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Abstract

Accurately and robustly tracking facial features must cope with the large variation in appearance

across subjects and the combination of rigid and nonrigid motion. We present a work toward a robust

system to detect and track facial features including both permanent (e.g. mouth, eye, and brow) and

transient (e.g. furrows and wrinkles) facial features in a nearly frontal image sequence. Multistate

facial component models are proposed for tracking and modeling different facial features. Based on

these multistate models, and without any artificial enhancement, we detect and track the facial features,

including mouth, eyes, brows, cheeks, and their related wrinkles and facial furrows by combining color,

shape, edge and motion information. Given the initial location of the facial features in the first frame, the

facial features can be detected or tracked in remainder images automatically. Our system is tested on 500

image sequences from the PittsburghCarnegie Mellon University (PittCMU) Facial Expression Action

Unit (AU) Coded Database, which includes image sequences from children and adults of European,

African, and Asian ancestry. Accurate tracking results are obtained in 98% of image sequences.

1. Introduction

The face is the main source of information for discrimination and identification of people. It is

constitutes the structural ground of many nonverbal messages, including information about the emotional

state of the person [3]. Facial analysis has received numerous attention in the human face detection,

recognition and manmachine interface literature since the early 1970’s [2, 5, 10, 12, 14, 30]. Robust

and accurate analysis of facial features must cope with the large variation in appearance across subjects

and the large appearance variability of a single subject caused by changes in lighting, pose, and facial

expressions. Mouth and eye features play a central role for automatic face recognition, facial expression

analysis, lipreadings and speech processing. Accurate localization of facial features is both difficult

and computationally expensive if performed for each frame. So we manually locate the templates of

lips, eyes, eyebrows and cheeks in the first frame and track them through the remainder of the sequence.

For the furrow information, we detect them in each frame. Tracking lip and eye motion accurately and

robustly in image sequences is especially difficult because these features are highly deformable, vary
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in shape, color, specularity, and relation to surrounding features across individuals, and are subject to

both nonrigid (expression) and rigid motion (i.e., head movement). Although many lip and eye tracking

methods have been proposed, they have the limitations for obtaining robust results.

For facial expression analysis [11, 19], more exact extraction of subtle facial features is required. It

is very difficult to construct a computer vision algorithm which is flexible enough to cope with the huge

variety of human facial appearances. In the field of gesture recognition, statebased models have been

used [1, 13, 27]. A gesture is often defined to be a sequence of states in a measurement or configuration

space. Transitions can occur between these states. The repeatability and variability of the trajectories

through the state space can be measured by training examples. To develop a facial expression analysis

system which is robust to rigid motion (head motion) and nonrigid motion (expression), we proposed a

multistate face and facial component model. The basic concept is that there are multiple states for a face

based on the head orientation. For each different face state, different facial components are used. For

each facial component, there are also several different states. For each different state, different vision

algorithm maybe used to obtain the best result.

We develop an accurate and robust system for permanent facial feature (e.g. mouth, eye, brow and

cheek) tracking and transient (e.g. furrows and wrinkles) facial feature detection in image sequence

based on the multistate model. We have tested our system in the PittCMU Facial Expression AU

Coded Database that include more than 5000 images of different kinds of people (including Caucasian,

AfroAmerican, Hispanic and Asian) and expressions. Excellent results have been obtained even when

there is head motion.

In Section 2, the multistate models for face and facial components are introduced. The lip tracking

method is described in Section 3. We present the eye tracking method in Section 4. The brow and

cheek tracking and the transient facial feature detection are developed in Section 5. Section 6 is the

experimental results. Section 7 is the conclusion and discussion.
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2. MultiState Models for Face and Facial Components

2.1. Multi-State Face Model

One of the most significant factors affecting the appearance of a face is the head orientation. Seven

head states (left, leftfront, front, rightfront, right, down, and up) are shown in Figure 1 based on

the head orientation. The inplane head rotations do not affect the head state. The head orientation

and face position are detected by the face detection procedure [25, 26]. For the different head states,

different facial component models are used. For example, the facial component models for a front face

include FrontLips, FrontEyes (left and right), FrontCheeks(left and right), NasolabialFurrows,

and Nosewrinkles. For the right face, only the component models such as SideLips, Righteye,

Rightbrow, and Rightcheek are used. In our current system, we assume the face images are nearly

front view including the in plane head rotations (Figure 2).

2.2. Multi-State Face Component Models

Different face component models must be used for different states. For example, a lip model of the

front face does not work for a profile face. Here, we give the detailed facial component models for the

nearly frontview face. Both the permanent components such as lips, eyes, brows, cheeks and the transient

components such as furrows are considered. Based on the different appearances of different components,

different geometric models are used to model the component’s location, shape, and appearance. Each

component employs a multistate model corresponding to different component states. For example, a

threestate lip model is defined to describe the lip states: open, closed, and tightly closed. A twostate

eye model is used to model open and closed eye. There is one state for brow and cheek. Present and

absent are use to model the states of the transient facial features. The multistate component models for

different components are described in Table 1.

3. Lip Tracking

3.1. Lip Tracking Problems

Each of lip tracking methods that have been proposed so far has its own strength and limitations.

We believe that a feature extraction system intended to be robust to all the sources of variability (i.e.,
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(a) Head state.

(b) Different facial components used for each head state.

Figure 1. Multiple state face model. (a) The head state can be left, left-front, front, right-front, right,

down, and up. (b) Di�erent facial component models are used for di�erent head states.

Figure 2. Examples of in-plane head rotation of the front-view face.
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Table 1. Multi-state facial component models of a front face

Component State Description/Feature

Opened

Lip

Closed

θ

h2

h1

(xc, yc)
X

w

p1

p2
p3

p4

Tightly closed Lip corner1 Lip corner2

Eye Open

r
θ

h1

(x0, y0)

(xc, yc)
h2

w

Closed corner2
(x1, y1) (x2, y2)

corner1

Brow Present

Cheek Present

Furrow Present

Eye’s inner corner line

α1  α2

furrows
nasolabial

Absent

individual differences in people’s appearance, etc.), should use as much knowledge about the scene as

possible. Lip tracking methods based on a single cue about the scene are insufficient for tracking lips

robustly and accurately. For example, the snake [15] and active contour methods [22] often converge

to the wrong result when the lip edges are not clear or lip color is very close to face color. Luettin

and Thacker [21] proposed a lip tracking method for speechreading using probabilistic models. Their

method needs a large set of training data to learn patterns of typical lip deformation. The lip feature point

tracking method of Lien [19] is sensitive to the initial feature points position, and the lip feature points

have ambiguity along the lip edges. A feature extraction system should use all available information
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about the scene to handle all the sources of variability in real environments (illumination, individual

appearance, etc.).

(a) Lip tracking by feature point tracking method. Lip points shift to wrong positions.

(b) Lip tracking by colorbased deformable template method. Lower lip contour jump to wrong

position because the shadow.

Figure 3. Tracking problems by di�erent algorithms. The lip contour or lip points shift to wrong positions.

Many researchers try to combine more information to develop lip trackers. Bregler and his colleagues

[7] developed an audiovisual speech recognition system that uses Kass’s snake approach with shape

constraints imposed on possible contour deformations. They found that the outer lip contour was not

sufficiently distinctive. This method uses image forces consisting of graylevel gradients, which are

known to be inadequate for identifying the outer lip contour [30]. Yuille et al. used the edge, peak

and valley information with mouth template for lip location, but there were still some problems during

energy minimizing. The weights for each energy term were adjusted by preliminary experiments. This

process was timeconsuming so can not be used as tracking, and the weights were not applicable to the

novel subjects. The color based deformable template method developed by Rao [24] combines shape

and color information, but it has difficulty when there is shadow near the lip or the lip color is similar to

the face. Examples of some of these problems are shown in Figure 3. The limitations of these methods

can be observed clearly. Figure 3(a) shows failure of Lien’s feature points tracking when the lip contour
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becomes occluded. The feature points on the lip shift to wrong positions when lips are tightly closed.

Figure 3 (b) shows failure of Rao’s colorbased deformable method due to shadow and to occlusion. The

lower lip contour jumps to chin because the shadows near the bottom lip.

3.2. Multi-State Mouth Model

As shown in Figure 4, we classify the mouth states as open, relatively closed, and tightly closed. We

define the lip state as tightly closed if the lips are invisible because of lip suck. For the different states,

different lip templates are used to obtain the lip contour (Figure 4 (e), (f), and (g)). For the open mouth,

a more complex template could be used that includes inner lip contour and visibility of teeth or tongue.

Currently, only the outer lip contour is considered. For the relatively closed mouth, the outer contour of

the lips is modeled by two parabolic arcs with six parameters: lip center (xc, yc), lip shape (h1, h2 and

w), and lip rotation (�). For the tightly closed mouth, the dark mouth line ended at lip corners is used

(Figure 4(g)). The state transitions are determined by the lip shape and color.

3.3. Lip Color Distribution

We model the color distribution inside the closed mouth as a Gaussian mixture. There are three

prominent color regions inside the mouth: a dark aperture, pink lips, and bright specularity. The density

functions of the mouth Gaussian mixtures are given by:

fmouth(x) =
3X

j=1

wjN(xj�j;Cj); (1)

where

N(xj�j;Cj) =
1

(2�)N=2j Cj j
1=2

expf�
1

2
(x� �j)

T
C
�1
j (x� �j)g: (2)

fwjg are the mixture weights(
P3

j wj = 1; wj >= 0), f�jg are the mixture means, and fCjg are the

mixture covariance matrices.

In order to identify the model parameter values, the lip region is manually specified in the first frame

image. The ExpectationMaximization (EM) algorithm [8] is used to estimate both the mixture weights
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(a) (b) (c)

(d)

θ

h2

h1

(xc, yc)
X

w

p1

p2
p3

p4

Lip corner1 Lip corner2

(e) (f) (g)

Figure 4. Multi-state mouth model and lip templates. (a) An open mouth. (b) A closed mouth. (c) A

tightly closed mouth. (d) The state transition diagram. (e) The open mouth parameter model. (f) The

closed mouth parameter model. (g) The tightly closed mouth parameter model.
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and the underlying Gaussian parameters. Kmeans clustering is used to provide initial estimates of the

parameters. Once a model is built, the succeeding frames are tested by a lookup table obtained from the

first frame.

3.4. Lip Tracking by Combining Shape and Motion Information

Lip motion: In our system, the lip motion is obtained by a modified version of the LucasKanade

tracking algorithm [20]. We assume that intensity values of any given region (feature window size) do

not change, but merely shift from one position to another. Consider an intensity feature template It(x)

over a n� n region R in the reference image at time t; we wish to find the translation d of this region in

the following frame It+1(x+ d) at time t+ 1, by minimizing a cost function E defined as:

E =
X
x2R

[It+1(x+ d) � It(x)]
2: (3)

and the minimization for finding the translation d can be done in iterations:

dn+1 = dn +

(X
x2R

(
@I

@x
)T jx+dn[It(x)� It+1(x)]

)"X
x2R

(
@I

@x
)(
@I

@x
)T jx+dn

#
�1

; (4)

here d0, the initial estimate, can be taken as zero if only small displacements are involved.

Consecutive frames of an image sequence may contain large featurepoint motion such as sudden head

movements, brows raised or mouth opening with a the surprised expression; any or all of these may

cause missing or lost tracking. In order to track these large motions without losing subpixel accuracy, a

pyramid method with reduced resolution is used [23]. Each image is decomposed into 5 levels, from level

0 (the original finest resolution image) to level 4 (the coarsest resolution image). In our implementation,

a 5x5 Gaussian filter is used to smooth out the noise in order to enhance the computation convergence,

and a 13x13 feature region is used for all levels. The rapid and large displacements of up to 100 pixels

can be tracked robustly while maintaining sensitivity to subpixel facial motion.

Lip template: A lip template is used to obtain the correct lip region. After locating the lip template

in the first frame, only four key points of the lip template are tracked (p1, p2, p3 and p4 in Figure 4(f)) in

the remainder of the sequence. The lip corners are tracked exactly and the top lip and bottom lip heights

are obtained. From the lip corner positions and the lip heights, the lip contour is obtained by calculating
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the corresponding lip template parameters. The combined method is more robust and accurate for most

images, but fails for the tightly closed lip (Figure 7(a)). We solve this problem by combining color

information based on a multistate mouth model.

3.5. Lip State by Color and Shape

Each lip state and its color distribution is shown in Figure 5. For the open mouth and the tightly closed

mouth, there are nonlip pixels inside the lip contours. Assume the lip state in the first frame is neutral

closed. From the lip color distribution, we get the lip states by:

Lipstate =

8><
>:

Open if (h� h0)=h0 > 0 and  > T1

T ightly closed if (h� h0)=h0 < 0 and  > T2;
Closed otherwise

(5)

where h0 and h are the sum of top lip and bottom lip heights in the first frame and current frame;

 = nnonlip=n, nnonlip is nonlip pixels number inside lip contour and n is all pixels number inside lip

contour; T1 = 0:35 and T2 = 0:25 are thresholds in our application.

3.6. Lip Contour for Tightly Closed Lip

For the tightly closed mouth, we trace the mouth line by locating the darkest pixels along the perpen

dicular lines with a distance r between two lip corners(Figure 6).

Based on the multistate mouth model, the color, shape, and motion information are combined in our

lip tracking method. This method is very robust to tracking lip for each state. Figure 7(b) shows that the

lip contours are tracked correctly by our method for the tightly closed lip.

4. Eye Tracking

4.1. Eye Tracking Problems

Eye tracking has received a great deal of attention. However, most eye trackers only work well for

open eyes and simply track the locations of the eyes. Blinking is a physiological necessity for humans.

Moreover, for applications such as facial expression analysis and driver awareness systems, we need to

do more than simply track the locations of the person’s eyes, but also obtain a detailed description of the

eye. We need to recover the state of the eyes (i.e. whether they are open or closed), the parameters of an

eye model (e.g. the location and radius of the iris, and the corners and height of the eye opening).
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(a) The original images and the correspondence color distribution for tightly closed mouth

(b) The original images and the correspondence color distribution open mouth

Figure 5. Get Lip states from lip color information. For the open mouth and the tightly closed mouth,

there are non-lip pixels inside the lip contours.
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(a) Approximate contour (b) Refined contour

Figure 6. Get tightly closed lip line.

(a) Lip tracking by combining shape and motion without using multiple state mouth model. Lip contour

of the tightly closed lip is not accurate.

(b) Lip tracking by combining shape, color and motion based on multiple state mouth model. Lip

contours are obtained accurately.

Figure 7. Tracking results by OUR METHOD for the same image sequence in Figure 3.
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(a) frame 1 (b) frame 26

(c) frame 32 (d) frame 39

Figure 8. Eye tracking using feature point tracking [10] in the presence of eye closure. As the eyes close,

the feature points disappear and so the tracker fails. After the eye opens, the iris in the left eye and

the contour of the right eye have been lost.

Tracking eye parameters and detecting eye states is more difficult than just tracking eye locations

because the eyes occupy a small region of the face, there is little color information or intensity contrast,

and because eye blinking and winking is distracting. Eye feature extraction from static images was

developed by Kanade and other researchers [5, 9, 12, 14, 18, 29, 30]. Most eye feature extraction

methods have been improved based on Yuille’s deformable template method to track both eye locations

and extract their parameters [5, 9, 18, 29, 30]. However, the deformable template scheme is time

consuming and hard be used as an eye tracker. Also the template must be started at or below the eye,

otherwise, it will locate the eyebrow instead of the eye. Chow et al. [5] used a twostep approach based

on the Hough transform and then the deformable template to extract the features. The Hough transform

is used to locate the approximate position of the iris. An improved method of using deformable templates

was introduced by Xie et al. [29]. Lam and Yan [18] proposed an eyecorner based deformable template

method for locating and extracting eye features. But it was still too slow to use for tracking. Deng [9] et

al. proposed a regionbased deformable template method for locating the eyes and extracting eye model

parameters. They tried to use their method to track upper eyelid movement when eye position and eye

size are almost fixed in an image sequence.
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Previous systems [19] have used feature point tracking to track the eyelid, however such an approach

is prone to error if the eyes blink in the image sequence. An example of the kind of mistracking that

can occur is shown in Figure 8. As the eyelid closes the feature points on the eye contour disappear

momentarily, but yet long enough for the tracker to loose them. After the eye opens the iris in the left

eye and the contour in the right eye have been completely lost.

4.2. Dual-State Eye Model

As shown in Figure 9, we define an eye state is open or closed in the image sequences. The iris can

provide important information about the eye state because if the eye is closed the iris will not be visible,

but if the eye is open part of the iris will normally be visible. If the iris is detected, the eye is open.

Otherwise, the eye is closed. For the different states, different eye templates and different algorithms are

used to obtain eye features.

For an open eye, we use the same eye template as Yuille’s except for two points located at the center of

the whites [30]. The template, illustrated in Figure 9 (d), is composed of a circle with three parameters

(x0; y0; r) and two parabolic arcs with six other parameters (xc; yc; h1; h2; w; �). We assume the outer

contour of the eye is symmetrical about the perpendicular bisector to the line connecting two eye corners.

For a closed eye we used a straight line for the template. It has 4 parameters, two for each of the two

endpoints. This template, illustrated in Figure 9 (e), is sufficient for describing closed eye features.

4.3. Eye Position Initialization

We assume the initial location of the eye is given in the first frame. The purpose of this stage is to get

the initial eye position in the first frame of the image sequence. Some literature about eye locating has

been published [5, 9, 18, 29, 30].

4.4. Eye Region Intensity Normalization

For some image sequences, the eye region is very dark because of eye makeup or poor illumination.

In this case, our tracker can not track the correct eye boundary. We therefore normalize the intensity

of the image sequence. After the eye positions are initialized, a fixed size window is taken around the

eye region. The intensities in this region are linearly stretched to fill the 0 � 255 range. For color
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(a) (b)

(c)

r
θ

h1

(x0, y0)

(xc, yc)
h2

w

corner2
(x1, y1) (x2, y2)

corner1

(d) (e)

Figure 9. Dual-state eye model. (a) An open eye. (b) A closed eye. (c) The state transition diagram.

(d) The open eye parameter model. (e) The closed eye parameter model.
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image sequences, theR, G, B channels are stretched separately. Figure 10 shows the original eye image

and the normalized image. In experiments, we found that our tracker works well after this intensity

normalization.

(a) Original image (b) Normalized image

Figure 10. Eye region intensity normalization.

4.5. Eye Corner Tracking

4.5.1. Inner Corners

We found that eye inner corners are the most stable features in a face and relatively insensitive to facial

expressions. Using an edgebased corner detector, the inner corners can be detected easily. However, due

to the low intensity contrast at the eye boundary and the wrinkles around the eye, some false corners will

be detected as well as the true corners. Instead of using the corner matching method, we therefore use a

feature point tracking method to track the eye inner corners for the remaining images of the sequence.

In our system, the eye inner corners are tracked by a modified version of the LucasKanade tracking

algorithm [20].

4.5.2. Outer Corners

We found the outer corners of the eyes are hard to detect and less stable than the inner corners. We

assume the outer corners are collinear with the inner corners. The eye shape information (width of the

eye and distance between two inner corners) is obtained from the first frame. After tracking the inner

corners in each frame, the positions of the outer corners can be obtained from eye shape information.

4.6. Iris Tracking and Eye State Detection

4.6.1. Iris Mask
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The iris can provide important information about the eye state because if the eye is closed the iris will

not be visible, but if the eye is open part of the iris will normally be visible. Generally, the pupil is the

darkest area in the eye region. Some eye trackers locate the iris center by searching for the darkest area

in each frame. However, the iris center often shifts to the eye corner, dark eyelash, or eyelids with eye

shadow. In our system, we use the iris intensity and edge map to track the iris center.

We use a Canny edge operator [4] to get the eye edge maps. The edge detection results for several

different open eye stages are shown in Figure 11. We found that the edge maps are very noisy even in a

clear eye image, so we do not use the edge map directly. We observed that the iris edge is relative clear,

and the upper part of the iris is often occluded by the upper eyelid. As a result, we use a half circle mask

to filter the iris edge (Figure 12). The radius of the iris circle template r0 can be obtained from the first

frame. In face image sequences, if there is no large off plane movement of the head, then the iris radius

will not change much. We increase and decrease the radius of the circle a little (�r) from r0 to generate

the half circle mask with minimum radius (r0 � �r) and maximum radius (r0 + �r). If the thickness of

the iris mask (�r) is too large, many noniris edges will be included. If �r is too small, the iris edge will

not be selected when there is head motion. In our system, we let �r be r0=3.

(a) Original eye images.

(b) Eye edge maps.

Figure 11. Eye edge maps for eyes from wide open to closed. The edge of lower part of the iris is relative

clear for an open eye.
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(x0, y0)

r0

r1

r2

Figure 12. Half circle iris mask. (x0; y0) is the iris center; r0 is the iris radius; r1 is the minimum radius

of the mask; r2 is the maximum radius of the mask

4.6.2. Iris Tracking and Eye State Detection

Intensity and edge information are used to detect an iris. If the iris is detected, the eye is open and the

iris mask center (x0; y0) is the iris center. The iris center can be obtained in four steps:

1. Calculate the average intensity I0 of the lower half of the iris in the first frame.

2. Extract the edge maps in the eye region and calculate the number of pixels belong to edges E0 in

the area between r1 and r2 of the iris mask in the first frame.

3. Search the eye region between the inner corner and the outer corner to find the iris mask center

(x0; y0) with the largest edge pixel number E.

4. Calculate the average intensity I of the iris mask when it is in the position with largest edges. If

(I � I0) < T1 and E=E0 > T2, the iris is detected with the center (x0; y0), where T1 and T2 are the

thresholds of the intensity and edge respectively. In our system, T1 = 30 and T2 = 0:35.

Eye state can be determined by equation (6).

Eyestate =

(
Open if the iris detected

Closed otherwise
(6)

4.7. Eye Boundary Tracking

For open eye boundary tracking, the eye template is used to obtain the correct eye boundaries. After

locating the eye template in the first frame, only two key points of the eye template are tracked (the center
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points of the upper and the lower eyelids) in the remaining open eye images. From these two points and

the eye corners, the eye template parameters can be obtained. Then the eye boundaries are calculated

from the corresponding eye template parameters.

For a closed eye, a simple line between the inner and outer eye corners is used as the eye boundary.

Compared to Figure 8, the eye tracking results by our method for images in the sequence after the eye

is closed are given in Figure 13. The iris and eye contours are tracked correctly by our method.

(a) frame 1 (b) frame 26

(c) frame 32 (d) frame 39

Figure 13. Eye tracking results by OUR METHOD for image sequence with closed eyes. As an eye is

closed, the eye position shown as a simple line connected two corners of the eye. After the eye is open,

eyelid boundaries and iris are correctly tracked.

5. Brow, Cheek Tracking and Transient Features Detection

5.1. Brow and Cheek Tracking

Features in the brow and cheek areas are also important to facial expression analysis. One state is used

for the brow and cheek. A triangular template with six parameters (x1; y1), (x2; y2), and (x3; y3) is

used to model the position of brow or cheek. Both brow and cheek are tracked by feature point tracking.

5.2. Transient Features Detection

Facial motion produces transient features. Wrinkles and furrows appear perpendicular to the motion

direction of the activated muscle. These transient features provide crucial information for the recognition
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of action units. Contraction of the corrugator muscle, for instance, produces vertical furrows between

the brows, which is coded in FACS as AU 4, while contraction of the medial portion of the frontalis

muscle (AU 1) causes horizontal wrinkling in the center of the forehead.

Some of these lines and furrows may become permanent with age. Permanent crowsfeet wrinkles

around the outside corners of the eyes, which is characteristic of AU 6 when transient, are common in

adults but not in infants. When lines and furrows become permanent facial features, contraction of the

corresponding muscles produces changes in their appearance, such as deepening or lengthening. The

presence or absence of the furrows in a face image can be determined by geometric feature analysis [19,

17], or by eigenanalysis [16, 28]. Kwon and Lobo [17] detect furrows by snake to classify pictures of

people into different age groups. Lien [19] detected whole face horizontal, vertical and diagonal edges

for face expression recognition.

In our system, we currently detect nasolabial furrows, nose wrinkles, and crows feet wrinkles. We

define them in two states: present and absent. Compared to the neutral frame, the wrinkle state is present

if the wrinkles appear, deepen, or lengthen. Otherwise, it is absent. After obtaining the permanent facial

features, the areas with furrows related to different AUs can be decided by the permanent facial feature

locations. We define the nasolabial furrow area as the area between eye’s inner corners line and lip

corners line. The nose wrinkle area is a square between two eye inner corners. The crows feet wrinkle

areas are beside the eye outer corners.

We use canny edge detector to detect the edge information in these areas. For nose wrinkles and crows

feet wrinkles, we compare the edge pixel numbers E of current frame with the edge pixel numbers E0

of the first frame in the wrinkle areas. If E=E0 large than the threshold T , the furrows are present.

Otherwise, the furrows are absent. For the nasolabial furrows, we detect the continued diagonal edges.

The nasolabial furrow detection results are shown in Figure 14.

6. Experimental Results

Image data were 100 image sequences(approximately 5000 images) from the PittCMU Facial Ex

pression AU Coded Database. Subjects ranged in age from 3 years to 30 years and included males and

females of European, African, and Asian ancestry. They were videotaped in an indoor environment with
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Figure 14. Nasolabial furrow detection results. For the same subject, the nasolabial furrow angle(between

the nasolabial furrow and the line connected eye inner corners) is di�erent for di�erent expressions.
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uniform lighting. During recording, the camera was positioned in front of the subjects and provided for

a fullface view. Images were digitized into 640x480 pixel arrays with 24bit color resolution. A large

variety of facial expression was represented [6].

The permanent feature tracking results for different subjects and different expressions are shown in

Figure 15, Figure 16, and Figure 17. Figure 15 shows tracking results for same subject with different

expressions. From the happy, surprise and anger expression sequences, we can see that lip states transit

each other. From the anger, fear, and disgust, the correct iris position and eye boundaries were tracked

after the eye was tightly closed or blink. Notice the semicircular iris model accurately tracks the iris

even when it is only partially visible. For dark skin subjects, good tracking results are obtained also

(Figure 16). The robustness of our algorithm in the performance of nonrigid, rigid, and background

motion are demonstrated in Figure 17. We test our method in 500 image sequences, the correct tracking

ratio is 98%.

7. Conclusion and Discussion

We have described a robust system for tracking facial features include both permanent features (e.g.

mouth, eye, and brow) and transient features (e.g. furrows and wrinkles)in a nearly frontal image

sequence. To detect qualitative changes of facial features, we develop a multistate model based system

that uses convergent methods of feature analysis. We define the different head orientations and different

component appearances as different states. For different head states, different face components are

used. For each face component, there are different states also. For each different state, a description

and extraction method should be different. Based on these multistate models, and without artificial

enhancement, we detected and tracked mouth, eyes, brow, cheeks, and their related wrinkles and facial

furrows. Our system works well regardless of the different subjects and different facial component states.

A limitation of our method is that we assume that the lip template is symmetrical about the perpendicular

bisector to the line connecting the lip corners. For nonsymmetrical expressions and complex lip shape,

there are some errors between the tracking lip contour and the real lip shape (Figure 18). More complex

lip template will be necessary to get more accurate lip contours for nonsymmetrical expression analysis

in our future work. In eye tracking, for a very narrow open eye, for example, Figure 19, sometimes it
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is detected as closed because too small part of the iris to be detected. In more difficult situations where

eyes are covered by hair or eye glasses, environment lighting is changed, or head move to near profile

face, current lip and eye template can not provide a practical match. Future work will need to develop

different methods for different face states.
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Figure 15. Tracking results by our method for di�erent expressions of the same subject(happy, anger,

surprise, fear, sad, and disgust).
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Figure 16. Tracking results by our method for darkskin subjects with di�erent expressions.

28



Figure 17. Tracking results by our method for di�erent subjects. (a) Asian, (b) Afro-American, (c) and

(d) Caucasian with head motion, (e) Infant with head motion.
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(a) (b)

Figure 18. Non-symmetrical expression and complex Lip shapes. "+" indicate the real lip contour

Figure 19. The narrow open eye is detected as closed because the visible iris is too small.
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