle of the DNS-based anti-evasion technique for

 botnet detection .. 26

 5. A High-Level Overview of Pleiades .. 29

 6. DNS statistics ... 35

 7. Multistage detection technique for DNS-based botnets 35

 8. Iodine and DNS2TCP lab ... 41

 9. DNS packets statistics–DGA-based botnet .. 42

 10. Wireshark packet capture of DGA-based botnet 43

 11. DNS packets statistics–FFSN & DF-based botnet 43

 12. Domain flux implementation ... 44

 13. FFSN implementation ... 45

 14. Iodine connection negotiation ... 45

 15. SSH connection tunneled in DNS packets (iodine) 47

 16. SSH connection tunneled in DNS packets (dns2tcp) 48

8

Chapter I: Introduction

Introduction

Cyber-attacks, including malware injection, never stop threatening computer

networks and information systems. One of the predominant forms of spreading

malware is infecting systems with malicious software forcing them to act as botnets.

These botnets often utilize Domain Name System (DNS) protocol to hide their

communication with their Command & Control (C&C) servers. This research aims to

design and implement a multi-staged detection approach for Domain Generation

Algorithm (DGA), Fast Flux Service Network, and Domain Flux-based botnets, as

well as encrypted DNS tunneled-based botnets using BRO Network Security Monitor.

Domain Name System is the Internet’s equivalent of a phone book and a

central part of the Internet, providing a mechanism for naming resources in such a

way that the names are usable in different hosts, networks, protocol families,

internets, and administrative organizations (RFC 883). In other words, DNS

translates more readily memorized domain names to numerical IP addresses needed

for locating and identifying computing devices and services (Domain Name System,

2017).

According to Wikipedia, mapping a simpler and more memorable name to a

numerical address dates back to the ARPANET era (1969-1990). The Stanford

Research Institute (SRI) maintained a text file named HOSTS.TXT to map host

names to the numerical addresses of computers on the ARPANET. Each time a host

had to connect to the network, it would have to download the latest version of the

9

table. At that time, the addresses were assigned manually, but by the early 1980s,

keeping a single and centralized host table had turned out to become slow and

unwieldy, creating the need for an automated naming system. The Domain Name

System was created by Paul Mockapetris and the Internet Engineering Task Force

(IETF) published the original specifications in RFC 882 and RFC 883 in November

1983 (Domain Name System, 2017).

A botnet, or robot network, is a collection of Internet-connected computers

(bots) that are infected with a specific malware that allows these bots to be remotely

controlled by a Command and Control (C&C) server (What is a Botnet Attack?-

Definition, n.d.). Although DNS protocol is typically used for benign purposes, it can

be used to port malicious packets. Domain Name System protocol can be abused at

different stages of the communication process with botnets, which may implement

some techniques to circumvent the detection methods.

Domain Generation Algorithm (DGA), Fast-Flux Service Network (FFSN),

Domain Flux1, Double Flux, and DNS tunneling can be used as evasion techniques in

botnet communications (Dietrich et al., 2011; Farnham & Atlasis, 2013; Lysenko,

Pomorova, Savenko, Kryshchuk, & Bobrovnikova, 2015). In DGA, a large number of

short-lived domain names are generated. While the DNS A-record (IP address) for a

specific malicious domain name changes frequently in FFSN, the DF changes the

C&C server’s domain name repeatedly by implementing short TTL period. With DNS

1 DF will be used in this document to refer to Domain Flux.

10

tunneling, botnet communications with C&C servers can be wrapped and tunneled

through DNS packets.

BRO Network Security Monitor is a powerful and open-source network

analysis framework (The Bro Network Security Monitor, n.d.). The initial version of

BRO was designed and implemented by Vern Paxson in 1995. BRO focuses on

network security monitoring, and provides a comprehensive platform for more

general network traffic analysis tasks even outside of the security domain, including

performance measurements and helping with troubleshooting.

BRO is not a classic signature-based intrusion detection system (IDS). While it

supports such standard functionality as well, BRO supports a wide range of analyses

through its scripting language which indeed facilitates a much broader spectrum of

very different approaches to finding malicious activity, including semantic misuse

detection, anomaly detection, and behavioral analysis (Bro Introduction, n.d.).

Problem Statement

Different botnets implement different protocols to communicate with C&C

servers. As the Domain Name System (DNS) is one of the least monitored protocols

from a security perspective, many cyber criminals abuse DNS to tunnel botnet

communications, and some of the tunneling tools may encrypt the payload to evade

detection. According to Dietrich et al. (2011), "DNS is usually one of the few

protocols- if not the only one- that is allowed to pass without further ado" (p. 10), thus

making it an attractive means of botnet tunneling. Furthermore, many botnet

detection methods can be evaded by some techniques such as DGA, FFSN, and DF

11

(Lysenko et al., 2015). This makes the detection and prevention efforts more

complicated.

Domain Name System protocol can be abused at different stages of the botnet

communication process, such as finding the C&C server, transmitting data, and/or

controlling the bots. At the initial stage of botnet communication, a bot tries to find its

C&C server by sending DNS requests to resolve the domain name(s) of the malicious

server. After finding the C&C server, the communications between C&C server and

the bot start. These communications may include data exfiltration, data infiltration, or

controlling the bot to perform malicious actions against other systems.

Nature and Significance of the Problem

Botnets have become one of the most significant concerns on the Internet.

"According to a report from Russian-based Kaspersky Labs, botnets–not spam,

viruses, or worms … pose the biggest threat to the Internet. A report from Symantec

came to a similar conclusion" (Newman, 2010). Botnet malware can be used against

any Internet connected device, including smart televisions, to execute a wide range

of malicious actions. These actions include launching a distributed denial-of-service

(DDoS), phishing, generating and sending spam messages, propagating malware,

sniffing information, hosting malicious content, and using infected bots for proxy

activities (Bots and Botnets–A Growing Threat, 2016). Table 1 shows some malicious

activities that are executed against or by botnet-infected machines.

12

Table 1

Variety of Botnet Automated Activities

Data exfiltration against

bots

Data infiltration against

bots

Activities performed by

bots

• Stealing sensitive

information

• Installing malware

• Sending spams

• Lunching DoS

• Click fraud

• Proxy activities

The resiliency and dynamic nature of botnets pose challenges to detection

methods, like when the botmasters change the botnets’ characteristics to avoid

detection methods. Designing and implementing a detection mechanism for DNS-

based botnets will rely on analysis of botnet features, and implementation of

detection methods and existing evasion techniques.

Objective of the Study

Using BRO Network Security Monitor, the main objective of this study is to

design and implement an effective detection technique for DNS-based botnets using

rule-based and signature-based techniques in two phases. The first phase will

implement a rule-based mechanism to detect the existence of DGA, FFSN, or DF

based botnets, which are utilized to find the C&C server. The second phase will

implement a signature-based mechanism to detect DNS tunneling, which is utilized to

wrap malicious traffic in DNS packets.

13

Limitations of the Study

This study required a group of real botnet-infected machines and C&C servers.

Network traffic of previously infected machines were used for analysis and design of

the proposed detection mechanism of the DGA, FFSN, and DF implementations.

Definition of Terms

Table 2

Definition of Terms Used in This Document

Term Definition

Authoritative

Name Server (NS)

A name server that provides actual, original and definitive answer to DNS
queries such as – mail server IP address (MX resource record) or web
site IP address (A resource record). It does not provide just cached
answers that were obtained from another name server.

What Is Authoritative Name Server? (2009, August 17). Retrieved March
25, 2017, from https://www.dnsknowledge.com/whatis/authoritative-
nameserver/

Botmaster A person who operates the command and control of botnets for remote
process execution.

DDoS Attack Definitions - DDoSPedia. (n.d.). Retrieved March 25, 2017,
from https://security.radware.com/ddos-
knowledgecenter/ddospedia/botmaster/

Botnet (Zombie

Army)

An interconnected network of computers infected with malware without the
user's knowledge and controlled by cybercriminals.

What is a Botnet Attack? - Definition. (n.d.). Retrieved March 25, 2017,
from https://usa.kaspersky.com/internet-securitycenter/threats/botnet-
attacks#.WN3sKYWcE2w

Command and

Control Server

(C&C)

A computer that controls and issues commands to members of a botnet.
Botnet members may be referred to zombies and the botnet itself may be
referred to as a zombie army.
What is command-and-control servers (C&C center)? - Definition from
WhatIs.com. (n.d.). Retrieved March 25, 2017, from
http://whatis.techtarget.com/definition/command-andcontrol-server-CC-
server

Covert Channel A mechanism for sending and receiving information data between
machines without alerting any firewalls and IDS’s on the network.
IDFAQ: What is covert channel and what are some examples?

(n.d.). Retrieved March 25, 2017, from https://www.sans.org/security-
resources/idfaq/what-is-covertchannel-and-what-are-some-examples/2/17

Distributed

Denial of Service

A type of DoS attack where multiple compromised systems, which are
often infected with a Trojan, are used to target a single system causing a

https://usa.kaspersky.com/internet-securitycenter/threats/botnet-attacks#.WN3sKYWcE2w
https://usa.kaspersky.com/internet-securitycenter/threats/botnet-attacks#.WN3sKYWcE2w
http://www.webopedia.com/TERM/D/DoS_attack.html
http://www.webopedia.com/TERM/D/DoS_attack.html
http://www.webopedia.com/TERM/T/Trojan_horse.html

14

 Denial of Service (DoS) attack. Victims of a DDoS attack consist of both

the end targeted system and all systems maliciously used and controlled
by the hacker in the distributed attack.
Beal, V. (n.d.). DDoS attack - Distributed Denial of Service. Retrieved
March 25, 2017, from
http://www.webopedia.com/TERM/D/DDoS_attack.html

DNS Tunneling The ability to encode the data of other programs or protocols in DNS
queries and responses.

What is DNS Tunneling? (2017, January 04). Retrieved March 25, 2017,
from https://www.plixer.com/blog/networksecurity-forensics/what-is-dns-
tunneling/

Domain Flux (DF) A technique for keeping a malicious botnet in operation by constantly
changing the domain name of the botnet owner's
Command and Control (C&C) server.

What is domain fluxing? - Definition from WhatIs.com. (n.d.). Retrieved
March 25, 2017, from
http://searchsecurity.techtarget.com/definition/domain-fluxing

Domain

Generation

Algorithm (DGA)

A class of algorithm that takes a seed as an input, outputs a string and
appends a top-level domain (TLD) such as .com, .ru, .uk, etc. in order to
form a possible domain name. The seed is a piece of information
accessible to both the botmaster and the infected host now acting as a bot.

Why Domain Generating Algorithms (DGAs)? -. (2016, August 17).
Retrieved March 25, 2017, from http://blog.trendmicro.com/domain-
generating-algorithms-dgas/

Double Flux A DNS technique used by botnets to provide an additional layer of
redundancy by changing the DNS A-records and authoritative NS-records
continually for malicious domain using the round robin algorithm.
Fast Flux Networks Working and Detection, Part 1. (2015, February 13).

Retrieved March 25, 2017, from http://resources.infosecinstitute.com/fast-
flux-networks-workingdetection-part-1/#gref

Dynamic Domain

Name System

(DDNS)

A method of automatically updating a name server in the Domain Name
System (DNS), often in real time, with the active DDNS configuration of its
configured hostnames, addresses or other information.

Dynamic DNS. (2017, February 18). Retrieved March 25, 2017, from
https://en.wikipedia.org/wiki/Dynamic_DNS

Fast Flux or Single

Flux (FFSN)

A DNS technique used by botnets to associate a single domain name with
many IP addresses and to hide phishing and malware delivery sites behind
an ever-changing network of compromised hosts acting as proxies.
Fast flux. (2017, March 20). Retrieved March 25, 2017, from
https://en.wikipedia.org/wiki/Fast_flux

Metamorphic and

polymorphic malware

Two categories of malicious software programs that have the ability to
change their code as they propagate. With polymorphism, each time the
bot binary propagates, it encrypts its original code to avoid pattern
recognition. Instead of the code encryption, metamorphism changes the
code to an equivalent one each time.

What is metamorphic and polymorphic malware? - Definition from
WhatIs.com. (n.d.). Retrieved March 26, 2017, from

http://www.webopedia.com/TERM/D/DoS_attack.html
http://www.webopedia.com/TERM/D/DoS_attack.html

15

http://searchsecurity.techtarget.com/definition/metamorphicand-
polymorphic-malware

Network Address

Translation (NAT)

The process where a network device, usually a firewall, assigns a public
address to a computer (or group of computers) inside a private network.
The main use of NAT is to limit the number of public IP addresses an
organization or company must use, for both economy and security
purposes.

What is Network Address Translation (NAT)? (n.d.). Retrieved
March 25, 2017, from http://whatismyipaddress.com/nat

Resource

Records

The data elements that define the structure and content of the domain
name space. All DNS operations are ultimately
formulated in terms of resource records.

Resource Records. (n.d.). Retrieved March 25, 2017, from
http://www.freesoft.org/CIE/Course/Section2/8.htm

Single Flux The simplest type of fast flux, characterized by multiple individual nodes
within the network registering and de-registering their IP addresses as
part of the DNS A (address) record list for a single domain name. This
combines round robin DNS with very short time to live - usually less than
five minutes - to create a constantly changing list of destination
addresses for that single DNS name. Fast flux. (2017, March 08).
Retrieved March 25, 2017, from
https://en.wikipedia.org/wiki/Fast_flux#Single-flux_and_doubleflux

Zombie A computer connected to the Internet that has been compromised by a
hacker, computer virus or Trojan horse program, and can be used to
perform malicious tasks of one sort or another under remote direction.
Zombie (computer science). (2017, March 22). Retrieved March
25, 2017, from https://en.wikipedia.org/wiki/Zombie_(computer_science)

Summary

This chapter covered an introduction about botnets and their significance.

Also, DNS protocol and how it is abused in favor of botnet communication, as well as

some common evasion techniques used to circumvent botnet-detection methods.

The next chapter provides an overview of botnets, more details about DNS-based

botnet-detection methods and evasion techniques with a detailed review of existing

literature.

16

Chapter II: Background and Review of Literature

Introduction

Botnets use various communication protocols to tunnel and hide themselves

from detection. Also, they may use encryption techniques to encrypt the tunnel itself.

These evasion techniques complicate the detection process.

Research communities have proposed many different approaches for botnet

detection. Many of these approaches are based on a specific type of botnet. Studying

and analyzing different botnet features, implemented detection approaches, and

evasion techniques will be helpful in designing and implementing a new approach for

detecting DNS-based botnets at different stages of communications.

Background Related to the Problem

Most computers that are co-opted to serve in botnet are often home-based

and are inadequately protected by an effective firewall or other safeguard (Rouse,

2012). According to Trend Micro, the two pieces of malware that started the botnet

usage were Sub7 and Pretty Park–a Trojan and a Worm, respectively

(CounterMeasures–A Security Blog, 2010). These malwares introduced the concept

of a victim machine connecting to an IRC channel to listen for malicious commands.

These two pieces of malware first surfaced in 1999 and botnet innovation has been

constant since then. Steadily, botnets migrated away from the original IRC Command

& Control (C&C) channel to communicate over HTTP, ICMP, SSL, and DNS ports,

often using custom protocols.

17

Botnet structure has evolved over time to evade detection and disruption. Bots

are traditionally constructed as clients which communicate via central servers.

Theses bots connect to one or more servers through one or more domains, allowing

the botmaster to perform with total control from a remote location. The centralized

C&C model introduces a single point of failure; if the C&C domain is identified and

dismantled, the botmaster loses control over the entire botnet (Antonakakis et al.,

2012). To solve the problem of security, researchers and authorities target botnet

domains and C&C servers. Many recent botnets now rely on peer-to-peer networks

to communicate. These P2P bot programs perform the same actions as the client-

server model without the need for a central server to communicate (Botnet, 2017).

In a peer-to-peer model, incoming connections to computers–that are behind a

Network Address Translation (NAT) gateway, firewall, or proxy server–cannot be

established. This would prevent most bots being connected to by other bots. In a

client-server model, this obviously is not a problem as the bots connect to the server,

so a peer-to-peer network still requires servers in a way (Peer-to-Peer Botnets for

Beginners, 2016).

Bots that are not behind a proxy / NAT / firewall can accept incoming

connections and act as servers. These bots are usually referred to as nodes or

peers, whereas the bots that do not accept incoming connections are usually referred

to as workers. In a peer-to-peer model, the workers connect to one or more nodes to

receive command(s). These nodes are technically servers, and the workers are

18

distributed between many nodes. This scenario allows the workers to shift to another

node if one is dismantled.

Peer-to-Peer botnets present more challenges for detection authorities; it is

impractical to take all the nodes down since the nodes are legitimate devices. They

cannot simply be seized like a server would be (Peer-to-Peer Botnets for Beginners,

2016). Figure 1 shows the two communication models: client-server model between

workers and C&C server and peer-to-peer model between nodes and workers.

Figure 1. Botnet architectures.

Botnets core components include C&C server(s) and zombies. Upon

successful infection, the infected machine tries to connect to the C&C server at the

initial stage. There are different ways to find the C&C server: a) the IP address or the

domain name of the C&C server is hard coded in the malware, b) the malware

implements Domain Generation Algorithm (DGA), c) the malware implements Fast-

Flux Service Network (FFSN), or d) the malware implements Domain Flux (DF). In

19

the hard coding implementation, it is easy for defenders, upon botnet discovery, to

block a specific IP address or domain name. However, with DGA, it is difficult to block

tens of thousands of unpredictable generated domain names, and the problem

becomes more complicated when implementing DGA, FFSN, and DF together, thus,

the traditional blacklisting technique based on the IP address or domain name is

ineffective, and it is difficult to trace a large number of nodes ready to register their IP

addresses to a domain name(s).

A botnet that implements DGA generates tens of thousands of domain names

per day. These domains are short-lived and blacklists will not be effective. As

generated domains are predictable to the botmaster, they need to register only one of

the domains to initiate C&C connection, whereas defenders need to block any

generated domains that are registered to completely eliminate C&C activity (Hagen &

Luo, 2016).

In FFSN, the basic concept is having multiple IP addresses associated with a

single domain name, and then constantly changing them in quick succession. If one

or more of them drop, others quickly take their place (Albors, 2017). Figure 2 shows

how botmasters use bots (flux agents) to act as proxies to the C&C server.

https://www.welivesecurity.com/author/jalbors/

20

Figure 2: Fast-Flux service network.

Using FFSN, a domain name resolves different IP addresses depending on

the exact time in which the petition is made, which enables the decentralization of the

C&C servers and complicates unraveling the structure of the botnet. To carry out the

IP resolution changes, these domains have very low TTL in the cache, which forces

the DNS systems to frequently refresh the resolution cache of the IP addresses

associated to the domain. In the case of a null TTL, the resolution is not even stored.

Therefore, those DNS petitions whose TTL is low are suspicious (Cantón, 2015).

Table 3 illustrates the Concept of Domain Flux.

Table 3

Domain Flux Implementation

Time IP Address Domain Name

T1 1.1.1.1 3.3.3.3 7.7.7.7 botnet.com

T2 1.1.1.1 3.3.3.3 7.7.7.7 malicious.com

T3 1.1.1.1 3.3.3.3 7.7.7.7 C&C.com

T4 1.1.1.1 3.3.3.3 7.7.7.7 suspicious.com

http://en.wikipedia.org/wiki/Time_to_live

21

In DF, the botnets evade the detection by implementing short TTL periods and

cycling of IP mappings for the domain name of C&C-servers (Lysenko et al., 2015).

Table 4 illustrates the concept of FFSN and DF combination. The DF can be

implemented along with DGA or can be utilized by instructing bot(s)–already

connected–to request different domains next time.

Table 4

FFSN & DF Implementation

Time IP Address Domain Name

T1 1.1.1.1 5.5.5.5 botnet.com

T2 3.3.3.3 7.7.7.7 malicious.com

T3 2.2.2.2 9.9.9.9 C&C.com

T4 3.3.3.3 7.7.7.7 botnet.com

T5 1.1.1.1 5.5.5.5 C&C.com

T6 2.2.2.2 9.9.9.9 malicious.com

T7 3.3.3.3 7.7.7.7 C&C.com

T8 2.2.2.2 9.9.9.9 botnet.com

T9 1.1.1.1 5.5.5.5 malicious.com

T10 3.3.3.3 7.7.7.7 malicious.com

T11 2.2.2.2 9.9.9.9 botnet.com

T12 3.3.3.3 7.7.7.7 C&C.com

In DNS tunneling, a botmaster can abuse the Domain Name Service protocol,

if the DNS traffic is not restricted, to establish a C&C channel between the bot(s) and

the C&C server. These channels are difficult to detect and block. Some DNS

tunneling tools support SSH, such as Iodine and DNS2TCP. These tools can be

22

utilized to encrypt botnet communications to complicate traffic inspection. Figure 3

shows how a bot communicates with a C&C server through DNS tunnel.

Figure 3. DNS tunneling.

Literature Review

Dynamic domain generation, fluxing, and tunneling techniques have been

used by different malware families to avoid detection and complicate mitigation

efforts. Research communities have proposed many different approaches and

mechanisms for the development of the botnet-detection techniques. Many of these

approaches are effective for specific types of botnet.

Bilge, Sen, Balzarotti, Kirda, and Kruegel (2011) identified a feature vector with

15 different features for malicious domain detection. These features are classified

into four feature sets:

1. Time-Based Features.

2. DNS Answer-Based Features.

3. TTL Value-Based Features.

4. Domain Name-Based Features.

23

Table 5 shows that each feature set has a different feature for malicious

domain detection.

Table 5

Feature Vector (Bilge et al., 2011)

Feature Set Feature Name

Time-Based Feature - Short life

- Daily Similarity

- Repeating patterns

- Access ratio

DNS Answer-Based Features - Number of distinct IP addresses

- Number of distinct countries

- Number of domains share the IP with

- Reverse DNS query results

TTL Value-Based Features - Average TTL

10- Standard Deviation of TTL

11- Number of distinct TTL values

12- Number of TTL change

13- Percentage usage of specific TTL ranges

Domain Name-Based Features 14- Percentages of numerical characters

15- Percentage of the length of the LMS

Krmíček (2011) examined the NetFlow1 of DNS IP traffic and its relation to the

botnet presence in the monitored network. He studied the DNS behavior of known

malicious and benign domains based on features identified by Bilge, Sen, Balzarotti,

Kirda, and Kruegel (2011). Since NetFlow inspects only packet headers, not the

1 Unidirectional sequence of packets with some common properties that pass through a network device.

(p. 1).

24

entire packet payload, Krmíček concluded that "using NetFlow data solely, for the

purpose of botnet detection is not possible" (p. 8), and he mentioned that extracting

important information from the packet payload is the most promising approach for

botnet detection.

Choi, Lee, and Kim (2007) proposed a botnet detection mechanism by

monitoring DNS traffic, which forms a group activity in DNS requests simultaneously

sent by many distributed bots. Upon successful infection, the bots rally to a C&C

server at an early stage. In other words, the bots will have to register with the C&C

server. If the IP address of the C&C server in not hard coded, the bots use DNS in a

rallying process, and the DNS traffic has unique features defined as group activity

(Domain Names & Timestamps). Their mechanism uses the information of IP

headers to detect botnets, irrespective of the protocol used.

Choi et al. (2007) developed a mechanism to detect C&C server migration,

where a botnet frequently changes its C&C server–to avoid dismantling–by migrating

to a candidate C&C server using DDNS. The authors summarized the differences

between botnet DNS traffic and legitimate DNS traffic in Table 6.

Table 6

Differences between Botnet and Legitimate DNS

 Source IPs accessed

to domain name

Activity Appearance

pattern

DNS Type

Botnet DNS Fixed size (Botnet

members)

Group

activity

Intermittently Usually DDNS

Legitimate DNS Anonymous

(Legitimate users)

Non-group

activity

Randomly and

continuously

Usually DNS

25

There are some limitations to this mechanism: monitoring a huge scale of

networks poses high processing times and presents significant problems. Also, their

algorithms can be evaded when the botnet uses DNS only at initializing and never

again (moreover, do not migrate the botnet). Furthermore, since their mechanism is

based on the similarity of group activity, this makes it not suitable for detecting small

numbers of infected machines in a monitored network.

Dietrich et al. (2011) are the first to document DNS-based botnet C&C traffic.

They presented a technique for DNS-based C&C traffic detection and another

technique for malware sample classification based on their behavior. Their work is

based on the high entropy of C&C messages generated by Feederbots; they utilized

the fact that encrypted or compressed messages have high entropy.

A limitation of their technique is that, for certain resource records, the

distribution of byte values could be compared against the expected distribution (e.g.,

rdata of A RR contains IPv4 addresses). However, the IPv4 address space is not

uniformly distributed (e.g., reserved addresses, such as private addresses or

multicast addresses, might rarely show up in Internet DNS traffic), whereas other

addresses, such as popular websites, might appear more often in DNS query results.

Another limitation is that:

Botmasters could restrict their C&C messages to very small sizes. In practice,

message content could be stored in, e.g., 4 bytes of an A resource record’s

rdata. In this case, our rdata features alone, which are applied to individual

C&C message would not be able to detect these C&C messages as high

26

entropy messages because the statistical byte entropy of really short

messages is very low, and our estimate of the alphabet size by counting the

number of distinct byte is inaccurate for very short messages. (p. 15)

Lysenko et al. (2015) proposed a DNS-based anti-evasion technique for botnet

detection. Their technique is based on a cluster analysis of the features obtained

from the payload of incoming DNS messages. The method uses the semi-supervised

fuzzy c-means clustering. Figure 4 illustrates the functioning principle of the DNS-

based anti-evasion technique for botnet detection.

Figure 4. Functioning principle of the DNS-based anti-evasion technique for botnet
detection (Lysenko et al., 2015).

According to Lysenko et al. (2015), their technique can detect fast flux, domain

flux, cycling of IP mappings, and DNS tunneling evasion techniques with high

efficiency. They claimed that passive analysis of DNS traffic leads to the detection of

only particular malware.

27

Jin, Ichise, and Iida (2015) designed a botnet communication detection

method by collecting authoritative NS records and their IP addresses, as well as

monitoring direct outbound DNS queries. Their method is based on storing NS

records with corresponding IP addresses of valid query response pairs, IP addresses

of public DNS servers, and ISP specified DNS servers in a NS-IP database. Any

destination IP address is not included in the previously achieved Name Server NS

records, as well as its corresponding IP Address; a record is considered suspicious

and should be investigated. In this way, "all unusual domain name resolution that

uses direct outbound DNS query can be monitored" (p. 39).

A DNS tunneling technique could evade their method. Domain Name System

tunneling can be used for a more robust C&C configuration. For example, a

botmaster could register the malicious domain name and designate the system

running dnscat2 server software as the authoritative DNS server for that domain. In

this way, the bot machine would issue a DNS query for that malicious domain to the

victim’s trusted DNS server, which would forward the query to the C&C server and

return the adversary’s answer to the bot. In this scenario, the protected network can

only access the trusted DNS server, but that DNS server can contact external DNS

servers to resolve queries that it cannot resolve directly (Zeltser, 2016). Since the

returned malicious answer is from an authoritative DNS server, it would be stored in

the NS-IP whitelist database, resulting in false-negative alert.

Holz, Gorecki, Rieck, and Freiling (2008) presented the first empirical study of

FFSNs. They developed a metric that exploits the principles of FFSNs to derive an

28

effective mechanism for detecting new fast-flux domains in an automated way. They

showed that the method is accurate, and they had very low false-positive and false-

negative rates. Based on their empirical observations, they found other information

(e.g., whois lookups and MX records) as promising features for an extended version

of their flux-score.

Caglayan, Toothaker, Drapeau, Burke, and Eaton (2009) presented the first

empirical study of detecting and classifying fast flux service networks (FFSNs) in real

time. Their approach uses active and passive sensors derived from DNS monitoring

and fusing the component sensors using a Bayesian classifier. The Fast Flux Monitor

Architecture can detect single and double flux behavior in real time with acceptable

false alarm rates.

Dabbagh (2012) proposed a method for detecting IP ID and TTL covert

channels. He proposed a method based on his observation that "operating systems

choose initially a random number for the ID in the IP header and then increment it

sequentially" (p. 1). He concluded that a packet is suspicious if the new packet has

an IP ID smaller than the previous packets. Also, he stated that "detecting TTL covert

channel is based on the fact that the network is stable" (p. 2). Therefore, the receiver

side should not observe many variations in the TTL values in the IP header of the

packets that are coming from the same source.

A limitation of this method is when using NAT services, packets coming from

different sources will have different IDs and TTL values, but will have the same

source IP. Another limitation is that some IP stacks assign the ID values of the IP

29

header by using a pseudo-random generator (RFC 4413-TCP/IP Field Behavior,

2006).

Zhang, Papadopoulos, and Massey (2013) made an initial attempt to

investigate detection of encrypted communication. Since the encryption increases

entropy, they presented two high-entropy classifiers and used one of them to

enhance the BotHunter, and showed that BotHunter was able to detect encrypted

bots.

Antonakakis et al. (2012) presented a novel detection system, called Pleiades,

which is able to detect machines within a monitored network that are compromised

with DGA-based botnets. Pleiades monitors traffic below the local recursive DNS

server and analyzes streams of unsuccessful DNS resolutions (Name Error or

NXDomain Responses). Pleiades searches for relatively large clusters of NXDomains

with similar syntactic features, and are queried by multiple, potentially compromised,

machines during a specific epoch. As shown in Figure 5, there are two phases of

detection: the first phase discovers the presence of DGA and the second classifies

the discovered DGA and detects the C&C domain(s).

Figure 5. A High-Level Overview of Pleiades (Antonakakis et al., 2012).

30

Antonakakis et al. (2012) claimed that "Pleiades was able to identify six DGAs

that belong to known malware families and six new DGAs never reported before" (p.

14). Although their claim that Pleiades can achieve very high detection accuracy, one

limitation of their evaluation method is "the exact enumeration of the number of

infected hosts in the ISP network" (p. 14). Because the location of monitoring sensors

is below the recursive DNS server, they can only obtain a lower bound estimate of

infected hosts. For example, an IP address that generates DNS traffic may be a NAT,

firewall, DNS server, or other device that behaves as a proxy. Also, noisy

NXDomains may be generated to mislead the implementation of Pleiades.

Yadav and Reddy (2012) proposed methodologies for utilizing failed domain

names (NXDOMAIN) in the quest for rapid detection of a fluxing botnet’s C&C server.

They validated their method by detecting Conficker botnets and other anomalies with

a false positive rate as low as 0.02%. Their technique can be applied at the edge of

an autonomous system for real-time detection. Since their method is based on

detecting botnets utilizing high entropy, botnet owners may alter the way domain

names are created to evade their detection mechanism.

Farnham and Atlasis (2013) reviewed several utilities used to enable tunneling

over DNS. They discussed practical techniques for detecting DNS tunneling and

categorized the detection techniques into two categories: payload detection

technique, which is used to detect specific DNS tunneling utilities, and traffic

analysis-based technique, which is used to detect DNS tunneling in general. In the

31

payload analysis, they discussed the following techniques for DNS tunneling

detection:

1. Size of DNS request and response.

2. Entropy of hostnames.

3. Statistical analysis.

4. Uncommon record types.

5. Policy violation.

6. Specific signatures.

In traffic analysis, they discussed the following techniques:

1. Volume of DNS traffic per IP address.

2. Volume of DNS traffic per domain.

3. Number of hostnames per domain.

4. Geographical location of DNS server.

5. Domain history.

6. Volume of NXDomain responses.

7. Visualization.

8. Orphan DNS requests.

9. General covert channel detection.

In this research, the NXDomain error will be utilized in a different way to detect

the DGA implementations; the threshold relies on the percentages of the unique

NXDomain errors to the total number DNS requests within an epoch. Although the

DNS Server Failure error is not limited to the FFSN and DF implementations, this

32

error can be utilized to detect FFSN- and DF-based botnets. In other words, the first

stage will utilize NXDomain and Server Failure errors to detect the rallying to a C&C

server.

In the second phase, although polymorphism and metamorphism techniques

change the form of each instance of bot binary to circumvent signature-based

detection during the detection and investigative process, the algorithm will use a

detection technique relying on a signature matching based on encoded SSH

handshakes within DNS tunnels.

Summary

This chapter presented an overview of botnets implementation, as well as

some detection methods and evasion techniques. The next chapter proposes a

defense-in-depth approach for DNS-based botnets.

33

Chapter III: Methodology

Introduction

Implementing a comprehensive, holistic approach for botnet detection could be

a challenging task. Botnets implement different protocols, different architecture, and

can evade detection methods by tunneling their communications within a range of

services, DNS being the most predominant.

Since the DNS protocol can be used at different stages of botnet

communication, I have used BRO Network Security Monitor (NSM) to design and

implement a detection mechanism for DNS-based botnets communication.

Design of the Study

This thesis proposes an empirical solution to design and implements a

mechanism for detecting DNS-based botnets at different stages:

1. Rallying stage when finding the C&C server (DGA, FFSN, and DF).

2. Transmitting data and controlling the bots (DNS Tunnel).

Currently, botnets implement DGA and/or fluxing techniques to avoid botnets

detection and mitigation. The infected machine sends a high volume of DNS requests

in order to find its C&C server.

As a botmaster only registers one or a few domain names (previously known)

to carry out the C&C communication, almost all the DNS requests, generated by

DGA, sent to find the C&C server will have unsuccessful resolutions (name error or

NXDomain responses). The detection of DGA implementation was configured based

on a threshold of NXDomain responses within an epoch. For example, if the infected

34

machine sends more than 100 DNS requests within an hour, and a specific

percentage of these requests have unsuccessful resolutions, BRO NSM will detect

the presence of DGA based botnet.

In FFSN and DF based botnets, the malicious domain name(s) that has/have

very low TTL forces the DNS systems to frequently refresh the resolution cache of

the IP addresses associated with the domain(s). Although the DNS Server Failure

can be related to issues other than fluxing implementations, these unsuccessful

resolutions of very low TTL domain names (Server Failure) can be utilized for FFSN-

and DF-based botnets detection. In other words, the detection of FFSN and DF

implementation was configured based on a threshold of the "Server Failure"

responses within an epoch.

The frequency of malicious DNS packets can be controlled by the botmaster to

evade the detection threshold. In other words, in case the first BRO mechanism fails

to detect DGA, FFSN, or DF presence, another mechanism will run. The second

mechanism inspects the DNS payloads for DNS-encrypted tunnels based on SSH

connections, also implemented with BRO NSM.

According to Brandhorst and Pras (2006) on their statistical analysis of name

server traffic, the percentages of NXDomain errors and Server Failures were 8.74%

and 1.28%, respectively, of the DNS queries. Figure 6 shows DNS statistics at four

locations.

http://en.wikipedia.org/wiki/Time_to_live
https://research.utwente.nl/en/persons/aiko-pras

35

Figure 6. DNS statistics (Brandhorst & Pras, 2006).

Figure 7. Multistage detection technique for DNS-based botnets.1

1 NXD refers to NXDomain errors and SF refers to Server Failure errors.

36

Figure 7 depicts the flowchart for the proposed algorithm. Domain Name

System traffic is inspected at both stages, in parallel, to detect the multistage

communications of DNS-based botnets. The first stage detects the rallying to a C&C

server and the second stage inspects each DNS reply of specific patterns of SSH

handshakes within DNS tunnels.

In the first stage of botnet communication (rallying stage), a DGA-detection

mechanism is applied every 30 minutes to find if total number of DNS requests is 10

or greater. In this case, two thresholds are used for the unique NXDomain errors: the

first threshold, which is 8% of the total number of DNS requests, is based on Figure 6

and used if the total number of DNS requests is 50 or more. The second threshold

(40%) is used if the total number of DNS requests is between 10 and 50. The second

threshold is utilized to eliminate false positive detections in idle systems. For

example, an idle system running DGA has a higher percentage of unique NXDomain

errors to the total number of DNS requests than the percentage in an active system

running DGA. In both thresholds, at least four unique NXDomain errors are required

for DGA detection.

In fluxing detection, which is another method for rallying, different thresholds

are set. The fluxing detection mechanism is applied every 30 minutes if the total

number of DNS requests is 8 or greater. In this mechanism, two thresholds are used

for the Server Failure errors. If the total number of DNS requests is 50 or greater, the

first threshold is used, which is 6% of the total number of DNS requests. The second

threshold (26%) is used if the total number of DNS requests is between 8 and 50.

37

Similar to the DGA mechanism, the second threshold is utilized to eliminate false-

positive detection in idle systems implementing fluxing techniques. In both

thresholds, at least three Server Failure errors are required for fluxing detection.

The DNS threshold, which is 50 DNS requests every 30 minutes, is set below

the lowest average in Figure 6 (location 1 has an average of 137 DNS requests per

hour). Since location 1 in Figure 6 has a high percentage of NXDomain errors (33%),

which indicates a high possibility of DGA existence, the NXDomain threshold (8%) is

set based on the lowest average of NXDomain errors (location 3). To eliminate false-

negative detection, the Server Failure threshold (6%) is set higher than the Server

Failure percentage in location 2.

In other words, different threshold values are set for DGA and fluxing

detection, based on the DNS statistics in Figure 6, as well as the activity of the

infected systems. For example, the percentage of NXDomain errors to the total

number of DNS requests depends on the frequency of DGA and the average number

of DNS requests on different systems. Thus, these values need to be dynamically

adjusted with the changing nature of communication.

Data Collection

Instead of real-time monitoring with real botnet malware, the dataset was

collected from the Stratosphere Lab, which is a part of the Malware Capture Facility

Project at CVUT University, Prague, Czech Republic (Garcia, 2015). The lab has a

significant dataset of malware traffic captures, including different types of botnets.

These datasets were used for DGA, FFSN, and DF detection.

38

Regarding DNS encrypted tunnels, Iodine and DNS2TCP were used to setup

a SSH tunnel between the server and client device. The captured traffic was used for

SSH connection detection.

Data Analysis

In order to implement and analyze the proposed approach, the following

software, tools, and techniques were required:

1. BRO Network Security Monitor: intrusion detection system.

2. Iodine & DNS2TCP: DNS tunneling tools that support SSH.

3. Wireshark: traffic analyzer.

4. Security Onion: a customized Linux operating system for intrusion

detection.

5. AWS Ubuntu machines: C&C server and infected machine.

6. Registered Domain Name.

Summary

This chapter covered the proposed detection methodology for DNS-based

botnets. This methodology is built on a BRO Network Security Monitor to detect both

DGA- and FFSN-based botnets according to thresholds within an epoch of

NXDomain and Server Failure responses, respectively. Also, the proposed

methodology detects DNS-encrypted tunnels through analyzing connection

establishment within a DNS payload. The next chapter presents more detail about

data collection and analysis.

39

Chapter IV: Data Presentation and Analysis

Introduction

Different malicious traffic captures were collected from previously infected

systems. These captures were used for DGA-, FFSN-, and DF-based botnet

analysis. For SSH connections tunneled in DNS packets, Iodine and DNS2TCP (with

SSH connections) captures were used for packet analysis.

Data Presentation

In this section, the Wireshark packet captures were presented as the following:

1. Packet capture of DGA-based botnet. This capture was collected from a

previously infected system and was used to test the BRO detection method for DGA-

based botnets. The complete capture can be found at Wireshark–DGA-based Botnet.

2. Packet capture of FFSN- & DF-based botnet. This capture was collected

from a previously infected system and was used to test the BRO detection method for

FFSN- and DF-based botnets. The complete capture can be found at Wireshark–

FFSN- & DF-based Botnet.

3. Packet capture of SSH connection tunneled in Iodine. Iodine is a DNS

tunneling program that tunnels IPv4 data through a DNS server. It was developed by

Bjorn Anderson and Erik Ekman. Iodine can be usable when the Internet access is

firewalled, but DNS queries are allowed. Iodine is written in C and it runs on Linux,

Mac OS X, FreeBSD, NetBSD, OpenBSD, and Windows (Anderson & Ekman, 2014).

The packet capture of Iodine traffic was collected from the lab implementation.

In this lab, the Iodine server and Iodine client were setup as the following:

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-7/2013-08-20_capture-win1.pcap
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-127-2/2015-07-08_capture-win8.pcap
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-127-2/2015-07-08_capture-win8.pcap

40

• Iodine server static IP address 52.52.65.253

• Iodine client IP address 172.31.36.28

• Subdomain tunnel.ialabs.net

• Server’s tunnel interface IP address 192.168.250.1

• Client’s tunnel interface IP address 192.168.250.2

The complete lab steps can be found in Appendix B.

4. Packet capture of SSH connection tunneled in DNS2TCP. DNS2TCP is

a network tool designed to relay TCP connections through DNS traffic. DNS2TCP

was written by Olivier Dembour with the contributions of Nicolas Collignon. The

encapsulation is done on the TCP level. DNS2TCP is composed of two parts: a

server-side tool and a client-side tool. The server has a list of resources specified in a

configuration file. Each resource is a local or remote service listening for TCP

connections. The client listens on a predefined TCP port and relays each incoming

connection through DNS to the final service (HSC, 2012).

The packet capture of DNS2TCP traffic was also collected from the lab

implementation. In this lab, the two sides–the server and the client–were setup as the

following:

• DNS2TCP server static IP address 52.52.65.253

• DNS2TCP client IP address 172.31.36.28

• Subdomain tunnel2.ialabs.net

The complete lab steps can be found in Appendix C.

41

Figure 8. Iodine and DNS2TCP lab.

Figure 8 shows the lab implementation of Iodine and DNS2TCP tunneling

tools. The system is protected by a firewall that blocks all traffic except DNS on port

UDP/53.

Data Analysis

The packet captures of the previous section were analyzed as the following:

1. Packet capture of DGA implementation. Figure 9 shows the statistics of

DNS packets. The "No such name" packets represent the total number of DNS

responses that return with a NXDomain error. There were 352,756 responses with

NXDomain error; these responses represented 46.75% of the total DNS packets

(queries and responses), and 89% of the total requests (532,756/398,397). The "No

error" packets represent both the total number of DNS requests and the successful

responses.

42

Figure 9. DNS packets statistics–DGA-based botnet.

The previous capture shows a high presence of DGA implementation. Setting

a threshold for DGA detection varies from one network to another. For example,

when implementing a DGA botnet, botmasters can control the frequency of DNS

requests to avoid detection, thus, a high threshold of NXDomain errors can be

evaded by a low frequency (false negative), however, a very low threshold may result

in false-positive detection, such as typing errors. To eliminate the chance of

NXDomain errors due to mistyping or other errors not related to the DGA

implementation, the threshold was set based on unique NXDomain records.

Figure 10 shows DGA-based botnet traffic. After many unsuccessful

resolutions, the infected system found the IP address of a C&C server at packet

number 234,427.

43

Figure 10. Wireshark packet capture of DGA-based botnet.

2. Packet capture of FFSN & DF implementation. Similar to the previous

statistics, Figure 11 shows the statistics of DNS packets. The "Server Failure"

packets represent the total number of DNS responses that return a Server Failure

error. There were 159 responses with Server Failure errors; these responses

represented 26.07% of the total DNS packets (queries and responses), and 52.13%

of the total requests (159/305).

Figure 11. DNS packets statistics–FFSN & DF-based botnet.

44

This capture shows a high percentage of DNS Server Failure packets, and

setting a threshold for these packets is also a challenge. For example, botmasters

can control the TTL values and the frequency of DNS requests to avoid Server

Failure errors, thus, a high threshold of Server Failure errors can be evaded by a

lower frequency and higher TTL (false negative). However, a low threshold may

result in a higher false positive.

Figure 12 shows the DF implementation. There were three IP addresses

(87.221.209.204, 109.73.179.95, and 185.1.62.82) assigned to four different

malicious domains (top-web.org, linetechservice.org, serviceline2013.org, and

servicewebcheck.org); the assignment was done in a “round robin” fashion. When

the DNS request (packet No. 15680) was sent, the IP addresses were not yet

assigned to serviceonline2013.org, thus, packet No. 15683 had a Service Failure

error since the TTL for serviceonline2013.org had expired.

Figure 12. Domain flux implementation.

Figures 13 illustrates the concept of FFSN; new IP addresses

(109.117.185.235, 91.230.157.174) had been used instead of 185.1.62.82.

45

Figure 13. FFSN implementation.

3. Packet capture of SSH connection tunneled in Iodine. Figure 14 shows

the connection negotiation between the server and the client.

Figure 14. Iodine connection negotiation

46

By analyzing the traffic from the Wireshark capture, it was noticed that Iodine

used some patterns or signatures in its negotiation between the server and the client.

These patterns were appended to the subdomain (tunnel.ialabs.net), and included

the following:

47

The following figure shows the SSH connection tunneled in DNS packets. The

SSH connection initialization started at packet No. 4248.

Figure 15. SSH connection tunneled in DNS packets (iodine).

Iodine uses the NULL RR (QTYPE 10) and provides higher performance by

allowing the downstream data to be sent without encoding. Each DNS reply can

contain over a kilobyte of compressed payload data. However, regarding the

upstream date (the DNS requests), Iodine uses either Base-32 or a non-standard

Base-64 encoding method (based on a configuration option) (Nussbaum, Neyron, &

Richard, 2009).

By analyzing different SSH connections, the following signature was used to

establish a SSH tunnel:

eaba82.2hb..Y.w which is equivalent to following hex string:

\x65\x61\x62\x61\x38\x32\xca\x32\x68\x62\xbe\xee\x59\xd6

\x77

48

4. Packet capture of SSH connection tunneled in DNS2TCP. The following

figure shows the SSH connection tunneled in DNS packets. The SSH connection

initialization started at packet No. 4248.

Figure 16. SSH connection tunneled in DNS packets (dns2tcp).

By default, DNS2TCP uses the TXT RR type. Since DNS2TCP uses Base-64

encoding, SSH connection packets can be analyzed to find the encoded pattern of

the normal SSH connection. In a normal situation, a SSH connection contains the

SSH-2.0-OpenSSH_ string. By analyzing packet No. 187 in figure 16, the string

AAACCFNTSC0yLjAtT3BlblNTSF83LjJwMiBVYnVudHUtNHVidW50dTIuMg0 was

used to establish a SSH tunnel. This string is equivalent to ��SSH-2.0-

OpenSSH_7.2p2 Ubuntu-4ubuntu2.2.

To detect other versions of SSH-2.0 connections and/or operating systems,

only the CFNTSC0yLjAtT3BlblNTSF8 part is used to detect SSH connections

tunneled in DNS packets. After decoding this Base-64 encoded string, it is equivalent

49

to �SSH-2.0-OpenSSH_. To detect only OpenSSH_ string, only the string

T3BlblNTSF8 is used.

In BRO NSM, both Iodine and DNS2TCP queries were logged in DNS.Logs as

lowercase queries, so the detection script was written based on the lowercase

equivalents. For example, the string Iodine SSH tunnel eaba82.2hb..Y.w was

detected by the equivalent hex of its lowercase eaba82.2hb..y.w, which is

\x65\x61\x62\x61\x38\x32\xca\x32\x68\x62\xbe\xee\x79\xd6\x77 instead

of \x65\x61\x62\x61\x38\x32\xca\x32\x68\x62\xbe\xee\x59\xd6\x77. To

find the complete script for SSH tunneling detection, refer to Appendix D.

Summary

This chapter presented and analyzed the packet captures of DGA, FFSN, and

DF implementations, as well as SSH connections tunneled in DNS tunneling using

Iodine and DNS2TCP tools. The next chapter discusses the results, conclusion, and

future work.

50

Chapter V: Results, Conclusion, and Recommendations

Introduction

 As mentioned in the previous chapters, DNS protocol can be implemented for

botnet communications. Some of these implementations utilize different evasion

techniques to circumvent the detection and prevention methods. In this study, the

multistage-detection technique was designed and implemented using the BRO

Network Security Monitor. This chapter presents the results of the analysis methods,

conclusion, and future recommendations.

Results

This thesis presents an empirical solution to detect DNS-based botnets at

different stages of their communications. Domain Generation Algorithm-based

botnets were detected by the percentage of unique NXDomain errors among the total

DNS queries within an epoch of 30 minutes. The fluxing techniques–FFSN and DF–

were detected by the percentage of total Server Failure errors among the total DNS

queries within an epoch of two hours.

Also, this thesis presents some popular DNS tunneling tools that are used to

tunnel botnet traffic in DNS packets, and presents a signature-based method to

detect DNS-tunneled botnets that use SSH as their encryption algorithm. Each tool

has different method to tunnel the traffic. Since SSH is utilized to encrypt the tunnel, it

is recommended to look for SSH connections wrapped in the DNS packets by looking

for the encoded patterns of the SSH connection requests. Some tools, such as

51

Iodine, encoded the traffic using a non-standard Base-64 encoding method and other

tools like DNS2TCP using a Base-64 encoding method.

From the Iodine lab results, a non-standard encoded pattern for SSH

connections was detected. In the DNS2TCP lab, a standard encoded pattern for SSH

connections’ handshaking was detected. These patterns can be used as signatures

to detect SSH connection handshaking tunneled in Iodine and DNS2TCP tools.

The following questions and answers provide a summary of the proposed

solutions:

Question 1: Was the proposed method able to detect DGA-based botnets?

Answer: Yes, based on unique NXDomain thresholds.

Question 2: Was the proposed method able to detect FFSN- and DF-based

botnets?

Answer: Yes, based on Server Failure thresholds.

Question 3: Were the signatures able to detect SSH tunneling in the

suggested tools?

Answer: Yes, the signatures were able to detect SSH tunneling in Iodine and

DNS2TCP tools.

Organized and professional botmasters may develop other methods to bypass

these detection mechanisms. The following questions and answers explain:

Question 1: Can the botmasters evade the detection of the DGA-, FFSN-, or

DF-based botnets based on the NXDomain or Server Failure

thresholds?

52

Answer: Yes, changing the frequency of the DNS requests will minimizes the

NXDomain errors within a specific epoch. Also, they may control the

TTL values properly to avoid the high number of Server Failure

responses.

Question 2: Can the botmasters evade the non-standard encoded signatures

of the SSH connection handshaking?

Answer: Yes. Like other characteristics and parameters in the DNS traffic, they

may change the non-standard encoding/decoding code.

Question 3: Can the botmasters evade the standard encoded signatures of the

SSH connection handshaking?

Answer: Creating a large set of possible strings of the encoded SSH

connection handshaking using the standard encoding methods

provides a strong mechanism for SSH tunneling detection. For

example, using Base-64, the encoded pattern of ANSSH-2.0-

OpenSSH_ is QU5TU0gtMi4wLU9wZW5TU0hf, but the encoded

pattern of ASSH-2.0-OpenSSH_ is QVNTSC0yLjAtT3BlblNTSF8=,

which is completely different, because Base-64 method takes every

three bytes and encodes them into four bytes output, so the order of

the OpenSSH_ string within the packet gives different outputs.

However, creating a signatures list provides a strong mechanism for SSH

connections tunneling detection; botmasters may change the trend to use non-

standard encoding/decoding methods to tunnel these connections.

53

Conclusion

This thesis was to design and implement detection techniques for DNS-based

botnets at different stages of communications. Using a BRO Network Security

Monitor, the suggested solutions were able to detect the botnet traffic at the rallying

stage–when finding the C&C server–as well as, detecting the SSH tunneling

connections used to encrypt the traffic after finding the C&C server.

The detection of DGA-, FFSN-, and DF-based botnets was based on a

threshold value of specific DNS response failures. Whereas, the detection of SSH

tunneling was based on encoded patterns of SSH connection handshaking within two

popular DNS tunneling tools. The suggested solutions were able to detect the SSH

tunneling in Iodine and DNS2TCP. These tools can be utilized to tunnel the SSH

connections in DNS-based botnets.

Future Work

In this thesis, tunneling SSH connections were implemented using two of the

most popular DNS tunneling tools. In the future, analyzing other tools that support

SSH connections, such as DNSCAT and OzymanDNS, and creating a large set of

possible strings of the encoded SSH connection handshaking using the standard

encoding methods will contribute to the detection efforts.

Regarding DGA and fluxing techniques, finding an automated way to set the

thresholds of DNS queries, NXDomain, and Server Failure based on the behavior of

the system will improve the detection mechanisms. The threshold settings need to be

dynamically adjusted with the changing nature of communication which would

54

optimize false positives and negatives. Also, to minimize the false positive of fluxing

detection, the DNS Server Failure error–resulting from fluxing implementations–

needs to be differentiated from similar errors caused be other issues.

55

References

Albors, J. (2017, January 12). Fast Flux networks: What are they and how do they

work? Retrieved September 11, 2017, from https://www.welivesecurity.com/

2017/01/12/fast-flux-networks-work/.

Anderson, B., & Ekman, E. (2014). Iodine. Retrieved October 16, 2017, from

http://code.kryo.se/iodine./

Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W., &

Dagon, D. (2012). From throw-away traffic to bots: Detecting the rise of

DGAbased malware. In Proceedings of the 21st USENIX Conference on

Security Symposium (pp. 24-24). Bellevue, WA: USENIX Association.

Bilge, L., Sen, S., Balzarotti, D., Kirda, E., & Kruegel, C. (2011). EXPOSURE: Finding

malicious domains using passive DNS analysis. In Proceedings of the 18th

Annual Network and Distributed System Security Symposium, NDSS 2011.

San Diego, California, USA.

Botnet. (2017, March 23). Retrieved March 26, 2017, from https://en.wikipedia.

org/wiki/Botnet.

Bots and botnets—A growing threat. (2016). Retrieved March 26, 2017, from

https://us.norton.com/botnet/.

Brandhorst, C. J., & Pras, A. (2006). DNS: A statistical analysis of name server traffic

at local network-to-Internet connections. In C. Delgado Kloos, A. Marín, & D.

Larrabeiti (Eds.), EUNICE 2005-Proceedings of the 11th Open European

Summer School and IFIP WG6.4/6.6/6.9 Workshop (pp. 255-270). (IFIP

https://www.welivesecurity.com/author/jalbors/
https://www.welivesecurity.com/
https://en.wikipedia/
https://us.norton.com/botnet/
https://us.norton.com/botnet/

56

International Federation for Information Processing; Vol. 196). Berlin: Springer.

doi: 10.1007/0-387-31170-X_19

Bro Introduction. (n.d.). Retrieved March 26, 2017, from https://www.bro.org/

sphinx/intro/.

Caglayan, A., Toothaker, M., Drapeau, D., Burke, D., & Eaton, G. (2009). Real-time

detection of fast flux service networks. Cybersecurity Applications &

Technology Conference for Homeland Security (pp. 285-292). Washington,

DC: IEEE Computer Society. doi:10.1109/catch.2009.44.

Choi, H., Lee, H., & Kim, H. (2007). Botnet detection by monitoring group activities in

DNS traffic. CIT '07 Proceedings of the 7th IEEE International Conference on

Computer and Information Technology (pp. 715-720). Washington, DC: IEEE

Computer Society.

Cantón, D. (2015, January 20). Botnet detection through DNS-based approaches.

Retrieved September 11, 2017, from https://www.certsi.es/en/blog/botnet-

detection-dns.

CounterMeasures–A security blog. (2010, September 24). Retrieved March 26, 2017,

from http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/.

Dabbagh, M. (2012). Covert channels in botnets. Retrieved from http://web.engr.

oregonstate.edu/~dabbaghm/projects/CovertChannels.pdf.

Dietrich, C., Rossow, C., Freiling, F. C., Bos, H., Steen, M., & Pohlmann, N. (2011).

On botnets that use DNS for command and control. EC2ND '11 Proceedings

of the 2011 Seventh European Conference on Computer Network Defense

http://dx.doi.org/10.1007/0-387-31170-X_19
https://www.bro.org/
https://www.certsi.es/en/blog/botnet-detection-dns
https://www.certsi.es/en/blog/botnet-detection-dns
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://web.engr/

57

(pp. 9-16). Washington, DC: IEEE Computer Society.

doi:10.1109/EC2ND.2011.16

Domain name system. (2017, March 22). Retrieved March 27, 2017, from

https://en.wikipedia.org/wiki/Domain_Name_System.

Farnham, G., & Atlasis, A. (2013). Detecting DNS tunneling. SANS Institute InfoSec

Reading Room (pp. 1-32).

Garcia, S. (2015). Malware capture facility project. Retrieved August 22, 2017, from

https://stratosphereips.org.

Hagen, J., & Luo, S. (2016, August 17). Why Domain Generating Algorithms (DGAs)?

Retrieved March 25, 2017, from http://blog.trendmicro.com/domain-

generatingalgorithms-dgas/.

Holz, T., Gorecki, C., Rieck, K., & Freiling, F. (2008). Measuring and detecting fast-

flux service networks. In Proceedings of the 15th Annual Network and

Distributed System Security Symposium (NDSS).

HSC. (2012, May 02). Retrieved October 02, 2017, from http://www.hsc.fr/

ressources/outils/dns2tcp/.

Jin, Y., Ichise, H., & Iida, K. (2015). Design of detecting botnet communication by

monitoring direct outbound DNS queries. CSCLOUD '15 Proceedings of the

2015 IEEE 2nd International Conference on Cyber Security and Cloud

Computing (CSCloud) (pp. 37-41). Washington, DC: IEEE Computer Society.

doi:10.1109/CSCloud.2015.53.

https://doi.org/10.1109/EC2ND.2011.16
https://doi.org/10.1109/EC2ND.2011.16
http://www.hsc.fr/

58

Krmíček, V. (2011). Inspecting DNS flow traffic for purposes of botnet detection.

GEANT3 JRA2 T4 Internal Deliverable (pp. 1-9).

Lysenko, S., Pomorova, O., Savenko, O., Kryshchuk, A., & Bobrovnikova, K. (2015).

DNS-based anti-evasion technique for botnets detection. In Proceedings of the

8th IEEE International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications (pp. 453-458).

Warsaw, Poland: IEEE Computer Society.

doi:10.1109/IDAACS.2015.7340777.

Newman, R. C. (2010). Computer security: Protecting digital resources. Sudbury, MA:

Jones and Bartlett.

Nussbaum, L., Neyron, P., & Richard, O. (2009). On robust covert channels inside

DNS. Emerging Challenges for Security, Privacy and Trust IFIP Advances in

Information and Communication Technology (pp. 51-62). doi:10.1007/978-3-

642-01244-0_5.

Peer-to-peer botnets for beginners. (2013, December 22). Retrieved March 26, 2017,

from https://www.malwaretech.com/2013/12/peer-to-peer-botnets-

forbeginners.html.

RFC 883-domain names-implementation and specification. (1983 November).

Retrieved March 26, 2017, from https://www.ietf.org/rfc/rfc883.txt.

RFC 4413-TCP/IP field behavior. (2006 March). Retrieved March 26, 2017, from

https://tools.ietf.org/html/rfc4413.

59

Rouse, M. (2012, February). Botnet (zombie army). Retrieved March 26, 2017, from

http://searchsecurity.techtarget.com/definition/botnet.

The Bro network security monitor. (n.d.). Retrieved March 26, 2017, from

https://www.bro.org/.

What is a Botnet Attack?-Definition. (n.d.). Retrieved March 25, 2017, from

https://usa.kaspersky.com/internet-security-center/threats/botnet-

attacks#.WN3sKYWcE2w.

Yadav, S., & Reddy, A. L. (2012). Winning with DNS failures: Strategies for faster

botnet detection. Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering Security and Privacy in

Communication Networks (pp. 446-459). doi:10.1007/978-3-642-31909-9_26

Zhang, H., Papadopoulos, C., & Massey, D. (2013). Detecting encrypted botnet

traffic. 2013 Proceedings IEEE INFOCOM, 2013,

doi:10.1109/infcom.2013.6567180.

Zeltser, L. (2016, August 08). Tunneling data and commands over DNS to bypass

firewalls. Retrieved March 27, 2017, from https://zeltser.com/c2-dns-tunneling/

60

Appendix A: DNA Message Format

61

62

63

64

65

66

67

68

Appendix B: Iodine Lab Implementation

1- Create two Ubuntu instances on Amazon Web Services.

2- Assign static IP addresses to these instances.

3- Install Iodine on both instances

sudo apt-get install iodine

4- Configure the inbound traffic on the server to allow only the incoming DNS traffic.

Note: For experiment purposes, all inbound traffic was allowed to the server and

to the client only from my remote location.

Figure 17. DNS tunneling server firewall (inbound configuration).

5- Configure the inbound traffic on the client to block all incoming traffic.

Note: For experiment purposes, all inbound traffic was allowed to the client only

from my remote location.

Figure 18. DNS tunneling client firewall (inbound configuration).

69

6- Block the outbound SSH traffic on the client.

Figure 19. DNS tunneling client firewall (outbound configuration).

7- Register a domain name (ialabs.net) and delegate a subdomain (tunnel.ialabs.

net) to the DNS tunneling server.

Figure 20. Domain name settings.

8- Using Putty, connect to the Iodine server at 52.52.65.253.

9- Run iodined on the tunneling server

sudo iodined -c -f -P mysecret 192.168.250.1

tunnel.ialabs.net

Figure 21. Running iodined on the DNS tunneling server.

70

Figure 22. Tunneling interface on the server (192.168.250.1).

10- Make sure that tunnel is setup and working troubleshooting your iodine

setup.

Figure 23. DNS tunneling server troubleshooting.

11- Using Putty, connect to the Iodine client at 35.165.67.21.

12- Run iodine on the tunneling client

sudo iodine -f -P mysecret 52.52.65.253 tunnel.ialabs.net

http://code.kryo.se/iodine/check-it/
http://code.kryo.se/iodine/check-it/

71

Figure 24. Running iodine on the DNS tunneling client.

Figure 25. Tunneling interface on the server (192.168.250.2).

13- Run the following command

ssh ubuntu@192.168.250.1 -D 9999

72

Figure 26. SSH connection tunneling (iodine).

73

Appendix C: DNS2TCP Lab Implementation

1- Create two Ubuntu instances on Amazon Web Services.

2- Assign static IP addresses to these instances.

3- Install dns2tcp on both instances by running the following command:

sudo apt-get install dns2tcp

4- Configure the inbound traffic on the server to allow only the incoming DNS

traffic.

Note: For experiment purposes, all inbound traffic was allowed to the

server and to the client only from my remote location.

Figure 27. DNS tunneling server firewall (inbound configuration).

5- Configure the inbound traffic on the client to block all incoming DNS traffic.

Note: For experiment purposes, all inbound traffic was allowed to the client

only from my remote location.

Figure 28. DNS tunneling client firewall (inbound configuration).

74

6- Block the outbound SSH traffic on the client.

Figure 29. DNS tunneling client firewall (outbound configuration).

7- Register a domain name (ialabs.net) and delegate a subdomain (tunnel2.ialabs.

net) to the DNS tunneling server.

Figure 30. Domain name settings.

8- Using Putty, connect to the dns2tcp server at 52.52.65.253.

9- Configure the dns2tcpd.conf as the following:

10- Using Putty, connect to the dns2tcp client 35.165.67.21.

11- Configure the dns2tcpc.conf as the following:

75

12- Run the dns2tcp server using the following command on the tunneling server:

sudo dns2tcpd -F -d dns2tcpd 2 -f /etc/dns2tcpd.conf

Figure 31. Running dns2tcp on the DNS tunneling server.

13- Run the dns2tcp client using the following command on the tunneling client:

sudo dns2tcpc -z tunnel2.ialabs.net 52.52.65.253 -f

/etc/dns2tcpc.conf

Figure 32. Running dns2tcp on the DNS tunneling client.

14- Run the following command on the tunneling client:

sudo ssh ubuntu@127.0.0.1 -p 8888 -D 8080

76

Figure 33. SSH connection tunneling (dns2tcp).

77

Appendix D: BRO Network Security Monitor Scripts

DGA Detection Script

78

Figure 34. DGA detection–script output.

79

FLUX Detection Script

80

Figure 35. Flux detection–script output

81

SSH Tunneling Detection Script

Figure 36. Iodine SSH tunneling detection.

Figure 37. DNS2TCP SSH tunneling detection.

82

Appendix E: DGA-, FFSN-, and DF-based Botnets Dataset

	St. Cloud State University
	theRepository at St. Cloud State
	12-2017

	Multi-Stage Detection Technique for DNS-Based Botnets
	Wasseem Jammal
	Recommended Citation

	tmp.1513276727.pdf.HgxBW

