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Abstract: Precise and dependable wind speed forecasting (WSF) enables operators of wind turbines
to make informed decisions and maximize the use of available wind energy. This study proposes a
hybrid WSF model based on outlier correction, heuristic algorithms, signal decomposition methods,
and DLinear. Specifically, the hybrid model (HI-IVMD-DLinear) comprises the Hampel identifier
(HI), the improved variational mode decomposition (IVMD) optimized by grey wolf optimization
(GWO), and DLinear. Firstly, outliers in the wind speed sequence are detected and replaced with the
HI to mitigate their impact on prediction accuracy. Next, the HI-processed sequence is decomposed
into multiple sub-sequences with the IVMD to mitigate the non-stationarity and fluctuations. Finally,
each sub-sequence is predicted by the novel DLinear algorithm individually. The predictions are
reconstructed to obtain the final wind speed forecast. The HI-IVMD-DLinear is utilized to predict
the real historical wind speed sequences from three regions so as to assess its performance. The
experimental results reveal the following findings: (a) HI could enhance prediction accuracy and
mitigate the adverse effects of outliers; (b) IVMD demonstrates superior decomposition performance;
(c) DLinear has great prediction performance and is suited to WSF; and (d) overall, the HI-IVMD-
DLinear exhibits superior precision and stability in one-to-four-step-ahead forecasting, highlighting
its vast potential for application.

Keywords: wind speed forecasting; Hampel identifier; improved variational mode decomposition;
grey wolf optimization; DLinear

MSC: 65-04

1. Introduction

The finite and non-renewable nature of fossil fuels has rendered the development
and utilization of renewable energy an indispensable choice [1]. A report published in
2021 stated that the cumulative installed capacity of wind farms globally skyrocketed
to 744 GW [2]. However, the inherent volatility and instability of wind energy led to
frequent fluctuations in wind power, thereby causing continuous oscillations in grid voltage
and frequency, which severely impairs power quality. Precise and dependable WSF are
important for all aspects of wind power systems, including electricity market operation,
energy storage system management, network planning, etc.

Recently, numerous forecasting methods have been developed to achieve WSF based
on different time scales. These methods primarily include physical methods, statistical
methods, machine learning methods, and neural network models. Physical methods
rely on physical factors such as altitude and atmospheric pressure to construct models
to predict the changes in wind speed. However, most physical factors are difficult to
obtain in the vast majority of situations. Additionally, the construction and the calculation
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of physical models are complex, which makes it difficult to obtain accurate WSF in a
short period [3–5]. Luckily, statistical methods such as the autoregressive (AR) [6] and
autoregressive integrated moving average (ARIMA) methods [7,8] operate at a fast pace.
These models were constructed mainly based on historical wind speed operational data.
However, statistical methods can only deal with linear data, but not with nonlinear wind
speed series. In addition, machine learning methods such as XGBoost [9], support vector
regression (SVR) [10,11], and least squares support vector machine (LSSVM) [12] can
identify more complex nonlinear relationships in sequences with good generalization
abilities. Usually, the predictive performance of machine learning models on large datasets
is limited. Compared with conventional machine learning models, neural networks are
favorite due to their unique fully connected structure, which promises better prediction
accuracy on large datasets. However, neural networks have not fully considered the
temporal properties of wind speed sequences. There exists a loss of temporal information
in wind speed sequences since neural networks treat time series as unordered and assign
equal weight to all time points [13–15].

To address this issue, the recurrent neural network (RNN) was proposed. The self-
connection among hidden layers in the RNN enables the retention of prior states, which
are then incorporated into the current step. This mechanism facilitates the consideration
of temporal information during the processing of sequential data [16]. It has two main
variations: long short-term memory (LSTM) [17–19] and gated recurrent unit (GRU) [20–22].
LSTM resolves the problem of gradient vanishing and exploding encountered in RNN by
introducing gate mechanisms and a special memory cell structure. Satyam et al. designed a
wind speed prediction method with LSTM [17]. GRU is an improvement of LSTM based on
a simpler memory cell structure with only two gates (reset gate and update gate) than LSTM.
GRU outperforms LSTM in terms of computational efficiency and storage space [20–22].
Syu et al. introduced a WSF model based on GRU to provide more precise WSF than RNN
and LSTM [23]. Although LSTM and GRU have shown good performance, they usually
only model short-term dependencies, while the transformer can handle longer sequences
of dependencies since it does not have a recurrent structure and can simultaneously view
the entire sequence at all time steps. Furthermore, the self-attention mechanism of the
transformer can capture local and global dependencies in a sequence, which can better
handle key information in the sequence [24–26]. Wu et al. devised a multi-step WSF model
based on the transformer, treating the problem as a sequence-to-sequence mapping. The
transformer-based model has better prediction performance than the GRU [26]. However,
Zeng et al. indicated that the comparatively elevated long-term forecasting accuracy of
the transformer does not substantially correlate with its capability to extract temporal
dependencies, and proposed a structurally simple DLinear model with better performance
than the complex transformer model in most cases [27]. The effectiveness of WSF based on
the transformer model should be reevaluated. Currently, the transformer model is widely
employed in the field of WSF, yet its effectiveness in this domain is questionable. Its intricate
structure does not improve the forecasting accuracy. To validate this proposition about
the transformer, this study utilizes the DLinear as the foundational model for prediction,
considering the transformer model as a comparable model. Furthermore, another reason
to adopte the DLinear mode is its remarkably simple structure, which has exceptional
forecasting accuracy.

Numerous studies have shown that, because of the non-stationarity and strong volatil-
ity of wind speed sequences, models with decomposition methods perform better in
predicting wind speed than those without decomposition [25,28–30]. Decomposition-based
models usually decompose the wind speed sequence into multiple sub-sequences, then
forecast each sub-sequence, and then the ultimate prediction can be obtained by aggregat-
ing the results. Currently, the popular decomposition methods include wavelet transform
(WT) [31,32], empirical mode decomposition (EMD) [33,34], and ensemble empirical mode
decomposition (EEMD) [35,36]. Zhang et al. decomposed the initial wind speed sequence
into finite sub-sequences by the complete ensemble empirical mode decomposition with
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adaptive noise (CEEMDAN) algorithm [37]. Subsequently, prediction models were ap-
plied to each sub-sequence to make individual forecasts. On the other hand, Pan et al.
introduced the VMD method to decompose wind speed signals and exploit their latent
information for more accurate forecasting results [38]. Li et al. decomposed ship-radiated
noise signals, extracting feature information of different frequencies and amplitudes with
successive variational mode decomposition (SVMD) [39]. Furthermore, VMD displays
superior performance in decomposing non-stationary signals when compared to EMD
and its improved methods [40]. Nevertheless, VMD lacks adaptability because critical
parameters, e.g., the number of decomposition modes and regularization, require manual
adjustment. The choice of these two parameters can impact the decomposition results
and performance significantly. Moreover, the grey wolf optimization (GWO) algorithm
exhibits superior optimization capabilities compared to renowned algorithms including
particle swarm optimization, gravitational search algorithm, and evolution strategy [41].
Consequently, in this paper, the hyperparameters of VMD will be optimized by the GWO
algorithm, thereby addressing the challenge of selecting the appropriate hyperparameters
of VMD.

Additionally, there are few researches focusing on detecting and correcting outliers
in the original wind speed sequence. It is reported that the predictive accuracy could be
enhanced by rectifying outliers within the original sequence [42]. To detect and rectify
outliers in the original wind speed sequence, the HI algorithm [43] is introduced to enhance
the final accuracy of wind speed prediction.

In recent years, various metrics such as entropy [44] and correlation dimension [45]
have been extensively employed in signal analysis across various research domains. Li et al.
introduced an innovative technique known as simplified coded dispersion entropy (SCDE)
to identify nonlinear dynamic transitions in signals [44]. A novel approach called FuzzDEα
was developed to detect dynamic changes in time series data for signal analysis and fault
diagnosis in bearings [46]. To assess the level of optimization of the hyperparameters
of VMD by GWO, the envelope entropy (EE) [47] as the fitness function for GWO was
employed. The magnitude of the EE serves as a criterion to evaluate the quality of the
hyperparameters obtained by GWO. The magnitude of SampEn reflects the complexity level
of a time series. If the series exhibits higher complexity, the corresponding SampEn value
will be larger; conversely, a lower complexity will result in a smaller SampEn value [48].
Therefore, in this study, the SampEn will be utilized to assess the effectiveness of the HI.

Synthetically speaking, to achieve high accuracy and stability in WSF, a hybrid model is
proposed based on outlier correction, heuristic algorithms, signal decomposition methods,
and DLinear. The model begins by employing the HI to detect and rectify outliers in the
original wind speed sequence. Subsequently, the GWO algorithm is utilized to optimize
the hyperparameters of the VMD. Then, employing the VMD algorithm based on the
optimal hyperparameters, the sequence processed by HI is decomposed into several sub-
sequences. Lastly, each sub-sequence is forecasted by the DLinear algorithm individually.
The final wind speed forecast is obtained by reconstructing the predictions. The primary
contributions of this study are as follows:

(1) To detect and rectify outliers in the wind speed sequence, an outlier detection tech-
nique based on the Hampel identifier (HI) is utilized to enhance the accuracy of WSF.

(2) To optimize the hyperparameters of VMD, the variational mode decomposition is
improved by the grey wolf optimization (GWO). The decomposition of the complex
non-stationary windspeed sequence with the improved VMD (IVMD) algorithm can
reduce the non-stationarity and the complexity of the sequence, thus improving the
prediction stability and accuracy.

(3) DLinear is introduced as a fundamental prediction model including only one decom-
position scheme and two linear networks. Its performance is significantly superior to
both LSTM and the currently popular transformer models.
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(4) The proposed method combining HI and IVMD with DLinear is utilized for the
multi-step WSF of three real windspeed sequences. The performance of the HI-IVMD-
DLinear is validated with comparative experiments from various aspects.

The rest of the paper is organized as follows: In Section 2, HI, GWO, VMD, DLinear,
and the proposed method are described in detail. Section 3 elucidates the experimental
configuration and elaborates, based on multiple evaluation criteria, on the performance
of the proposed model. Section 4 provides a detailed discussion on the computational
efficiency and the complexity of the HI-IVMD-DLinear. Finally, a concise conclusion is
stated in Section 5.

2. Materials and Methods
2.1. Hampel Identifier

Hampel identifier (HI) is a robust algorithm to detect and replace outliers in datasets [43].
This method identifies any value that falls outside of a certain distance window from the
median as an outlier and replaces it with the median value within that window. For dataset
D = [y1, y2, . . . , yn], let the window size be w = 2k + 1. Typically, window sizes of 5 or
7 are commonly used. The evaluation parameter α is set as 0.6745. By utilizing the median
absolute deviation (MAD) and α, the standard deviation σi can be determined [49].

The HI method is composed of the following steps:

(1) Computing median, MAD, and standard deviation: For each data point, the median
and the MAD of the neighboring points within the window size are calculated, and
then the standard deviation based on the median and MAD can be computed as [42]:

mi = median(yi−n, yi−n+1, . . . , yi, . . . , yi+n−1, yi+n) (1)

MADi = median(|yi−n −mi|, |yi−n+1 −mi|, . . . , |yi −mi|, . . . , |yi+n−1 −mi|, |yi+n −mi|) (2)

σi = MADi/α (3)

(2) Detecting outlier points: A sample point is considered as an outlier if its value
satisfies [50]:

|yi −mi| > 3σi (4)

(3) Substituting outlier points: For the identified outlier points, the median of the window
is used for substitution.

(4) Performing steps (1)–(3) for each sample point.

The HI method has more advantages over other similar methods in terms of robustness
to outliers. Additionally, the HI method is highly efficient in computation, making it suitable
for large-scale datasets. Processing the dataset with HI can effectively correct its outliers
and enhance the accuracy in WSF.

2.2. Variational Mode Decomposition

The VMD is an adaptive decomposition algorithm [51]. Compared to traditional
modal decomposition methods, the VMD could avoid aliasing and is more robust to noise.

The VMD method is capable of decomposing complex raw sequences into several
relatively simple intrinsic mode functions (IMFs). The VMD is composed of the follow-
ing steps:

(1) Construct the variational problem: It is essential for the variational problem to mini-
mize the sum of central frequencies of the IMFs [51]:

min
{uk},{ωk}

{
K

∑
k=1
‖ ∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt ‖2

2

}
(5)
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s.t.
K

∑
k=1

uk(t) = f (t) (6)

where uk and ωk are the k−th IMF and its corresponding center frequency, respectively;
δ(t) is Dirac function; f (t) is the original input signal; and K is the number of IMFs.

(2) Transform variational problems: To make it easier to solve the variational problem
above, a Lagrange function is introduced [51]:

L({uk}, {ωk}, λ) = α ∑
k

∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt2

2

+ f (t)−Σ
k

uk(t)
2
2 + λ(t), f (t)−∑

k
uk(t)

(7)

where α represents the penalty factor, and λ represents the Lagrange multiplier.

(3) Solve the variational problem: To achieve the best solution to the variational problem,
the decomposition signal uk and their corresponding center frequencies ωk were up-
dated by the alternate direction method of multipliers (ADMM). The cyclic updating
rules and termination conditions for uk and ωk are as follows [51]:

∑
k

un+1
k − un

k
2
2

un
k

2
2

< ε, n < N (8)

un+1
k (ω) =

f (ω)−
k
∑

i 6=k
un

i (ω)+ λn(ω)
2

1 + 2a
(
ω−ωn

k
)2 (9)

ωn+1
k =

∫ ∞
0 ω

∣∣un
k (ω)

∣∣2dω∫ ∞
0

∣∣un
k (ω)

∣∣2dω
(10)

where f (ω), un
i (ω), and λn(ω) denote the Fourier transform of f (t), un

i (t), and λn(t), re-
spectively; and n and N are the number and the maximal number of iterations, respectively.

2.3. Grey Wolf Optimization

As a novel heuristic intelligent algorithm, Grey wolf optimization (GWO) [41] seeks
the best solution based on the hunting characteristics of wolf packs and the social hierarchy
system of grey wolves. There are four social ranks within a wolf pack: the alpha wolf (α),
the wolves that obey the alpha (β), the wolves that obey the top two wolves (δ), and the
wolves that obey higher-ranked wolves (ω). Their hunting process is:

(1) Wolves surround their prey:

D =
∣∣C ·Yp(i)−Y(i)

∣∣ (11)

Y(i + 1) = Yp(i)− AD (12)

where i denotes the current iteration, and D represents the distance between Yp(i) (prey)
and Y(i) (grey wolves). A and C (the coefficient vector) can be represented as:

A = 2br1 − b (13)

C = 2br2 (14)



Mathematics 2023, 11, 2746 6 of 26

where b is linearly diminished from 2 to 0 throughout the iterations; and r1 and r2 represent
vector compositions comprising random elements, with the values of these elements
ranging from 0 to 1. The grey wolves change their positions according to Equation (12).

(2) Capturing prey: As the location of prey cannot be determined, the optimal strategy
cannot be identified either. Therefore, assuming that the α wolf is closest to the
prey, followed by β and δ wolves, their distances from the prey are calculated with
Equation (11). By iteratively updating the positions of these three types of wolves
with Equation (12), the other wolves will also gradually approach the prey. Ultimately,
the position of the α wolf is considered to be the location of the prey, leading to the
optimal solution.

Dα = |C1Yα −Y| (15)

Dβ =
∣∣C2Yβ −Y

∣∣ (16)

Dδ = |C3Yδ −Y| (17)

Y1 = Yα − A1Dα (18)

Y2 = Yβ − A2Dβ (19)

Y3 = Yδ − A2Dδ (20)

Y(i + 1) =
Y1 + Y2 + Y3

3
(21)

where Yj(j = α, β, δ) represents the position of the corresponding individual.

2.4. VMD Optimized by GWO

In practical applications, the hyperparameters K and α of VMD are directly related
to the quality of the decomposition results and are often difficult to determine, although
the VMD technique exhibits exceptional decomposition capabilities for wind speed
sequences. An appropriate value of K can fully decompose the modal sequence, circum-
venting the emergence of mode-blending issues. α determines the accuracy of signal
reconstruction. Therefore, appropriate K and α are crucial for the wind speed sequence
decomposition process.

Therefore an improved VMD (IVMD) based on the GWO is proposed. The IVMD
method determines K and α with the GWO. The range of K is set as [3, 12] and that of α
is set as [0, 2000]. When the decomposed signal has less noise, the EE is smaller, and vice
versa. Therefore, the minimal EE Ep is utilized as the fitness function for the GWO.

Ep = −
N

∑
i=1

pilgpi (22)

pi =
c(i)

N
∑

i=1
c(i)

(23)

c(i) =
√

x2(i) + x′2(t) (24)
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where N is the length of the signal, x(i) represents the value of the i−th sample point of
the decomposed sequence (IMF), and x′(i) represents the demodulated result of Hibert of
x(i). The minimal envelope entropy is:

min
{

Ep
}
= min

{
Ep1, Ep2, . . . , EpK

}
(25)

where Epj represents the value of the EE of the j−th IMF.
The flowchart of IVMD is shown in Figure 1, and the steps of IVMD are as follows:

(1) Initialize the search space, encompass the ranges of K and α. Additionally, initiate
the parameters of the grey wolf optimization algorithm, such as population size,
maximum number of iterations, and so forth.

(2) Generate the initial population of grey wolves randomly within the provided search
space. For each grey wolf denoted by i = 1, 2, . . . , N (where N represents the total
number of grey wolves), the position Yi is initialized as (Ki, αi).

(3) Calculate the envelope entropy of each grey wolf with Equation (22). The positions of
the three grey wolves with the lowest envelope entropy values are updated by Yα, Yβ,
and Yδ, respectively. Yα with the best fitness value is recognized as the optimal solution.

(4) Compute the distance between the remaining grey wolf individuals (ω) and the top
three grey wolf individual locations Yα, Yβ and Yδ according to Equations (15)–(17).

(5) According to Equations (18)–(21), update the position of individual grey wolves.
(6) If the iteration of GWO reaches maximum, the algorithm ends and outputs an optimal

solution Yα; otherwise, return to (3) and continue the optimization search.
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2.5. DLinear

DLinear is a novel high-precision time-series forecasting model proposed by Zeng et al.
in 2022 [27]. Despite its simple structure, consisting solely of a decomposition scheme
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and two linear networks, its predictive accuracy exceeds that of the more complex trans-
former model.

During the prediction process, the DLinear first decomposes the original sequence
X into a trend component Xt and a residual one Xr(Xr = X − Xt). Subsequently, two
single-layer linear networks are utilized to forecast each of these decomposed compo-
nents, respectively.

The foundational architecture of DLinear is depicted in Figure 2a. The output results
of the two single-layer linear networks are combined to yield the final predicted outcome
X̂ [27].

Hr = WrXr (26)

Ht = WtXt (27)

X̂ = Ht + Hr (28)

where Hr and Ht are the output values of the single-layer linear networks for the residual
and trend components, respectively. Similarly, Wr and Wt represent the single-layer linear
networks for the residual and the trend components, as depicted in Figure 2b.
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2.6. Framework of the Proposed Model

The HI-IVMD-DLinear model is designed to achieve accurate multi-step WSF. The
basic framework of this hybrid WSF model is illustrated in Figure 3, which mainly consists
of three steps as follows:
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Step 1: Outlier detection and replacement based on HI. Due to equipment malfunctions,
human factors, and other reasons, it is inevitable that the collected wind speed data will
contain outliers during the data collection process. The HI method is used to detect and
replace outliers in the dataset, which is beneficial to improve the accuracy of WSF.

Step 2: Decomposition of wind speed sequences. The sequence processed by the
HI is considered as input for the VMD. The GWO is then employed to optimize the
hyperparameters K and α of the VMD with the minimal envelope entropy as the fitness
function. Based on the optimized values of K and α, the VMD decomposes the sequence
into K IMFs.

Step 3: Prediction with DLinear. The DLinear model is constructed to predict each
of the K IMFs obtained from the decomposition. Subsequently, the predicted results are
summed to derive the ultimate wind speed prediction.

3. Results
3.1. Design of the Experiment
3.1.1. Data Source

The historical wind speed datasets collected from three regions in China serve as
the experimental dataset. These three regions are, respectively, located in Shijiazhuang,
Hebei Province; Lanzhou, Gansu Province; and Nanjing, Jiangsu Province. Their latitudes
and longitudes are significantly different. Lanzhou and Shijiazhuang are situated in the
northwestern and northern inland regions, respectively, both possessing abundant wind
energy resources. On the other hand, Nanjing is located in the southeastern coastal area
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and consistently ranks among the top in terms of offshore wind power installed capacity
nationwide. The wind speed sequences from all three regions were measured at a height of
ten meters above ground level at hourly intervals. The basic information of the three wind
speed datasets is presented in Table 1.

Table 1. Basic information of three datasets.

Dataset Time Interval Sample Size Minimum Mean Maximum Standard Deviation

Lanzhou 1 January 2021–31 March 2021 2160 0.000 1.830 6.765 1.317
Nanjing 1 August 2021–1 November 2021 2232 0.000 2.849 7.657 1.705

Shijiazhuang 1 July 2021–1 October 2021 2232 0.000 1.844 6.408 1.585

3.1.2. Evaluation Metrics

To evaluate the accuracy of the prediction methods, the mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed

MAE =
1
N

N

∑
t=1

∣∣Ŷt −Yt
∣∣ (29)

RMSE =

√√√√ 1
N

N

∑
t=1

(
Ŷt −Yt

)2 (30)

MAPE =

N
∑

t=1

∣∣∣ Ŷt−Yt
Yt

∣∣∣
N

× 100% (31)

where Ŷt represents the predicted value of the wind speed, Yt represents the observed
value, and N refers to the number of test-set samples. Generally speaking, as the values of
these metrics decrease, the prediction accuracy of the model increases.

Furthermore, improvement percentage is utilized to quantitatively evaluate the pro-
posed model. PRMSE, PMAE, and PMAPE are the improvement percentages for RMSE, MAE,
and MAPE, respectively.

PRMSE =
RMSEi − RMSEj

RMSEi
× 100% (32)

PMAE =
MAEi −MAEj

MAEi
× 100% (33)

PMAPE =
MAPEi −MAPEj

MAPEi
× 100% (34)

where RMSEi, MAEi, and MAPEi represent the errors of the comparative methods, while
RMSEj, MAEj, and MAPEj represent the errors of the HI-IVMD-DLinear method. The
larger the PRMSE, PMAE, and PMAPE are, the more superior the precision of the proposed
model is.

In addition, the variance of absolute error (VAE) is introduced to assess the stability of
the model.

VAE = Var
(∣∣Yt − Ŷt

∣∣) (35)

Simultaneously, the improvement percentage of VAE is also introduced to compare
the proposed model with the comparative model.

PVAE =
VAEi −VAEj

VAEi
× 100% (36)
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where VAEi and VAEj represent the VAE of the comparative model and the proposed
one, respectively.

3.1.3. Model Development

To assess the performance of HI-IVMD-DLinear, a machine learning model, SVR, two
prevalent neural network models, namely, back propagation neural network (BPNN) and
LSTM, as well as a popular deep learning algorithm, the transformer, are incorporated as
comparative models.

The input for predicting the output values includes the true values from the previous
24 h; i.e., the time window size is 24 h. Table 2 provides the parameter settings for all
relevant models, along with the methods used to confirm these parameters. The dataset
is divided into training, validation, and testing sets at a ratio of 7:1:2. Additionally, all
models employ mean squared error (MSE) as the loss function. To optimize the weights and
enhance the prediction performance, the Adam algorithm is employed as an optimizer [52].

Table 2. Parameters of all related methods.

Methods Parameters Values

IVMD

Population size 50
Maximum iterations 30

K [3, 11]
α [0, 1000]

SVR
C [0, 10]

Epsilon [0, 1]
Gamma [0, 2]

BPNN

Dropout [0.05, 0.2]
Batchsize 64
Epochs 100
Initial lr 0.1

Hidden_units [10, 100]

LSTM

Dropout [0.05, 0.2]
Batchsize 64
Epochs 100
Initial lr 0.1

Hidden_units [10, 100]

Transformer

Dropout [0.05, 0.2]
Batchsize 64
Epochs 100
Initial lr 0.1

Model dimension [64, 256]
Feedforward dimension [128, 256]

Heads number [1, 5]
Enc_layers [1, 5]
Dec_layers [1, 5]

DLinear
Batchsize 64
Epochs 100
Initial lr 0.1

3.2. Analysis of Hampel Identifier

The performance of utilizing HI for the data cleaning of the wind speed sequence is
explored in this section. As illustrated in Figure 4, all three wind speed datasets exhibit
some outliers. Failure to clean these outliers would adversely impact the accuracy of the
final WSF. Therefore, the HI method can be utilized to handle the outliers in the wind speed
sequences. The effectiveness of the HI can generally be evaluated by calculating the sample
entropy of the sequences. The magnitude of the SampEn value reflects the complexity of
the sequence [48]. If the complexity of the sequence is greater, the SampEn value will be
larger, and vice versa. The SampEn values of the original wind speed sequences and the
HI-processed wind speed sequences are presented in Table 3. It is evident that the SampEn
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values of all three wind speed sequences are reduced after applying the HI method. It
indicates that the HI method can reduce the complexity of the original sequences.
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Figure 4. Original wind speed sequences of Lanzhou, Nanjing, and Shijiazhuang.

Table 3. The SampEn value of original and HI-processed datasets.

SampEn Lanzhou Nanjing Shijiazhuang

Original sequence 1.0562 1.0230 1.0658
Sequence after HI 1.0497 0.9534 0.9570

The predictive performances of models with and without HI are also compared. Table 4
gives the forecasting accuracy of models with HI processing and without HI processing
under the three datasets. It can be observed that the improvement percentages of MAPE are
1.2316%, 2.1240%, and 2.1531% compared with the HI-IVMD-DLinear with IVMD-DLinear,
respectively. Other HI-based models also reduce the RMSE, MAE, and MAPE values.
Therfore the HI can enhance the accuracy of WSF, since HI is able to identify and rectify
outliers in the original wind speed sequence, which can efficiently mitigate the interference
caused by such outliers.



Mathematics 2023, 11, 2746 13 of 26

Table 4. Improvement percentages with HI.

Dataset Model PMAE (%) PRMSE (%) PMAPE (%)

Lanzhou

HI-SVR vs. SVR 2.1206 4.1472 2.5125
HI-LSTM vs. LSTM 1.2452 3.5612 2.0106

HI-Transformer vs. Transformer 0.8921 3.5125 2.2215
HI-DLinear vs. DLinear 0.9915 1.1305 1.7683

HI-IVMD-DLinear vs. IVMD-DLinear 0.7624 1.0614 1.2316

Nanjing

HI-SVR vs. SVR 1.5125 3.8903 1.7246
HI-LSTM vs. LSTM 2.2092 5.2137 3.0165

HI-Transformer vs. Transformer 1.2875 5.1751 3.1062
HI-DLinear vs. DLinear 2.1785 2.1867 2.1554

HI-IVMD-DLinear vs. IVMD-DLinear 1.0126 1.8751 2.1240

Shijiazhuang

HI-SVR vs. SVR 3.5613 3.1451 6.1246
HI-LSTM vs. LSTM 2.5146 0.8915 4.1256

HI-Transformer vs. Transformer 1.8745 1.3271 4.6012
HI-DLinear vs. DLinear 2.0761 1.0512 3.1251

HI-IVMD-DLinear vs. IVMD-DLinear 1.5612 0.7951 2.1531

3.3. Decomposition Results

According to the augmented Dickey–Fuller (ADF) test results presented in Table 5,
the ADF statistics of the three datasets, after undergoing HI processing, are all below the
critical values at the 1%, 5%, and 10% confidence levels. Additionally, their p-values are
greater than 0.1. It is evident that the three wind speed sequences are non-stationary.
Hence, it is imperative to decompose the wind speed sequences appropriately to reduce
their complexity. The parameters of VMD are optimized by the GWO. The obtained
hyperparameters K and α for VMD on the three datasets are 4 and 1.2771, 4 and 0.4501,
5 and 0.2580, respectively.

Table 5. ADF test results.

Datasets t-Statistic p-Value 1% Level 5% Level 10% Level

Lanzhou −1.714 0.3704 −3.2334 −2.6828 −2.3674
Nanjing −1.227 0.5513 −2.8910 −2.2150 −1.9674

Shijiazhuang −1.827 0.3207 −3.3517 −2.7124 −2.4512

Taking Lanzhou as an example, the decomposition results of the wind speed sequence,
after undergoing HI processing, are illustrated in Figure 5a. IVMD decomposes the se-
quence of Lanzhou into four IMFs. Among them, IMF1 has the lowest frequency and
displays the long-term trend of the wind speed sequence. IMF2 and IMF3 belong to the
mid-frequency range signals, reflecting the fluctuations within smaller periods. IMF4
represents the high-frequency range signal. Evidently, the sequence exhibits a more regular
pattern after the IVMD decomposition.



Mathematics 2023, 11, 2746 14 of 26
Mathematics 2023, 11, x FOR PEER REVIEW 15 of 28 
 

 

 

(a) 

 

(b) 

Figure 5. Cont.



Mathematics 2023, 11, 2746 15 of 26Mathematics 2023, 11, x FOR PEER REVIEW 16 of 28 
 

 

 

(c) 

Figure 5. Decomposition results of the three wind speed sequences: (a) Lanzhou, (b) Nanjing, and 

(c) Shijiazhuang. Res is the noise after decomposition. 

3.4. Forecasting Results 

The HI-processed dataset is utilized for IVMD decomposition, with the subsequent 

prediction of each modal component with DLinear. Summing the predicted outcomes of 

these components yields the final WSF. Specifically, during training, only the training set 

should undergo decomposition, ensuring the data in the test set remain unknown. This 

safeguards against the inflated accuracy resulting from test set leakage. Subsequently, the 

IMFs derived from the training set decomposition are employed to train the model, while 

hyperparameter selection is performed on the validation set. Finally, test is conducted on 

the designated subsequence of the complete dataset. To assess the performance of the HI-

IVMD-DLinear, HI-SVR, HI-BPNN, HI-LSTM, HI-Transformer, HI-DLinear, HI-IVMD-

BPNN, HI-IVMD-LSTM, and HI-IVMD-Transformer are considered. 

During the process of WSF, it is important to forecast wind speeds for multiple hours 

in advance. For instance, multi-step WSF assists wind power generation companies in ac-

curately anticipating changes in wind speed over a specific period. This enables them to 

devise more efficient power generation plans and scheduling strategies to enhance the 

capacity and the efficiency of wind power generation. Therefore, the introduction of 

multi-step WSF is crucial. Given the wind speed sequence 2 31
{ ,Y , ,..., }

T
Y Y Y , the forecast-

ing value for the -thk  step can be calculated as 

( )1 ( 1)
ˆ , , , , 1,2, ,

t k t t t w
Y f Y Y Y t T

+ − − −
=  =   (37) 

where ˆ
t k

Y
+

  represents the predicted value at time t k+  , t
Y   represents the observed 

value at time t , and  w  refers to the lag order. The value of w  is set as 24, in other 

words, the model takes the past 24 h wind speed sequence as its input. The horizon k  

ranges from 1 to 4. 
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(c) Shijiazhuang. Res is the noise after decomposition.

3.4. Forecasting Results

The HI-processed dataset is utilized for IVMD decomposition, with the subsequent
prediction of each modal component with DLinear. Summing the predicted outcomes of
these components yields the final WSF. Specifically, during training, only the training set
should undergo decomposition, ensuring the data in the test set remain unknown. This
safeguards against the inflated accuracy resulting from test set leakage. Subsequently, the
IMFs derived from the training set decomposition are employed to train the model, while
hyperparameter selection is performed on the validation set. Finally, test is conducted
on the designated subsequence of the complete dataset. To assess the performance of the
HI-IVMD-DLinear, HI-SVR, HI-BPNN, HI-LSTM, HI-Transformer, HI-DLinear, HI-IVMD-
BPNN, HI-IVMD-LSTM, and HI-IVMD-Transformer are considered.

During the process of WSF, it is important to forecast wind speeds for multiple hours
in advance. For instance, multi-step WSF assists wind power generation companies in
accurately anticipating changes in wind speed over a specific period. This enables them
to devise more efficient power generation plans and scheduling strategies to enhance the
capacity and the efficiency of wind power generation. Therefore, the introduction of multi-
step WSF is crucial. Given the wind speed sequence {Y1, Y2, Y3, . . . , YT}, the forecasting
value for the k−th step can be calculated as

Ŷt+k = f
(

Yt, Yt−1, . . . , Yt−(w−1)

)
, t = 1, 2, . . . , T (37)

where Ŷt+k represents the predicted value at time t + k, Yt represents the observed value at
time t, and w refers to the lag order. The value of w is set as 24, in other words, the model
takes the past 24 h wind speed sequence as its input. The horizon k ranges from 1 to 4.



Mathematics 2023, 11, 2746 16 of 26

3.4.1. Forecasting Accuracy

The forecasting results of three metrics for HI-IVMD-DLinear and other comparative
models are presented in Tables 6–8. In all three datasets, the HI-IVMD-DLinear model
outperforms the others in terms of MAE, RMSE, and MAPE. The HI-IVMD-DLinear exhibits
the best predictive accuracy among the comparative models and is better suitable for the
WSF task.

Table 6. Results of three evaluation metrics of multi-step-ahead prediction in Lanzhou.

Estimation
Horizon Metric HI-SVR HI-BPNN HI-LSTM HI-

Transformer
HI-

DLinear
HI-IVMD-

BPNN
HI-IVMD-

LSTM
HI-IVMD-

Transformer
HI-IVMD-
DLinear

1-step MAE 0.3179 0.2773 0.2689 0.2366 0.2064 0.1688 0.1213 0.0767 0.0501
RMSE 0.4116 0.3750 0.3592 0.3261 0.2582 0.2038 0.1452 0.1069 0.0641
MAPE 0.1535 0.1494 0.1362 0.1213 0.1023 0.0745 0.0700 0.0421 0.0237

2-step MAE 0.4391 0.4380 0.3345 0.3301 0.2826 0.2273 0.2025 0.1512 0.1207
RMSE 0.6031 0.5832 0.4533 0.4426 0.3779 0.3152 0.2898 0.2124 0.1578
MAPE 0.2240 0.2251 0.1785 0.1844 0.1596 0.1223 0.1065 0.0814 0.0601

3-step MAE 0.4512 0.4405 0.385 0.3816 0.3434 0.2877 0.2587 0.2223 0.1398
RMSE 0.6001 0.5813 0.5164 0.5173 0.4567 0.4045 0.3649 0.2882 0.1909
MAPE 0.2356 0.2304 0.212 0.2098 0.1799 0.1765 0.1528 0.1103 0.0687

4-step MAE 0.5240 0.5114 0.4412 0.4133 0.3713 0.3437 0.3381 0.2512 0.1666
RMSE 0.6861 0.6732 0.5942 0.5559 0.4898 0.4125 0.3538 0.3051 0.2136
MAPE 0.2523 0.2581 0.2345 0.2295 0.2034 0.2010 0.1782 0.1312 0.0839

Table 7. Results of three evaluation metrics of multi-step-ahead prediction in Nanjing.

Estimation
Horizon Metric HI-SVR HI-BPNN HI-LSTM HI-

Transformer
HI-

DLinear
HI-IVMD-

BPNN
HI-IVMD-

LSTM
HI-IVMD-

Transformer
HI-IVMD-
DLinear

1-step MAE 0.4463 0.4080 0.3691 0.3572 0.3295 0.1325 0.1152 0.0911 0.0705
RMSE 0.5533 0.5324 0.471 0.4694 0.4332 0.1668 0.1472 0.1253 0.0881
MAPE 0.3839 0.3082 0.292 0.2705 0.2418 0.0917 0.0792 0.0632 0.0479

2-step MAE 0.5244 0.5035 0.4785 0.4696 0.3797 0.2258 0.208 0.1717 0.1113
RMSE 0.6814 0.6615 0.6172 0.6118 0.4699 0.2989 0.2752 0.229 0.1477
MAPE 0.4356 0.4045 0.3905 0.3766 0.2557 0.1562 0.1511 0.1118 0.0773

3-step MAE 0.5724 0.5620 0.5368 0.5304 0.4531 0.2592 0.211 0.1871 0.1381
RMSE 0.7621 0.7394 0.6977 0.7005 0.6014 0.3488 0.3001 0.2624 0.1834
MAPE 0.4761 0.4300 0.4477 0.4459 0.3346 0.1825 0.1629 0.1412 0.0956

4-step MAE 0.6348 0.6034 0.5716 0.5615 0.4495 0.3071 0.2509 0.2215 0.1648
RMSE 0.8500 0.8108 0.7718 0.7457 0.6271 0.4024 0.3583 0.2918 0.2289
MAPE 0.5298 0.5009 0.4826 0.4682 0.3532 0.2206 0.2012 0.1811 0.1266

Table 8. Results of three evaluation metrics of multi-step-ahead prediction in Shijiazhuang.

Estimation
Horizon Metric HI-SVR HI-BPNN HI-LSTM HI-

Transformer
HI-

DLinear
HI-IVMD-

BPNN
HI-IVMD-

LSTM
HI-IVMD-

Transformer
HI-IVMD-
DLinear

1-step MAE 0.3073 0.3041 0.2697 0.2540 0.2060 0.1441 0.1277 0.0939 0.0669
RMSE 0.3937 0.3908 0.3564 0.3383 0.2847 0.2013 0.1765 0.1283 0.0861
MAPE 0.2506 0.2281 0.1935 0.1936 0.1510 0.1225 0.1022 0.0661 0.0480

2-step MAE 0.4121 0.4139 0.4026 0.3745 0.2976 0.2255 0.1768 0.1202 0.0814
RMSE 0.5261 0.5286 0.5188 0.5040 0.3945 0.3132 0.2371 0.1612 0.1054
MAPE 0.2799 0.2823 0.3379 0.2642 0.2215 0.1946 0.1268 0.0912 0.0569

3-step MAE 0.4625 0.4574 0.4396 0.3995 0.3246 0.2752 0.2248 0.1512 0.1000
RMSE 0.6031 0.5997 0.5657 0.5401 0.4224 0.3674 0.2903 0.2342 0.1338
MAPE 0.3412 0.3275 0.3392 0.3114 0.2551 0.2157 0.1735 0.1023 0.0690

4-step MAE 0.4951 0.4941 0.4871 0.4519 0.3814 0.3502 0.2861 0.2215 0.1439
RMSE 0.6431 0.6335 0.6195 0.5761 0.4745 0.4264 0.3683 0.3012 0.2141
MAPE 0.3620 0.3639 0.3530 0.3614 0.3095 0.2849 0.2543 0.2202 0.1023

Taking Lanzhou as an example, compared with other models, the HI-IVMD-DLinear
model achieves lower MAE, RMSE, and MAPE values. The MAE, RMSE, and MAPE
values for the HI-IVMD-DLinear’s one-step-ahead prediction are 0.0705, 0.0881, and 0.0479,
respectively, which are smaller than those of other models. Specifically, the MAPE values
for HI-SVR, HI-BPNN, HI-LSTM, HI-Transformer, HI-DLinear, HI-IVMD-BPNN, HI-IVMD-
LSTM, HI-IVMD-Transformer, and HI-IVMD-DLinear are 0.3839, 0.3082, 0.2920, 0.2705,
0.2418, 0.0917, 0.0792, 0.0632, and 0.0479, respectively. Among them, the HI-IVMD-DLinear
achieves the smallest MAPE value. Moreover, for one-step-ahead to four-steps-ahead
predictions, the HI-IVMD-DLinear obtains the optimal MAPE values of 0.0773, 0.0956, and
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0.1266, respectively. Additionally, the HI-IVMD-DLinear also obtains the best MAE and
RMSE values.

Furthermore, according to Tables 6–8, it is evident that the hybrid methods based on
IVMD outperform the individual models in terms of accuracy. Taking the one-step-ahead
forecasting in Lanzhou as an example, the MAPE value of the HI-DLinear is 0.2418, while
that of the HI-IVMD-DLinear is 0.0479. Therefore the IVMD method helps diminish the
complexity of the wind speed series enables the forecasting model to capture valuable pat-
terns within the wind speed series, and effectively improves the forecasting performance.

The comparison between the predicted and the observed wind speed values in the
three datasets is illustrated in Figure 6. It can be observed that the prediction curve of the
HI-IVMD-DLinear hybrid model closely resembles that of the observed wind speed values.
This highlights better predictive accuracy of the HI-IVMD-DLinear model in the field of
WSF than other comparative models.
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Meanwhile, compared with the individual HI-SVR, HI-BPNN, HI-LSTM, HI-Transformer,
and HI-DLinear models, the prediction curves of HI-IVMD-SVR, HI-IVMD-BPNN, HI-
IVMD-LSTM, HI-IVMD-Transformer, and HI-IVMD-DLinear across the three datasets
exhibit a higher degree of similarity to the observed wind speed curves. Thus the IVMD
decomposition is helpful in WSF.

3.4.2. Improvement Percentage in Accuracy

The improvement percentages of accuracy metrics for the HI-IVMD-DLinear model
are presented in Tables 9–11. It can be seen that the proposed model consistently achieves
the lowest prediction errors across all four forecasting horizons on the three wind speed
datasets. Thus the accuracy of the proposed model is acceptable.

Table 9. Improvement percentages on three metrics of HI-IVMD-DLinear compared with comparable
models in Lanzhou.

Estimation
Horizon Metric HI-SVR HI-

BPNN HI-LSTM HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

1-step PMAE (%) 84.2033 82.7196 80.9005 80.2659 78.6032 46.7841 38.8104 22.6125
PRMSE (%) 84.0766 83.4535 81.2947 81.2296 79.6612 47.1681 40.1372 29.6887
PMAPE (%) 87.5236 84.4584 83.5969 82.2938 80.1936 47.7605 39.5475 24.2089

2-step PMAE (%) 78.7740 77.8952 76.7398 76.3006 70.6891 50.7040 46.4791 35.1776
PRMSE (%) 78.3228 77.6722 76.0693 75.8583 68.5685 50.5914 46.3353 35.5022
PMAPE (%) 82.2549 80.8899 80.2049 79.4739 69.7645 50.5266 48.8467 30.8587

3-step PMAE (%) 75.8735 75.4275 74.2732 73.9633 69.5241 46.7304 34.5396 26.1892
PRMSE (%) 75.9363 75.1968 73.7148 73.8202 69.5041 47.4129 38.8968 30.1067
PMAPE (%) 79.9212 77.7699 78.6447 78.5622 71.4304 47.6040 41.3313 32.2946

4-step PMAE (%) 74.0380 72.6866 71.1707 70.6518 63.3334 46.3339 34.3082 25.5982
PRMSE (%) 73.0713 71.7671 70.3405 69.3023 63.4987 43.1154 36.1221 21.5559
PMAPE (%) 76.1047 74.7235 73.7673 72.9588 64.1566 42.6058 37.0858 30.0939
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Table 10. Improvement percentages on three metrics of HI-IVMD-DLinear compared with compara-
ble models in Nanjing.

Estimation
Horizon Metric HI-SVR HI-

BPNN HI-LSTM HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

1-step PMAE (%) 84.2409 81.9333 81.3657 78.8260 75.7224 70.3199 58.6831 34.6806
PRMSE (%) 84.4272 82.9060 82.1564 80.3460 75.1727 68.5442 55.8529 40.0374
PMAPE (%) 84.5591 84.1313 82.5998 80.4556 76.8356 68.1678 66.1645 43.7055

2-step PMAE (%) 72.5134 72.4446 63.9205 63.4358 57.2882 46.8873 40.3826 20.1904
PRMSE (%) 73.8362 72.9428 65.1858 64.3458 58.2394 49.9432 45.5538 25.6908
PMAPE (%) 73.1711 73.2950 66.3302 67.4084 62.3519 50.8716 43.5630 26.1879

3-step PMAE (%) 69.0184 68.2667 63.6840 63.3623 59.2891 51.4043 45.9572 37.1233
PRMSE (%) 68.1908 67.1616 63.0349 63.0957 58.1990 52.8060 47.6892 33.7700
PMAPE (%) 70.8416 70.1822 67.5903 67.2581 61.8191 61.0778 55.0276 37.7379

4-step PMAE (%) 68.2063 67.4222 62.2392 59.6876 55.1269 51.5240 50.7219 33.6865
PRMSE (%) 68.8684 68.2711 64.0548 61.5750 56.3870 48.2202 39.6268 29.9954
PMAPE (%) 66.7518 67.4935 64.2221 63.4508 58.7554 58.2622 52.9276 36.0750

Table 11. Improvement percentages on three metrics of HI-IVMD-DLinear compared with compara-
ble models in Shijiazhuang.

Estimation
Horizon Metric HI-SVR HI-

BPNN HI-LSTM HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

1-step PMAE (%) 78.2167 77.99 75.18 73.65 67.50 53.54 47.59 28.72
PRMSE (%) 78.1334 77.97 75.84 74.55 69.76 57.24 51.21 32.90
PMAPE (%) 80.8590 78.98 75.22 75.23 68.24 60.86 53.09 27.44

2-step PMAE (%) 80.2491 80.33 79.78 78.26 72.65 63.90 53.96 32.25
PRMSE (%) 79.9665 80.06 79.68 79.09 73.28 66.35 55.54 34.62
PMAPE (%) 79.6722 79.84 83.16 78.46 74.31 70.77 55.11 37.63

3-step PMAE (%) 78.3790 78.14 77.25 74.97 69.19 63.66 55.51 33.88
PRMSE (%) 77.8146 77.69 76.35 75.23 68.32 63.59 53.91 42.88
PMAPE (%) 79.7793 78.93 79.66 77.84 72.96 68.01 60.22 32.56

4-step PMAE (%) 70.9363 70.87 70.46 68.16 62.27 58.91 49.71 35.02
PRMSE (%) 66.7056 66.20 65.44 62.84 54.88 49.79 41.87 28.93
PMAPE (%) 71.7365 71.89 71.02 71.70 66.94 64.09 59.77 53.53

As shown in Table 10, for the Nanjing dataset, the improvement percentages of MAPE
for one-step-ahead prediction by the HI-IVMD-DLinear relative to HI-SVR, HI-BPNN, HI-
LSTM, HI-Transformer, and HI-DLinear are 87.5236%, 84.4584%, 83.5969%, 82.2938%, and
80.1936% respectively. This indicates the necessity of decomposing the original sequence
with IVMD in the WSF process.

Furthermore, like HI-IVMD-BPNN, HI-IVMD-LSTM, and HI-IVMD-Transformer, HI-
IVMD-DLinear also demonstrates significantly higher prediction accuracy. As shown in
Table 10, compared with HI-IVMD-BPNN, HI-IVMD-LSTM, and HI-IVMD-Transformer, the
HI-IVMD-DLinear exhibits improvement percentages 58.2622%, 52.9276%, and 36.0750%
in MAPE for the one-step-ahead and two-steps-ahead predictions, respectively.

Therefore the HI-IVMD-DLinear outperforms the other models in the field of WSF in
terms of accuracy.

3.4.3. Analysis of Forecasting Errors

Figure 7 is the frequency distribution of the predictive errors with the proposed model
and eight other comparative models, regarding one-step-ahead predictions. The graph
indicates that the error of the model based on the IVMD is small. Additionally, it can be
observed that the HI-IVMD-DLinear presents the smallest errors among the majority of the
data points in the test set.
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Figure 8 illustrates the distribution of errors for each model. It is noticeable that the
HI-IVMD-DLinear exhibits a higher concentration of prediction errors around zero for each
dataset than the other models, with a smaller range of error variation. This implies that the
HI-IVMD-DLinear possesses exceptional predictive accuracy and robustness.
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3.4.4. Stability Analysis

Table 12 is the variance of absolute errors (VAE) with the proposed model and all
comparative models across three datasets for multi-step ahead predictions. It reveals that
the proposed model has good stability since it obtains the lowest VAE for one-to-four-
steps-ahead predictions across all three datasets. For instance, in the Lanzhou dataset, the
HI-IVMD-DLinear achieves VAE values of 0.0028, 0.0084, 0.0178, and 0.0264 for one-to-four-
steps-ahead predictions, respectively. These values are consistently lower than those of the
other comparative models.

Table 12. Predictive stability results (VAE) in three datasets.

Estimation
Horizon HI-SVR HI-

BPNN HI-LSTM HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

HI-IVMD-
DLinear

Lanzhou
1-step 0.1200 0.1100 0.0893 0.1102 0.0513 0.0197 0.0129 0.0211 0.0028
2-step 0.1920 0.1890 0.1541 0.1899 0.1127 0.0383 0.0313 0.0316 0.0084
3-step 0.2112 0.2216 0.1873 0.2012 0.1577 0.0512 0.0544 0.0412 0.0178
4-step 0.2635 0.2539 0.2367 0.2524 0.2025 0.0551 0.0676 0.0518 0.0264

Nanjing
1-step 0.0667 0.0571 0.0536 0.0610 0.0506 0.0327 0.0114 0.0110 0.0052
2-step 0.1098 0.0835 0.0997 0.0811 0.0710 0.0477 0.0327 0.0411 0.0173
3-step 0.1371 0.1380 0.1178 0.1225 0.1048 0.0902 0.0669 0.0624 0.0353
4-step 0.1620 0.1610 0.1503 0.1503 0.1303 0.1333 0.1047 0.1009 0.0603

Shijiazhuang
1-step 0.0651 0.0610 0.0652 0.0782 0.0514 0.0137 0.0100 0.0416 0.0044
2-step 0.1021 0.1019 0.0922 0.0956 0.0781 0.0412 0.0266 0.0210 0.0096
3-step 0.1241 0.1221 0.1170 0.1018 0.0921 0.0810 0.0591 0.0411 0.0336
4-step 0.1407 0.1395 0.1301 0.1312 0.1139 0.1065 0.0872 0.0721 0.0655

The improvement percentages of VAE for the HI-IVMD-DLinear together with other
comparative models are depicted in Figure 9. Compared to HI-SVR, HI-BPNN, HI-LSTM,
HI-Transformer, and HI-DLinear, the HI-IVMD-DLinear exhibits a reduction in VAE of
over 50% under the three datasets,. The IVMD decomposition also enhances the stability
of predictions. Furthermore, compared to HI-IVMD-BPNN, HI-IVMD-LSTM, and HI-
IVMD-Transformer, the HI-IVMD-DLinear achieves a reduction in VAE ranging from
9.0707% to 85.8084%. Hence, the DLinear-based model is more stable than BPNN, LSTM,
and transformer.
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3.5. Comparative Analysis of Decomposition Strategies

To validate the decomposition performance of IVMD, IVMD is compared with the
decomposition strategies including EMD [53], CEEMDAN [37], and the recently published
CEEMDAN-VMD [54] and CEEMDAN-LMD [55]. Additionally, the strategy without
decomposition methods is also compared. The CEEMDAN-VMD method begins by de-
composing the wind speed sequence into several IMFs with CEEMDAN, followed by
another decomposition of the highest-frequency IMF with VMD. Similarly, the CEEMDAN-
LMD method involves decomposing the wind speed sequence into multiple IMFs with
CEEMDAN, and subsequently decomposing the IMF1 generated from the CEEMDAN
decomposition with LMD. The comparative results are presented in Table 13.

Based on the data presented in Table 13, the following conclusions can be inferred:

• Compared with the other decomposition strategies, the predictive models based on
IVMD demonstrate the minimal RMSE values, specifically, 0.1712, 0.1668, 0.1472,
0.1253, and 0.0881. This further validates the superior performance of IVMD over
the other decomposition strategies. CEEMDAN-VMD and CEEMDAN-LMD fail to
address the inherent mode-mixing issue in the CEEMDAN algorithm, although they
employ secondary decomposition, which reduces the complexity of sequences once
again to some extent. This is why both have lower performance than IVMD.

• Compared to traditional machine learning methods like SVR, deep learning methods
including BPNN, LSTM, transformer, and DLinear present significant improvement in
predictive accuracy when combined with decomposition methods. For instance, the
RMSE of IVMD-SVR and the SVR are 0.3015 and 0.5533, respectively. The RMSE is
reduced by only 45.50% when incorporating IVMD. However, IVMD-DLinear and
DLinear achieve an RMSE of 0.4332 and 0.0881, respectively. It is demonstrated that a
remarkable RMSE reduction of 79.66% is achieved when combined with IVMD.

• For the same decomposition strategy, DLinear consistently obtains the lowest RMSE,
implying DLinear generally has optimal accuracy.

• Among different combinations of decomposition strategies and original prediction
models, IVMD-DLinear achieves the lowest RMSE of 0.0881. Therefore IVMD-DLinear
has best predictive performance than the aforementioned combinations.
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Table 13. The RMSE in Lanzhou obtained by basic forecasting models combined with different
decomposition strategies.

Strategy SVR BPNN LSTM Transformer DLinear

Non-decomposition 0.5533 0.5324 0.4710 0.4694 0.4332
EMD 0.4119 0.3992 0.3611 0.3574 0.3192

CEEMDAN 0.3633 0.2731 0.2632 0.2427 0.174
CEEMDAN-VMD 0.3211 0.2031 0.1754 0.1641 0.1259
CEEMDAN-LMD 0.3275 0.1832 0.1618 0.1517 0.1187

IVMD 0.3015 0.1668 0.1472 0.1253 0.0881

4. Discussion

WSF is a complex task influenced by various factors, such as temperature, humidity,
and air pressure. These factors contribute to the non-stationary and nonlinear characteristics
of wind speed sequences. It is challenging to forecast wind speeds with a single prediction
model accurately. Precise WSF holds significant importance in the energy industry, as
higher accuracy forecasts can help reduce operational costs of power systems.

4.1. Discussion of Computational Efficiency

In terms of computational efficiency, the proposed method outperforms the other
prediction models. Specifically, the VMD allows for higher computational efficiency with
distributed storage and parallel computing techniques, since each IMF’s prediction is
independent of the others. Furthermore, the DLinear model has high efficiency, with
each branch containing only a single linear layer. Significantly lower memory and fewer
parameters are involved than the transformer, and faster calculation speeds.

4.2. Discussion of Computational Complexity

Compared with the other non-decomposition methods, the IVMD-DLinear increases
the computational complexity within an acceptable range. The predictions for each IMF
are obtained by applying the DLinear model to each IMF and the hyperparameter in
VMD is optimized by the GWO algorithm, which significantly increases the computational
complexity. However, it is reasonable since the substantial improvement in prediction
accuracy augments the economic efficacy of wind power systems significantly.

5. Conclusions

Accurate and robust WSF is of great importance for the advancement of the wind
power industry. Nevertheless, the intricate and non-stationary nature of wind speed
sequences poses a significant challenge to achieve precise predictions. Therefore, a WSF
model (HI-IVMD-DLinear) based on outlier correction, heuristic algorithms, and sequence
decomposition is proposed to achieve high precision and robust wind speed forecasting.
Firstly, the outliers in the wind speed sequence are detected and corrected with the outlier
correction method HI to reduce the adverse effects of outliers on prediction accuracy.
Secondly, the hyperparameters K and α of the VMD are optimized by the GWO. Thirdly,
with the optimized K and α, the wind speed sequence processed by HI is decomposed into
several IMFs by the VMD, and the non-stationarity and the complexity of the sequence are
reduced. Finally, each IMF is individually predicted by the novel DLinear algorithm, and
the predicted outputs are summed to obtain the final wind speed prediction.

The experimental results conducted on wind speed datasets from three cities in China
validate the predictive performance of the HI-IVMD-DLinear. Based on the experiments,
the following conclusions can be drawn:

• HI assists in mitigating the detrimental effects of outliers on prediction accuracy, and
enhances the overall precision of the predictions. HI can detect and correct outliers in
wind speed series and reduce their interference in prediction.
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• The IVMD algorithm demonstrates significant advantages compared to the EEMD,
CEEMDAN, CEEMDAN-VMD, and CEEMDAN-LMD algorithms. The CEEMDAN
algorithm shows spurious modes during decomposition, which can affect the ac-
curacy of predictions to some extent. CEEMDAN-VMD and CEEMDAN-LMD fail
to address the mode-mixing issue in CEEMDAN, although they employ secondary
decomposition to reduce sequence complexity to some extent.

• The DLinear model has better optimal performance than the SVR, BPNN, LSTM, and
transformer models. Simultaneously, DLinear is stable with higher prediction accuracy
than that of the widely used and highly accurate transformer or LSTM models in the
field of WSF, and it is not necessary to adjust its hyperparameters. Therefore, DLinear
is more suitable for WSF than transformer and LSTM.

• In the one-to-four-steps-ahead forecasting on the three datasets, the HI-IVMD-DLinear
model demonstrates excellent prediction accuracy compared with the other eight
comparative models. This hybrid model utilizes HI for outlier correction, IVMD for
sequence decomposition, and DLinear for prediction. The performance of the hybrid
model has been validated at each stage.

Nevertheless, our study does possess certain limitations. Primarily, it relies heav-
ily on simulations due to the current cost constraints that prevent us from conducting
field measurements.
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