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Abstract In this paper we analyze the electricity portfolio problem of a big consumer in a 
multi-stage stochastic programming framework. Stochasticity enters the model 
via the uncertain spot price process and is represented by a scenario tree. The 
decision that has to be taken is how much energy should be bought in advance, 
and how large the exposition to the uncertain spot market, as well as the relatively 
expensive production with an own power plant should be. The risk is modeled 
using an Average Value-at-Risk (AVaR) term in the objective function. The 
results of the stochastic programming model are compared with classical fix mix 
strategies, which are outperformed. Furthermore, the influence of risk parameters 
is shown. 

keywords: Stochastic Optimization, Scenario Generation, Energy Markets, 
Optimal Electricity Portfolios, Average Value-at-Risk 

1. Introduction 
In this paper, we present a multi-stage stochastic optimization model for 

calculating optimal electricity portfolios. We refer to [ lo ]  for an overview of 
stochastic programming and to [ I ]  for applications to the energy market. The 
general formulation of a multistage stochastic optimization program is 

where < denotes a multi-dimensional stochastic process describing the future 
uncertainty. The constraint-set X contains feasible solutions (x,  <) and the 
(non-anticipativity) set N of functions < H x is necessary to ensure, that the 
decisions xt are only based on realizations up to stage t (to, . . . , I t ) .  f (z(<), <) 
is some cost function. 
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We apply this framework to the optimization of electricity portfolios. Ad- 
ditionally, an Average Value-at-ksk functional is included, enabling modern 
risk management, which is necessary to survive in liberalized energy markets 
economically. 

This paper is organized as follows. Section 2 describes the estimation and 
simulation of the (uncertain) electricity spot market, which is the most import 
input for the stochastic program. Section 3 provides a detailed overview of the 
underlying model. Section 4 summarizes numerical results, while Section 5 
concludes the paper. 

2. Scenario Generation 

2.1 Estimation and simulation of the spot market 

The generation of scenarios for the possible development of spot prices is 
based on an econometric model which is designed to capture the past move- 
ments of the spot price as good as possible. This model will be capable of 
giving good estimates for the expected price at every hour of the period under 
consideration. To generate realistic scenarios we simulate the residuals of the 
model and thereby distort the prediction to get a possible trajectory for the spot 
price of energy. At the end, we compute the mean for 4 consecutive values and 
therefore reduce the price movement in one day to six data points, representing 
the average price from 0-4,4-8,8- 12,12- 16, l6-20,20-24 o'clock respectively. 

The modeling of the spot prices is done using linear regression where the 
main explanatory variables are: the hour of the day, the day of the week, and 
the season. The regressors related to time are modeled in such a way that there 
are initially 24 x 7 x 3 = 504 dummy variables indicating which hour of which 
day in what season a specific data point belongs to. Obviously, this yields to an 
unnecessary huge model, which can be reduced in a further step. The reduction 
is based on the observation that the coefficient of a dummy variable will be the 
mean of the data points that it points to. A feasible way to reduce the number 
of regressors would be to compare the means of the different hours on the 
different days in the different seasons and club two regressors if the means are 
only insignificantly different. To determine whether two means are different, 
we use the Kruskal-Wallis test (see for example [ 5 ] ) ,  since it is based on rank 
order and does not assume the data to be distributed according to any specific 
distribution. The necessity of such a non-parametric approach will become 
clear, when we discuss the residuals of the model. With this procedure, we are 
able to significantly reduce the number of regressors without sacrificing much 
of the accuracy in predicting the expected (mean) price in the respective hours. 

As already mentioned, we also use temperatures as explanatory variables. 
This proved to be beneficial (in terms of explanatory power) and also supports 
the intuition of modeling temperatures not as a single variable, but to split it up 
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into six variables measuring the effect of temperature on power prices - not for 
the whole day, but for the six 4-hour blocks described above. 

This model of the stock prices focuses heavily on the demand side of the 
market, which is reasonable, since the average prices and the daily patterns 
of price movements can be explained with these factors pretty well (adjusted 
~ ~ = 0 . 6 ) .  To explain long term changes in the market and to understand the 
peaks in the hourly spot price, it would be a valuable idea to include the supply 
side too. This would allow for a better understanding of the energy market 
and probably boost the insample accuracy too. However, when it comes to 
simulation these gains would probably be lost, because the supply factors are 
hard to forecast. 

To capture some of these effects we add an AR(1) and AR(25) term to our 
Regression model and obtain a R' of 0.84. 

An inspection of the residuals shows, that those are clearly not normal. 
Since we need to simulate from the residual distribution, we have to fit some 
parametric models to the empirical residuals. It turns out that the distributions 
are extremely wide stretched (peaks in the prices) and are therefore heavy 
tailed. We chose to use a stable distribution to fit the data, since the family 
of stable distributions contains heavy tailed distributions too, and it is known 
that sums of independent identically distributed random variables follow some 
stable law. The family of stable distributions can be characterized through their 
characteristic function 

where 0 < a! < 2 can be interpreted as an index of stability (everything below 
2 is heavy trailed), P is a skewness parameter, y a scale parameter, and 6 a 
location parameter. For a in depth description of heavy tailed distributions, 
their properties and how to fit them see [8]. To fit the stable distribution to 
our residuals, we split the residuals into 6 groups according to which time slot 
they belong to and separately estimate stable distributions for these time slots. 
In a next step we generate a sufficient number of random draws from these 
distributions and use those together with the predicted prices to obtain spot 
price trajectories. For fitting the stable distribution and the generation of the 
random variates we use the software stable.exe (see [6]). 

For fitting the model we use one year of hourly data (01.06.2005-31.05.2006) 
from the European Energy Exchange (EEX). Using the fitted model and distri- 
bution of the residuals, we simulate price trajectories corresponding to a price 
development of half a year. Figure 1 dipicts the means of the simulated values 
in each of the 4 hour slots (left) and 20 days of a typical simulation trajectory 
(right). 



Figure I .  Averages of simulated price trajectories (left), Sample simulated spot price trajectory 
(right). 

2.2 Generation of scenario trees 
We apply a scenario generation method based on [7]. This method is 

optimization-problem related, and aims at minimizing a probability metric with 
a (-structure, i.e, the uniform distances of expectations of functions taken from 
a class 3-t of measurable functions. The Wasserstein distance (from the class 3-t 
of Lipschitz continuous functions), which plays an important role for stability 
results and approximation of stochastic programming models, has been used. 

The implemented method generates scenario trees with a stagewise-fixed 
structure, which differs from other methods, e.g. [2] or e.g. an explicit method 
for the energy market in [4]. 

The size of the generated underlying spot market scenario tree with the 
stagewise-fixed structure, which was used for numerical experiments, is 

where nt denotes the number of nodes in stage t ,  resulting in 560 scenarios. 

3. Optimization Model 
The goal of the optimization is to determine the amount of energy that should 

be bought in advance for a time period of half a year. The driving factor of the 
optimization is the expected demand for energy at all points of the considered 
time period. This demand is assumed to be non-stochastic and can be met in 
three ways. One may 

1 buy electricity on the spot market, 

2 produce electricity, and/or 
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3 buy supply contracts for future delivery of energy. 

The supply contracts are designed as follows: every month the producer 
can consume a certain amount of energy ui in every of the six periods of the 
day. This amount is part of the contract and can be specified by the consumer. 
On every day the energy consumption is bounded by a fraction of the overall 
monthly consumption, of course with the additional restriction, that the monthly 
consumption adds up to the pre-specified amount. 

On the tree described in section 2.2 the program is shown in equation (I),  
which minimizes the expected total cost and the (terminal) Average Value- 
at-Risk (AVaR). Let AV@R, be defined as the solution of the optimization 
problem 

1 
inf {a + - E[Y -a]+ : a E R), 

1 - a  

where Y is a random cost variable. With a finite set of scenarios this optimiza- 
tion problem can be reformulated as a linear program (see [9]). 

M(n) is the month of the node n, gn,h, s,,h, m n , h  electricity coming from 
own production (generation), the supply contract and the spot market in node n 
and hour-block h respectively, while Dn,h denotes the (deterministic) demand. 
,5' represent the daily upper constraint on consumption, defined as fraction of 
the overall monthly consumption. 

R(n, t )  returns the scenario predecessor node of terminal node n in stage t ,  
P,(,) is the scenario probability of the scenario terminating in node n. T ( n )  
returns the stage of node n, FZ), F,O are the costs of the peak and offpeak future 
at stage t ,  and 4 is a factor by which the contract is cheaper than the future 
price. um,h is the optimal contract volume for month n and hour-block h. <,,h 

is the stochastic spot price. 
The constraints the model ( I )  are defined for different parameter sets. The 

letter in parenthesis at the right indicates, which group of sets the constraint 
is defined for. Let 3-1 be the set of all hour-blocks, and Rp and 3-1, peak and 
off-peak hour-blocks. N the set of all nodes and NT the set of all terminal 
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Figure 2. Demand of a large local energy distributor. 

nodes. M ,  is the set of all stageslnodes within month m. The following group 
of sets are applied: 

(a) Vn E N,'dh E 'H, 

(b) Vn E N ,  'dh E ' H p ,  

(c) 'dn E N ,  'dh E K O ,  

(d) 'di E M,, 'dm E {June, . . . , November), Vh  E 'H. 

(e) Vn E NT,'dh E 'H. 

4. Numerical Results 
A (deterministic) demand forecast of a large local energy distributor has 

been used. This demand is shown in Figure 2 for each of the six 4-hour blocks 
described in Section 2.1. 

To enable a numerical comparison, the following parameters have been fixed: 
The cost of producing energy G'prod is Euro 70 and the maximum production 
Gmax per 4-hour block is 5000MW. Factor P has been set to 0.1 and d to 0.9. 
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Spot Market Supply Contract Production Expected Total Cost (Euro) 
20% 60% 20% 1.838.258.100 
20% 70% 10% 1.706.414.546 
20% 80% 0% 1 S74.570.991 

Table 1. Expected Total Cost for Fix Mix Portfolios 

June July August September October November 
0-4 229153 546926 510129 449503 407692 802547 

Table 2. Example contract for ct = 0.9 (MWh) 

a Expected Total Cost (Euro) Contracted Volume (GWh) 
0.7 1.221.079.145 19990 

Table 3. Aggregated results of the stochastic optimization for different risk parameters 

4.1 A Fix Mix Solution 
To compare the stochastic solution, we calculated some fix mix strategies. 

The results are shown in Table 1. 

4.2 The Stochastic Solution 
The stochastic optimization models have been implemented in AMPL (see 

[3]). The workflow has been developed in MatLab and some parsing scripts 
have been implemented in Python. The optimization problems have been solved 
with the MOSEK interior point solver. 

The optimization problems were solved with a Pentium 4 (2GHz) with 1GB 
RAM running Debian GNUILinux. The average solution time of the underlying 
problems is half an hour. 

A typical optimal contract volume sheet is shown in Table 2 for a = 0.9. 
To see the influence of the risk parameter a,  the expected total cost of the 
portfolio in Euro and the sum of contracted volume in GWh is shown in Table 3. 
Additionally, these results show that the stochastic solution clearly outperforms 
fix mix strategies. 



5. Conclusion 
In this paper we proposed a model to solve the electricity portfolio problem 

of a big consumer in a multi-stage stochastic programming framework. The 
decision that has to be taken is how much energy should be bought in advance 
and how large the exposition to the uncertain spot market, and the relatively 
expensive production by an own power plant should be. It has been shown 
that the underlying spot price can be realistically estimated and simulated with 
a regression model. The underlying scenario trees representing the uncertain 
future spot prices are used to calculate optimal electricity portfolios. Different 
supply contract details have been included, such that the model is ready to be 
applied for practical usage. 

The results show that the solution of the multi-stage stochastic program 
clearly outperforms classical fix mix strategies. Furthermore, by varying the 
risk parameter a,  the consumer can fine-tune his optimal decision. 
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