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Abstract — An M/G/1 retrial queueing system with k stages of heterogeneous services and feedback is considered. Primary customers 
get into the system according to Poisson process. If the server is free, an arriving customer receives first stage service immediately 
otherwise, he enters a retrial orbit. After the completion of the first stage, the customer may proceed to second stage with probability θ1, or 
feedback to the retrial group with probability p 1 or depart the system with probability 1 – θ1 – p1 = q1. In general, after the completion of the 
ith, (i = 1, 2, ...., k−1) stage, the customer may opt (i+1)th stage with probability θ1, or feedback to the retrial group with probability p i or 
depart the system with probability 1 – θ1 – pi = qi. The customer in final stage will feedback to the retrial group with probability pk or depart 
the system with probability 1 – pk = qk. It is assumed that the service times and the retrial times are arbitrarily distributed. The condition 
under which the steady state exists is investigated. Performance measures are obtained. A stochastic decomposition is presented.  

Key Words — Feedback, Heterogeneous Service, Multi Stage, Retrial Queue, Stochastic Decomposition. 

——————————      —————————— 

1 INTRODUCTION                                                                     
he retrial queueing system has been studied extensively 
due to its wide applicability in telephone switching 
system, telecommunication and computer networks. 

These systems are characterized by the feature that arrivals 
who find the server busy join the retrial queue (orbit) to try 
again for their requests or leave the service area immediately. 
For comprehensive survey on retrial queues refer [1, 2, 4] and 
references therein.  

Recently considerable attention has been devoted to the 
queueing system with two or more stages of heterogeneous 
service. Choudhury and Paul [3] have inspected the M/G/1 
system with two stages of heterogeneous service and Bernoulli 
feedback. 

Shahkar and Badamchizadeh [7] have studied a single 
server general service queue with Poisson input and k-stages 
of service. Salehirad and Badamchizadeh [6] have analysed 
multi stage M/G/1 queueing system with feedback. 

In many examples such as production system, bank 
services, computer and communication networks, the service 
of customers may be repeated. In this paper with this 
motivation a single server retrial queue with Poisson input, k 
stages of heterogeneous service and feedback is analyzed.  

2 MODEL DESCRIPTION 
Assume that the customers arrive at the system in accordance 
with a Poisson process with rate λ. If an arriving customer 
finds the server idle, the customer enters the service 
immediately for first stage service. If the server is found to be 
blocked, the arriving customer enters a retrial group. The 
retrial time of customer is generally distributed with 
distribution function A(x) and Laplace Stieltjes transform 

).s(A ∗  
The server provides k stages of heterogeneous service in 

succession. The service discipline is assumed to be first come 
first served. Service time of  ith stage is denoted by the random 
variable Bi having Laplace Stieltjes transform ∗

iB (s) and first 
two moments  µ1i  and µ2i,  i = 1, 2, . . . k.  

After completion the ith stage the customer may move to 
i+1th stage with probability  θi or feedback to the retrial queue 
with probability  pi or depart the system with probability 
qi = 1 – θi – pi, for i = 1, 2, . . . k−1. The customer in the final 
stage k may feedback to the retrial queue with probability pk 
or depart the system with complementary probability. 
According to the model, the time required by a customer to 
complete the service cycle is a random variable B given by 

B  =  ∑
=

−Θ
k

1i
i1i  B  

having Laplace Steltjes transform )s(B∗  = ∏
=

−Θ
k

1i
1i ∗

iB (s)  

and expected value    E(B)  = ∑
=

−Θ
k

1i
i1i )E(B   

where  Θi  =  θ1 θ2 . . .  θi and Θ0  =  1. 

The functions η(x) = 
A(x)  1

)x(dA
−

 and µi(x) = 
(x)B  1
)x(dB

i

i

−
,  

i = 1, 2, . . . k are the conditional completion rates (at time x) 
for repeated attempts and for services.  

Define ∗Λ i   =  ∗
1B  ∗

2B  . . . . ∗
iB  and ∗Λ0  = 0. 

The first moment  M1i of ∗Λ i is given by 

 M1i = 
1  z

lim
→

 dz / z))  (1 (  d i −λΛ∗  = λ ∑
=

i

1j
j )E(B = λ ∑

=
µ

i

1j
1j  

The second moment  M2i of ∗Λ i  is 

 M2i  =
1  z

lim
→

 2
i

2 dz / z))  (1 (  d −λΛ∗  

T 
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The stage of the system at time t can be described by the 
Markov process {N(t) ; t ≥ 0} = {J(t), X(t), ξ0(t), ξi(t) ; t ≥ 0, 
i = 1, 2, . . . , k} where J(t) denotes the server state 0 or i 
(i = 1, 2, . . . , k) according as the server being idle or busy in ith 
stage of service. Let X(t) denote the number of customers in 
the retrial queue at time t. If J(t) = 0 and X(t) > 0, then ξ0(t) 
represents the elapsed retrial time, if J(t) = i, (i = 1, 2, . . . , k),  
ξi(t) corresponds to the elapsed time of the customer being 
provided  ith stage of service at time t. 

3 STABILITY CONDITION 
Let Xn (n ≥ 1) be the orbit length at the departure epoch of nth 
customer departure, then {Xn : n ≥ 1} is ergodic if and only if  

∑
=

−Θ
k

1i
1i M1i – ∑
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1k
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k
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1ii  p  < A∗(λ) 

Proof 
Let Xn be the orbit length at the time of departure of nth 

customer n ≥ 1. Then {Xn, n ∈ N} is irreducible and aperiodic. 
We now prove that the embedded Markov chain {Xn, n ∈ N} is 
ergodic if and only if 

∑
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Foster’s criterion states that an irreducible and aperiodic 
Markov chain is ergodic if there exists a nonnegative function 
f(j), j ∈ N, and ε > 0, such that the mean drift ψ j = E[f(Xn−1) − 
f(Xn) | Xn = j] is finite for all j ∈ N and ψ j < − ε for all j ∈ N, 
except perhaps for a finite number of j. 

In our case {Xn : n ∈ N} is irreducible and aperiodic. Now 
considering the function f(j) = j, we have  

ψ j  = ∑
=

−Θ
k

1i
1i M1i – ∑

−

=
Θ

1k

1i
i M1i + ∑
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−Θ

k

1i
1ii  p − A∗(λ), j ≥ 1. 

Hence if ∑
=

−Θ
k

1i
1i M1i – ∑

−

=
Θ

1k

1i
i M1i + ∑

=
−Θ

k

1i
1ii  p < A∗(λ) then 

{Xn} is ergodic. 
The necessary condition follows from Kaplan’s condition 

namely  ψ j < ∞ for all j ≥ 0 and there exists jn ∈ N such that 
ψ j ≥ 0 for j ≥ j0. Since the arrival stream is a Poisson process. 
Burke’s theorem establishes the existence of the steady state 
probabilities of {J(t), X(t), t ≥ 0} and they are positive if and 
only if  
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From the mean drift   

ψ j = ∑
=

−Θ
k
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1ii  p − A∗(λ) for all j ≥ 

1, where j denotes the number of customers in the orbit, we 
have the reasonable conclusion. 

The term ∑
=

−Θ
k

1i
1i M1i – ∑

−

=
Θ

1k

1i
i M1i represents the mean 

number of customers entering orbit due to the server being 
busy with i stage service, i = 1, 2, . . . , k. The second term,  

∑
=

−Θ
k

1i
1ii  p is arrival due to feedback. Further A∗(λ) provides 

the expected number of orbiting customers who enter service 
successfully. For stability the new customers arrive during a 
service time more slowly than customers from the orbit who 

enters service successfully. That is ∑
=

−Θ
k

1i
1i M1i – ∑

−

=
Θ

1k

1i
i M1i +  

∑
=

−Θ
k

1i
1ii  p < A∗(λ) implying  ψ j < 0  for  j ≥ 1. 

4 STEADY STATE  DISTRIBUTION 

For the process, {N(t) ; t ≥ 0}, define the probabilities,  
Ι0(t) = P{J(t) = 0, X(t) = 0} 
Ιn(t, x) dx = P{J(t) = 0, X(t) = n, x < ξ0(t) < x + dx}, n ≥ 1 
Wn,i(t, x) dx = P{J(t) = i, X(t) = n, x < ξi(t) < x + dx},   
      n ≥ 0 ; i = 1, 2, … k 
Let Ι0, Ιn(x) and Wn,i(x) are the limiting densities of  Ι0(t), 

Ιn(t, x) and Wn,i(t, x). 

5 STEADY STATE PROBABILITY GENERATING 
FUNCTION 

The steady state equations for the model under 
consideration are, 

λ Ι0  =  ∑
−

=

1k

1i
iq ∫
∞
µ

0
i )x( W0,i(x) dx + (1 – pk) ∫

∞
µ

0
k )x(  W0,k(x) dx 

(1) 

dx
)x(d nΙ   =  − (λ + η(x)) Ιn(x), n ≥ 1                 (2) 

dx
)x(dW i ,0  = − (λ + µi(x)) W0,i(x), i = 1, 2, . . .  k                (3) 

dx
)x(dW i ,n  = − (λ + µi(x)) Wn,i(x) + λ Wn−1,i(x),  

    n ≥ 1, i = 1, 2, . . . k             (4) 
with boundary conditions 

Ιn(0) = ∑
−

=

1k

1i
iq  ∫

∞
µ

0
i )x( Wn,i(x) dx + (1 – pk) ∫

∞
µ

0
k )x(  Wn,i(x) 

dx 

               + ∑
=

k

1i
ip ∫

∞
µ

0
i )x( Wn−1,i(x) dx,  n ≥ 1                (5) 
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W0,1(x) = λ Ι0 +  ∫
∞
Ι

0
1 )x( η(x) dx                   (6) 

Wn,1(x) = λ ∫
∞
Ι

0
n )x( dx + ∫

∞

+Ι
0

1n )x(  η(x) dx,  n ≥ 1                (7) 

Wn,i(x) = θi−1 ∫
∞

−µ
0

1i )x(  Wn,i−1(x) dx, n ≥ 0,   i = 2, 3, . . . . k      

(8) 
The normalizing condition is given by the equation 

Ι0 + ∑ ∫
∞

=

∞
Ι

1n 0
n dx )x(   + ∑ ∑ ∫

=

∞

=

∞k

1i 0n 0
i,n dx )x(W     =  1                  (9) 

Define probability generating functions, 

Ι(z, x) = ∑
∞

=
Ι

1n

n
n z )x(  and 

Wi(z, x) = ,z )x( W
0n

n
i,n∑

∞

=
 i = 1, 2, 3, . . . , k 

Multiplying the equations (1) – (5) with suitable powers of 
z, taking the sum and solving the differential equations so 
obtained, we get 
Ι(z, x) = Ι(z, 0) e−λx [1 – A(x)]                (10) 
Wi(z, x) = Wi(z, 0) e−λ(1 – z) x [1 – Bi(x)], i = 1, 2, . . . k              
(11) 

Ι(z, 0) = ∑
=

+
k

1i
ii ]zp  [q  Wi(z, 0) ∗

iB (λ (1 – z)) – λ Ι0            (12) 

Using equations (10) and (12), the equations (6) and (7) 
yield 
W1(z, 0) [[z + (1 – z) A∗(λ)] [q1 + p1z] ∗

1B  (λ(1 – z)) – z] 
=  λ Ι0 (1 – z) A∗(λ) – [z + (1 – z) A∗(λ)]  

    [∑
=

+
k

2i
ii ]zp  [q  Wi(z, 0) ∗

iB (λ (1 – z))                         (13)  

and equation (8) yields 
Wi(z, 0) = θi−1 Wi−1 (z, 0) ∗

iB (λ (1 – z))  

 = θi−1 θi−2 Wi−2 (z, 0) ∗
−Λ 1i (λ (1 – z)) ∗

iB (λ (1 – z))  

 = Θi−1 z))  (1 ( 1i −λΛ∗−  W1(z, 0),  i = 2, 3, . . . k          
(14) 
Substituting the expressions in equation (13) in to equation 
(14), and solving we get 
Wi(z, 0) = Θi−1 z))  (1 ( 1i −λΛ∗− λ Ι0 (1 – z) A∗(λ)] / D(z) 
                            i = 1, 2, . . . , k       (15)           

where D(z) =  [z + (1 – z)A∗(λ)]∑
=

+
k

1i
ii ]zp  [q Θi−1 z))  (1 ( i −λΛ∗ − 

z 

Substituting the expression of Wi(z, 0), i = 1, 2, . . . , k in 
equation (12), we have 

Ι(z, 0)  =  λ Ι0 z [1 − ∑
=

+
k

1i
ii ]zp  [q ∗(λ)]

 
Θi−1 z))  (1 ( i −λΛ∗ ] / D(z) 

(16) 
The partial generating function of the orbit size when the 

server is busy in providing ith stage service is given by, 

Wi(z) = ∫
∞

0
i dx x) ,z( W  

 = 
)z(D

)(A 0 λΙ ∗

Θi−1 z))  (1 ( 1i −λΛ∗− [1 – ∗
1B  (λ(1 – z)) – z]  

   i = 1, 2, 3,... k  
 
The steady state probability that the server is in ith stage 

service, is 

Wi(1) = 
1

01i 1i

T
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 The partial generating function of the orbit size when 
the server is idle as 

Ι(z) = ∫
∞
Ι

0
dx x) (z,  

 = )](A  [1 z 0 λ−Ι ∗ [1–∑
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+
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ii ]zp  [q Θi−1 z))]  (1 ( i −λΛ∗ / D(z)  

The steady state probability that the server idle in the non-
empty system is 
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(18) 
Substituting the expressions of  Ι(1) and Wi(1) for  i = 1, 2, . . . k 

in the normalizing condition   Ι0 + Ι(1) + ∑
=

k

1i
i )1( W  = 1, We get    

Ι0  =  T1 / [ )(A λ∗ T2] 

where  T2  =  1 – 1i
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The probability generating function for the number of 
customers in the system is 

K(z) = Ι0 + Ι(z) + z ∑
=

k

1i
i )z( W  

 = )(A 0 λΙ ∗ [∑
=

+
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The mean number of customers in the system   

 Ls  =  K′(1)  =  
2

2

T
N  + 

21

31

T T
T N

                 (20) 

where 

N1 = 1 –∑
=

−Θ
k

1i
1i M1i + ∑

−

=
Θ

1k

1i
i M1i −∑

=
−Θ

k

1i
1ii  p + ∑

=
−Θµλ

k

1i
1i1i     

N2 = ∑
=

−Θµλ
k

1i
1i1i    + ∑

=
−Θµλ

k

1i
1i1i1i  M   − ∑

=
−Θ

k

1i
1i1ii M  p  

  + 
2
1  




Θ∑

=

k

1i
i M2i + ∑

=
−Θµ

k

1i
1i2i   − 




Θ∑

=
− 2i

k

1i
1i M   

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               499 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

T3 = [1 – A∗(λ)] [A∗(λ) – T1] + ∑
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The probability generating function for the number of 
customers in the queue is 

H(z) = Ι0 + Ι(z) + ∑
=

k

1i
i )z( W

 

 
= Ι0 A∗(λ) [∑

=
+

k

1i
ii ]zp  [q Θi−1 z))  (1 ( i −λΛ∗  

 + ∑
=

∗ −λ−
k

1i
i z))]  (1(B  [1 Θi−1 z))  (1 ( 1i −λΛ∗− − z] /D(z) 

(21) 
The mean number of customers in the queue is   

Lq  =  H′(1)  =  Ls –∑
=

−Θ
k

1i
1i λ µ1i] / T2                  (22) 

6 STOCHASTIC DECOMPOSITION 

Stochastic decomposition has been widely observed among 
M/G/1 type queues. The decomposition property states that 
the number of customers in the system in steady state at a 
random point of time is distributed as the sum of two 
independent random variables, one of which is the number of 
customers in the corresponding standard queueing system in 
steady state at a random point in time, the other random 
variable may have different probabilistic interpretation in 
specific cases depending on the vacation scheduled. 

Let π(z) be the probability generating function of the 
number of customers in the classical M/G/1 queue with 
k-stages of service facility and feedback. Then  

π(z) = [ z))  1((  ]zp  [q [ )](A  T   1 i1i

k

1i
ii1 −λΛΘ+λ−− ∗

−
=

∗ ∑  

      + ]T)z(D/ ]z z))  1((  z))]  1((B  [1  z 21

k
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1i1ii∑
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where D1(z) = ∑
=

+
k

1i
ii ]zp  [q Θ i−1 z))  (1 ( i −λΛ∗ − z 

If the server is idle either due to retrial of customers from 
the orbit or due to empty system, we say that the server is on 
vacation. Let ψ(z) be the probability generating function of the 
number of customers in the system at a random point of time 
given that the server is on vacation. Then 

ψ(z) = 
(1)  
(z)  

0

0

Ι+Ι
Ι+Ι

 

 = T2[ z))  1((  ]zp  [q i1i

k

1i
ii −λΛΘ+ ∗

−
=
∑ −z] 

  / )]](A  T   [1 [D(z) 1 λ−− ∗  
From equation (19) it is observed that the probability 

generating function of the number of customers in the system 
K(z) is decomposed as  

K(z)   =   π(z)  ψ(z). 
This shows that the decomposition law is valid for the 

model under consideration.  
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